
Collecting, Analyzing and Archiving Results from Fault Injection Experiments

Jean Arlat1,2
1 CNRS; LAAS; 7, avenue du Colonel Roche

2 Université de Toulouse; UPS, INSA, INP, ISAE,
UT1, UTM, LAAS; F-31077 Toulouse Cedex 4, France

jean.arlat@laas.fr

Regina Moraes
School of Technology, UNICAMP

1888, Rua Paschoal Marmo, Jardim Nova Itália
13484-332 Limeira, SP, Brazil

regina@ft.unicamp.br

Abstract — This paper addresses the issue of the identification
of the suitable level of observation (readouts and
measurements) to characterize fault injection experiments. In
practice, several outcomes can be observed in an experiment,
but it is not rare for experimenters to consider only one
viewpoint or to rely on the first event observed, in order to
diagnose the experiment. In addition, there is not always a
single way to assert the faulty behaviors as distinct viewpoints
might be considered. Accordingly, an elaborate reflection on
the types of readouts and measurements to be collected and
recorded is an essential dimension for analyzing the faulty
behavior of a target system. Another key aspect concerns the
need for archiving the experimental data in a suitable way
(featuring sufficient details, still in an exploitable format), so
that they can be also useful for extended or alternative
analyses. With that in mind, the paper sketches some simple
guidelines towards the sharing of experimental results via an
open data repository.

Keywords — Dependability Assessment; Controlled
Experiments; Fault Injection; Collecting Outcomes; Archiving
Results.

I. INTRODUCTION

For several decades, fault injection has been recognized as a
pragmatic and useful approach to study the dependability and
characterize the behavior of complex fault-tolerant computer
systems [1, 2] and components [3, 4], in the presence of
faults. Most likely, due to the rapid development and
evolution of computer technologies, the vast majority of the
conducted experiments have been successively considering
distinct target systems (e.g., new architectures, components,
configurations, etc.). Studies have seldom been using the
very same target system in order to allow comparison and
consolidation of results.

Except for very few studies (e.g., see [5]), such a
tendency to address an “ever moving target” is a strong
characteristics of the research in fault injection experiments.
In fact, this is rather in opposition with most experimental
scientific research studies, where it is rather common to
replicate experiments to confirm the results obtained.
Repeatability is definitely a key feature in that context.

Such a state of affair can be easily understood when the
conducted experiments are meant to assess the fault tolerance
features of a very specific computer system. However, when

experiments are rather carried out for the purpose of
dependability benchmarking [6], it is then important that the
experimental context and results be openly disclosed. This
way, it is possible to conduct similar experiments either on
the same target system (for confirmation) or on an alternative
candidate system (for comparison). Such a trend has actually
been concretized under the form of the Data Repository
recently developed in the frame of the AMBER project [7].
Nevertheless, some practical issues have to be dealt with for
the archived data to be fully exploitable.

When disclosing the benchmark conditions (which is
required for objectively interpreting its results), the complete
set of attributes is to be included. In the case of dependability
benchmarking, these attributes refer to: a) the input domain
(workload and faultload), b) the output domain (readouts and
measurements). In this paper, we emphasize the output
domain.

Indeed, a lot of works have been reported that have
addressed the input domain. In particular, beyond early
investigations aimed at proposing efficient fault injection
techniques and supporting tools (e.g., see
[8, 9]), several studies have been concerned with the
identification of: a) faultloads representative of specific fault
sets [10-12], b) a suitable workload — and most likely in
combination with the faultload — aimed at maximizing the
significance of the conducted experiments (e.g., for targeting
the specific fault tolerance mechanisms to be tested [13-15],
for avoiding experiments where the injected fault would not
be activated as an error [16], etc.).

For what concerns the output domain, a lot of work has
addressed the experimental evaluation of the coverage of
fault tolerance mechanisms and of failure modes (e.g., see
[2], [3]). Fewer studies have focused on a detailed
examination of the issues attached to the observation and
analysis of experimental outcomes. Among these, one has to
consider the work reported in [17-19] where the authors have
investigated various ways to analyze the outcomes (error
detection, delivery of an erroneous results) occurring during
a single experiment. Another set of works has considered
various end-user viewpoints to perform the analysis of the
behaviors observed in presence of faults (e.g., see [20, 21]).
Another recent trend has been promoting the application of
metrology concepts to dependability evaluation based on
fault injection experiments [22].

We advocate that several other aspects are also relevant
in that context. They concern the various capabilities and
opportunities to fully exploit and possibly reuse a set of
experimental results, provided that they are made available in
a form that is suitable for an end-user to perform a posteriori
alternative analyses based upon additional insights
(components, environment, requirements, etc.) he/she is
aware of.

This means that in order to be considered as fully
successful and useful, the end-product of a dependability
benchmarking trial should go beyond the provision of an
accurate set of figures. As previously pointed out, it should
also disclose the major underlying results upon which the
benchmark measures have been obtained. For a rationale, let
us simply refer to the form of benchmark that customers are
used to exploit when assessing the respective merits of a car.
Data for various (quantitative or qualitative) criteria are
provided to the user so that he/she can perform a well-
informed assessment that is taking into account the actual
importance of each of these criteria on his/her driving
inclinations and expectations.

In this paper, we illustrate these ideas via some examples
derived from actual fault injection experiments. Accordingly,
it is specifically targeting people who are involved in setting
up and conducting experimental work based on fault
injection. We first describe how different viewpoints can be
accommodated when referring to sufficiently detailed
experimental results (Section II). In Section III, we then
propose some guidelines indicating the most suitable way to
conduct experiments and capture experimental data for
inclusion into a data repository, so that researchers are able
to make the most of the recorded data. Finally, Section IV
concludes the paper.

II. EXPERIMENTAL DATA AND USER VIEWPOINTS

Conducting a fault injection campaign is a tedious, time
consuming and often difficult exercise. Accordingly, it is
rather natural to try to get the most of it in terms of insights
about the failure modes and the robustness features of the
target system. As already pointed out, here, we focus on the
exploitation of available readouts and measurements.

In the subsequent paragraphs, we provide examples of
possible extensions and inferences that can be achieved when
considering the data obtained in a fault injection campaign.

A. Weighting of experimental results

A fault injection experiment simply provides insights about
the behavior of a target system in presence of injected faults.
This means that the measures that can be directly derived
are only conditional dependability measures. For example,
the fault occurrence process — the rate and distribution of
faults into the target system — is usually not accounted for
in the experimental results obtained.

Let us consider the results obtained during a fault
injection campaign carried out on a target system composed
of three modules as described in Table I. We assume that, the

series of fault injection experiments were organized in three
runs (one for each module) featuring each the same number
of experiments.

The Table indicates, for each module, the number of
faults injected and their impact on the target system-wide
error detection mechanism (EDM). The last line gives the
resulting estimate for the coverage factor in each case.
At this stage, based on the experiments carried out, a
potential estimate for the error detection coverage for the
whole target system is the figure given at the bottom right of
the Table.

TABLE I. EXPERIMENTAL RESULTS PER MODULE

Module 1 2 3 Total

#Faults 150 150 150 450

#Detections 100 110 140 350

Coverage (%) 67 73 93 78

An alternative clustering of the same data can be
performed according to a different dimension, so as to help
obtaining additional insights. For example, Table II displays
the data from the same experiment, this time sorted with
respect to (a sample of) the types of software faults that were
injected. In this case only 51% of WEC were detected which
noticeably indicates that detection mechanisms should be
improved in order to deal with this type of fault (undetected
error is disdained). The same overall detection coverage is
obtained.

TABLE II. EXPERIMENTAL RESULTS PER TYPE OF FAULTS

Fault Type MFC MIFS WEC Total

#Faults 252 145 53 450

#Detections 198 125 27 350

Coverage (%) 79 86 51 78

MFC – MISSING FUNCTION CALL; MIFS – MISSING IF CONSTRUCT + STATEMENT;
WEC – WRONG EXTENDED CLASS

When looking at the campaign from this perspective, one
may object that this figure is influenced by the fact that
different numbers of experiments were conducted for each
fault type.

This is to be expected, as the number of each fault type
clearly depends on the specific structure of the source code
and this is just right, provided that the respective proportion
of faults is representative of the related statements.

Further on that, let us come back to Table I and assume
that after having conducted the experiments, some additional
insights are made available. To illustrate this, consider that
the respective failure rates1 for each module in Table I are
know. Let us denote λi each of these rates. Table III provides

this additional information.

Thus, a more accurate (failure-rate aware) estimate of
the detection coverage (cD) can be obtained via a weighted

average of the module coverage (cDMi for i = 1…3) and the

1 Actually, the failure of a module corresponds to a fault occurring

into the system composed of these three modules.

relative probability for a module to be faulty

(pfMi = λi / λi

i

∑) shown in the last row of Table III as

follows [23]:

%69=×=∑ Mi
i

DMiD pfcc

TABLE III. FAILURE RATES FOR THE TARGET SYSTEM MODULES

Module 1 2 3 Total

Failure rate λ i (per hour) 80 10-6 15 10-6 5 10-6 10-4

Pr[fault in mod] pfMi (%) 80 15 5 100

Two remarks can be made:

1. Clearly, this coverage figure is quite differing from the
global estimate in Table I, which implies a significant
impact on dependability (e.g., see [24]).

2. Such an adjustment was possible thanks to the disclosure
of module-based experimental results in addition to the
global estimate.

Such a post-processing of the experimental results is quite
common in practice2. It might also refer to insights
concerning the workload (e.g., see [25]) carried out on each
modules (a more active module is much prone to exercise
faults as errors) or even the risk induced by the non
detections on the application controlled by the target system
(e.g., see [26]), etc.

B. Ordering and severity of the outcomes
Classically, the outcome of an experiment is classified as
detected (D) if the first event observed is the activation of an
EDM. Conversely, when a failure occurs (e.g., the delivery
of wrong results to the controlled application) before any
error detection, the system is considered to have failed (F).
For some applications, where the controlled process features
slow dynamics, it might be sufficient that the EDM signal
the error within a given temporal window so that the system
is not to be considered as failed — e.g., see the flight control
system of an aircraft studied in [27]. In practice, when
considering such a temporal window as equivalent to the
duration of a fault injection experiment, the ordering of the
observed events might be less important.

Table IV provides examples of some typical syndromes
when multiple outcomes can be distinguished as the
consequence of a fault injection experiment. A “1” indicates
the observation of the event in the experiment. Usually, not
all combinations of the events are possible: in particular,
Workload Abort dominates Workload Incorrect, i.e., no WI
outcome can be observed when a WA outcome is diagnosed
first.

2 This would also apply to the data clustering illustrated in

Table II.

TABLE IV. SYNDROMES FOR A FAULT INJECTION EXPERIMENT

 Notification WL Failure First Priority to

 EC XC WA WI event? 1st event Notif. Failure

1 0 0 0 0 N/A N/A N/A N/A

2 1 0 0 0 EC D D D

3 0 0 0 1 WI F F F

4 1 0 0 1 EC D D F

5 0 1 0 1 WI F D F

6 0 0 1 1 WI F F F

7 1 1 0 0 EC D D D

8 1 0 1 0 EC D D F

EC: Error Code; XC: Exception; WA: Workload Aborted; WI: Workload Incorrect

The first row depicts the case when none of the
considered events has been observed. This is a classical
issue in testing and experimental studies. It may result from
several alternatives (fault not activated, error masked, etc.).
Rows 2 an 3 identify cases when a single event is observed,
in which case the characterization of the outcome is
straightforward and steady both with respect to the
identification of the first event and the diagnosis (D or F),
irrespective of the priority assumed for the analysis. The
subsequent rows depict more interesting cases:

• Row 4 (resp. 5): An error notification — error code
(resp. exception raised) — is observed prior to (resp.
after) the delivery of a wrong result, which leads to
distinct diagnosis (whether priority is given to
notification of failure) with respect to the first event-
based analysis.

• Row 6 (resp. 7): More than one event is observed in
each main categories: notification (resp. failure). Further
detailed analyses can be conducted by considering the
usefulness of the error detection with respect to a
potential recovery action: an error code is likely to be
more exploitable than an exception (resp. the impact of
the failure mode on the workload (a WA or a WI) might
have distinct impact depending on the application
process being considered.

• Row 8: Based on the comments for rows 6 and 7, this
syndrome would correspond to the less severe case when
both a notification and failure are observed.

Furthermore, it is interesting to stress that row 2 could
be interpreted as a “false positive” with respect to the
viewpoint of error detection (the error did had any impact
on the WL) and row 3 a “false negative” with respect to
fault tolerance.

As a final comment, for such detailed and alternative
analyses to be performed, comprehensive and precise
information about the various events that occurred during
each experiment is clearly needed.

III. MANAGING EXPERIMENT OUTCOMES

This section discusses some suitable ways to capture
experimental data and record them for exploitation in a
repository, so that the research community is able to exploit

the recorded data. Many published works exist that provide
useful hints concerning the management of large sets of data
in many experimental contexts (e.g., see [28]). Here we
focus on fault injection experiments. Still, our proposal is
far from providing a comprehensive reference; rather, it
should be considered as a “bootstrap” or an initial incentive
that can be extended including by other researchers.

One important aspect that singularizes fault injection
experiments is related to the fact that these are “controlled
experiments”. This means that by definition, the
experimenter is explicitly acting upon the input domain (at
least via the injected faults), which has obviously an impact
on the output domain (the observed outcomes).
Accordingly, a strong interplay exists between the
observability and controllability dimensions.

Among potential people interested, we believe that
students involved into experimental work would be the
prime target for such guidelines. Indeed, it is not rare,
during student research development, for the time spent with
the experiments to be jeopardized or at least impaired by a
poor planning, conduct and too restrictive recording of the
experiment outcomes. Such guidelines should also provide a
helpful instrument for advisors to convey relevant practices,
as it is not always easy to verbalize all details involved, and
to increase the chances that the students catch up with the
related knowledge and skills.

Moreover, such guidelines should allow for the
experiment results collected to be more easily and
efficiently exploited by interested researchers when made
available in data repositories: someone’s else data can only
be useful if the data provider is careful to collect, document
and store these data in a comprehensive way.

The selected recommendations that follow are based on
our own experiences, but also on exchanges with PhD
students and other researchers in the field.

A. Planning the Experiments
Most of the concerns that have been verbalized by the
students and researchers consulted are related to this phase
of the experiments.

The primary objective is to translate the hypothesis to be
demonstrated / proved or the type of measures to be derived,
into a sound fault injection campaign. This has definitely an
impact on the whole sets of attributes (workload and
faultload, but also, readouts and measurements), as well as
on the way the experiments are conducted (testbed
configuration) and the results analyzed (e.g., statistical
analysis).

Accordingly, whenever available, existing suitable tools
have to be used, or else, novel experimental techniques are
to be devised and related enabling technologies developed.

As previously explained, we focus on the impact of the
planning of a fault injection campaign on the outcomes of
the experiments. Two ways for planning a campaign (i.e.,
the injection of a series of faults) can be distinguished:

• The campaign is made up of a series of independent
experiments, in which a fault pattern (possibly involving
multiple faults) is injected and the target system is
observed during a specific timeframe (e.g., the execution
of a specific application task) for observing and
collecting relevant outcomes induced by the injected
fault. In practice, it is necessary to check the target
system for possible residual errors. Usually, a special
integrity test is run for that purpose and to purge the
target system from latent errors.

• Here also, a series of faults are injected during the
execution of the workload. However, in that case, the
end of each experiment is characterized by the
occurrence of a specific failure event (e.g., a crash). The
same reset of the target system is to be performed before
launching subsequent campaigns.

The main differences are as follows: while in the first
case, the individual effect of a single fault can be assessed
and thus recorded, in the second case only the combined
effect of the injected faults can be reported. However, in the
latter, the overall availability of the target system and the
impact of the injected faults (e.g., number of faults injected
before a crash occurs) can be more thoroughly estimated.

B. Collecting the Outcomes
There are different concerns during the conduct of
experiments related to the observation and collection of
experiment outcomes. Among them, the main preoccupation
is to avoid undesired interferences with the target system.
Such a worry is very much exacerbated when detailed
timing measurement is to be performed as part of the
experiment.

Besides the usual timing parameters that are essential to
characterize a fault injection experiment (start time, fault
injection time, end time, etc.) the record of timing
information for relevant events (detection, recovery, crash,
etc.) is often essential to fully characterize the faulty
behavior of a target system.

Moreover, compared to the case of performance
benchmarking, dependability assessment requires much
more attention to be paid to the target system and its
operational profile.

First, as it is routinely done for failure data analysis
studies (e.g., see [29]), in the case of fault injection
experiments, it is also important to record data
characterizing the target system itself, the production
process and the use environment. For example, for software
systems, important information include: language and
program size, version being tested, development tools and
compilers, workload type, etc. [6].

Second, the observation of timing information about
specific activity concerning the workload being executed
(e.g., time of occurrence of a request) is very often
mandatory, to be able to diagnose the status of the target
system. Also, the characterization of fault tolerance

mechanisms frequently requires that related timing
information (error detection time, recovery duration, etc.) be
measured. Then, it is essential that either the same time
scale be used or that the various time scales be synchronized
with sufficient precision.

However, the more detailed the timing information, the
more sophisticated and intricate the related observation
devices. Indeed, both the intrusiveness (e.g., the temporal
interference or overhead induced by the measurement
mechanisms) and the accuracy (e.g., the instrumentation
requirements and related cost) are to be carefully balanced.
In the extreme case when no overhead at all is tolerable, a
radical approach exposed in [19] was to “freeze” the
progression of time when the events are observed3. This is
more and more acceptable when considering the trend
towards the development of generic virtual execution
platforms featuring extensive simulation capabilities
encompassing hardware (Hardware-in-the-Loop) and real
time kernel functionalities (e.g., see [30]).

C. Archiving the Experimental Data
In accordance with [28], which states that “The data have
then to be organized into an appropriate form for analysis
(often in different ways, depending on the analysis)”, we
advocate that specific care needs to be taken in managing
and storing the outcomes of fault injection experiments. In
practice, a good balance is to be made between two extreme
cases: a) storing the complete set of raw data and b) simply
archiving the dependability measures of interest. Indeed,
when considering the first option, one has to consider the
fact that in many cases the raw data is very large, and more
importantly, very difficult to exploit without some
supporting parsing tools. For example, when considering
experimental studies targeting operating systems, the basic
raw data may correspond to execution traces of considered
operating systems when subjected to faults. Clearly, such a
raw material is virtually useless as is, for most end-users,
unless dedicated scripts are provided to help parse it.

 Accordingly, the raw data collected usually
requires the application of some specific filtering technique,
so as to keep the data relevant for the viewpoint of the
experiment being conducted and focus on the suitable level
of details (e.g., see, [29]). Still, the filtering process should
be carefully tuned for the stored data to be useful for
research studies related to the main topic.

A popular format for recording and analyzing data sets
corresponds to the use of spreadsheet tables. In practice,
several tables are produced that may correspond to different
part of the campaign (e.g., records concerning the input set
workload, faultload on one side and readouts and outcomes
on the other side). Such a potential disconnection might
cause problems when trying to relate such data sets, for

3 This requires the hardware clock to be managed by the fault

injection tool so as to disable and resume its counting.

example, in order to perform a detailed cause and effect
analysis when singular or unexpected behaviors are revealed
by the observations made. Such a shortcoming might not
only impair the pertinence of the overall assessment, but
also the confidence in the experimental data produced. More
generally, a strict control of the data versions should be
enforced in order to precisely identify which data is related
to the various runs and experiments.

All this calls for the support of a database, and especially
a relational database, so that the complete data set can be
archived in a coherent format and procedures to exploit it
can be explicitly attached to it.

IV. CONCLUDING REMARKS

The paper provides some insights about collecting,
analyzing, and archiving results obtained in fault injection
experiments. As we have illustrated by means of examples
in Section II, for experimental outcomes to be readily
reusable, it is important to have sufficiently detailed data
disclosed.

In some scientific fields, for example biology, depositing
such a data in a formal repository can be a prerequisite for
publication. Experimental research in computer science does
not have such a constraint, and while this might be a too
strong requirement, clearly, there is room for improvement!
Accordingly, as an attempt to bootstrap such a trend, we
have discussed a few hints for collecting and archiving
experimental data.

Moreover, to ensure that data survive the interests of
original researchers, it would be highly desirable that such
repositories be managed by perennial organizations
(possibly professional societies). Also, to get the most of the
data stored in the repository, it is essential that these data be
accompanied by documents and procedures that make raw
data actually parsable and exploitable by most end-users.

Sharing data via relational databases would allow for
generic storage and advanced processing. This would mean
that with such data, you can do all sorts of things, you can
analyze it, you can combine it with other data sources, you
can reach new conclusions and strike down old ones.

Such a trend should make it possible to researchers to
objectively say: “I have evidence that it is (or is not)
working well”, instead of simply stating: “I have the feeling
that it is (or is not) working well”. This should be a
significant improvement for all experimental research in the
dependability assessment.

ACKNOWLEDGMENT

The study reported herein was initiated during Jean
Arlat’s one-month stay at the School of Technology,
UNICAMP, supported in part by UNICAMP Visiting
Professor Program and FAEPEX. Regina Moraes work is
partially supported by the REVVIS project and linked to
Engenharia de Informação e Sistemas research group. This
work was also supported in part by the CAPES-COFECUB
project RobustWeb.

The authors gratefully acknowledge useful discussions
with colleagues, especially Yves Crouzet at LAAS-CNRS
(France), and PhD students: Tânia Basso at UNICAMP
(Brazil), Afonso Araujo Neto, Naaliel Vicente Mendes,
Nuno Manuel dos Santos Antunes at the University of
Coimbra (Portugal).

REFERENCES

[1] D. A. Rennels, “Some Past Experiments and Future Plans in
Experimental Evaluations of Fault Tolerance,” Proc. Int. Symposium.
on Mini and MicroComputers in Control and Measurement, San
Francisco, CA, USA, 1981, pp. 91-98.

[2] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, D. Powell, “Fault Injection for Dependability Validation
— A Methodology and Some Applications,” IEEE Trans. on
Software Engineering, vol. 16, no. 2, pp. 166-182, 1990.

[3] N. P. Kropp, P. J. Koopman, D. P. Siewiorek, “Automated
Robustness Testing of Off-The-Shelf Software Components,” Proc.
28th IEEE Annual Symp. on Fault-Tolerant Computing (FTCS-28),
Munich, Germany, 1998, pp. 230-239.

[4] K. Kanoun, Y. Crouzet, “Dependability Benchmarks for Operating
Systems,” Int. Journal of Performability Engineering, vol. 2, no. 3,
pp. 275-287, 2006.

[5] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, G. H. Leber,
“Comparison of Physical and Software-Implemented Fault Injection
Techniques,” IEEE Trans. on Computers, vol. 52, no. 9, pp. 1115-
1133, 2003.

[6] K. Kanoun, L. Spainhower, Dependability Benchmarking for
Computer Systems, IEEE Computer Society Press and Wiley, 2008,
362 p.

[7] M. Vieira, N. Mendes, J. Durães, “A Case Study on Using the
AMBER Data Repository for Experimental Data Analysis,”
Workshop on Sharing Field Data and Experiment Measurements on
Resilience of Distributed Computing Systems (co-located with IEEE
Symp. on Reliable Distributed Systems (SRDS-2008), Naples, Italy,
2008. See also: www.amber-project.eu.

[8] J. Carreira, H. Madeira, J. G. Silva, “Xception: A Technique for the
Experimental Evaluation of Dependability in Modern Computers,”
IEEE Trans on Software Engineering, vol. 24, no. 2, pp. 125-136,
1998.

[9] E. Martins, M. de F. Mattiello Francisco, “A Tool for Fault Injection
and Conformance Testing of Distributed Systems,” Proc. 1st Latin
American Symposium on Dependable Computing (LADC-2003), São
Paulo, Brazil, 2003, pp. 282-302.

[10] V. Sieh, O. Tschäche, F. Balbach, “Comparing Different Models
Using VERIFY,” Proc. 6th International Working Conference on
Dependable Computing for Critical Applications (DCCA-6), Grainau,
Germany, 1997, pp. 59-76.

[11] J. Durães, H. Madeira, “Emulation of Software Faults: A Field Data
Study and a Practical Approach,” IEEE Trans. on Software
Engineering, vol. 32, no. 11, pp. 849-867, 2006.

[12] R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Martins,
H. Madeira, “Injection of Faults at Component Interfaces and Inside
the Component Code: Are They Equivalent?,” Proc. European
Dependable Computing Conference (EDCC-6), Coimbra, Portugal,
2006, pp. 53-64.

[13] J. Arlat, J. Boué, Y. Crouzet, “Validation-based Development of
Dependable Systems,” IEEE Micro, vol. 19, no. 4, pp. 66-79, 1999.

[14] F. Saad Khorchef, A. Rollet, R. Castanet, “A Framework and a Tool
for Robustness Testing of Communicating Software,” Proc. ACM
Symp. on Applied Computing, Seoul, Korea, 2007,
pp. 1461-1466.

[15] P. Costa, J. G. Silva, H. Madeira, “Dependability Benchmarking
Using Software Faults - How to Create Practical and Representative
Faulloads,” Proc. 15th IEEE Pacific Rim International Symp. on
Dependable Computing (PRDC-15), Shanghai, China, 2009,
pp. 289-294.

[16] R. Barbosa, J. Vinter, P. Folkesson, J. Karlsson, “Experimental
Dependability Evaluation of a Fail-Bounded Jet Engine Control
System for Unmanned Aerial Vehicles,” Proc. European Dependable
Computing Conf. (EDCC-5), Budapest, Hungary, 2005,
pp. 246-262.

[17] P. Chevochot, I. Puaut, “Experimental Evaluation of the Fail-Silent
Behavior of a Distributed Real-Time Run-Time Support Built from
COTS Components,” Proc. Annual IEEE/IFIP International Conf. on
Dependable Systems and Networks (DSN-2001), Göteborg, Sweden,
2001, pp. 304-313.

[18] A. Steininger, C. Scherrer, “Identifying Efficient Combinations of
Error Detecting Mechanisms Based on Results of Fault Injection
Experiments,” IEEE Trans. on Computers, vol. 51, no. 2,
pp. 235-239, June-July 2002.

[19] M. Rodríguez, A. Albinet, J. Arlat, “MAFALDA-RT: A Tool for
Dependability Assessment of Real Time Systems,” Proc. Annual
IEEE/IFIP International Conf. on Dependable Systems and Networks
(DSN-2002), Washington, DC, USA, 2002, pp. 267-272.

[20] J. Durães, H. Madeira, “Mutidimensional Characterization of the
Impact of Faulty Drivers on the Operating Systems Behavior,” IEICE
Trans. on Information and Systems, vol. E86-D, no. 12,
pp. 2563-2570, 2003.

[21] A. Albinet, J. Arlat, J.-C. Fabre, “Benchmarking the Impact of
Faulty Drivers: Application to the Linux Kernel,” see [6],
pp. 285-310, 2008.

[22] A. Bondavalli, A. Ceccarelli, L. Falai, M. Vadursi, “Foundations of
Measurement Theory Applied to the Evaluation of Dependability
Attributes,” Proc. 37th Annual IEEE/IFIP International Conf. on
Dependable Systems and Networks (DSN-2007), Edinburgh, UK,
2007, pp. 522-533.

[23] D. Powell, E. Martins, J. Arlat, Y. Crouzet, “Estimators for Fault
Tolerance Coverage Evaluation,” IEEE Trans. on Computers, vol. 44,
no. 2, pp. 261-274, 1995.

[24] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, D. Powell, “Fault
Injection and Dependability Evaluation of Fault-Tolerant Systems,”
IEEE Trans. on Computers, vol. 42, no. 8, pp. 913-923, 1993.

[25] X. Ju, H. Zou, “Operating System Robustness Forecast and
Selection,” Proc. 19th IEEE International Symp. on Software
Reliability Engineering (ISSRE-19), Seatlle, WA, USA, 2008,
pp. 107-116.

[26] R. Moraes, J. Durães, R. Barbosa, E. Martins, H. Madeira,
“Experimental Risk Assessment and Comparison Using Software
Fault Injection,” Proc. 37th Annual IEEE/IFIP International Conf. on
Dependable Systems and Networks (DSN-2007), Edinburgh, UK,
2007, pp. 512-521.

[27] A. Youssef, Y. Crouzet, A. de Bonneval, J. Arlat, J.-J. Aubert,
P. Brot, “Communication Integrity in Networks for Critical Control
Systems,” Proc. European Dependable Computing Conference
(EDCC-6), Coimbra, Portugal, 2006, pp. 23-32.

[28] Statistical Services Centre, Data Management Guidelines for
Experimental Projects, Department of Applied Statistics, The
University of Reading, 1998, 20 p. (www.reading.ac.uk/ssc).

[29] K.Kanoun, M. Kaâniche, J-C. Laprie, “Qualitative and Quantitative
Reliability Assessment,” IEEE Software, vol. 14, no. 2, pp. 77-87,
1997.

[30] M. Short, M. J. Pont, “Assessment of High-Integrity Embedded
Automotive Control Systems using Hardware in the Loop
Simulation,” Journal of Systems and Software, vol. 81, no. 7,
pp. 1163-1183, 2008.

