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Abstract — This paper addresses the issue of the identification 
of the suitable level of observation (readouts and 
measurements) to characterize fault injection experiments. In 
practice, several outcomes can be observed in an experiment, 
but it is not rare for experimenters to consider only one 
viewpoint or to rely on the first event observed, in order to 
diagnose the experiment. In addition, there is not always a 
single way to assert the faulty behaviors as distinct viewpoints 
might be considered. Accordingly, an elaborate reflection on 
the types of readouts and measurements to be collected and 
recorded is an essential dimension for analyzing the faulty 
behavior of a target system. Another key aspect concerns the 
need for archiving the experimental data in a suitable way 
(featuring sufficient details, still in an exploitable format), so 
that they can be also useful for extended or alternative 
analyses. With that in mind, the paper sketches some simple 
guidelines towards the sharing of experimental results via an 
open data repository. 

Keywords — Dependability Assessment; Controlled 
Experiments; Fault Injection; Collecting Outcomes; Archiving 
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I. INTRODUCTION  

For several decades, fault injection has been recognized as a 
pragmatic and useful approach to study the dependability and 
characterize the behavior of complex fault-tolerant computer 
systems [1, 2] and components [3, 4], in the presence of 
faults. Most likely, due to the rapid development and 
evolution of computer technologies, the vast majority of the 
conducted experiments have been successively considering 
distinct target systems (e.g., new architectures, components, 
configurations, etc.). Studies have seldom been using the 
very same target system in order to allow comparison and 
consolidation of results. 

Except for very few studies (e.g., see [5]), such a 
tendency to address an “ever moving target” is a strong 
characteristics of the research in fault injection experiments. 
In fact, this is rather in opposition with most experimental 
scientific research studies, where it is rather common to 
replicate experiments to confirm the results obtained. 
Repeatability is definitely a key feature in that context.   

Such a state of affair can be easily understood when the 
conducted experiments are meant to assess the fault tolerance 
features of a very specific computer system. However, when 

experiments are rather carried out for the purpose of 
dependability benchmarking [6], it is then important that the 
experimental context and results be openly disclosed. This 
way, it is possible to conduct similar experiments either on 
the same target system (for confirmation) or on an alternative 
candidate system (for comparison). Such a trend has actually 
been concretized under the form of the Data Repository 
recently developed in the frame of the AMBER project [7]. 
Nevertheless, some practical issues have to be dealt with for 
the archived data to be fully exploitable. 

When disclosing the benchmark conditions (which is 
required for objectively interpreting its results), the complete 
set of attributes is to be included. In the case of dependability 
benchmarking, these attributes refer to: a) the input domain 
(workload and faultload), b) the output domain (readouts and 
measurements). In this paper, we emphasize the output 
domain. 

Indeed, a lot of works have been reported that have 
addressed the input domain. In particular, beyond early 
investigations aimed at proposing efficient fault injection 
techniques and supporting tools (e.g., see  
[8, 9]), several studies have been concerned with the 
identification of: a) faultloads representative of specific fault 
sets [10-12], b) a suitable workload — and most likely in 
combination with the faultload — aimed at maximizing the 
significance of the conducted experiments (e.g., for targeting 
the specific fault tolerance mechanisms to be tested [13-15], 
for avoiding experiments where the injected fault would not 
be activated as an error [16], etc.).  

For what concerns the output domain, a lot of work has 
addressed the experimental evaluation of the coverage of 
fault tolerance mechanisms and of failure modes (e.g., see 
[2], [3]). Fewer studies have focused on a detailed 
examination of the issues attached to the observation and 
analysis of experimental outcomes. Among these, one has to 
consider the work reported in [17-19] where the authors have 
investigated various ways to analyze the outcomes (error 
detection, delivery of an erroneous results) occurring during 
a single experiment. Another set of works has considered 
various end-user viewpoints to perform the analysis of the 
behaviors observed in presence of faults (e.g., see [20, 21]). 
Another recent trend has been promoting the application of 
metrology concepts to dependability evaluation based on 
fault injection experiments [22].  



We advocate that several other aspects are also relevant 
in that context. They concern the various capabilities and 
opportunities to fully exploit and possibly reuse a set of 
experimental results, provided that they are made available in 
a form that is suitable for an end-user to perform a posteriori 
alternative analyses based upon additional insights 
(components, environment, requirements, etc.) he/she is 
aware of. 

This means that in order to be considered as fully 
successful and useful, the end-product of a dependability 
benchmarking trial should go beyond the provision of an 
accurate set of figures. As previously pointed out, it should 
also disclose the major underlying results upon which the 
benchmark measures have been obtained. For a rationale, let 
us simply refer to the form of benchmark that customers are 
used to exploit when assessing the respective merits of a car. 
Data for various (quantitative or qualitative) criteria are 
provided to the user so that he/she can perform a well-
informed assessment that is taking into account the actual 
importance of each of these criteria on his/her driving 
inclinations and expectations. 

In this paper, we illustrate these ideas via some examples 
derived from actual fault injection experiments. Accordingly, 
it is specifically targeting people who are involved in setting 
up and conducting experimental work based on fault 
injection. We first describe how different viewpoints can be 
accommodated when referring to sufficiently detailed 
experimental results (Section II). In Section III, we then 
propose some guidelines indicating the most suitable way to 
conduct experiments and capture experimental data for 
inclusion into a data repository, so that researchers are able 
to make the most of the recorded data. Finally, Section IV 
concludes the paper. 

II. EXPERIMENTAL DATA AND USER VIEWPOINTS 

Conducting a fault injection campaign is a tedious, time 
consuming and often difficult exercise. Accordingly, it is 
rather natural to try to get the most of it in terms of insights 
about the failure modes and the robustness features of the 
target system. As already pointed out, here, we focus on the 
exploitation of available readouts and measurements. 

In the subsequent paragraphs, we provide examples of 
possible extensions and inferences that can be achieved when 
considering the data obtained in a fault injection campaign. 

A. Weighting of experimental results 

A fault injection experiment simply provides insights about 
the behavior of a target system in presence of injected faults. 
This means that the measures that can be directly derived 
are only conditional dependability measures. For example, 
the fault occurrence process — the rate and distribution of 
faults into the target system — is usually not accounted for 
in the experimental results obtained.  

Let us consider the results obtained during a fault 
injection campaign carried out on a target system composed 
of three modules as described in Table I. We assume that, the 

series of fault injection experiments were organized in three 
runs (one for each module) featuring each the same number 
of experiments. 

The Table indicates, for each module, the number of 
faults injected and their impact on the target system-wide 
error detection mechanism (EDM). The last line gives the 
resulting estimate for the coverage factor in each case. 
At this stage, based on the experiments carried out, a 
potential estimate for the error detection coverage for the 
whole target system is the figure given at the bottom right of 
the Table. 

TABLE I.  EXPERIMENTAL RESULTS PER MODULE 

Module 1 2 3 Total 

#Faults 150 150 150 450 

#Detections 100 110 140 350 

Coverage (%) 67 73 93 78 

An alternative clustering of the same data can be 
performed according to a different dimension, so as to help 
obtaining additional insights. For example, Table II displays 
the data from the same experiment, this time sorted with 
respect to (a sample of) the types of software faults that were 
injected. In this case only 51% of WEC were detected which 
noticeably indicates that detection mechanisms should be 
improved in order to deal with this type of fault (undetected 
error is disdained). The same overall detection coverage is 
obtained. 

TABLE II.  EXPERIMENTAL RESULTS PER TYPE OF FAULTS 

Fault Type MFC MIFS WEC Total 

#Faults 252 145 53 450 

#Detections 198 125 27 350 

Coverage (%) 79 86 51 78 

MFC – MISSING FUNCTION CALL; MIFS – MISSING IF CONSTRUCT + STATEMENT;  
WEC – WRONG EXTENDED CLASS 

When looking at the campaign from this perspective, one 
may object that this figure is influenced by the fact that 
different numbers of experiments were conducted for each 
fault type.  

This is to be expected, as the number of each fault type 
clearly depends on the specific structure of the source code 
and this is just right, provided that the respective proportion 
of faults is representative of the related statements. 

Further on that, let us come back to Table I and assume 
that after having conducted the experiments, some additional 
insights are made available. To illustrate this, consider that 
the respective failure rates1 for each module in Table I are 
know. Let us denote λi each of these rates. Table III provides 

this additional information. 

Thus, a more accurate (failure-rate aware) estimate of 
the detection coverage (cD) can be obtained via a weighted 

average of the module coverage (cDMi for i = 1…3) and the 

                                                             
1 Actually, the failure of a module corresponds to a fault occurring 

into the system composed of these three modules.  



relative probability for a module to be faulty 

( pfMi = λi / λi

i

∑ ) shown in the last row of Table III as 

follows [23]: 

%69=×=∑ Mi
i

DMiD pfcc  

TABLE III.  FAILURE RATES FOR THE TARGET SYSTEM MODULES 

Module 1 2 3 Total 

Failure rate λ i (per hour) 80 10-6 15 10-6 5 10-6 10-4 

Pr[fault in mod] pfMi  (%) 80 15 5 100 

Two remarks can be made: 

1. Clearly, this coverage figure is quite differing from the 
global estimate in Table I, which implies a significant 
impact on dependability (e.g., see [24]). 

2. Such an adjustment was possible thanks to the disclosure 
of module-based experimental results in addition to the 
global estimate. 

Such a post-processing of the experimental results is quite 
common in practice2. It might also refer to insights 
concerning the workload (e.g., see [25]) carried out on each 
modules (a more active module is much prone to exercise 
faults as errors) or even the risk induced by the non 
detections on the application controlled by the target system 
(e.g., see [26]), etc. 

B. Ordering and severity of the outcomes 
Classically, the outcome of an experiment is classified as 
detected (D) if the first event observed is the activation of an 
EDM. Conversely, when a failure occurs (e.g., the delivery 
of wrong results to the controlled application) before any 
error detection, the system is considered to have failed (F). 
For some applications, where the controlled process features 
slow dynamics, it might be sufficient that the EDM signal 
the error within a given temporal window so that the system 
is not to be considered as failed — e.g., see the flight control 
system of an aircraft studied in [27]. In practice, when 
considering such a temporal window as equivalent to the 
duration of a fault injection experiment, the ordering of the 
observed events might be less important. 

Table IV provides examples of some typical syndromes 
when multiple outcomes can be distinguished as the 
consequence of a fault injection experiment. A “1” indicates 
the observation of the event in the experiment. Usually, not 
all combinations of the events are possible: in particular, 
Workload Abort dominates Workload Incorrect, i.e., no WI 
outcome can be observed when a WA outcome is diagnosed 
first. 

 

 

                                                             
2 This would also apply to the data clustering illustrated in 

Table II. 

TABLE IV.  SYNDROMES FOR A FAULT INJECTION EXPERIMENT 

 Notification WL Failure First Priority to 

 EC XC WA WI event? 1st event Notif. Failure 

1 0 0 0 0 N/A N/A N/A N/A 

2 1 0 0 0 EC D D D 

3 0 0 0 1 WI F F F 

4 1 0 0 1 EC D D F 

5 0 1 0 1 WI F D F 

6 0 0 1 1 WI F F F 

7 1 1 0 0 EC D D D 

8 1 0 1 0 EC D D F 

EC: Error Code; XC: Exception; WA: Workload Aborted; WI: Workload Incorrect 

The first row depicts the case when none of the 
considered events has been observed. This is a classical 
issue in testing and experimental studies. It may result from 
several alternatives (fault not activated, error masked, etc.). 
Rows 2 an 3 identify cases when a single event is observed, 
in which case the characterization of the outcome is 
straightforward and steady both with respect to the 
identification of the first event and the diagnosis (D or F), 
irrespective of the priority assumed for the analysis. The 
subsequent rows depict more interesting cases: 

• Row 4 (resp. 5): An error notification — error code 
(resp. exception raised) — is observed prior to (resp. 
after) the delivery of a wrong result, which leads to 
distinct diagnosis (whether priority is given to 
notification of failure) with respect to the first event-
based analysis.  

• Row 6 (resp. 7): More than one event is observed in 
each main categories: notification (resp. failure). Further 
detailed analyses can be conducted by considering the 
usefulness of the error detection with respect to a 
potential recovery action: an error code is likely to be 
more exploitable than an exception (resp. the impact of 
the failure mode on the workload (a WA or a WI) might 
have distinct impact depending on the application 
process being considered.  

• Row 8: Based on the comments for rows 6 and 7, this 
syndrome would correspond to the less severe case when 
both a notification and failure are observed.  

Furthermore, it is interesting to stress that row 2 could 
be interpreted as a “false positive” with respect to the 
viewpoint of error detection (the error did had any impact 
on the WL) and row 3 a “false negative” with respect to 
fault tolerance.  

As a final comment, for such detailed and alternative 
analyses to be performed, comprehensive and precise 
information about the various events that occurred during 
each experiment is clearly needed. 

III. MANAGING EXPERIMENT OUTCOMES 

This section discusses some suitable ways to capture 
experimental data and record them for exploitation in a 
repository, so that the research community is able to exploit 



the recorded data. Many published works exist that provide 
useful hints concerning the management of large sets of data 
in many experimental contexts (e.g., see [28]). Here we 
focus on fault injection experiments. Still, our proposal is 
far from providing a comprehensive reference; rather, it 
should be considered as a “bootstrap” or an initial incentive 
that can be extended including by other researchers. 

One important aspect that singularizes fault injection 
experiments is related to the fact that these are “controlled 
experiments”. This means that by definition, the 
experimenter is explicitly acting upon the input domain (at 
least via the injected faults), which has obviously an impact 
on the output domain (the observed outcomes). 
Accordingly, a strong interplay exists between the 
observability and controllability dimensions.  

Among potential people interested, we believe that 
students involved into experimental work would be the 
prime target for such guidelines. Indeed, it is not rare, 
during student research development, for the time spent with 
the experiments to be jeopardized or at least impaired by a 
poor planning, conduct and too restrictive recording of the 
experiment outcomes. Such guidelines should also provide a 
helpful instrument for advisors to convey relevant practices, 
as it is not always easy to verbalize all details involved, and 
to increase the chances that the students catch up with the 
related knowledge and skills.  

Moreover, such guidelines should allow for the 
experiment results collected to be more easily and 
efficiently exploited by interested researchers when made 
available in data repositories: someone’s else data can only 
be useful if the data provider is careful to collect, document 
and store these data in a comprehensive way. 

The selected recommendations that follow are based on 
our own experiences, but also on exchanges with PhD 
students and other researchers in the field. 

A. Planning the Experiments 
Most of the concerns that have been verbalized by the 
students and researchers consulted are related to this phase 
of the experiments.  

The primary objective is to translate the hypothesis to be 
demonstrated / proved or the type of measures to be derived, 
into a sound fault injection campaign. This has definitely an 
impact on the whole sets of attributes (workload and 
faultload, but also, readouts and measurements), as well as 
on the way the experiments are conducted (testbed 
configuration) and the results analyzed (e.g., statistical 
analysis).  

Accordingly, whenever available, existing suitable tools 
have to be used, or else, novel experimental techniques are 
to be devised and related enabling technologies developed. 

As previously explained, we focus on the impact of the 
planning of a fault injection campaign on the outcomes of 
the experiments. Two ways for planning a campaign (i.e., 
the injection of a series of faults) can be distinguished:  

• The campaign is made up of a series of independent 
experiments, in which a fault pattern (possibly involving 
multiple faults) is injected and the target system is 
observed during a specific timeframe (e.g., the execution 
of a specific application task) for observing and 
collecting relevant outcomes induced by the injected 
fault. In practice, it is necessary to check the target 
system for possible residual errors. Usually, a special 
integrity test is run for that purpose and to purge the 
target system from latent errors. 

• Here also, a series of faults are injected during the 
execution of the workload. However, in that case, the 
end of each experiment is characterized by the 
occurrence of a specific failure event (e.g., a crash). The 
same reset of the target system is to be performed before 
launching subsequent campaigns.  

The main differences are as follows: while in the first 
case, the individual effect of a single fault can be assessed 
and thus recorded, in the second case only the combined 
effect of the injected faults can be reported. However, in the 
latter, the overall availability of the target system and the 
impact of the injected faults (e.g., number of faults injected 
before a crash occurs) can be more thoroughly estimated. 

B. Collecting the Outcomes 
There are different concerns during the conduct of 
experiments related to the observation and collection of 
experiment outcomes. Among them, the main preoccupation 
is to avoid undesired interferences with the target system. 
Such a worry is very much exacerbated when detailed 
timing measurement is to be performed as part of the 
experiment. 

Besides the usual timing parameters that are essential to 
characterize a fault injection experiment (start time, fault 
injection time, end time, etc.) the record of timing 
information for relevant events (detection, recovery, crash, 
etc.) is often essential to fully characterize the faulty 
behavior of a target system.  

Moreover, compared to the case of performance 
benchmarking, dependability assessment requires much 
more attention to be paid to the target system and its 
operational profile. 

First, as it is routinely done for failure data analysis 
studies (e.g., see [29]), in the case of fault injection 
experiments, it is also important to record data 
characterizing the target system itself, the production 
process and the use environment. For example, for software 
systems, important information include: language and 
program size, version being tested, development tools and 
compilers, workload type, etc. [6]. 

Second, the observation of timing information about 
specific activity concerning the workload being executed 
(e.g., time of occurrence of a request) is very often 
mandatory, to be able to diagnose the status of the target 
system. Also, the characterization of fault tolerance 



mechanisms frequently requires that related timing 
information (error detection time, recovery duration, etc.) be 
measured. Then, it is essential that either the same time 
scale be used or that the various time scales be synchronized 
with sufficient precision. 

However, the more detailed the timing information, the 
more sophisticated and intricate the related observation 
devices. Indeed, both the intrusiveness (e.g., the temporal 
interference or overhead induced by the measurement 
mechanisms) and the accuracy (e.g., the instrumentation 
requirements and related cost) are to be carefully balanced. 
In the extreme case when no overhead at all is tolerable, a 
radical approach exposed in [19] was to “freeze” the 
progression of time when the events are observed3. This is 
more and more acceptable when considering the trend 
towards the development of generic virtual execution 
platforms featuring extensive simulation capabilities 
encompassing hardware (Hardware-in-the-Loop) and real 
time kernel functionalities (e.g., see [30]). 

C. Archiving the Experimental Data 
In accordance with [28], which states that “The data have 
then to be organized into an appropriate form for analysis 
(often in different ways, depending on the analysis)”, we 
advocate that specific care needs to be taken in managing 
and storing the outcomes of fault injection experiments. In 
practice, a good balance is to be made between two extreme 
cases: a) storing the complete set of raw data and b) simply 
archiving the dependability measures of interest. Indeed, 
when considering the first option, one has to consider the 
fact that in many cases the raw data is very large, and more 
importantly, very difficult to exploit without some 
supporting parsing tools. For example, when considering 
experimental studies targeting operating systems, the basic 
raw data may correspond to execution traces of considered 
operating systems when subjected to faults. Clearly, such a 
raw material is virtually useless as is, for most end-users, 
unless dedicated scripts are provided to help parse it.  

 Accordingly, the raw data collected usually 
requires the application of some specific filtering technique, 
so as to keep the data relevant for the viewpoint of the 
experiment being conducted and focus on the suitable level 
of details  (e.g., see, [29]). Still, the filtering process should 
be carefully tuned for the stored data to be useful for 
research studies related to the main topic. 

A popular format for recording and analyzing data sets 
corresponds to the use of spreadsheet tables. In practice, 
several tables are produced that may correspond to different 
part of the campaign (e.g., records concerning the input set 
workload, faultload on one side and readouts and outcomes 
on the other side). Such a potential disconnection might 
cause problems when trying to relate such data sets, for 

                                                             
3 This requires the hardware clock to be managed by the fault 

injection tool so as to disable and resume its counting. 

example, in order to perform a detailed cause and effect 
analysis when singular or unexpected behaviors are revealed 
by the observations made. Such a shortcoming might not 
only impair the pertinence of the overall assessment, but 
also the confidence in the experimental data produced. More 
generally, a strict control of the data versions should be 
enforced in order to precisely identify which data is related 
to the various runs and experiments. 

All this calls for the support of a database, and especially 
a relational database, so that the complete data set can be 
archived in a coherent format and procedures to exploit it 
can be explicitly attached to it. 

IV. CONCLUDING REMARKS 

The paper provides some insights about collecting, 
analyzing, and archiving results obtained in fault injection 
experiments. As we have illustrated by means of examples 
in Section II, for experimental outcomes to be readily 
reusable, it is important to have sufficiently detailed data 
disclosed. 

In some scientific fields, for example biology, depositing 
such a data in a formal repository can be a prerequisite for 
publication. Experimental research in computer science does 
not have such a constraint, and while this might be a too 
strong requirement, clearly, there is room for improvement! 
Accordingly, as an attempt to bootstrap such a trend, we 
have discussed a few hints for collecting and archiving 
experimental data.  

Moreover, to ensure that data survive the interests of 
original researchers, it would be highly desirable that such 
repositories be managed by perennial organizations 
(possibly professional societies). Also, to get the most of the 
data stored in the repository, it is essential that these data be 
accompanied by documents and procedures that make raw 
data actually parsable and exploitable by most end-users.  

Sharing data via relational databases would allow for 
generic storage and advanced processing. This would mean 
that with such data, you can do all sorts of things, you can 
analyze it, you can combine it with other data sources, you 
can reach new conclusions and strike down old ones.  

Such a trend should make it possible to researchers to 
objectively say: “I have evidence that it is (or is not) 
working well”, instead of simply stating: “I have the feeling 
that it is (or is not) working well”. This should be a 
significant improvement for all experimental research in the 
dependability assessment. 
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