
14.1. INTRODUCTION

Dependability concerns, encompassing robustness assessment, are essential questions to
answer before a developer can make the decision whether to integrate off-the-shelf (OTS)
components into a dependable system. Here, and in what follows, robustness is under-
stood as the degree to which a system operates correctly in the presence of exceptional in-
puts or stressful environmental conditions, in compliance with the generic definition (de-
pendability with respect to external faults) given in [Avizienis et al. 2004].

From a cost-effectiveness viewpoint, operating systems and kernels are privileged OTS
components as candidates for integration into a system. However, integrators are often re-
luctant to make such a move without obtaining a deeper knowledge and understanding
about such a component beyond functional issues, in particular with respect to its failure
modes and its behavior in the presence of faults. Due to the opacity that is often attached to
the commercial offer and to the difficulty and significant cost associated with the availabil-
ity of the source code, the Open Source option, for which access to the source code is grant-
ed, is progressively making its way as an attractive and promising alternative. Also, results
of many studies have shown that Open Source solutions did not exhibit significantly more
critical failure modes and in some cases they were even found to demonstrate behaviors su-
perior to commercial options [Koopman and DeVale 1999, Arlat et al. 2002, Marsden et al.
2002, Vieira & Madeira 2003]; see also Chapter 5 for the latter. In this chapter, we will sim-
ply denote such components (either commercial or Open Source) as OTS components.

In the past years, several experimental studies have addressed this important issue
from different perspectives [Koopman and DeVale 1999 (see also Chapter 11), Arlat et al.
2002, Madeira et al. 2002]. This has also led to the proposal of tentative dependability
benchmarking approaches, aimed at characterizing the robustness of computer systems

Dependability Benchmarking for Computer Systems. Edited by Karama Kanoun and Lisa Spainhower 285
Copyright © 2008 IEEE Computer Society

14
BENCHMARKING THE

IMPACT OF FAULTY
DRIVERS: APPLICATION
TO THE LINUX KERNEL

Arnaud Albinet, Jean Arlat, and Jean-Charles Fabre

c14.qxd 6/1/2008 6:00 PM Page 285

and OTS [Tsai et al. 1996, Mukherjee and Siewiorek 1997, Brown and Patterson 2000].
However, such proposals were still preliminary and did not reach the level of recognition
attached to performance benchmarks. As pointed out earlier (e.g., in the Preface and sev-
eral chapters), the DBench project, in which this work was included, was another major
contribution aimed at promoting such an approach by defining a comprehensive frame-
work for the definition and implementation of dependability benchmarks, see also [Ka-
noun et al. 2002, Kanoun et al. 2005a].

A large part of the code that makes up an operating system consists of device driver
programs and the OS configuration may change not only at installation time, but also in
operation. For example, in the case of Linux, drivers have consistently represented more
than half of the source code [Godfrey and Tu 2000]. This ratio is smoothly increasing; re-
cent releases have accounted for almost 60% of the code [Gu et al. 2003]. More impor-
tantly, as the whole size of the kernel is rapidly growing, this results in an exponential in-
crease in the number of lines of code of the driver programs. Such programs are
commonly developed by third-party hardware device experts and integrated by kernel de-
velopers. This process is not always well mastered and erroneous behavior of such pro-
grams that are intimately connected to the kernel may have dramatic effects. As pointed
out in [Murphy and Levidow 2000] for Windows and as shown by the analysis of the Lin-
ux source code carried out in [Chou et al. 2001], a significant proportion of operating sys-
tem failures can be traced to faulty drivers. Things are not improving much; indeed, as
quoted in [Swift et al. 2004], in Windows XP, driver programs are reported to account for
85% of recently reported crash failures.

It is thus necessary to investigate and propose new methods, beyond the collection of
field data, for specifically analyzing the impact of faulty drivers on operating systems.
Fault injection techniques, whereby faulty behaviors are deliberately provoked to simu-
late the activation of faults, provide a pragmatic and well-suited approach to support such
an analysis. Among the fault injection techniques, the software-implemented fault injec-
tion (SWIFI) technique (e.g., see [Carreira et al. 1998]) provides the proper level of flexi-
bility and low intrusiveness to address this task. Based on these principles, we have devel-
oped an experimental environment for the evaluation of the robustness of the Linux
kernel when faced to abnormal behaviors of its driver programs.

To our knowledge, very few research studies have been reported on this topic. The
work reported in [Edwards and Matassa 2002] also concerns the Linux kernel but focuses,
rather, on the dual problem of characterizing the robustness of driver programs when sub-
jected to hardware failures. The authors have devised a sophisticated approach to inject
faults in the driver under test that relies on the appealing notion of the common driver in-
terface (CDI) that specifies the driver interactions within the kernel space. In [Gu et al.
2003], the authors have conducted a comprehensive dependability analysis of the Linux
kernel. However, in this study fault injection has been related to the execution stream of
the kernel code; more precisely, a selected set of functions of the kernel has been targeted,
namely, the processor dependent code, the file system support code, the core kernel code,
and the memory management code.

Our goal is instead to benchmark the robustness of an operating system kernel in the pres-
ence of faulty drivers. In line with this objective, but considering several instances of the
Windows series, in [Durães and Madeira 2003] the authors have used mutations of the exe-
cutable code of the driver to simulate a faulty driver. The work reported in this chapter is
rather complementary, in the sense that we investigate an alternative approach: fault injec-
tion is targeting the parameters of the kernel core functions at the specific interface between
the driver programs and the kernel. To support this approach, we revisit and adapt the notion

286 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

c14.qxd 6/1/2008 6:00 PM Page 286

of the common driver interface of [Edwards and Matassa 2002] by focusing the injection on
the service/system calls made by the drivers to the kernel via the core functions. This way,
the definition of the fault injection experiments more thoroughly impact the interactions be-
tween the drivers and the kernel. Also, the errors provoked can simulate both the conse-
quences of design faults or hardware-induced faults. It is worth noting that a subsequent and
complementary work has been reported recently that adopts the same system model (explic-
it separation between the kernel and the drivers) and a similar fault model to study the im-
pact of faulty drivers on a Windows CE-based system [Johansson and Suri 2005]. The main
goal was to study the error propagation process to support the placement of protection wrap-
pers (e.g., see [Fraser et al. 2003]), as was already carried out in [Arlat et al. 2002].

The material reported herein elaborates on the work published in [Albinet et al. 2004].
The organization of the chapter is as follows. Section 14.2 describes the specific issues
addressed by the approach we propose, in particular in the light of other works dealing
with the characterization of operating system robustness. In Section 14.3, we briefly de-
scribe the various types of driver programs and introduce the specific interface considered
to simulate faulty drivers for the Linux kernel, the driver programming interface. Section
14.4 presents the benchmarking attributes, namely, the faultload, the workload, the mea-
surements, and the measures that allow for performing analyses accounting for several
end-user viewpoints. Section 14.5 describes the main features of the RoCADE (Robust-
ness Characterization Against Driver Errors) platform that supports the conduct of the ex-
periments. Section 14.6 presents a sample of results and illustrates how the proposed
benchmarking framework can support the analysis of the results. Finally, Section 14.7
concludes the chapter.

14.2. CONTEXT AND DEFINITION OF THE APPROACH

Due to their central role in the functioning of a computer system, operating systems are
the primary targets for developing dependability benchmarks. Figure 14.1 depicts the

14.2. CONTEXT AND DEFINITION OF THE APPROACH 287

Figure 14.1. Interactions between an operating system kernel and its environment.

D

P

I

H I

A P I

Kernel
(Benchmark Target)

AP1 AP2 APn

Hardware

DP1

Bit flip &

Mutation

Bit flip

Mutation

DP2

DPm

Bit flip &

Parameter corruption

Application Processes

Bit flip &

Parameter corruption

Driver

Programs

c14.qxd 6/1/2008 6:00 PM Page 287

software architecture of a computer system. In this chapter, due to the emphasis put on the
analysis of the impact of the driver programs, the benchmark target (BT), according to the
terminology put forward by the DBench project (e.g., see [Kalakech et al. 2004], as well
as Chapters 5 and 6), is the operating system kernel. Drawing further on that terminology,
the whole figure describes the system under benchmark (SUB), that is, the supporting en-
vironment and context within which the analyses are conducted. As shown on the figure,
the kernel features three main interfaces with its environment. The first one is basically
concerned with hardware interactions, whereas the other two are software related.

The “lightning” symbols in Figure 14.1 identify possible locations where faults can be
applied. The interfaces and related faults are briefly described as follows:

1. The hardware interface (HI) is primarily related to the hardware layer. The main in-
teractions are made via the raising of exceptions. At this level, several studies have
been reported in which faults were injected by means of bit flips into the memory
of the SUB; for example, see [Arlat et al. 2002, Gu et al. 2003]; see also Chapter
15, for what concerns the latter reference.

2. The interface with the applications processes corresponds to the application pro-
gramming interface (API). The main interactions are made by means of system
calls. A significant number of studies were reported that target the API to assess the
robustness of the operating systems (e.g., in the form of code mutations [Durães
& Madeira 2006]; see also Chapter 6), by means of bit flips [Jarboui et al. 2003]
or by corrupting the system calls [Koopman and DeVale 1999, Kanoun et al.
2005b]; see also Chapters 11 and 12 for what concerns these respective references.

3. The interactions with drivers are made through the driver programming interface
(DPI), which is the programming interface for the development of the drivers. The
detailed definition of this interface is presented in Section 14.3.

Concerning the third item, the form of fault injection we are advocating is carried out
by way of corruption of the calls to the functions of the kernel made by the drivers. Such
an approach has been motivated by the work carried out in [Jarboui et al. 2003]. In this
work, assertions issued from traces characterizing the actual erroneous behavior induced
by faulty drivers were used to assess whether similar error patterns could be obtained by
using several fault injection techniques (either bit flip or parameter corruption) at the API
level. This study showed that API-level fault injection was not able to produce errors that
matched the error patterns provoked by real faults in drivers. This result further substanti-
ates the need to conduct investigations specifically aimed at closely simulating the impact
of faulty drivers. To this end, we have concentrated our efforts on intercepting and cor-
rupting the parameters of the system calls issued by the drivers at the DPI [Edwards and
Matassa 2002]. Compared with the mutation of the code of the drivers used in [Durães
and Madeira 2003], this approach allows for carrying out a more focused and efficient set
of experiments that are suitable to thoroughly test the various kinds of interactions be-
tween the drivers and the kernel. The price to pay for this is a precise identification of the
DPI upon which the faults are specified. However, it is worth noting that (as for the ap-
proaches targeting the API), such a preliminary analysis has to be carried out only once
for each kernel family and can be reused for analyzing most drivers. More details on the
types of faults considered are given in Section 14.4.1.

The interfaces depicted in Figure 14.1 (especially the API and the DPI) also provide
suitable locations to observe the consequences of the injected faults. At the API level, the

288 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

c14.qxd 6/1/2008 6:00 PM Page 288

typical relevant behaviors include error codes returned to the calling application process-
es and kernel hangs. In practice, although a lot of exceptions are raised by the SUB at the
hardware layer, for the sake of efficiency they are often caught at the API when reported
via the kernel. The DPI provides a favorable level of observation for the detailed charac-
terization of the reactions of the kernel to the corrupted service calls issued by the drivers.
The related measurements include error codes returned to the driver. Comprehensive
measurements can also be made at the application level, for example, workload abort and
completion. Although time measurements can be collected to evaluate the workload exe-
cution in the presence of faults [Kalakech et al. 2004], the reported results only consider
nontimed robustness measures expressed as frequencies of occurrence of each considered
outcome.

As a general comment, it is important to stress that the founding of the benchmarking
attributes proposed in this chapter (especially the faultload and measurements) on explicit
interfaces (namely the DPI and API) that can be easily shared by several candidate BTs is
fundamental for guaranteeing a fair assessment. Indeed, this is an essential and favorable
feature for sustaining the development and dissemination of relevant dependability
benchmarks, elaborating on the approach proposed in this chapter.

14.3. THE DRIVER PROGRAMMING INTERFACE

In this section, we briefly recall the functional interactions that characterize the communi-
cation between the drivers and the kernel. This allows for the kernel functions and para-
meters involved in these interactions to be identified and, thus, the DPI on which we de-
fine the types of faults to be injected.

14.3.1. Application Processes, Kernel, and Drivers

Classically, the application processes execute in a restricted address space (user space).
This is meant to reduce the risk for an application process to corrupt the kernel addressing
space. This way, it is likely that the errors caused by a faulty application process mainly
impact its own address space and, thus, are limited to its execution. Conversely, mainly
for performance reasons, the kernel and the drivers are executed in privileged mode (ker-
nel mode) and thus share the same address space. This means that the risk for a defective
driver to impact the behavior of the kernel cannot be neglected. Due to the fact that it is
not always possible to associate a “pedigree” to the whole set of drivers that can potential-
ly be integrated, drivers are a potential threat for the kernel. This is further exacerbated by
the programming languages (such as C language) that use pointer arithmetic without
IMM (integrated memory management). This applies to several popular general-purpose
operating systems (e.g., Linux and Windows9x). The drivers can also access the whole
set of functions of the kernels, not only those that are used to carry out operations on the
kernel space, but also on the application space.

14.3.2. The Various Drivers

An interesting comparative study of driver interfaces for several popular operating sys-
tems is presented in [Zaatar and Ouaiss 2002] as an initial step toward the standardiza-
tion of the Linux driver interface. Irrespective of the different solutions adopted for a

14.3. THE DRIVER PROGRAMMING INTERFACE 289

c14.qxd 6/1/2008 6:00 PM Page 289

specific operating system family, in practice two main categories of drivers can be dis-
tinguished:

1. Software drivers—they have no direct access to the hardware layer of the devices,
but rather to an abstraction (e.g., tcp/ip stack, file system).

2. Hardware drivers—they are concerned with hardware devices, either peripheral
(network card, disk, printer, keyboard, mouse, screen, etc.) or not (bus, RAM, etc.).

In both cases, the role of a driver is to provide an abstract interface for the operating
system to interact with the hardware and the environment:

� More specifically, a driver is meant to implement a set of basic functions (read,
write, etc.) that will activate peripheral devices.

� On top of drivers, the input–output instructions no longer depend on the hardware
architecture.

� Drivers define when and how the peripheral devices interact with the kernel.

For example, in the case of a driver relying on polling, an application process issues a
request, via a system call (open, read or ioctl) to access a peripheral device (net-
work card, disk, printer, keyboard, mouse, screen, etc.). The processor enters the supervi-
sor mode, via a stub in the case of Linux, and executes the code of the driver correspond-
ing to the proper operation. After completion of the operation, the driver frees the
processor and the processor then resumes the execution of the application process in user
mode.

Although device drivers may induce a strong influence on the kernel (as most of them
are run in kernel mode), they are often developed by third parties and then integrated into
the kernel after its distribution. This explains why it has been found that they significantly
contributed to the failure of the operating system [Chou et al. 2001].

14.3.3. Specification of the DPI

The drivers make use of specific system calls (denoted symbols for dynamic module dri-
vers in the case of Linux) in order to perform tasks. The most salient categories are de-
picted in Table 14.1.

Each of these categories gathers a set of functions that are devoted to the programming
of the kernel and drivers using execution privileges within the kernel address space. For
example, in the case of Linux, functions allow for acquiring and releasing of an interrupt
channel (request_irq, free_irq) and for retrieving the status of such a channel
(irq_stat). These symbols form the basis for the development of drivers for managing
the interrupt channels. All such symbols feature a calling protocol that is similar to the
system calls of the Linux API.

This is illustrated by the signature of the request_irq:

int request_irq(unsigned int irq,
void (*handler)(),
unsigned long irqflags,
const char * devname,
void *dev_id)

290 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

c14.qxd 6/1/2008 6:00 PM Page 290

The request_irq function allocates a peripheral device to an interrupt channel. The
function returns a success (error) code (an integer value) to inform the calling driver pro-
gram of the proper (or not) handling of the reservation of the channel. The first argument,
irq, is an unsigned integer that designates the channel to allocate. The second one, han-
dler, is a pointer to the interrupt manager. The third one is an unsigned long integer that
represents the flags that define the type of the reservation (exclusive or not, etc.). The pa-
rameter devname is the name of the peripheral device that is reserving the channel. The
last parameter is a pointer to a “cookie” for the interrupt manager.

From more than a thousand symbols (including functions, constants, and variables),
Linux release 2.4.18 includes about 700 kernel functions. Some are more used than oth-
ers. The kernel functions devoted to memory reservation are definitely much more solicit-
ed than the ones attached to the handling of a pcmcia device. The types of the parameters
being used in kernel programming are voluntarily restricted to integers (short or long,
signed or unsigned) and pointers. We have referenced all these functions along
with their signature, which allows for the number of parameters and their types to be
specified for each symbol. These types are defined over a validity space (see extreme val-
ues in Section 14.4.1)

In the same way that the API gathers all the available system calls issued by the appli-
cation processes, the DPI gathers all the functions of the kernel that are available to be
used by the drivers. These kernel symbols constitute the features offered to the developers
in kernel mode.

14.4. THE BENCHMARKING ATTRIBUTES

This section briefly describes the execution profile and the measures that are considered
for the benchmarking analysis [Arlat et al. 1990]. The execution profile includes both the
workload (the processes that are executed to activate the drivers and the kernel) and the
faultload (the set of faults that are applied during the fault injection experiments via the
DPI). The experimental measures, which are meant to characterize the reaction and/or be-

14.4. THE BENCHMARKING ATTRIBUTES 291

TABLE 14.1. Outline of the categories of symbols for Linux

Categories Examples of typical symbols

Memory Management Kmalloc, kfree, free_pages, exit_mm, . . .

Interrupt Management add_timer, del_timer, request_irq, free_irq, irq_stat,
add_wait_queue, _wait_queue, finish_wait, . . .

File System Management fput, fget, iput, follow_up, follow_down, filemap_fdatawrite,
filemap_fdatawait, lock_page, . . .

Control Block Management blkdev_open, blkdev_get, blkdev_put, ioctl_by_bdev, . . .

Registration register_sysctl_table, unregister_sysctl_table, sysctl_string,
sysctl_intvec, . . .

Others: Software interrupts, raise_softirq, open_softirq, cpu_raise_softirq,
dma management, buffering dump_stack,ptrace_notify, current_kernel_time, sprintf,
management, resource handling, snprintf, sscanf, vsprintf, kdevname
process management, interfaces,
debug, miscellaneous “tools”

c14.qxd 6/1/2008 6:00 PM Page 291

havior of the kernel in presence of a faulty driver, are elaborated from a set of observa-
tions (readouts and measurements) that are collected during each experiment.

In order to illustrate how measurements can be used to derive useful measures, we will
consider several dependability viewpoints according to the perceptions that different
users can have of the observed behaviors. In the sequel to this section, we consider in turn
the faultload, the workload, the measurements, and the measures that build up on these
measurements with the objective of dependability benchmarking.

14.4.1. The Faultload

For corrupting the parameters of the symbols of the DPI, we have used the SWIFI tech-
nique because of its flexibility and ease of implementation. More precisely, in order to
generate more efficient test conditions, we have focused the corruption of function para-
meters on a set of specific values. In particular, this provides a better control of the types
of corruptions that are made, which significantly facilitates the interpretation of the re-
sults obtained. Faults are injected into each parameter of each relevant function of the
DPI, as shown in Figure 14.2.

The principle of the method is to intercept a function when it is called, to substitute the
value of its parameters with a corrupted value, and then to resume the execution of the func-
tion with this faulted value. The value that is substituted to the original value of the faulted
parameter depends upon the type of the parameter. Table 14.2 shows the values considered
for each relevant type. For the first three types, bounding and mid values are considered. For
pointers, the set of corrupted values are: NULL, a max bounding value, and a random value.

292 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

Figure 14.2. Principle of corruption of the parameters of a function.

type1

Bad_arg 1-1

Bad_arg 1-2

Bad_arg 1-3

type2

Bad_arg 2-1

Bad_arg 2-2

Bad_arg 2-3

type3

Bad_arg 3-1

Bad_arg 3-2

Bad_arg 3-3

void foo (type1 arg1, type2 arg2, type3 arg3, ...);

TABLE 14.2. The faulty parameters for each type

Type Bad_Arg 1 Bad_Arg 2 Bad_Arg 3

int INT_MIN 0 INT_MAX (0x7FFFFFFF)
uint 0 INT_MIN (0x80000000) ULONG_MAX (0xFFFFFFFF)
ushort 0 SHRT_MIN (0x8000) USHRT_MAX (0xFFFF)
pointer NULL random() All bits = 1 (0xFFFFFFFF)

c14.qxd 6/1/2008 6:00 PM Page 292

14.4.2. The Workload

In order to provoke the activation of the DPI by the driver programs, so as to mimic the
nominal behavior, we rely on an indirect activation procedure by means of a workload ap-
plied at the level of the API. We consider a synthetic and modular workload combining
several activation processes, each targeting one (or several) of the drivers evaluated. Each
application process carries out a set of elementary operations concerning a specific hard-
ware or software driver component:

1. Deinstallation of the target component that permits (only if the driver is currently
used by the system) starting the test later on by registering the component.

2. (Re-)installation of the component allowing for testing component registration.

3. Series of requests meant to test the driver’s operation.

4. Deinstallation, by which the unregistration of the component is tested.

5. Reinstallation, whenever needed, in particular if the driver is mandatory for the
SUB’s operation (e.g., network card or file system).

For example, in the case of a network card, the application process disables the net-
work, unloads the network driver, reloads it, enables the network, runs a test on a private
Ethernet network (intranet), disables the network, unloads the driver, reloads it, and, fi-
nally, enables the network.

The main differences between the application processes that form the workload con-
cern the specific requests to be applied to stimulate the driver.

In order to better assess the impact of the fault on the whole SUB, a subsequent work-
load execution is carried out after the fault has been withdrawn; this is particularly useful
to improve the diagnosis in the cases when no outcome is observed as the result of the run
when a fault is injected (the so-called “silent” behavior as reported in the CRASH scale
proposed in [Koopman and DeVale 1999, see also Chapter 11]. In the reported experi-
ments the workload that is executed for improving the diagnosis is the same as the work-
load used for the fault injection experiments. Accordingly, hereafter we will refer to it as
the “replay” workload.

14.4.3. The Measurements

The goal of the set of experiments reported here is to determine the set of relevant observa-
tions to be incorporated into a prototype dependability benchmark, focusing on robustness
with respect to faulty drivers. Accordingly, to get relevant insights from the conducted ex-
periments, it is necessary to obtain a good variety of results. To that end, we have specified
two levels of observation: (i) external or user-oriented, meant to characterize the faulty be-
havior, as perceived at the level of the API, (ii) internal or peripheral device oriented,
which detail the impact of the faults on the kernel, as perceived at the level of the DPI.

The external level includes the observation of the errors reported by the kernel to the
application processes in the workload (exceptions, error codes, etc.). These observations
can be augmented by a more user-oriented perception by means of observations directly
related to the application processes (e.g., the execution time of the workload or the restart
time). The internal level focuses on the exchanges between the kernel and the faulted dri-
ver. The specific observations made at each level as well as the related appraisals are de-
picted in Table 14.3.

14.4. THE BENCHMARKING ATTRIBUTES 293

c14.qxd 6/1/2008 6:00 PM Page 293

The error code returned by a function of the kernel provides an essential insight into
the impact of the fault on the intimate behavior of the kernel. Indeed, from a robustness
viewpoint, the kernel symbol should be able to react to a service call including an argu-
ment with a corrupted value by returning an error code that matches the type of fault be-
ing injected. When a hardware exception is raised while a process executes in the kernel
address space, the kernel tries to abort the process or enters the “panic” mode. The con-
sideration of workload-related events (WA or WI) allows for additional insights to be ob-
tained, especially in cases when no error is reported by the kernel. In that respect, the “re-
play” workload that is executed after each run during which a parameter is corrupted
allows for the damage caused by the application of faulty call to be assessed by identify-
ing whether the SUB was able to recover a stable state on its own or if a specific restart is
necessary.

A hang of the kernel is diagnosed when the kernel is no longer replying to requests.
The main reasons for such blocking are either because it executes an infinite loop or it is
waiting for an event while interrupts are masked. Such outcomes cannot be observed by
the system and, thus, require external monitoring.

Measuring the execution time of the workload programs provides useful information
on the capacity of the kernel to handle the applications processes in presence of faults and
is thus a desirable feature from the benchmarking point of view. Due to the specific nature
of the workload (synthetic workload), such a measurement was not carried out in the
study described here. The interested reader can refer to the work reported in [Kanoun et
al. 2005b]; see also Chapter 12. The technique used therein can be applied to obtain the
corresponding measurements.

14.4.4. Interpretation of Measurements to Yield Benchmarking
Measures

The observations described in the previous section offer a basis upon which various types
of analyses can be carried out, depending on how one interprets the impact of the com-
bined behaviors observed for various dependability concerns. In practice, different inter-
pretations of the measurements are possible depending on the specific context in which
the kernel is to be integrated. In particular, when one is favoring safe behavior of the
workload, then error notification via error code return or even kernel hangs might be
proper or acceptable behaviors. Conversely, returned error codes or selective application

294 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

TABLE 14.3. Observation levels, events, and appraisals

Appraisal Abbreviated
Level Event good/bad name

Internal DPI Error Code: Code returned by the kernel at the level good EC
of the DPI

External Exception: Processor’s exceptions observed at the API level good XC
Kernel Hang: The kernel no longer replies to a request issued bad KH

via the API
Workload Abort: The workload has been abruptly interrupted bad WA

(some API service requests could not be made).
Workload Incorrect: The workload completes, but not all the bad WI

return codes are “success.”
Workload Completion: This event allows for the execution good WC

time of the workload programs to be measured.

c14.qxd 6/1/2008 6:00 PM Page 294

process aborts are much more suited for cases in which availability of the kernel is the de-
sired property. This is further exacerbated in cases in which several outcomes (e.g., error
code returns and hangs) are observed simultaneously within the same experiment run. So
as to reliably account for various points of view, one has to carefully analyze such cases.
It is worth pointing out that the types of analyses that we are proposing here are in line
with and elaborate on the related study reported in [Rodríguez et al. 2002] and on the as-
sessment framework used in [Durães and Madeira 2003].

14.4.4.1. Outcomes and Diagnoses. Table 14.4 identifies the outcomes and sev-
eral criteria that can be considered for exploiting the outcomes. The first set of columns
shows the possible outcomes (i.e., combinations of the events defined in Table 14.3). Two
categories are distinguished: error notification (explicit error reporting) and failure modes.
The second part of the table illustrates how the outcomes of several event collections per
experiment can be diagnosed according to a set of simple criteria (order of occurrence of
observed events and priority given either to error notification or failure modes).

First, it is worth noting that all events considered are not fully independent; according-
ly, not all combinations are valid. In particular, this is the case for workload abort (WA)
and workload incorrect (WI); indeed, WA dominates WI, that is, no WI can be observed
when a WA has been diagnosed. This is identified by “X” in Table 14.4. This explains

14.4. THE BENCHMARKING ATTRIBUTES 295

TABLE 14.4. Possible outcomes and diagnoses

Outcomes Priority to

Notification Failure modes
____________________ _____________ First Error Failure

EC XC WA WI KH event notification modes

O1 0 0 0 0 0 No Obs. No Obs. No Obs.
O2 1 0 0 0 0 EC EC EC
O3 1 1 0 0 0 EC EC+XC EC+XC
O4 0 1 0 0 0 XC XC XC
O5 1 1 0 0 1 EC EC+XC KH
O6 1 0 0 0 1 EC EC KH
O7 0 1 0 0 1 XC XC KH
O8 0 0 0 0 1 KH KH KH
O9 1 1 1 X 1 EC EC+XC KH+WA
O10 1 0 1 X 1 EC EC KH+WA
O11 0 1 1 X 1 XC XC KH+WA
O12 0 0 1 X 1 KH KH+WA KH+WA
O13 1 1 1 X 0 EC EC+XC WA
O14 1 0 1 X 0 EC EC WA
O15 0 1 1 X 0 XC XC WA
O16 0 0 1 X 0 WA WA WA
O17 1 1 0 1 0 EC EC+XC WI
O18 1 0 0 1 0 EC EC WI
O19 0 1 0 1 0 XC XC WI
O20 0 0 0 1 0 WI WI WI
O21 1 1 0 1 1 EC EC+XC WI+KH
O22 1 0 0 1 1 EC EC WI+KH
O23 0 1 0 1 1 XC XC WI+KH
O24 0 0 0 1 1 WI WI+KH WI+KH

Legend—EC: error code, XC: exception, KH: kernel hang, WA: workload abort, WI: workload incorrect.

c14.qxd 6/1/2008 6:00 PM Page 295

why the table has only 24 rows. Among these, row O1 designates cases in which none of
the events has been observed. This is a classical issue in testing and experimental studies
when no impact is observed. This might be due to several alternatives (fault was not acti-
vated, error masked, etc.); we will come back on this in Section 14.6.1.

When several events are observed within the same experiment, various decisions can
be made in order to categorize the outcomes. One usual approach is to give priority to the
first event that has been observed. However, it is not always possible to have precise tim-
ing measurements for all events. Indeed, in some cases this may require sophisticated and
heavy instrumentation (e.g., see [Rodríguez et al. 2003]), which might be out of the scope
of the proposal for a dependability benchmark that should be portable, minimally intru-
sive, and cost-effective.

Other alternatives include giving priority (i) to error notifications [e.g., error codes re-
turned (EC) and exceptions (XC)] or (ii) to the failure modes observed [workload abort
(WA), workload incorrect (WI) and Kernel Hang (KH)]. Considering the last two strate-
gies, the first one is clearly optimistic (it assumes that notification will be able to preempt
and confine any subsequent impact), whereas the second one is rather pessimistic (the
system is assumed to always fail, irrespective of the possible handling of the error ensuing
from the notification). In both cases, when multiple events are observed pertaining to the
prioritized category, they are recorded for further analysis. The order of occurrence is also
highlighted in the table. For example, when priority is given to failure modes, “WI+KH”
in row O21 means that WI precedes KH. It is worth noting that, due to the way the con-
sidered events are collected, “priority to error notification” closely matches “priority to
first event,” because error notifications always precede all considered failure modes.

Adopting a classification relying only on end-user perception (i.e., considering only
observations made via the API) would have resulted in discarding EC events. For exam-
ple, in that case O2 would have been merged into O1 and it would not be possible to dis-
criminate O3 from O4, and so on.

14.4.4.2. Viewpoints and Interpretation. More elaborate interpretations can be
defined that feature more dependability-oriented measures. We will consider three of
such interpretations that correspond to three distinct contexts: (1) responsiveness of the
Kernel (RK), that is, maximize error notification; (2) availability of the kernel (AK), that
is, minimize kernel hangs; and (3) safety of the workload (SW), that is, minimize delivery
of incorrect service by the application processes. These constitute top-level perceptive
viewpoints that support the selection criteria for a system integrator to rank SUBs of in-
terest. This perception follows from the clustering of the detailed outcomes from Table
14.4 (see Table 14.5).

The main rationale for the interpretation associated with RK is to positively consider
outcomes gathering both notification events and failure modes. The fact that the kernel is
able to report an error is considered as positive, even when failure modes are observed at
workload level. Conversely, AK will rank differently the cases in which either a KH or a
WA is observed: indeed, the occurrence of a KH has a dramatic impact on the availability
of the system, whereas an abort of the workload can be recovered more easily. The mea-
sure associated with SW characterizes the case in which safe behavior of the workload is
required. Accordingly, we advocate that most favorable outcomes correspond to events
prone to induce “fail-safe” or “fail-silent” behaviors, that is, error notifications and kernel
hangs, whereas workload abort is assumed to correspond to a critical event, and incorrect
completion to an even worse one. Nevertheless, as safety is typically an application-level
property, alternative viewpoints could have been devised; in particular, from a “fail-fast”

296 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

c14.qxd 6/1/2008 6:00 PM Page 296

perspective, one may well consider that workload abort could be preferred to error notifi-
cation.

It is worth pointing out that in Table 14.5 several outcomes are grouped into clusters
that can be considered as equivalent with respect to a specific measure; each cluster char-
acterizes a relevant “accomplishment level” for the considered measure. These clusters
are ranked according to an increasing severity level (i.e., index 1 indicates the most favor-
able case). We have appended labels (+) and (–) to explicitly indicate what we are consid-
ering as positive and negative clusters. However, we recommend keeping the data for
each cluster so that a finer tuning of these categorizations is always possible. The right-
most column gives the rationale that defines the various clusters.

14.5. THE EXPERIMENTAL TESTBED: THE RoCADE PLATFORM

Figure 14.3 describes the RoCADE (robustness characterization against driver errors)
platform that has been set up for conducting the experiments (only one target machine is
shown).

14.5. THE EXPERIMENTAL TESTBED: THE ROCADE PLATFORM 297

TABLE 14.5. Viewpoints and dependability measures

Viewpoint: Responsiveness/Feedback of the Kernel

Outcomes [–O1] Rationale

+ RK1 O2–O4 An error is notified by the kernel before the workload completes
correctly

+ RK2 O5–O7, O9–O11, An error is notified by the kernel before a failure is observed
O13–O15,
O17–O19,
O21–O23

– RK3 O16 No error is notified and the workload is aborted
– RK4 O8, O12, O24 No error is notified and the kernel hangs
– RK5 O20 No error is notified and the workload completes incorrectly

Viewpoint: Availability of the Kernel

Outcomes [-O1] Rationale

+ AK1 O2–O4 An error is notified by the kernel before the workload completes
correctly

+ AK2 O13–O20 The workload is aborted or completes incorrectly
– AK3 O5–O8 The workload completes correctly and the kernel hangs
– AK4 O9–O12, O21–O24 The workload is aborted or completes incorrectly and the kernel

hangs

Viewpoint: Safety of the Workload

Outcomes [-O1] Rationale

+ SW1 O2–O4 An error is notified by the kernel before the workload completes
correctly

+ SW2 O5–O8 The workload completes correctly and the kernel hangs
+ SW3 O9–O16 The workload is aborted or the kernel hangs
– SW4 O21–O24 The workload completes incorrectly and the kernel hangs
– SW5 O17–O20 The workload completes incorrectly and the kernel does not hang

c14.qxd 6/1/2008 6:00 PM Page 297

The experiments were carried out using a rack of four Intel Pentium machines, each
featuring 32 Mb of RAM and several commonly used peripheral devices, including a hard
disk, a floppy disk, a CD ROM, two network cards, a graphic card, and a keyboard. All
four machines run the GNU/Linux distribution. Three of them are the target machines on
which faults are injected and behaviors observed; each is supporting two versions of the
Linux kernel: 2.2.20 and 2.4.18. The use of three target machines is meant to speed up the
conduct of the experiments. The fourth machine (control machine) is connected to the tar-
get machines via a private Ethernet network to control the experiments and provide an ex-
ternal means for monitoring these machines. In particular, it is used to restart the target
machines, should they be blocked after an experiment. Indeed, for the sake of repeatabili-
ty, for each experiment the SUB is restored to a specific (fault-free) state.

The injection of faulty parameters into each target machine is carried out via the RAM.
The processor uses a stack residing in RAM to store various data, including the parame-
ters of the calls to the functions of the DPI. This stack is accessible via the registers of the
processor. At the same time, another area in the memory stores the instructions to be exe-
cuted. When a DPI function is being used, the processor raises an interrupt. Upon occur-
rence of this interrupt, the fault injection process takes over; it modifies a parameter in the
stack and resumes the execution of the program. When the fault has been applied once,
the fault injection process is disabled. The corruptions provoked in this way correspond to
transient faults. This choice for the fault model illustrates the kind of pragmatic compro-
mise one has to make among benchmarking properties (e.g., see [Kanoun et al. 2002]),
namely here, fault representiveness and low intrusiveness.

In order to recognize the symbols used by the driver, we have developed scripts that
automatically extract their names from the driver’s object code file. Then, thanks to the
list referencing all symbols, we can determine what faults can be injected into these sym-
bols. Hence, all parameters of the selected functions are subjected to fault injection (ac-
cording to all the fault types defined in Table 14.2). The codes returned after a system call
are obtained with similar techniques. The code returned by the symbol subjected to a fault
is collected from the stack. In addition to these error codes, the symbols may also display
other error messages, such as “blue screen” or “panic.” Such error messages are collected
at the end of each experiment.

298 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

Figure 14.3. Overview of the RoCADE platform.

Linux Kernel

(Benchmark Target)

A P I

Hardware

FaultloadWorkload

System call parameter corruption

Control

Machine

D

P

I

Target Machine = System under Benchmark

Faulted Driver

Other Drivers

System call

code return

¥ Workload

 behavior

¥ Exception

Ethernet

Hardware link

�

�

c14.qxd 6/1/2008 6:00 PM Page 298

At the start of each experiment that is indicated by the target machine, the control ma-
chine sets a timer. At the end of each experiment, the target machine is rebooted and it is
expected to be able to retrigger this timer at the end of the reboot. If the timer overruns,
the control machine provokes a hardware restart of the target machine. This situation is
interpreted as a hang of the kernel. The hardware exceptions are collected via the log of
the target machine. The duration of each fault injection experiment ranges from 2.5 to 5
minutes (the latter when a kernel hang occurs).

The diagram in Figure 14.4 presents the nominal scheduling of a fault injection exper-
iment.

The various important events are identified and described in Table 14.6, where related
actions are also detailed.

14.6. RESULTS AND ANALYSES

This section illustrates how the insights one can get from the measurements obtained vary
according to the priorities or dependability measures that are considered. We present and
analyze a restricted set of results obtained with the RoCADE platform for three represen-
tative drivers running on the Linux kernel. Additional results and, in particular, more de-
tailed analyses can be found in [Albinet 2005]. We restrict the presentation of the results
to a selected set, in order to facilitate the exposition of the analyses. We voluntarily em-
phasize two drivers supporting the network card (namely the SMC-ultra and the Ne2000).
Network drivers account for the largest part of the code among the drivers whose size is
increasing the most [Godfrey and Tu 2000]; we consider also another driver (namely,
SoundBlaster) that ranges in the midsize category. An additional set of drivers has been
tested (e.g., file system, process memory, etc.).

The main goal that supports the selection of this set of results is to be able to carry out
the following types of analyses on:

� Two distinct drivers running on the same version of the kernel: SB + Linux 2.2 and
SMC + Linux 2.2

� Two implementations of the same functionality running on the same kernel version:
SMC + Linux 2.4 and NE + Linux 2.4

� The same driver* running on two different kernel versions: SMC + Linux 2.2 and
SMC + Linux 2.4

14.5. THE EXPERIMENTAL TESTBED: THE RoCADE PLATFORM 299

Figure 14.4. Scheduling of relevant events for an experiment.

tExpStart

(n)

Insert
Observer

Insert
Injector

tWStart tContinue tWEnd

tWrStart

tWrEnd Remove
Injector

tExpEnd

Remove
Observer

tExpStart

(n+1)

Observation

Experiment #n

Restart

DPI Call
Launch timer

tResponse

*It is worth pointing out that the code of the driver is adapted to fit each version of the kernel.

c14.qxd 6/1/2008 6:00 PM Page 299

arlat
Crayon

arlat
Crayon

arlat
Crayon

Based on the workload and fault types considered, about 100 experiments were carried
out for each driver plus kernel combination.

14.6.1. Basic Results and Interpretation

Table 14.7 illustrates the distribution of the basic results obtained when considering the
“first event” approach to diagnosing outcomes for which multiple events were collected.

In addition to the specific events previously defined (see Table 14.4), two interesting
outcomes are included:

1. Not Activated (Not Act.)—injected faults could not be activated (i.e., the workload
was not able to activate the function on which the fault was meant to be injected).

2. No Observation (No Obs.)—none of the notification or failure modes events were
observed; of course when the fault is not activated, none of these events can be ob-
served.

The proportion of “Not Activated” cases varies significantly, both among the tested
drivers and Linux versions—from 0% (SB + Linux 2.2) to 17% (SMC + Linux 2.4). The
fact that in most cases nonnull ratios are observed means that the respective workloads

300 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

TABLE 14.6.—Detailed description of events and related actions

IDs Events Actions

tExpStart System verification Launch of e2fsck utility to check the file
Insertion X* Setup of the modules of the tool and system integrity†

selection of the fault to be injected Countdown start (on the control machine)
Insertion of a breakpoint

tWStart Initiation of the workload Start-up of the workload

DPI call Injection of the fault on the targeted Raising of an interrupt and injection of the
kernel function call fault

Wait for (error) code returned by the Insertion of the breakpoint for observing
kernel function the returned code

tContinue Resumption of the workload after Observation (internal) of the error code
execution of the function being returned
faulted

tResponse Observation of the events perceived Collection of the results provided by the
externally workload

TWEnd Termination of the workload Signaling of workload termination

tWrStart Initiation of the replay workload Start up of the replay workload

tWrEnd Termination of the replay workload Signaling of replay workload termination
and observation of the related and collection of the related results
events perceived externally provided

TexpEnd End of current experiment Removal of the modules of the tool and
Removal X* restart

*X= Injector, Observer.
†This proved a very useful procedure as in several instances the file system had been damaged due to the corrup-
tion of the system call.

c14.qxd 6/1/2008 6:00 PM Page 300

have to be improved from a testability viewpoint—more precisely, controllability here.
However, these rates are much lower than those reported in related studies on the Linux
kernel (e.g., see [Gu et al. 2003]). To our understanding, this better controllability is most
likely due to the fact that, in our case, faults are targeting the parameters of the system
calls made by the driver, rather than the flow of execution of the whole kernel. In the se-
quel, for further analyses, we will normalize the results presented with respect to experi-
ments in which faults were actually activated.

As already pointed out, the interpretation of the “no observation” cases is highly sub-
ject to the specific context in which the analysis is conducted. These outcomes may be
counted either as positive or negative depending on the responsiveness, safety, and avail-
ability viewpoints. However, as is commonly accepted in testing scenarios, uncertainties
still remain about the real situations that such outcomes describe. Accordingly, we have
preferred to adopt a conservative approach that consists in ignoring these outcomes. Be-
sides the “replay” mode has been devised to increase the confidence in our analyses, a
“No Obs” outcome probably still reveals a lack of observability of the tests conducted.
But, such an outcome may also be due to controllability-related problems: the kernel does
not (or no longer) use(s) the faulted parameter, the faulted parameter has no impact on the
kernel, or the error provoked is masked (in our case, injecting a “0” value on a parameter
already equal to “0,” etc.). However, although the “No Obs.” ratios reported are higher
than the “Not Act.”, the values are significantly lower than the ones presented in [Gu et al.
2003].

Figure 14.5 illustrates the relative distribution among the events observed while con-
sidering the “first event” collected, which is a classical approach in most related experi-
mental studies.

A quick examination of these results shows a very low proportion of workload aborts
for all tests conducted. The results also reveal that a large percentage of experiments are
notified by the kernel (this includes the error code and exception events). Should it be
possible to handle equally both types of notifications, then, as the provision of an error
code usually features a lower latency, such a notification would be preferable to an excep-
tion in order to carry out a successful recovery action. Accordingly, in that respect, the re-
sults for SB + Linux 2.2 are more positive than those observed for the experiments con-
cerning network card drivers. However, adopting an end-user perspective would lead to a
different assessment; indeed, in that case only exceptions would actually matter.

The comparison of the results obtained for the SMC driver for the two releases indi-
cates clearly an improvement of the robustness for SMC + Linux 2.4 due to the increased
percentage of exceptions raised. This results in a reduction of the ratios of kernel hangs
and, more importantly, in the “disappearance” of critical cases in which a workload incor-
rect (WI) event was reported. Indeed, due to the precedence in the collection of the
events, the fact that a WI event is counted as a first event means that neither a notification

14.6. RESULTS AND ANALYSES 301

TABLE 14.7. Distribution of events according to first event collected

Driver + kernel Not Act. No Obs. EC XC KH WA WI

SB + Linux 2.2 0% 18% 47% 22% 3% 1% 9%
SMC + Linux 2.2 7% 22% 19% 23% 21% 0% 9%
SMC + Linux 2.4 17% 17% 21% 34% 11% 0% 0%
NE + Linux 2.4 14% 10% 15% 30% 17% 0% 13%

Legend—EC: error code, XC: exception, KH: kernel hang, WA: workload abort, WI: workload incorrect.

c14.qxd 6/1/2008 6:00 PM Page 301

has been made nor an abort has been observed. It is also very likely to be the only event to
be collected, unless a hang has occurred after the end of the workload (such cases are ac-
tually very infrequent), but, in practice, a deeper analysis of the data collected is neces-
sary to ascertain this statement.

14.6.2. Impact of the Comprehensive Viewpoints

In this section, we revisit the observations made during the conducted experiments in the
light of the three comprehensive viewpoints defined in Section 14.5.2. Figure 14.6 sum-
marizes the corresponding measures for the four series of experiments reported here. In
each case, the percentages of the various clusters that support the corresponding measure
are detailed. It is important to note that the clusters corresponding to the most positive
outcomes appear on the top of the histograms (light grey), whereas the critical ones are at
the bottom (darker shade). Here we consider the set of outcomes defined in Table 14.4.

Let us consider first the kernel responsiveness (RK) viewpoint. Here we assume that
RK1 and RK2 form the most positive outcomes (Table 14.5). The distribution observed

302 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

Figure 14.5. Distribution among observed events according to first event collected.

Error

Code

58%

orkload

correct

11%

Error Code
26%

Exception
33%

Kernel

Hang

29%

Workload

Abort

0%

Workload
Incorrect

12%

SB + Linux 2.2 b) SMC + Linux 2.2

Error Code
32%

orkload

Abort
0%

Workload
Incorrect

0%

Error Code
20%

Exception
40%

Kernel

Hang
23%

Workload

Abort
0%

Workload
Incorrect

17%

MC + Linux 2.4 d) NE + Linux 2.4

Error

Code

58%

Workload

Incorrect

11%
Workload

Abort

1%

Kernel

Hang

4%

Exception

26%

a) SB + Linux 2.2

Error Code
32%

Exception
51%

Kernel Hang
17%

Workload

Abort
0%

Workload
Incorrect

0%

c) SMC + Linux 2.4

c14.qxd 6/1/2008 6:00 PM Page 302

for SB + Linux 2.2 indicates a very positive behavior—84% of the outcomes observed
correspond to error notifications (RK1 = 43% + RK2 = 41%). However, among the 16%
of outcomes for which a failure mode was observed without prior notification, more than
two-thirds correspond to WI events (RK5 = 11%). The remaining third is dominated by
KH events and few WA events. It is worth noting that this is the only set of experiments
for which WA events have been diagnosed without any prior notification. The SMC +
Linux 2.2 configuration features a much less positive behavior. For example, the distribu-
tion shows that 41% of the outcomes observed correspond to failure modes without prior
notification. This is mainly due to KH events; indeed, in that case RK4 = 29%, whereas
the RK5 cluster (not notified WI events) amounts to a rather similar value (12%). This
also means that almost 30% of the workload failures that are not notified led to an incor-
rect completion. The results shown for SMC indicate that the evolution to release 2.4 has
significantly improved the behavior—the percentage of failures without prior notification
is reduced to 17% and corresponds to KH events only. Globally, more than three-quarters
(60/77) of the failure modes observed are preceded by an error notification. This confirms
the observations already made on the basis of the analysis of the pie charts displaying the
distributions of the first event collected (Figure 14.5). The results for NE + Linux 2.4 in-
dicate a much lower error notification ratio, which is similar to the one reported for the
SMC + Linux 2.2 case.

For the kernel availability viewpoint (AK), the most critical issue is characterized by a
KH event, because this has a dramatic impact on the ability to keep delivering the service.
This is why AK3 and AK4 are considered the most critical clusters. The results shown for
SB + Linux 2.2 indicate that faults have also a significant impact with respect to availabil-
ity. Indeed, a KH event is observed in 23% (18% + 5%) of the cases. Moreover, the WI
event is observed in more than 78% of these cases (the 18% of the 23%); this means that
in most cases, before the kernel hangs, the services that are active in the kernel are no
longer able to maintain the proper operation of the application processes. The results also
indicate that faults associated with network drivers have consistently a very significant
impact—about half of the fault injection experiments conclude with a KH event. For the
SMC driver, the results also show that the modifications made between the two releases
had no impact from the availability viewpoint.

Concerning the workload safety viewpoint (SW), what matters most is the ability to
avoid the delivery of incorrect results. This is why SW4 and SW5 are considered as the
most critical clusters. The results shown for SB + Linux 2.2 suggest a much less positive
behavior than was deduced from the analysis of the results from the RK viewpoint—the
occurrence of the most severe case (cluster SW5 = WI and no KH) amounts to 22%. In
addition, it is worth noting that the significant improvement observed with respect to re-
sponsiveness (error notification) between SMC + Linux 2.2 and SMC + Linux 2.4 has no
impact (actually slightly the opposite) in reducing the WI events. Such a behavior can be
explained by the fact that most additional error notifications correspond to exceptions,
rather than error code returns (see Table 14.7). As a matter of fact, such exceptions signal
already severe erroneous behavior; the erroneous behavior is reported, but no suitable re-
covery procedure is being launched. The rather poor behavior observed with respect to re-
sponsiveness is also confirmed by the analysis with respect to the safety viewpoint; in
53% of the cases (SW5 = 42% + SW4 = 11%) the observed outcome is a WI event, which
is the most critical event here.

Figure 14.7 illustrates how these various viewpoints, and the associated properties, can
be used by system integrators in making a decision as to whether to incorporate a driver
into their system. The histograms plot the percentage for cases in which these properties

14.6. RESULTS AND ANALYSES 303

c14.qxd 6/1/2008 6:00 PM Page 303

304 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

Figure 14.6. Interpretation of the results according to the considered viewpoints.

9%

4%
1%

11% 12% 14%

29%

17%

26%

31%

60%

51%

43%

23%

41%

28%

RK1

RK2

RK3

RK4

RK5

SB + Linux 2.2 SMC + Linux 2.2 SMC + Linux 2.4 NE + Linux 2.4
a) Kernel responsiveness viewpoint

18%

58% 57%
49%5%

33%

14% 19%
42%

43%

28% 23%

9%

AK1

AK2

AK3

AK4

SB + Linux 2.2 SMC + Linux 2.2 SMC + Linux 2.4 NE + Linux 2.4
b) Kernel availability viewpoint

*"

22%
14%

19%

42%

11%

29%

58%
57%

38%

43%

28% 23%

9%

5%

SW1

SW2

SW3

SW4

SW5

SB + Linux 2.2 SMC + Linux 2.2 SMC + Linux 2.4 NE + Linux 2.4
c) Workload safety viewpoint

c14.qxd 6/1/2008 6:00 PM Page 304

were not verified (i.e., the cases corresponding to the clusters labeled with index “–” in
Table 14.5) when considering the experiments involving the tested network drivers. In
this case, the figures being considered explicitly account for the ratios of “No Obs.” that
appeared in Table 14.7. It is worth noting that these ratios contribute negatively to the
evaluation of the responsiveness property (i.e., RK is not verified*); however, they corre-
spond to the verification of AK and SW.

The histograms concerning the two versions of the SMC driver clearly illustrate that
the significant decrease in lack of error signaling obtained for version 2.4 does not result
in a significant reduction in the weaknesses with respect to the other viewpoints (actually,
a slight increase is observed for safety); the improvement in the coverage procured by the
error detection mechanisms was not accompanied by an improvement in the handling of
error signals. For example, the application of the concept of shadow driver reported in
[Swift et al. 2004] would help improve the behavior by complementing such a problem-
revealing only strategy with a specific low-level recovery strategy. During normal opera-
tion, the shadow driver tracks the state of the real driver by monitoring all communication
between the kernel and the driver. When a failure occurs, the shadow driver substitutes
temporarily for the real driver, servicing requests on its behalf, thus shielding the kernel
and applications from the failure. The shadow driver then restores the failed driver to a
state in which it can resume processing requests. It is also interesting to observe that,
while the network driver NE 2000 features similar or slightly better behaviors than the
SMC driver with respect to responsiveness and availability, it exhibits a much poorer be-
havior with respect to safety. This reflects the fact that very distinct implementation
choices were made for these two drivers.

14.6. RESULTS AND ANALYSES 305

Figure 14.7. Comparison of the property deficiencies induced by the network card dri-
vers.

*This is consistent with the rationale underlying this viewpoint (i.e., a reaction from the kernel is expected in
presence of activated faults). Still, considering the complete “No Obs.” ratio as contributing to a deficiency of
the RK property might lead to a pessimistic assessment. This is why the related percentages are explicitly shown
in the figure.

c14.qxd 6/1/2008 6:00 PM Page 305

14.7. CONCLUSION

Popular operating systems (COTS or open source) rapidly evolve into increasingly com-
plex software components. Drivers are known to account for the major part of the in-
crease in terms of lines of source code. These components are often crafted by third-party
developers and then integrated within the operating system. This whole process is not al-
ways well mastered, as evidenced by the vast consensus that attributes a large proportion
of operating system failures to driver malfunctions.

The work reported in this chapter proposed a practical approach to benchmarking the
robustness of operating systems with respect to faulty device drivers. In order to facilitate
the conduct of fault injection experiments, we have introduced the notion of the driver
programming interface (DPI) that precisely identifies the interface between the drivers
and the kernel, in the form of a set of kernel functions. In the same way that the API is
used to simulate the consequences of faulty application processes, the DPI provides a
suitable interface for simulating the potential erroneous behaviors induced by a faulty dri-
ver. In practice, we have used a SWIFI technique to corrupt the parameters of these func-
tions. In order to collect relevant outcomes for a detailed characterization of the faulty be-
haviors, we have considered both internal (error codes returned by the kernel) and
external measurements (e.g., exceptions raised, kernel hangs, and workload behavior).

To analyze the experimental results, we have proposed a comprehensive framework
for interpreting the results that accounts for several dependability viewpoints. We have
considered three viewpoints, namely, responsiveness of the kernel (maximize error notifi-
cation), availability (minimize kernel hangs), and safety of the workload (minimize deliv-
ery of incorrect service). They provide a practical means for analyzing three different
facets of the dependability requirements that one can expect from a robust operating sys-
tem, either simultaneously or individually.

In order to illustrate and assess our approach, we have set up an experimental platform,
RoCADE (robustness characterization against driver errors). We have focused here on the
series of experiments conducted on two releases of the Linux kernel (2.2.20 and 2.4.18)
and on three drivers [sound (sound blaster) and network (SMC and NE 2000)]. The analy-
ses carried out have shown that although the sound blaster driver got a very good rating
according to responsiveness, it exhibited poor behavior with respect to the safety and
availability viewpoints. The experiments conducted on the SMC driver were able to re-
veal a significant improvement with respect to responsiveness between the two releases
considered, but this did not result in any improvement from the safety and availability
viewpoints. Finally, we identified a slightly better behavior concerning availability for the
experiments conducted on the NE 2000 driver than for those on the SMC driver, whereas
the opposite was obtained for safety and responsiveness.

The results we have obtained and the analyses we have carried out thanks to RoCADE
are encouraging with regard to viability of the proposed methodology. The whole ap-
proach can thus be considered as a sound basis on which to develop a set of practical de-
pendability benchmarks focusing on the characterization of the impact of faulty drivers on
the behavior of an operating system kernel. As witnessed by the insights gained from the
measures obtained, although the proposed framework is primarily geared toward the char-
acterization of kernel behaviors, it is also suitable to support the choice of drivers to be as-
sociated with a given kernel.

We consider the fact that a large proportion of error codes had been observed (espe-
cially as first-collected events) as a positive result in order to perform a detailed charac-
terization of the erroneous behaviors induced by the corrupted parameters. In addition,

306 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

c14.qxd 6/1/2008 6:00 PM Page 306

these codes form a useful basis on which specific error handling could be implemented.
Another recommended approach to restrict the impact of faulty drivers would be to en-
force a clear separation between the driver address space and the kernel address space
(e.g., see [Härting et al. 1997]). The use of specific languages excluding pointer arith-
metic and explicitly including IMM (e.g., see [Réveillère and Muller 2001]) is another
promising approach to develop more robust drivers. More recently, several proposals
have been made to attain a clear separation of concern using virtual machine constructs;
for example, see [Fraser et al. 2004, LeVasseur et al. 2004]. The contemporary Nooks ap-
proach and its extension in the form of shadow drivers [Swift et al. 2004] offer other at-
tractive approaches.

Finally, it is worth pointing out that the notion of the DPI (driver programming inter-
face) that we have advocated and defined in order to structure the conducted experiments
matches very well the concept of separation of concerns that underlies several frame-
works that were proposed recently, both by academic studies (e.g., see [Swift et al. 2004])
and by an increasing number of operating system and hardware manufacturers. Let us
simply mention the various CDI (common driver interface), DDI (device driver inter-
face), or DKI (driver kernel interface) proposals that have been put forward for several
operating systems. Among these initiatives, the Extensible Firmware Interface (EFI) that
was recently promoted by the Unified EFI Forum* as an emerging standard deserves spe-
cial attention. The EFI defines a new model for the interface between operating systems
and platform firmware. The UEFI is primarily meant to provide a standard environment
for booting an operating system. Nevertheless, the data tables (containing platform-relat-
ed information, plus boot and run-time service calls) that implements it can be useful also
to facilitate run-time access to internal variables and, thus, better structure the design of
device drivers. Accordingly, it should be possible to reuse the principles underlying the
DPI identified herein and/or to adapt them easily in the forthcoming arena that this
emerging standard is promising for structuring the interactions between the operating sys-
tems and the related hardware layers, including the device drivers.

ACKNOWLEDGMENT

This work was partly supported by the European Commission (Project IST-2000-25425:
DBench and Network of Excellence IST-026764: ReSIST). Arnaud Albinet was support-
ed in part by the Réseau d’Ingénierie de la Sûreté de fonctionnement (Network of De-
pendability Engineering); he is now with Continental Automotive, Toulouse, France.

REFERENCES

[Albinet 2005] A. Albinet, Dependability Characterization of Operating Systems in presence of
Faulty Drivers, Ph.D. Dissertation, National Polytechnic Institute, Toulouse, 2005 (in French,
also LAAS Report 05-248).

[Albinet et al. 2004] A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of the Impact of Faulty
Drivers on the Robustness of the Linux Kernel,” in Proceedings of IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN-2004), Florence, Italy, IEEE Computer
Science Press, Los Alamitos, CA, pp. 867–876, 2004.

REFERENCES 307

*http://www.uefi.org.

c14.qxd 6/1/2008 6:00 PM Page 307

[Arlat et al. 1990] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins,
and D. Powell, “Fault Injection for Dependability Validation—A Methodology and Some Ap-
plications,” IEEE Transactions on Software Engineering, vol. 16, no. 2, pp. 166–182, February
1990.

[Arlat et al. 2002] J. Arlat, J.-C. Fabre, M. Rodríguez, and F. Salles, “Dependability of COTS Mi-
crokernel-Based Systems,” IEEE Transactions on Computers, vol. 51, no. 2, pp. 138–163, Feb-
ruary 2002.

[Avizienis et al. 2004] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Concepts
and Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 1, no. 1, pp. 11–33, Jan.–March 2004.
[Brown and Patterson 2000] A. Brown and D. A. Patterson, “Towards Availability Benchmarks: A

Case Study of Software RAID Systems,” in Proceedings of 2000 USENIX Annual Technical
Conference, San Diego, CA, USENIX Association, 2000.

[Carreira et al. 1998] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A Technique for the Ex-
perimental Evaluation of Dependability in Modern Computers,” IEEE Transactions on Software
Engineering, vol. 24, no. 2, pp. 125–136, February 1998.

[Chou et al. 2001] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical Study of
Operating System Errors,” in Proceedings of 18th ACM Symposium on Operating Systems Prin-
ciples, Chateau Lake Louise, Banff, Canada, ACM Press, New York, 2001, http://www.cs.ucsd.
edu/sosp01.

[Durães and Madeira 2003] J. Durães and H. Madeira, “Mutidimensional Characterization of the
Impact of Faulty Drivers on the Operating Systems Behavior,” IEICE Transactions on Informa-
tion and Systems, vol. E86-D, no. 12, pp. 2563–2570, December 2003.

[Durães and Madeira 2006] J. Durães and H. Madeira, “Emulation of Software Faults: A Field Data
Study and a Practical Approach,” IEEE Transactions on Software Engineering, vol. 32, no. 11,
pp. 849–867, November 2006.

[Edwards and Matassa 2002] D. Edwards and L. Matassa, “An Approach to Injecting Faults into
Hardened Software,” in Proceedings of Ottawa Linux Symposium, Ottawa, ON, Canada, pp.
146–175, 2002.

[Fraser et al. 2004] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson,
“Safe Hardware Access with the Xen Virtual Machine Monitor,” in First Workshop on Operating
System and Architectural Support for the On-Demand IT Infrastructure (OASIS), Boston, 2004.

[Fraser et al. 2003] T. Fraser, L. Badger, and M. Feldman, “Hardening COTS Software with Gener-
ic Software Wrappers,” in Foundations of Intrusion Tolerant Systems—Organically Assured
and Survivable Information Systems (OASIS), J. H. Lala (Ed.), IEEE Computer Science Press,
Los Alamitos, CA,pp. 399–413, 2003.

[Godfrey and Tu 2000] M. W. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case
Study,” in Proceedings of IEEE International Conference on Software Maintenance (ICSM-
200), San Jose, CA,IEEE Computer Science Press, Los Alamitos, CA, pp. 131–142, 2000.

[Gu et al. 2003] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, “Characterization of Linux Kernel
Behavior under Errors,” in Proceedings of IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN-2003), San Francisco, CA, IEEE Computer Science Press, Los
Alamitos, CA, pp. 459–468, 2003.

[Härting et al. 1997] H. Härting, M. Ohmuth, J. Liedtke, S. Schönberg, and J. Wolter, “The Perfor-
mance of µ-Kernel-Based Systems,” in Proceedings of 16th ACM Symposium on Operating Sys-
tems Principles (SOSP-16) Saint-Malo, France, pp. 66–77, 1997.

[Jarboui et al. 2003] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, and T. Marteau, “Impact of Inter-
nal and External Software Faults on the Linux Kernel,” IEICE Transactions on Information and
Systems, vol. E86-D, no. 12, pp. 2571–2578, December 2003.

[Johansson and Suri 2005] A. Johansson and N. Suri, “Error Propagation Profiling of Operating
Systems,” in Proceedings of IEEE/IFIP International Conference on Dependable Systems and

308 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

c14.qxd 6/1/2008 6:00 PM Page 308

Networks (DSN-2005), Yokohama, Japan, IEEE Computer Science Press, Los Alamitos, CA,
pp. 86–95, 2005.

[Kalakech et al. 2004] A. Kalakech, T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun, “Benchmark-
ing Operating System Dependability: Windows 2000 as a Case Study,” in Proceedings of 10th
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC-2004), Papeete,
French Polynesia, EEE Computer Science Press, Los Alamitos, CA, pp. 261–270, I2004; see
also http://www.laas.fr/DBench.

[Kanoun et al. 2002] K. Kanoun, H. Madeira, and J. Arlat, “A Framework for Dependability Bench-
marking,” in Supplemental Volume of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN-2002)—Workshop on Dependability Benchmarking, Washington,
DC, pp. F.7–F.8, 2002; see also http://www.laas.fr/DBench.

[Kanoun et al. 2005a] K. Kanoun, H. Madeira, M. Dal Cin, F. Moreira, and J. C. Ruiz Garcia,
“DBench (Dependability Benchmarking),” in Proceedings of 5th European Dependable Com-
puting Conference (EDCC-5)—Project Track, Budapest, Hungary, 2005; available as LAAS
Report no. 05197, see also http://www.laas.fr/DBench.

[Kanoun et al. 2005b] K. Kanoun, Y. Crouzet, A. Kalakech, A. E. Rugina, and P. Rumeau, “Bench-
marking the Dependability of Windows and Linux Using Postmark Workloads,” in Proceedings
of 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005),
Chicago, IEEE Computer Science Press, Los Alamitos, CA, pp. 11–20, 2005.

[Koopman and DeVale 1999] P. Koopman, and J. DeVale, “Comparing the Robustness of POSIX
Operating Systems,” in Proceedings of 29th IEEE International Symposium on Fault-Tolerant
Computing (FTCS-29), Madison, WI, IEEE Computer Science Press, Los Alamitos, CA, pp.
30–37, 1999.

[LeVasseur et al. 2004] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz, “Unmodified Device Driver
Reuse and Improved System Dependability via Virtual Machines,” in Proceedings of 6th
ACM/USENIX Symposium on Operating Systems Design and Implementation (OSDI ‘04), San
Francisco, USENIX Association, pp. 17–30, 2004.

[Madeira et al. 2002] H. Madeira, R. Some, F. Moreira, D. Costa, and D. Rennels, “Experimental
Evaluation of a COTS System for Space Applications,” in Proceedings of IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN-2002), Washington, DC, EEE
Computer Science Press, Los Alamitos, CA, pp. 325–330, I2002.

[Marsden et al. 2002] E. Marsden, J.-C. Fabre, and J. Arlat, “Dependability of CORBA Systems:
Service Characterization by Fault Injection,” in Proceedings of 21st IEEE International Sympo-
sium on Reliable Distributed Systems (SRDS-2002), Osaka, Japan, IEEE Computer Science
Press, Los Alamitos, CA, pp. 276–285, 2002.

[Mukherjee and Siewiorek 1997] A. Mukherjee and D. P. Siewiorek, “Measuring Software De-
pendability by Robustness Benchmarking,” IEEE Transactions on Software Engineering, vol.
23, no. 6, pp. 366–378, June 1997.

[Murphy and Levidow 2000] B. Murphy and B. Levidow, “Windows 2000 Dependability,” in Di-
gest of Workshops and Abstracts of the IEEE/IFIP International Conference on Systems and
Networks (DSN-2000), New York, pp. D.20–D.28, 2000.

[Réveillère and Muller 2001] L. Réveillère and G. Muller, “Improving Driver Robustness: An Eval-
uation of the Devil Approach,” in Proceedings of IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN-2001), Göteborg, Sweden, IEEE Computer Science
Press, Los Alamitos, CA, pp. 131–140, 2001.

[Rodríguez et al. 2002] M. Rodríguez, A. Albinet, and J. Arlat, “MAFALDA-RT: A Tool for De-
pendability Assessment of Real Time Systems,” in Proceedings of IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN-2002), Washington, DC,IEEE Com-
puter Science Press, Los Alamitos, CA, pp. 267–272, 2002.

[Rodríguez et al. 2003] M. Rodríguez, J.-C. Fabre, and J. Arlat, “Building SWIFI Tools from Tem-
poral Logic Specifications,” in Proceedings of IEEE/IFIP International Conference on Depend-

REFERENCES 309

c14.qxd 6/1/2008 6:00 PM Page 309

able Systems and Networks (DSN-2003), San Francisco, pp. 95–104, IEEE Computer Science
Press, Los Alamitos, CA, 2003.

[Swift et al. 2004] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recovering De-
vice Drivers,” in Proceedings of 6th ACM/USENIX Symposium on Operating Systems Design
and Implementation (OSDI ‘04), San Francisco, pp. 1–16, 2004, USENIX Association,
http://nooks.cs.washington.edu.

[Tsai et al. 1996] T. K. Tsai, R. K. Iyer, and D. Jewitt, “An Approach Towards Benchmarking of
Fault-Tolerant Commercial Systems,” in Proceedings of 26th International Symposium on
Fault-Tolerant Computing (FTCS-26), Sendai, Japan, EEE Computer Science Press, Los Alami-
tos, CA, pp. 314–323, I1996.

[Vieira and Madeira 2003] M. Vieira and H. Madeira, “Benchmarking the Dependability of Differ-
ent OLTP Systems,” in Proceedings of IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN-2003), San Francisco, IEEE Computer Science Press, Los Alami-
tos, CA, pp. 305–310, 2003.

[Zaatar and Ouaiss 2002] W. Zaatar and I. Ouaiss, “A Comparative Study of Device Driver APIs:
Towards a Uniform Linux Approach,” in Proceedings of Ottawa Linux Symposium, Ottawa,
ON, Canada, pp. 407–413, 2002.

310 BENCHMARKING THE IMPACT OF FAULTY DRIVERS: APPLICATION TO THE LINUX KERNEL

c14.qxd 6/1/2008 6:00 PM Page 310

