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Abstract 
The paper proposes a solution to the problem posed by the 
inclusion of complex interstage nodes into communication 
networks. Thus nodes are prone to exhibit failure modes 
that may lead to repetitive errors that breach the usual set 
of assumptions considered for medium-level protection 
mechanisms. The specific class of application targeted 
(e.g., servomechanisms controlling flight control surfaces) 
is characterized by: i) slow dynamics of the controlled 
processes does not impose a high integrity level for each 
transmitted message, but rather for a set of successive 
messages, ii) the reference values assigned during the 
mission (e.g., cruise phase) are expected to be maintained 
identical for several cycles, and thus should the protection 
fail for one message, then it will be the same for 
subsequent messages. To cope with this, the proposed 
integrity protection scheme features distinct error coding 
functions, thus providing complementary detection 
capabilities to consecutive messages.  

Keywords: safety-critical systems, digital communications, 
interstage nodes, integrity, error detecting codes. 

1 Introduction  
Communication integrity is an important requirement for 
many critical control application domains for which digital 
networks are increasingly being used. This trend is mainly 
driven by the deployment of “smarter” field instruments 
that feature built-in microprocessors and are capable of 
running more complex control algorithms.  
Future commercial aircrafts provide good examples of such 
critical distributed embedded systems for which an 
increasing number of sensors and actuators are being 
deployed: plans exist where the range of tens of control 
surfaces would be rapidly augmented to the hundred-range 
or more. The goal is in particular to ensure a more efficient 
management by the Flight Control System (FCS). The FCS 
is characterized by very stringent dependability require-
ments; a commonly quoted figure for the failure rate is 10-9 
failures/hour. 
In such a context, dependability focuses on the provision of 
high integrity (i.e., the “absence of improper state 
alterations” [1]). At the level of communication systems, 
integrity refers to the messages conveyed on the network 
that links the considered devices. This means that 
communication failures should — at least — be detected 
with sufficient high probability. 
Communication integrity is often obtained by using Cyclic 
Redundancy Codes (CRC) [2] that offer a suitable approach 
to detect data corruption across communication networks 
[3]. However, the use of CRC alone is seldom sufficient to 

achieve the integrity levels suitable in such a context, as was 
already exemplified in [4]. In particular, communication 
networks are not only featuring passive network inter-
stages, which is prone to breach the error models that are 
assumed usually: i.e., random independent symbol errors. 
The classical approach, that relies on increasing the number 
of check bits, has a strong impact on the “yield” of the 
resulting code, due to the small size of the messages for the 
avionics application considered here (≈ 100 bits).  
Thanks to the slow dynamics that govern current FCS, it is 
not necessary to aim at a high integrity level for each 
transmitted message, but rather for a set of messages. 
Accordingly, we are proposing an original protection 
scheme for achieving high communication integrity at the 
application level: distinct error detecting codes featuring 
complementary error detection capabilities are applied to 
consecutive messages.  
Section 2 identifies the type of control systems being 
targeted, the error assumptions that apply to the associated 
communication channels, and the challenges posed to the 
classical usage of error detecting codes (e.g., CRC) in this 
context. Section 3 discusses relevant related work and sets 
up the guidelines for the proposed error checking scheme. 
Section 4 sets the principle of the proposed scheme and 
describes how distinct error checking functions can be used 
to exploit the applicable assumptions, while still achieving 
high communication integrity. Section 5 illustrates how this 
scheme can be implemented by using CRC. Section 6 
presents some results of the validation studies carried out 
to support the proposed scheme. Finally, Section 7 provides 
our concluding remarks. 

2 Problem Statement 
For critical control systems, the rate of occurrence of the 
failures, considered as undesired event, has to be main-
tained below a specific threshold. For the category of ultra-
dependable systems we are dealing with, the FCS for 
commercial aircrafts, this threshold is set to 10-9/h, which 
corresponds to the highest level identified in relevant 
normative documents [5, 6]. A similar value is being 
considered by the automotive industry for the “X-by-wire” 
systems [7, 8], which is mostly based on the cross-domain 
international standard IEC 61508 [9], even if domain-
specific standards are emerging now. 
This section describes first the main features of the class of 
control system we are considering. We then focus on the 
communication network that is one core component in the 
digital architecture that supports the control system. We 
also motivate the approach proposed via a brief analysis of 
the risks that are induced by the limitations of low-level 
protections to address the challenges posed. 
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2.1 The class of control system 
We introduce the several dimensions that specify the 
requirements for the type of control system addressed. 

2.1.1 Slow/fast dynamics & state/event commands 
A process is said to exhibit slow dynamics when the lapse 
time for a significant change to affect the parameters being 
controlled is large with respect to the duration of the con-
trol cycle. Thus, the controlled process is potentially 
insensitive to the application of a certain number1 of erro-
neous reference values, before an undesired event can be 
reached. In particular, this is the case for the hydraulic 
actuators that govern the flight control surfaces on com-
mercial airplanes. These devices are dimensioned so that 
movements of the related surfaces are slow enough. It is 
worth pointing out that in the case of systems featuring fast 
dynamics, the processing of a single erroneous command 
might well lead to the undesired event. 
A second important feature depends on whether the 
commands convey an absolute or a relative semantics with 
respect to a reference value: they are usually referred to as 
state- and event-controlled systems, respectively. More 
precisely, for a state-controlled system, a command (called 
state-command) is defined as an absolute reference value 
of a parameter (e.g., move to the 5 m location or rotate to 
reach the 5° angular position). For an event-controlled 
system, a command (event-command) is defined as a rela-
tive reference — most often with respect to the current 
value of the command (e.g., move of 5 m, rotate by 5°).  
When reference values are to be maintained in the control 
loop, they are necessarily implemented as state-commands 
in order to prevent from the related effects to be cumulated. 
Conversely, an event-command should not be lost or sent 
twice. These features have an impact on the way protection 
approaches can be devised: i) in the latter case, it is 
necessary that protections be provided against each error 
manifestation, ii) in the first case, one could simply aim at 
providing protection against a specific number of error 
occurrences as several commands (including erroneous 
ones) can be accounted for by the actuators without 
provoking an undesired event. 
Dealing with slow dynamics and state commands altogether 
has a significant influence on the properties required to 
support communication integrity: in particular, message 
loss, duplication, ordering have not to be worried about. 

2.1.2 Undesired event and recovery strategy 
An undesired event (UE) corresponds to an event prone to 
lead to the failure of the application. A typical example, in 
the context of avionics, is the runaway of some of the 
critical flight control surfaces that may result from the 
steady application of erroneous commands on the corre-
sponding servomechanisms.  
As already mentioned, the FCS should be designed so that 
such a risk is lower than 10-9 per hour of flight. In particu-
lar, it is considered that for servomechanisms governing 
critical control surfaces (elevator, rudder) with a maximum 
speed movement of 50°/s, a runaway may be observed 
already when the discrepancy with respect to the nominal 
reference value reaches about 5°, thus when erroneous 
references are applied for 100 ms. This constitutes actually 
a very stringent constraint.  
                                                                    
1 Up to a given threshold, depending on the application. 

For a flight control surface, whose position is updated every 
10 ms, the UE corresponds to the acquisition of 10 
consecutive incorrect (and not signaled as such) commands 
that are thus processed as correct ones.  
It is worth noting that the actual occurrence of an unde-
sired event also depends on the recovery strategy that is 
undertaken upon detection of erroneous commands. In the 
case of a FCS, recovery actions are planned at the appli-
cation level with the aim of mitigating several concerns:  
• ensure the correct updating of the reference value to the 

servomechanism, 
• refrain from deciding too quickly about the failure of the 

communication system, 
• do not impair the required safety level. 
The frequency with which a recovery action is initiated is 
related to the error detection rate; the latter being linked in 
turn to the error occurrence rate. In a communication 
network, most frequent errors are related to the noise on 
the channel. Thus, there is a risk that the communication 
channel be declared as failed too frequently, should this 
decision be taken each time an erroneous message is iden-
tified. Moreover, due to the flexibility allowed by the slow 
dynamics of the controlled process, no major risk would 
result in delaying (to some extent) the updating of the 
reference value.  
Thus, in practice, the strategy that is implemented is as 
follows. Upon detection of an error, the current reference 
value is maintained. This is fully supported by the slow 
dynamics that characterize the controlled process (see 
Section 2.1.1). Such an approach is custom in control 
systems. Furthermore, a failure is declared and the suitable 
recovery action launched, only after several related errors 
have been reported. Such a form of “filtering” is also usual 
practice. Among the classes of recovery strategies that can 
be considered as suitable alternatives to the launch of the 
recovery as soon as an error is signaled, we have especially 
considered the two following ones: 
• RS1(r): Maintain the current reference value and launch 

the recovery after r consecutive processing cycles for 
which an error has been signaled. 

• RS2 (r,b): Maintain the current reference value and 
launch the recovery after r processing cycles for which an 
error has been signaled out of a set of b successive cycles. 

However, it is not possible to wait too long before identi-
fying a communication link as failed, because this may then 
impair the safety requirements. Figure 1 shows a possible 
scenario2 that spans ten 10 ms-cycles: 

The erroneous command is not detected (ND) on 
the 1st cycle, then detected (D) on the 2nd  
and 3rd ones, but not on the 4th, etc.  

Let us assume also that the recovery parameters are as 
follows: r = 3 and b = 10. It is worth pointing out that the 
rationale for selecting b = 10 is directly related to the defi-
nition of the UE for the FCS. 
Such a scenario would be critical in the case of RS1(3); in 
fact, it corresponds to the worst case with the value selected 
for parameter r: the conditions for initiating a recovery 
action are never met and thus an erroneous reference 
command would be maintained during 10 cycles (100 ms), 
                                                                    
2 This scenario might seem rather improbable; actually, this is not 

the case, in the light of the error checking scheme proposed in 
Section 4.2. 
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Figure 1: Link between recovery and UE (r = 3, b = 10)  

then leading to the runaway of the control surface. 
However, when RS2 is instantiated with r = 3 and b = 10, 
then the conditions for launching the recovery are met at 
time = 50 ms and thus the runaway can be avoided.  
In the case of a digitally controlled servomechanism, the 
reference values are conveyed by means of messages. 
Accordingly, it can be considered that the servomechanism 
receives a message that contains the value of the reference 
for each cycle. When the message received is corrupted, and 
the corruption is not detected, an erroneous reference is 
used; if the corruption is detected then the reference is not 
applied and the reference value of the servomechanism is 
not updated. To avoid the UE (control surface runaway), 
that would result from an erroneous reference value to be 
maintained for 100 ms (ten 10 ms cycles), it is necessary 
that the rate of undetected erroneous messages be lower 
than a given threshold. Here, it is assumed that the UE may 
result from the fact that r = 3 erroneous messages out of a 
set of b = 10 messages remains undetected. Thus, the 
communication system has to maintain the rate for such a 
risk of undetected errors lower than 10-9/h. 

2.2 Risk analysis 
In the context of the type of control systems briefly 
described in the previous section, the focus of the work 
reported here concerns the underlying communication 
networks and in particular in the light of the evolution of 
such control systems. For communication networks where 
reference values are conveyed via messages, the concepts of 
state-control or event-control are usually referred to as 
state messages or event messages [10]. The usage of state 
messages is often preferred in the context of critical 
systems as the control is less sensitive to message loss or 
incorrect ordering of messages. In what follows, we will 
essentially refer to state messages. 
Specific concerns arise when a large number of devices are 
to be controlled in a flexible way, which is the case for 
future developments being considered in avionics, e.g., the 
deployment of a large number of control surfaces on the 
wing of an aircraft: i) all devices cannot be connected to the 
same bus, ii) such future developments include the oppor-
tunity to apply distinct commands on different actuators.  
In practice, this means that intermediate communication 
stages (interstage nodes), which are more complex than 
simple repeaters, are to be included between the control 
nodes (main control computers) and the controlled devices 
(computerized sensors and actuators).  
Figure 2-a sketches the basic architecture considered for 
the control system and identifies the core part: the digital 
communication links that are connecting the main control 
nodes to the controlled nodes. Nowadays, many versions of 

the fieldbus technology exist that implement such a concept 
according to the IEC 61508 standard [9]. Benefits of using 
the fieldbus technology in control systems are manifold and 
extend from low costs, flexibility, improved performance 
and enhanced diagnosis capabilities [11].  
Figure 2-b illustrates a possible hierarchical architecture for 
the communication system that would be suitable for the 
kind of application we are considering. 
Due to the presence of interstage nodes, information coding 
(e.g., CRC) at the physical layer is no longer sufficient to 
reach the integrity assigned for ultra-dependable control 
systems. This problem was already identified in [4].  
The analyses we have conducted confirm these results and 
can be summarized as follows [12]: 
1) Noise-induced corruptions (independent random 

errors) are covered with a sufficient margin (several 
orders of magnitude). 

2) Wiring defects (independent multiple errors) lead to a 
risk for undetected errors for a single message that is 
just slightly acceptable. Two reasons explain why, in our 
case, this risk remains way below the target threshold: 
i) the risk analysis relates to a set of messages and 
ii) these corruptions do not provoke repetitive errors. 

3)  Corruptions resulting from faults (e.g., stuck at faults) 
affecting the interstage nodes are prone to lead to recur-
rent error patterns (repetitive multiple errors) for which 
the risk of undetected error can no longer be maintained 
under the prescribed threshold. For stuck-at faults 
affecting the buffers handling messages, the protection 
offered by CRC could be tuned to match the assigned 
level, at the expense of increasing the number of check 
bits. For the faults affecting the address control of the 
buffers, this is no longer possible: the risk associated to 
the corruption of a set of messages remaining unde-
tected is of the same order of magnitude as the risk 
associated to a single message. Indeed, should the initial 
error be undetected, then systematic (correlated) errors 
are likely to occur3. Thus, the basic assumption of ran-
dom independent errors usually assessed to bound the 
risk of undetected errors by using CRC no longer holds.  

Assuming a failure rate of 10-5/h for an interstage node, and 
considering a 1% ratio for the devices prone to lead to 
repetitive errors, would lead to an error rate of 10-7/h, 
which definitely requires that alternate protection means be 
implemented to meet to the assigned target. 

                                                                    
3 Another factor for recurrent errors is that for a large part of 

flight time (e.g., cruise) the reference value remains unchanged. 
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Figure 2: Communication architecture for the control system 
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3 Related Work 
Solutions devised to cope with the inefficacy of medium-level 
protection mechanisms (e.g., CRC) to handle the errors 
induced by interstage nodes evidenced in the previous 
section encompass two main categories of complementary 
and non exclusive techniques: i) application of end-to-end 
protection at the application level and ii) use of redundant 
communication topologies. In addition, it is several forms of 
diversification of data handling and/or coding can be used to 
minimize the risk of common mode failures.  

3.1 Application-level end-to-end protection 
Such an approach assumes an abstraction of lower layers 
and allows implementing protections that are independent 
from the (potential) protection mechanisms attached to the 
lower layers. Some typical examples are given hereafter: 
• Time redundant execution of application tasks and end-

to-end CRC calculation at sender node support the High 
Error Detection Coverage (HEDC) proposed for systems 
based on the TTA and TTP concepts [13]. 

• The Keyed CRC mechanism of the GUARDS system relies 
on the provision of unforgeable signatures; each node 
uses a private “key” for communicating with each of the 
other nodes [14]. 

• The Safety Layer supported by the Foundation Fieldbus 
features an end-to-end CRC protection and a two-way 
protocol to handle safety frames [11]. 

3.2 Redundant communication topologies 
Examples of solutions based on redundant communication 
topologies are as follows: 
• The dual self-checking busses are instrumental in 

supporting the high communication integrity procured by 
the SAFEbus architecture [15]. 

• The ROBUS broadcast bus of the SPIDER platform relies 
on point-to-point communication links and voting to 
ensure reliable communication among all pairs of correct 
processing nodes in the system [16]. 

• Elaborating upon a series of designs incorporating 
various forms of redundant ring topologies, (e.g., see 
[17]), the braided ring topology presented in [18] 
achieves the same level of integrity as the SAFEbus at a 
lower cost, compatible with the automotive industry.  

3.3 Use of diversification  
Two main non-exclusive dimensions can be identified for 
applying diversification in order to cope with the risk of 
recurring errors induced by interstage nodes: 
• usage of alternative formats to describe data, 
• usage of alternative checking functions. 
A typical example of the first dimension is when the data 
are transmitted three times, via distinct channels: 
i) original bits, ii) inverted bits, and iii) permutated bits 
[19]. Also, approaches have been devised that include 
schemes for carrying out voting on diversified data [20]. 
The Tandem-CRC approach [21], where two distinct CRC 
functions are applied to a message to be transmitted to 
obtain high coding gains provides a good example of the 
second dimension. The Turbo-Codes [22], that combine 
data interleaving and concatenation of distinct systematic 
convolutional codes form a typical example of an approach 
spanning the two dimensions. 

3.4 Design guidelines 
Application-level end-to-end approaches allow extending 
the coverage of errors beyond basic data. This is a very 
relevant feature for the kind of messages we are considering 
that include data, address and timing information. 
However, achieving the level of integrity required for the 
considered application would require a very large CRC code 
size (at least 32 check bits) to decrease the probability of 
undetected error to a suitable level. Actually, this would 
correspond to a costly solution in terms of “yield” (referring 
to the size of the functional message: about 100 bits) and of 
the communication latency. Most importantly, this would 
not adequately address the issue of repetitive errors in our 
context: if the protection is not efficient for a message, it is 
likely that it will be the same for subsequent messages.  
All approaches using redundant topologies (using or not 
diversification) for achieving high-level of communication 
integrity in spite of faults affecting interstage nodes heavily 
rely on spatial redundancies. This is in opposition with the 
strong industrial constraint imposed in the context of the 
system being considered for the deployment of digital 
networks governing the flight control surfaces, that is to 
avoid as much as possible the replication of components. In 
particular, this led us to discard approaches based upon the 
provision of fail-silent nodes [10] or of nodes tolerating 
transient faults [23]. 
As already explained, another important feature of the 
aircraft application context being considered is that it is not 
necessary to ensure that each message delivered is correct. 
In summary, the two main design assumptions that singu-
larize the type of potential solution that is being 
investigated are as follows: 
• A1: it is not necessary to reach a high probability of error 

detection for each message, but rather to a series of 
successive messages; 

• A2: the integrity issue posed by repetitive errors is to be 
addressed while minimizing the use of redundancy.  

Besides this might not be true for event-controlled systems, 
we advocate that A1 is generally valid for state-controlled 
systems featuring slow dynamics (e.g., temperature control 
or fluid flow control). Also, maintaining a constant input 
reference value (e.g., during cruise phase) may favor the 
occurrence of repetitive errors in the case of faults affecting 
the interstage nodes. But, similar error types may be 
provoked even if only some field of the message frame is 
maintained unchanged: e.g., errors induced by permanent 
faults (stuck-at faults in memory buffers) in interstage 
nodes affecting the unchanged part of the frame. 
The rationale for the second assumption is also related to 
the fact that the desired goal is only to support error detec-
tion as error recovery (fault tolerance) can be achieved by 
separate means.  
These guidelines open new alternative options for devel-
oping suitable solutions, in particular based on the 
principle of diversification applied to the error checking 
functions, as will be described in the next section.  

4 The Proposed Solution 
The solution we propose relies on the implementation of 
end-to-end protection mechanisms at the application level. 
After presenting the basic principles of this scheme, we 
then analyze the impact of the recovery strategy. 
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4.1 Basic principles 
To fulfill the requirements previously stated, the basic idea 
is not to aim at providing a high probability of detecting 
errors for each message, but rather for a set of messages.  
We propose that sender and receiver modify the checking 
function for each message, according to a common policy 
known by them. More concretely, the sending node can use 
m error checking functions F1, F2,..., Fm, each generating the 
same number of control bits. We term this technique as the 
“Multiple Error Checking Function” scheme (MECF). The 
classical “Single Error Checking Function” scheme is 
denoted SECF. 
Of course, the sender and the receiver should use the 
checking functions consistently both for coding and 
decoding. In the case of synchronous behavior, this can be 
achieved by using either the cycle index or the local clock 
for deciding which function to use. In the case of asyn-
chronous nodes, it is necessary to include explicitly the 
identifier of the function as part of the message.  
We focus here on the analysis on the risk of repetitive 
errors caused by faults affecting interstage nodes. Let us 
denote Mi the messages in the set (i = 1, 2,…, b). We assume 
that Mi corresponds to an erroneous message and that the 
same error affects all subsequent messages in the set. We 
denote: 
• pXNDi the basic probability of no detection of an erroneous 

message when processing message Mi, 
• PXmNDb the probability of no detection when using m 

distinct error checking functions in the case of a set of b 
messages, 

where X ∈ {S, M} specifies the error checking scheme, 
where S stands for SECF and M for MECF. 
In the case of SECF, all messages are checked using the 
same checking function F. As M1 is not detected as erro-
neous (with probability pSND1), then the conditional 
probability of no detection for each subsequent message 
(pSNDi, i = 2,…, b) is equal to 1 when the part of the frame 
that is meant to be protected by the end-to-end checking 
function remains unchanged. When linear codes are being 
used, this probability is also equal to 1, even if the whole set 
of protected information is not kept constant, provided that 
the very part of the message that is affected by the error is 
kept unchanged. Such a behavior could be caused by a 
permanent fault affecting an interstage node and would 
result in the same (repetitive) error. Indeed, in such a 
context, as the error is not detected when processing M1 

(i.e., the error is a multiple of the underlying polynomial 
generator), there is no chance for it to be detected when 
processing subsequent messages due to the linear property 
of the code. Accordingly, it can be conservatively assumed 
that the probability of no detection for a set of b messages 
PSNDb is governed by pSND1.  
Now, let us consider MECF. We propose to use m distinct 
checking functions for a set of b messages and to recur-
rently change them according to a given scheduling policy. 
The policy we consider herein is described by:  

F1, F2,..., Fm, F1, F2,..., Fm, etc.  (1) 
Note that for sake of simplicity, we assume first that m = b. 
Other policies were also investigated (see [12] for details). 
As for SECF, pMND1 designates the probability of no detec-
tion when processing message M1. Since the m = b checking 
functions used in MECF provide complementary error 

detection capabilities (see Section 5 for details), the succes-
sive probabilities of no detection (pMNDi, i = 2,…, b) can be 
considered as independent, complementary and much 
lower than 1. Accordingly:  

PMbNDb = pMND1 ×  pMND2 × … × pMNDb.   (2) 
Thus, the MECF scheme somewhat “cumulates” the error 
detection capabilities of the m checking functions. 
For sake of consistency, it is appropriate to assume first 
that function F (SECF) and functions Fi (MECF) provide 
intrinsically the same error detection capabilities. In 
particular, this means that pSND1 = pMND1 = pND1 ≈ 2-c with 
respect to multiple errors, where c designates the number 
of checking bits of the various codes.  
Accordingly, for SECF, PS1NDb ≈ 2-c. The only possibility to 
increase the error detection capability for a set of messages 
is to increase the number of check bits.  
For MECF, assuming “full complementarity” among the 
checking functions would lead to PMbNDb ≈ (2-c)b; this means 
that the integrity over a set of messages can be increased 
significantly by using moderate size codes for each checking 
function. Actually, this is equivalent to a single code 
featuring b x c check bits. 
In practice, one may want to consider a fewer number of 
functions than the size of the set (m < b). In that case, the 
probability for a repetitive error affecting b messages to 
remain undetected is governed by the number of distinct 
functions, i.e., PMmNDb ≈ (2-c)m. Actually, in that case 
pMNDj ≈ 1 for m < j ≤ b (as for SECF). 
Thus, compared to the use of a single checking function 
with m x c check bits, instead of being detected when 
processing M1, it might occur that the detection of the 
(repetitive) error would be delayed until the application of 
the mth function Fm, i.e., when processing message Mm. 
However, this is compensated by the fact that much less 
control bits would be appended to each message. Indeed, 
due to the slow dynamics of the considered class of systems, 
there is no need to ensure a error detection for each 
message, thus, MECF represents a solution satisfying both 
the integrity objective and the requirements for restricting 
the level of redundancy. 
One may find some analogy with the principle underlying 
the “Turbo Codes” identified in Section 3.3. However, two 
main differences exist: i) we do not consider data inter-
leaving4, ii) we apply m distinct checking functions to m 
successive messages, while the basic Turbo Codes apply 
2 functions to each message. 

4.2 Impact of the recovery strategies  
The MECF scheme achieves a high power of detection of 
errors affecting a set of successive messages, thus ensuring 
high communication integrity between the control nodes 
and the controlled nodes handling the flight control sur-
faces. Nevertheless, the avoidance of the undesired event 
(namely, the runaway of some control surface) requires that 
the number of undetected erroneous messages delivered 
within a set of b messages remains lower than a prescribed 
threshold.  

                                                                    
4 The mathematical foundations that govern interleaving and that 

would help choosing an interleaving function are still to be 
studied. Conversely, a rational basis exists for selecting checking 
functions for a CRC implementation of MECF (see Section 5). 
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Clearly, the use of either of the recovery strategies intro-
duced in Section 2.1.2 might result in a different impact on 
the risk of a runaway. Indeed, the considered recovery 
strategies are meant to maintain a certain level of avail-
ability for the controlled servomechanism. However, 
delaying the triggering of the recovery action may have an 
impact on safety (by maintaining the delivery of an 
erroneous reference command whose accumulation might 
lead to a runaway). 
The aim of this section is to define the characteristics of the 
preferred recovery strategy, i.e., that minimizes: i) the risk 
of occurrence of a runaway and ii) the recovery latency that 
we define as the time elapsed between the first reception of 
an erroneous message (which could be detected or not) and 
the initiation of the recovery action. Indeed, as usual, the 
shortest the recovery latency, the most efficient the 
recovery action. 
Figure 3 describes the behaviors induced by the two instan-
tiations of the recovery strategies considered in 
Section 2.1.2, RS1(3) and RS2(3,10), when considering 
MECF with increasing values for the numbers of error 
checking functions (m = 1, 2, 3, and 4). The basic cyclic 
policy — see expression (1) — is used for scheduling these 
functions. In order to support our analysis, we consider 
scenarios in which the considered faults induce repetitive 
erroneous messages that remain steadily undetected by a 
specific checking function (F1, for sake of simplicity). Also, 
it is worth pointing out that the behaviors observed for 
m = 1 are obviously similar for the two recovery strategies. 
The first main observation is that, whatever the recovery 
strategy, the greater the number of checking functions, the 
shorter the Recovery Latency (RL). Indeed, for the RS2 
(3,10) strategy, this duration steadily decreases from 50 ms 
for m = 2 to 30 ms for m = 4. However, it is worth noting 
that the RL remains unchanged and equal to 30 ms when 
m ≥ 4 for both recovery strategies. This explains our choice 
to bound the analysis reported here to a cyclic policy of 4 
checking functions in the case when r = 3.  
The second main observation concerns the identification of 
the preferable recovery strategy. Using RS2(3,10), the risk 
of a runaway can be eliminated5 for m = 2, while for RS1(3), 
4 functions are necessary to eliminate this risk and also to 
achieve the same value for the RL as the one obtained for 
RS2(3,10). Accordingly, for a fixed value of parameter m 
(i.e., the number of error checking functions), RS2 is best 
adapted to the case study, for the two following reasons: 
1) It ensures the lowest risk of occurrence of the UE, which 

is the primary objective considering the high integrity 
requirement to ensure a rate of occurrence of the UE 
lower than 10-9/h. 

2) It leads to the lowest RL and thus to a better availability 
of the FCS.  

5 Implementation Using CRC 
In practice, various types of detecting codes could be used 
to implement the MECF scheme. In this section, we 
describe an implementation based on CRC. Prior to 
describing this implementation, we briefly present two 
analyses that substantiate the choice of CRC. More details 
can be found in [12]. 
                                                                    
5 Actually, the probability associated to this risk is lower than the 

prescribed threshold.  
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Figure 3: Comparison of RS1(3) and RS2(3,10) 

5.1 Some rationales for using CRC 
We successively address two important items: 
• complementarity of the error detection capabilities of the 

checking functions to be included into the MECF scheme, 
• compatibility of the processing (coding and decoding) of 

the checking functions at application level with respect to 
the temporal constraints of the targeted application. 

5.1.1 Complementarity of detection capabilities 
Since MECF involves several checking functions, it is 
necessary to propose a sound basis to substantiate the 
choice of functions that optimize the complementary of the 
detection capabilities procured by each function.  
In the case of CRC, the complementarity can be based on 
the consideration of the properties of the generator poly-
nomials G(x) that underlie the respective codes (see [2], 
p. 161). More precisely, the specific relevant property is 
exhibited by considering the decomposition of the 
generator polynomials into the product of irreducible poly-
nomials. Let us recall briefly that a polynomial is 
considered as irreducible, if the greatest common divisor of 
its coefficients is 16.  
All the CRC coded words generated by polynomial G(x) are 
inevitably multiple of it and thus contain the irreducible 
factors of this polynomial. Accordingly, all errors that 
remain undetected by such a code are necessarily multiple 
of its generator polynomial. Thus, for another code gener-
ated by a distinct polynomial to exhibit the highest 
(complementary) error detection capability, it is necessary 
that the two polynomials share the least irreducible 
polynomials. Accordingly, the examination of the features 
of the underlying polynomials, according to the properties 
of their irreducible factors, provides a strong and pragmatic 
basis to support the decision whether to include a specific 
set of CRC codes in the MECF scheme. Similar arguments 
were used in [21], albeit in a slightly different context. 

                                                                    
6 An analogy can be made to a prime number that is divisible only 

by 1 and itself.  
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5.1.2 Compatibility with temporal constraints 
For an implementation of the MECF scheme using CRC to 
be compatible with the temporal constraints, the compu-
tation time necessary to the generation and checking of the 
CRC bits should be small with respect to the cycle time of 
the control system (10 ms in our case). 
The corresponding evaluation has consisted in the deter-
mination of the computation time for three algorithms 
(Cyclic Redundancy Code Bitwise, Cyclic Redundancy Code 
Table lookup, Cyclic Redundancy Code Reduced Table 
lookup) corresponding to classical software implemen-
tations of CRC [24]. For the analysis, we have considered 
the case of 128-bit data and 16-bit CRC size and a micro-
computer representative of those used on-board 
commercial airplanes (PIC18C542 at 20Mhz).  
Our analyses show that the computation times range 
between 35 µs and 90 µs, depending on the algorithm. 
These times obtained with computers of modest perform-
ance are less than 1% of the cycle duration. Accordingly, it 
can be confidently concluded that a software implemen-
tation of the CRC codes is really compatible with the 
temporal constraints. Recent work [25] proposes useful 
hints to speed up computational issues. 

5.2 CRC-based implementation of MECF 
In the case of CRC, the MECF scheme consists in modifying 
cyclically (i.e., according to the scheduling policy we 
consider in this paper — see also (1)) the generator 
polynomials G1, G2,..., Gm for the messages transmitted. As 
discussed previously, the overall contribution in terms of 
error detection capability depends on the choice of these 
polynomials.   
We specify in the next section the characteristics of the 
generator polynomials composing the MECF scheme. For 
this, we analyze the correlation that exists between the 
complementarity of their intrinsic errors detection capa-
bilities and the resulting efficiency of MECF scheme they 
compose.  Then, we present the strategy allowing to select 
or to derive these polynomials.   

5.2.1 Generator polynomials characteristics  
The generator polynomials to be considered for MECF must 
possess two essential characteristics: 
• significant intrinsic error detection capability for each 

message,  
• complementarity between their errors detection capa-

bilities with respect to a set of messages.  
The complementarity between the errors detection 
capabilities of the m functions used is all the more 
significant as the m generator polynomials on which they 
are based are such as the degree of the product of their 
common factors is minimal. 
Let us denote Π, the polynomial with smaller degree that 
satisfies a set of “generic” or “standard” properties in terms 
of error detection. Concretely, the polynomial Π will have to 
satisfy the properties of the CRC standard codes concerning 
the detection of the following error types: 
• all single errors, if the coefficient of x0 of G(x) equals 1, 
• all double errors, if G(x) contains a primitive polynomial 

with a maximum of 3 terms, 
• all odd weight errors, if G(x) contains the factor (1+x).  
Thus, to detect these three types of errors, and to have 
smallest degree, the polynomial Π should be equal to the 

product of the two primitive polynomials Π1 = 1+x and 
Π2 = 1+x+x2, i.e., Π = 1+x3.  
In what follows, we describe the approach leading to the 
identification of suitable generator polynomials that pos-
sess the double characteristics of intrinsic standard 
detection capabilities and complementary detection 
capabilities.   

5.2.2 Selection of the generator polynomials 
Figure 4 illustrates the process for selecting the generator 
polynomials that are good candidates to compose a MECF 
scheme. It is assumed that generator polynomial G1 is 
decomposable into five irreducible polynomials: i) Π1 and 
Π2 that form a polynomial Π satisfying the generic prop-
erties of the majority of standard CRC, e.g., as indicated in 
Section 5.2.1 and ii) three additional irreducible polynomials 
denoted P1, P2 and P3 of distinct degrees. 

G1

Decomposition into irreducible polynomials

Potentially good candidates

P'1 P'2 P'3Π

P1Π1 P2 P3Π2
Π

Potentially bad candidates

P2 P3Π P'1

P3Π P"2P'1Π P"3P"1 P"4P"2  
Figure 4: Selection of generator polynomials candidates 

The figure exemplifies potentially good and bad candidates 
for the selection of generator polynomials, on the basis of 
polynomial G1. A judicious choice corresponds to a polyno-
mial including Π and one or several irreducible polynomials 
all distinct from P1, P2 and P3. A bad candidate would corre-
spond to a polynomial including one or several irreducible 
polynomials that already compose G1.  
Table 1 provides examples of generator polynomials for 
16-bit CRC that would constitute good and bad candidates 
for the MECF scheme.  
All polynomials shown are decomposable into Π  and two 
other factors that are irreducible polynomials of degrees 7 
and 8. Here Π  is simply 1+x. Good candidates shown 
include factors that are all distinct from those of G1, while 
the bad candidates share the same polynomial of degree 7.  

6 Validation of the MECF Scheme 
The goal of the validation studies conducted is twofold: 
• confirm the guidelines proposed for preserving the 

complementarity with respect to error detection 
capabilities of the codes participating to the MECF 
scheme, 

• assess the improvement in integrity gained from the 
application of the MECF scheme in the case of the target 
FCS. 

The validation is based on simulation models of the MECF 
scheme developed in the Matlab-Simulink environment. 
Figure 5 sketches the simulation framework using the 
Matlab-Simulink syntax. The diagram illustrates the 
process for assessing the complementarity with respect to 
error detection capabilities between two generator polyno-
mials (namely, two standard polynomials CRC-16 and IEEE 
WG77.1 — see also Table 2). CRC-16 is considered as the 
reference polynomial (denoted G1 in Figure 4) and IEEE 
WG77.1 as a candidate polynomial.  
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To optimize the duration of the simulations and better 
exemplify the impact of the proposed scheme, only (erro-
neous) messages that are multiple of the reference 
generator polynomial are considered. This convincingly 
models the case of repetitive errors that are undetected by 
the classical application of CRC using a single error 
checking function (i.e., the SECF scheme).  
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Source Block

~/IEEE WG77.1.mat

Bernoulli
Binary

Random
Binary Data

NOT

mod

Math
Function

[Error]

[Error] Frame 
Error Rate 
Calculation

[1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 ]

CRC-16

CONV To
Frame

Conv

2

Constant

General CRC
Syndrome
Detector Err

IEEE WG77.1
[1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1]

1.3400e–05

1.3400e+02

1.0000e+07

# Not-detected

# Erroneous Frames

% Not-detected

double

 
Figure 5: The simulation framework 

The top part of the diagram describes the generation of 
(erroneous) message frames that are multiple of the refer-
ence polynomial (CRC-16 in this case). Message frames of 
100 bits are being used. The lower part describes the 
process for checking these erroneous frames using a 
“General CRC Syndrome Detector” based on the candidate 
polynomial (IEEE WG77.1). It also identifies and cumulates 
the cases when no detection occurs. The data displayed are: 
i) the percentage of errors not detected, ii) the number of 
errors not detected, iii) the total number of erroneous 

frames. For each candidate polynomial, the simulation runs 
consisted in the injection of 107 (erroneous) message frames 
multiple of the reference polynomial. The results obtained 
are stored into a file (~/IEEE WG77.1.mat) for further 
processing and analysis.  
Such a process has been used to test several pairs of polyno-
mials. This addresses specifically the assessment of the 
MECF for m = 2. A simple extension of this process has been 
used to test the MECF scheme for m > 2 (e.g., see [12]). 

6.1 Analysis of code complementarity  
Two analyses are considered that successively study the 
proposed criteria for discriminating good and bad gen-
erator polynomials for contributing to a MECF scheme and 
study whether the selection of standard or purposely 
designed (custom) polynomials has an impact on the error 
detection capability of the MECF scheme.  

6.1.1 Good vs. bad polynomial candidates  
The analysis builds up on the detection complementarity 
with respect to G1 procured by the polynomials of Table 1. It 
is based on the comparison of simulation results obtained 
with the estimated theoretical objective. Polynomials G2, G3 
and G4 (good candidates) differ from G1 by a polynomial 
factor of degree 15. Thus, one would expect that the 
theoretical probability that erroneous messages (multiple of 
G1) are also undetected by G2, G3 or G4 be equal to  
2-15 ≈ 3 × 10-5. The probabilities obtained via simulation are: 
3.05 × 10-5 for G2, 2.96 × 10-5 for G3, and 2.81 × 10-5 for G4.  

Table 1: Generator polynomials for 16-bit CRC 

G1(x) = (1+x) . (1+x+x7) . (1+x2+x3+x4+x8) = 1+x3+x5+x6+x7+x9+x10+x12+x15+x16 

Examples of potentially good candidates  
G(x) = (1+x) . 7-degree irreducible polynomial . 8-degree irreducible polynomial 

Identifier Polynomial representation Decomposition into irreducible polynomials 

G2(x) 1+x+x6+x7+x8+x9+x10+x13+x15+x16 (1+x) . (1+x+x3+x5+x7) . (1+x+x2+x4+x5+x6+x8)  

G3(x) 1+x+x6+x10+x12+x16 (1+x) . (1+x+x2+x3+x7) . (1+x+x4+x5+x6+x7+x8) 

G4(x) 1+x5+x6+x7+x8+x9+x10+x16 (1+x) . (1+x3+x7) . (1+x+x2+x5+x6+x7+x8) 

Examples of potentially bad candidates 

G(x) = (1+x) . (1+x+x7) . 8-degree irreducible polynomial 

G5(x) 1+x+x2+x3+x5+x6+x9+x10+x12+x14+x15+x16 (1+x) . (1+x+x7) . (1+x+x5+x6+x8)  

G6(x) 1+x3+x6+x7+x10+x13+x14+x16 (1+x) . (1+x+x7) . (1+x2+x3+x4+x5+x7+x8) 

 

Table 2: Good candidate generator polynomials for CRC-16 

Ga(x) = (1+x) . (1+x+x15) = 1+x2+x15+x16  — Standard generator polynomial: CRC-16 

Standard generator polynomials 
G(x) = (1+x) . 15-degree polynomial  

Identifier Polynomial representation Decomposition into irreducible polynomials  

Gb(x) : IEEE-WG77.1 1+x+x5+x6+x8+x9+x10+x11+x13+x14+x16 (1+x2+x3+x4+x8) . (1+x+x2+x4+x5+x6+x8) 

Gc(x) : CRC-CCITT 1+x5+x12+x16 (1+x)  . (1+x+x2+x3+x4+x12+x13+x14+x15) 

Gd(x) : IBM-SDLC 1+x+x2+x4+x7+x13+x15+x16 (1+x) 2 . (1+x+x3+x4+x5+x6+x8+x10+x12+x13+x14) 

Ge(x) : CRC-16Q* 1+x+x3+x4+x5+x6+x8+x11+x15+x16 (1+x) . (1+x3+x5+x8+x9+x10+x15) 

Gf(x) : IEC-TC57 1+x+x4+x7+x8+x9+x11+x12+x14+x16 (1+x)2 . (1+x+x3+x6+x7) . (1+x2+x3+x4+x5+x6+x7) 

Custom generator polynomials 
G(x) = (1+x) . 7-degree irreducible polynomial . 8-degree irreducible polynomial 

Gg(x) = G3(x) 1+x+x6+x10+x12+x16 (1+x) . (1+x+x2+x3+x7) . (1+x+x4+x5+x6+x7+x8) 

Gh(x) = G4(x) 1+x5+x6+x7+x8+x9+x10+x16 (1+x) . (1+x3+x7) . (1+x+x2+x5+x6+x7+x8)  
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For polynomials G5 and G6 (bad candidates) that only differ 
from G1 by a polynomial factor of degree 8, one would expect 
that the theoretical probability that erroneous messages 
(multiple of G1) are also undetected by G5 or G6 be equal to  
2-8 ≈ 3.9 × 10-3. The figures obtained via simulation are 
respectively equal to 3.89 x 10-3 and 3.91 × 10-3.  
These analyses show a good match between the experi-
mental and theoretical results.  

6.1.2 Standard vs. custom polynomials 
We consider eight generator polynomials for the analyses 
(Table 2): six are standard ones and two are “custom” poly-
nomials derived on the basis of the procedure sketched in 
Section 5.2.2. The “reference” polynomial (Ga), with respect 
to which the complementary error detectability provided by 
the other codes is being evaluated, is the standard gen-
erator polynomial CRC-16. All these polynomials are 
potential good candidates for MECF, according to the com-
plementarity criteria. 
Figure 6 plots the ratio of erroneous messages (multiple of 
Ga) not detected by the other polynomials in Table 2 when 
paired to Ga, as a function of the number of pseudo-
randomly generated erroneous messages. To facilitate the 
readability, the figure only shows the results for three 
standard generator polynomials (namely, Gb, Gc and Gd), in 
addition to the two custom polynomials Gg and Gh. The 
simulation results show that the ratio of undetected errors for 
the [Ga – Gb] pair converges to the theoretical value of  
2-16 (≈ 1,5 × 10-5), while for all the other pairs is converges to 
the theoretical value of 2-15 (≈ 3 × 10-5). These results reflect 
the differences between Gb and the other polynomials: 
all polynomials Gα, with α ∈ {c, d, e, f, g, h} share polynomial 
(1+x) with Ga, while Gb has no polynomial in common 
with Ga. These results fully support the validity of the criteria 
put forward for optimizing the complementarity of error 
detection by CRC code candidates for the MECF scheme 

Number of injected erroneous messages (x 10  )-6
2 4 6 1080

2-16

2-15

Pair [Ga - Gb]

Pairs [Ga - Gα] with α ∈{c, d, g, h} 

5

4

3

2

1

0

Ratio of non detected errors (x 10  )5

 
Figure 6: No detection for various Ga-related pairs 

The results indicate also that the error detection 
capabilities for the schemes pairing Ga, either a standard or 
custom code are equivalent. More specifically, from the 107 
simulation runs featuring (erroneous) messages multiple of 
Ga, the number of errors not detected, when pairing Ga with 
either a standard or a custom polynomial, were very 
similar: 
• Ga and standard:  [Ga – Gc] = 318;  [Ga – Gd] = 286;  
  [Ga – Ge] = 294; [Ga – Gf] = 292;  
• Ga and custom:  [Ga – Gg] = 296; [Ga – Gh] = 281. 

The figure also reveals a significantly different behavior for 
the [Ga – Gb] pair, for which the number of non detections 
is only 146 (about half of the figures observed for the other 
pairs). 

6.2 Assessment of the MECF scheme 
We summarize here the main results of the risk analysis 
that we have conducted for the FCS (see [12]). The objective 
is to assess the gain procured by the application of the cyclic 
scheduling MECF scheme with respect to the classical 
application of CRC, i.e., the SECF scheme.  
The focus is put on the study of the functional failures 
affecting the interstage nodes between main control nodes 
and the controlled nodes associated to the servo-
mechanisms of the flight surfaces, because it was shown 
that they had the most severe impact on the risk of occur-
rence of the undesired event (control surface runaway). Let 
us recall that the target is to maintain the rate of this risk 
much lower than 10-9/h. As discussed in Section 2.2, we 
assume a failure rate of about 10-7/h for repetitive errors 
induced by an interstage node. More specifically, we focus 
here on two fault classes affecting such nodes: i) stuck-at 
faults affecting the buffers handling the messages and 
ii) stuck-at faults on buffer address control. 
Table 3 shows the risks induced by these failure modes for 
several protection schemes, when considering 16-bit CRCs, 
namely SECF and MECF (for m = 2 and 3), for which the 
considered CRC groupings are respectively [Ga – Gb] and 
[Ga – Gb  – Gc] from Table 2. 

Table 3: Rate of occurrence of UE (control surface runaway)  

Protection 
schemes →

SECF MECF 

↓ Fault classes:  
stuck-at on  

(m = 1) m = 2 m = 3 

 - buffer memory 1.5 x 10-12 / h 2.3 x 10-17 / h 6.9 x 10-22 / h 
 - address control 10-7 / h 1.5 x 10-12 / h 4.5 x 10-17 / h 

 

For SECF, the figures in the table show that, for the first 
fault class, the simple use of a 16-bit CRC code leads to a 
risk of 1.5 × 10-12/h, thus much lower than the threshold of 
10-9/h. This is no longer the case for the second fault class 
that induces repetitive errors for which no protection can 
be obtained by means of a classical CRC coding scheme 
(either at communication layer or at application layer). This 
is why the related risk was estimated to be equal to a 
fraction of the corresponding failure rate of the node. 
Applying the MECF scheme significantly reduces the rates 
and allows for meeting the integrity target. For example, for 
the second fault class, it is decreased to 1.5 × 10-12 / h. This 
rate is further reduced when using three error checking 
functions to 4.5 x 10-17/h. It is also noteworthy that, while 
the integrity objective was already satisfied by SECF for the 
first fault class, the application of MECF significantly 
reduces the risk figure. 
The rates for MECF are confidently obtained thanks to the 
match observed between the simulation and theoretical 
results. For example, the figure for the first fault class for 
MECF [m = 2] (2.3 × 10-17) is obtained as the product of the 
related figure for the SECF scheme by the detection miss for 
the [Ga – Gb] pair (i.e., 1.46 × 10-5 ≈ 2-16) as shown in Figure 6. 
The fact that Gc shares the factor (1+x) in common with Ga, 
means that the detection miss to be considered between 
MECF [m = 2] and MECF [m = 3] is about 3 × 10-5  ≈ 2-15. 
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These results clearly show the benefit gained from the 
application of the MECF scheme we have proposed and 
thus substantiate the claim that such a scheme is able to 
maintain the rates of control surface runaway in-line with 
the stringent integrity level assigned. 

7 Concluding Remarks  
The development of critical control systems, such as those 
considered in this paper that aim at supporting the 
deployment of fully digital devices for future flight control 
systems (FCS), rely increasingly on the use of fieldbus 
networks. In this context, we have focused our attention on 
the communication integrity procured by this type of 
networks. The analysis of the risks of suitable networks has 
shown that the major difficulty was to cope with repetitive 
errors that might be induced by the failures of complex 
interstage nodes. 
In order to achieve the stringent integrity level assigned to 
the application, we have proposed an original approach that 
departs from the classical end-to-end checking approaches 
and solutions relying on redundant topologies for ensuring 
communication integrity. Indeed, the specific features of 
the class of control systems considered do not ask for a high 
detection strength for every message, but rather for a set of 
messages. We have taken advantage of this to devise a 
solution able to achieve the assigned integrity at reduced 
cost. The scheme we propose consists in using distinct error 
checking functions for the transmission of successive 
messages. This way, the detection capabilities of each 
function can be cumulated to cope efficiently with repetitive 
errors. 
In this paper, we have also shown that cyclic redundancy 
codes (CRC) are particularly well suited for implementing 
our proposal. Actually, elaborating on the mathematical 
foundations on which these codes rely, it has been possible 
to identify checking functions that best exhibit 
complementary error detection capabilities with respect to 
repetitive errors. The basic guideline is to select functions 
such as the degree of the product of their common 
irreducible polynomials is minimal. Two main results 
surface from the validation studies: i) the confirmation of 
the criteria proposed for selecting the checking functions 
and ii) the evidence that thanks to the proposed solution, 
the rate of occurrence of the undesired event (runaway of 
the flight control surfaces) can be kept at a value 
compatible with the assigned target, i.e., lower than 10-9/h. 
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