

Communication Integrity in Networks for Critical Control Systems

A. Youssef, Y. Crouzet, A. de Bonneval, J. Arlat

LAAS-CNRS, University of Toulouse
7, Avenue du Colonel Roche 31077 Toulouse Cedex 04 – France

{youssef,crouzet,debonneval,arlat}@laas.fr

J.-J. Aubert, P. Brot

Airbus France
316, Route de Bayonne 31060 Toulouse – France
{jean-jacques.aubert, pascal.brot}@airbus.com

Abstract
The paper proposes a solution to the problem posed by the
inclusion of complex interstage nodes into communication
networks. Thus nodes are prone to exhibit failure modes
that may lead to repetitive errors that breach the usual set
of assumptions considered for medium-level protection
mechanisms. The specific class of application targeted
(e.g., servomechanisms controlling flight control surfaces)
is characterized by: i) slow dynamics of the controlled
processes does not impose a high integrity level for each
transmitted message, but rather for a set of successive
messages, ii) the reference values assigned during the
mission (e.g., cruise phase) are expected to be maintained
identical for several cycles, and thus should the protection
fail for one message, then it will be the same for
subsequent messages. To cope with this, the proposed
integrity protection scheme features distinct error coding
functions, thus providing complementary detection
capabilities to consecutive messages.

Keywords: safety-critical systems, digital communications,
interstage nodes, integrity, error detecting codes.

1 Introduction
Communication integrity is an important requirement for
many critical control application domains for which digital
networks are increasingly being used. This trend is mainly
driven by the deployment of “smarter” field instruments
that feature built-in microprocessors and are capable of
running more complex control algorithms.
Future commercial aircrafts provide good examples of such
critical distributed embedded systems for which an
increasing number of sensors and actuators are being
deployed: plans exist where the range of tens of control
surfaces would be rapidly augmented to the hundred-range
or more. The goal is in particular to ensure a more efficient
management by the Flight Control System (FCS). The FCS
is characterized by very stringent dependability require-
ments; a commonly quoted figure for the failure rate is 10-9
failures/hour.
In such a context, dependability focuses on the provision of
high integrity (i.e., the “absence of improper state
alterations” [1]). At the level of communication systems,
integrity refers to the messages conveyed on the network
that links the considered devices. This means that
communication failures should — at least — be detected
with sufficient high probability.
Communication integrity is often obtained by using Cyclic
Redundancy Codes (CRC) [2] that offer a suitable approach
to detect data corruption across communication networks
[3]. However, the use of CRC alone is seldom sufficient to

achieve the integrity levels suitable in such a context, as was
already exemplified in [4]. In particular, communication
networks are not only featuring passive network inter-
stages, which is prone to breach the error models that are
assumed usually: i.e., random independent symbol errors.
The classical approach, that relies on increasing the number
of check bits, has a strong impact on the “yield” of the
resulting code, due to the small size of the messages for the
avionics application considered here (≈ 100 bits).
Thanks to the slow dynamics that govern current FCS, it is
not necessary to aim at a high integrity level for each
transmitted message, but rather for a set of messages.
Accordingly, we are proposing an original protection
scheme for achieving high communication integrity at the
application level: distinct error detecting codes featuring
complementary error detection capabilities are applied to
consecutive messages.
Section 2 identifies the type of control systems being
targeted, the error assumptions that apply to the associated
communication channels, and the challenges posed to the
classical usage of error detecting codes (e.g., CRC) in this
context. Section 3 discusses relevant related work and sets
up the guidelines for the proposed error checking scheme.
Section 4 sets the principle of the proposed scheme and
describes how distinct error checking functions can be used
to exploit the applicable assumptions, while still achieving
high communication integrity. Section 5 illustrates how this
scheme can be implemented by using CRC. Section 6
presents some results of the validation studies carried out
to support the proposed scheme. Finally, Section 7 provides
our concluding remarks.

2 Problem Statement
For critical control systems, the rate of occurrence of the
failures, considered as undesired event, has to be main-
tained below a specific threshold. For the category of ultra-
dependable systems we are dealing with, the FCS for
commercial aircrafts, this threshold is set to 10-9/h, which
corresponds to the highest level identified in relevant
normative documents [5, 6]. A similar value is being
considered by the automotive industry for the “X-by-wire”
systems [7, 8], which is mostly based on the cross-domain
international standard IEC 61508 [9], even if domain-
specific standards are emerging now.
This section describes first the main features of the class of
control system we are considering. We then focus on the
communication network that is one core component in the
digital architecture that supports the control system. We
also motivate the approach proposed via a brief analysis of
the risks that are induced by the limitations of low-level
protections to address the challenges posed.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

2.1 The class of control system
We introduce the several dimensions that specify the
requirements for the type of control system addressed.

2.1.1 Slow/fast dynamics & state/event commands
A process is said to exhibit slow dynamics when the lapse
time for a significant change to affect the parameters being
controlled is large with respect to the duration of the con-
trol cycle. Thus, the controlled process is potentially
insensitive to the application of a certain number1 of erro-
neous reference values, before an undesired event can be
reached. In particular, this is the case for the hydraulic
actuators that govern the flight control surfaces on com-
mercial airplanes. These devices are dimensioned so that
movements of the related surfaces are slow enough. It is
worth pointing out that in the case of systems featuring fast
dynamics, the processing of a single erroneous command
might well lead to the undesired event.
A second important feature depends on whether the
commands convey an absolute or a relative semantics with
respect to a reference value: they are usually referred to as
state- and event-controlled systems, respectively. More
precisely, for a state-controlled system, a command (called
state-command) is defined as an absolute reference value
of a parameter (e.g., move to the 5 m location or rotate to
reach the 5° angular position). For an event-controlled
system, a command (event-command) is defined as a rela-
tive reference — most often with respect to the current
value of the command (e.g., move of 5 m, rotate by 5°).
When reference values are to be maintained in the control
loop, they are necessarily implemented as state-commands
in order to prevent from the related effects to be cumulated.
Conversely, an event-command should not be lost or sent
twice. These features have an impact on the way protection
approaches can be devised: i) in the latter case, it is
necessary that protections be provided against each error
manifestation, ii) in the first case, one could simply aim at
providing protection against a specific number of error
occurrences as several commands (including erroneous
ones) can be accounted for by the actuators without
provoking an undesired event.
Dealing with slow dynamics and state commands altogether
has a significant influence on the properties required to
support communication integrity: in particular, message
loss, duplication, ordering have not to be worried about.

2.1.2 Undesired event and recovery strategy
An undesired event (UE) corresponds to an event prone to
lead to the failure of the application. A typical example, in
the context of avionics, is the runaway of some of the
critical flight control surfaces that may result from the
steady application of erroneous commands on the corre-
sponding servomechanisms.
As already mentioned, the FCS should be designed so that
such a risk is lower than 10-9 per hour of flight. In particu-
lar, it is considered that for servomechanisms governing
critical control surfaces (elevator, rudder) with a maximum
speed movement of 50°/s, a runaway may be observed
already when the discrepancy with respect to the nominal
reference value reaches about 5°, thus when erroneous
references are applied for 100 ms. This constitutes actually
a very stringent constraint.

1 Up to a given threshold, depending on the application.

For a flight control surface, whose position is updated every
10 ms, the UE corresponds to the acquisition of 10
consecutive incorrect (and not signaled as such) commands
that are thus processed as correct ones.
It is worth noting that the actual occurrence of an unde-
sired event also depends on the recovery strategy that is
undertaken upon detection of erroneous commands. In the
case of a FCS, recovery actions are planned at the appli-
cation level with the aim of mitigating several concerns:
• ensure the correct updating of the reference value to the

servomechanism,
• refrain from deciding too quickly about the failure of the

communication system,
• do not impair the required safety level.
The frequency with which a recovery action is initiated is
related to the error detection rate; the latter being linked in
turn to the error occurrence rate. In a communication
network, most frequent errors are related to the noise on
the channel. Thus, there is a risk that the communication
channel be declared as failed too frequently, should this
decision be taken each time an erroneous message is iden-
tified. Moreover, due to the flexibility allowed by the slow
dynamics of the controlled process, no major risk would
result in delaying (to some extent) the updating of the
reference value.
Thus, in practice, the strategy that is implemented is as
follows. Upon detection of an error, the current reference
value is maintained. This is fully supported by the slow
dynamics that characterize the controlled process (see
Section 2.1.1). Such an approach is custom in control
systems. Furthermore, a failure is declared and the suitable
recovery action launched, only after several related errors
have been reported. Such a form of “filtering” is also usual
practice. Among the classes of recovery strategies that can
be considered as suitable alternatives to the launch of the
recovery as soon as an error is signaled, we have especially
considered the two following ones:
• RS1(r): Maintain the current reference value and launch

the recovery after r consecutive processing cycles for
which an error has been signaled.

• RS2 (r,b): Maintain the current reference value and
launch the recovery after r processing cycles for which an
error has been signaled out of a set of b successive cycles.

However, it is not possible to wait too long before identi-
fying a communication link as failed, because this may then
impair the safety requirements. Figure 1 shows a possible
scenario2 that spans ten 10 ms-cycles:

The erroneous command is not detected (ND) on
the 1st cycle, then detected (D) on the 2nd
and 3rd ones, but not on the 4th, etc.

Let us assume also that the recovery parameters are as
follows: r = 3 and b = 10. It is worth pointing out that the
rationale for selecting b = 10 is directly related to the defi-
nition of the UE for the FCS.
Such a scenario would be critical in the case of RS1(3); in
fact, it corresponds to the worst case with the value selected
for parameter r: the conditions for initiating a recovery
action are never met and thus an erroneous reference
command would be maintained during 10 cycles (100 ms),

2 This scenario might seem rather improbable; actually, this is not

the case, in the light of the error checking scheme proposed in
Section 4.2.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

ND

D

Erroneous command is not detected: it is used as the new reference value

Erroneous command is detected: the current reference value is maintained

ND D D D D D DND ND ND

Time
(ms)

Command
processed

Erroneous command

20 50403010 70 100908060

Threshold for control
surface runaway

Valid command

RS1(3):
Control
surface
runaway

RS2(3,10):
Recovery action

Figure 1: Link between recovery and UE (r = 3, b = 10)

then leading to the runaway of the control surface.
However, when RS2 is instantiated with r = 3 and b = 10,
then the conditions for launching the recovery are met at
time = 50 ms and thus the runaway can be avoided.
In the case of a digitally controlled servomechanism, the
reference values are conveyed by means of messages.
Accordingly, it can be considered that the servomechanism
receives a message that contains the value of the reference
for each cycle. When the message received is corrupted, and
the corruption is not detected, an erroneous reference is
used; if the corruption is detected then the reference is not
applied and the reference value of the servomechanism is
not updated. To avoid the UE (control surface runaway),
that would result from an erroneous reference value to be
maintained for 100 ms (ten 10 ms cycles), it is necessary
that the rate of undetected erroneous messages be lower
than a given threshold. Here, it is assumed that the UE may
result from the fact that r = 3 erroneous messages out of a
set of b = 10 messages remains undetected. Thus, the
communication system has to maintain the rate for such a
risk of undetected errors lower than 10-9/h.

2.2 Risk analysis
In the context of the type of control systems briefly
described in the previous section, the focus of the work
reported here concerns the underlying communication
networks and in particular in the light of the evolution of
such control systems. For communication networks where
reference values are conveyed via messages, the concepts of
state-control or event-control are usually referred to as
state messages or event messages [10]. The usage of state
messages is often preferred in the context of critical
systems as the control is less sensitive to message loss or
incorrect ordering of messages. In what follows, we will
essentially refer to state messages.
Specific concerns arise when a large number of devices are
to be controlled in a flexible way, which is the case for
future developments being considered in avionics, e.g., the
deployment of a large number of control surfaces on the
wing of an aircraft: i) all devices cannot be connected to the
same bus, ii) such future developments include the oppor-
tunity to apply distinct commands on different actuators.
In practice, this means that intermediate communication
stages (interstage nodes), which are more complex than
simple repeaters, are to be included between the control
nodes (main control computers) and the controlled devices
(computerized sensors and actuators).
Figure 2-a sketches the basic architecture considered for
the control system and identifies the core part: the digital
communication links that are connecting the main control
nodes to the controlled nodes. Nowadays, many versions of

the fieldbus technology exist that implement such a concept
according to the IEC 61508 standard [9]. Benefits of using
the fieldbus technology in control systems are manifold and
extend from low costs, flexibility, improved performance
and enhanced diagnosis capabilities [11].
Figure 2-b illustrates a possible hierarchical architecture for
the communication system that would be suitable for the
kind of application we are considering.
Due to the presence of interstage nodes, information coding
(e.g., CRC) at the physical layer is no longer sufficient to
reach the integrity assigned for ultra-dependable control
systems. This problem was already identified in [4].
The analyses we have conducted confirm these results and
can be summarized as follows [12]:
1) Noise-induced corruptions (independent random

errors) are covered with a sufficient margin (several
orders of magnitude).

2) Wiring defects (independent multiple errors) lead to a
risk for undetected errors for a single message that is
just slightly acceptable. Two reasons explain why, in our
case, this risk remains way below the target threshold:
i) the risk analysis relates to a set of messages and
ii) these corruptions do not provoke repetitive errors.

3) Corruptions resulting from faults (e.g., stuck at faults)
affecting the interstage nodes are prone to lead to recur-
rent error patterns (repetitive multiple errors) for which
the risk of undetected error can no longer be maintained
under the prescribed threshold. For stuck-at faults
affecting the buffers handling messages, the protection
offered by CRC could be tuned to match the assigned
level, at the expense of increasing the number of check
bits. For the faults affecting the address control of the
buffers, this is no longer possible: the risk associated to
the corruption of a set of messages remaining unde-
tected is of the same order of magnitude as the risk
associated to a single message. Indeed, should the initial
error be undetected, then systematic (correlated) errors
are likely to occur3. Thus, the basic assumption of ran-
dom independent errors usually assessed to bound the
risk of undetected errors by using CRC no longer holds.

Assuming a failure rate of 10-5/h for an interstage node, and
considering a 1% ratio for the devices prone to lead to
repetitive errors, would lead to an error rate of 10-7/h,
which definitely requires that alternate protection means be
implemented to meet to the assigned target.

3 Another factor for recurrent errors is that for a large part of

flight time (e.g., cruise) the reference value remains unchanged.

Main
Control
Nodes

Digital
Communication

Links

Controlled
System

(computerized
sensors/actuators)

Control

Feedback

Control

Feedback

Target System
a) Basic architecture

Level-1

N1

Nm

Level-2

N11

N1n

Computerized
servo-mechanisms

Main
Control
Node

Interstage Nodes
b) Hierarchical organization of interstages

Figure 2: Communication architecture for the control system

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

3 Related Work
Solutions devised to cope with the inefficacy of medium-level
protection mechanisms (e.g., CRC) to handle the errors
induced by interstage nodes evidenced in the previous
section encompass two main categories of complementary
and non exclusive techniques: i) application of end-to-end
protection at the application level and ii) use of redundant
communication topologies. In addition, it is several forms of
diversification of data handling and/or coding can be used to
minimize the risk of common mode failures.

3.1 Application-level end-to-end protection
Such an approach assumes an abstraction of lower layers
and allows implementing protections that are independent
from the (potential) protection mechanisms attached to the
lower layers. Some typical examples are given hereafter:
• Time redundant execution of application tasks and end-

to-end CRC calculation at sender node support the High
Error Detection Coverage (HEDC) proposed for systems
based on the TTA and TTP concepts [13].

• The Keyed CRC mechanism of the GUARDS system relies
on the provision of unforgeable signatures; each node
uses a private “key” for communicating with each of the
other nodes [14].

• The Safety Layer supported by the Foundation Fieldbus
features an end-to-end CRC protection and a two-way
protocol to handle safety frames [11].

3.2 Redundant communication topologies
Examples of solutions based on redundant communication
topologies are as follows:
• The dual self-checking busses are instrumental in

supporting the high communication integrity procured by
the SAFEbus architecture [15].

• The ROBUS broadcast bus of the SPIDER platform relies
on point-to-point communication links and voting to
ensure reliable communication among all pairs of correct
processing nodes in the system [16].

• Elaborating upon a series of designs incorporating
various forms of redundant ring topologies, (e.g., see
[17]), the braided ring topology presented in [18]
achieves the same level of integrity as the SAFEbus at a
lower cost, compatible with the automotive industry.

3.3 Use of diversification
Two main non-exclusive dimensions can be identified for
applying diversification in order to cope with the risk of
recurring errors induced by interstage nodes:
• usage of alternative formats to describe data,
• usage of alternative checking functions.
A typical example of the first dimension is when the data
are transmitted three times, via distinct channels:
i) original bits, ii) inverted bits, and iii) permutated bits
[19]. Also, approaches have been devised that include
schemes for carrying out voting on diversified data [20].
The Tandem-CRC approach [21], where two distinct CRC
functions are applied to a message to be transmitted to
obtain high coding gains provides a good example of the
second dimension. The Turbo-Codes [22], that combine
data interleaving and concatenation of distinct systematic
convolutional codes form a typical example of an approach
spanning the two dimensions.

3.4 Design guidelines
Application-level end-to-end approaches allow extending
the coverage of errors beyond basic data. This is a very
relevant feature for the kind of messages we are considering
that include data, address and timing information.
However, achieving the level of integrity required for the
considered application would require a very large CRC code
size (at least 32 check bits) to decrease the probability of
undetected error to a suitable level. Actually, this would
correspond to a costly solution in terms of “yield” (referring
to the size of the functional message: about 100 bits) and of
the communication latency. Most importantly, this would
not adequately address the issue of repetitive errors in our
context: if the protection is not efficient for a message, it is
likely that it will be the same for subsequent messages.
All approaches using redundant topologies (using or not
diversification) for achieving high-level of communication
integrity in spite of faults affecting interstage nodes heavily
rely on spatial redundancies. This is in opposition with the
strong industrial constraint imposed in the context of the
system being considered for the deployment of digital
networks governing the flight control surfaces, that is to
avoid as much as possible the replication of components. In
particular, this led us to discard approaches based upon the
provision of fail-silent nodes [10] or of nodes tolerating
transient faults [23].
As already explained, another important feature of the
aircraft application context being considered is that it is not
necessary to ensure that each message delivered is correct.
In summary, the two main design assumptions that singu-
larize the type of potential solution that is being
investigated are as follows:
• A1: it is not necessary to reach a high probability of error

detection for each message, but rather to a series of
successive messages;

• A2: the integrity issue posed by repetitive errors is to be
addressed while minimizing the use of redundancy.

Besides this might not be true for event-controlled systems,
we advocate that A1 is generally valid for state-controlled
systems featuring slow dynamics (e.g., temperature control
or fluid flow control). Also, maintaining a constant input
reference value (e.g., during cruise phase) may favor the
occurrence of repetitive errors in the case of faults affecting
the interstage nodes. But, similar error types may be
provoked even if only some field of the message frame is
maintained unchanged: e.g., errors induced by permanent
faults (stuck-at faults in memory buffers) in interstage
nodes affecting the unchanged part of the frame.
The rationale for the second assumption is also related to
the fact that the desired goal is only to support error detec-
tion as error recovery (fault tolerance) can be achieved by
separate means.
These guidelines open new alternative options for devel-
oping suitable solutions, in particular based on the
principle of diversification applied to the error checking
functions, as will be described in the next section.

4 The Proposed Solution
The solution we propose relies on the implementation of
end-to-end protection mechanisms at the application level.
After presenting the basic principles of this scheme, we
then analyze the impact of the recovery strategy.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

4.1 Basic principles
To fulfill the requirements previously stated, the basic idea
is not to aim at providing a high probability of detecting
errors for each message, but rather for a set of messages.
We propose that sender and receiver modify the checking
function for each message, according to a common policy
known by them. More concretely, the sending node can use
m error checking functions F1, F2,..., Fm, each generating the
same number of control bits. We term this technique as the
“Multiple Error Checking Function” scheme (MECF). The
classical “Single Error Checking Function” scheme is
denoted SECF.
Of course, the sender and the receiver should use the
checking functions consistently both for coding and
decoding. In the case of synchronous behavior, this can be
achieved by using either the cycle index or the local clock
for deciding which function to use. In the case of asyn-
chronous nodes, it is necessary to include explicitly the
identifier of the function as part of the message.
We focus here on the analysis on the risk of repetitive
errors caused by faults affecting interstage nodes. Let us
denote Mi the messages in the set (i = 1, 2,…, b). We assume
that Mi corresponds to an erroneous message and that the
same error affects all subsequent messages in the set. We
denote:
• pXNDi the basic probability of no detection of an erroneous

message when processing message Mi,
• PXmNDb the probability of no detection when using m

distinct error checking functions in the case of a set of b
messages,

where X ∈ {S, M} specifies the error checking scheme,
where S stands for SECF and M for MECF.
In the case of SECF, all messages are checked using the
same checking function F. As M1 is not detected as erro-
neous (with probability pSND1), then the conditional
probability of no detection for each subsequent message
(pSNDi, i = 2,…, b) is equal to 1 when the part of the frame
that is meant to be protected by the end-to-end checking
function remains unchanged. When linear codes are being
used, this probability is also equal to 1, even if the whole set
of protected information is not kept constant, provided that
the very part of the message that is affected by the error is
kept unchanged. Such a behavior could be caused by a
permanent fault affecting an interstage node and would
result in the same (repetitive) error. Indeed, in such a
context, as the error is not detected when processing M1

(i.e., the error is a multiple of the underlying polynomial
generator), there is no chance for it to be detected when
processing subsequent messages due to the linear property
of the code. Accordingly, it can be conservatively assumed
that the probability of no detection for a set of b messages
PSNDb is governed by pSND1.
Now, let us consider MECF. We propose to use m distinct
checking functions for a set of b messages and to recur-
rently change them according to a given scheduling policy.
The policy we consider herein is described by:

F1, F2,..., Fm, F1, F2,..., Fm, etc. (1)
Note that for sake of simplicity, we assume first that m = b.
Other policies were also investigated (see [12] for details).
As for SECF, pMND1 designates the probability of no detec-
tion when processing message M1. Since the m = b checking
functions used in MECF provide complementary error

detection capabilities (see Section 5 for details), the succes-
sive probabilities of no detection (pMNDi, i = 2,…, b) can be
considered as independent, complementary and much
lower than 1. Accordingly:

PMbNDb = pMND1 × pMND2 × … × pMNDb. (2)
Thus, the MECF scheme somewhat “cumulates” the error
detection capabilities of the m checking functions.
For sake of consistency, it is appropriate to assume first
that function F (SECF) and functions Fi (MECF) provide
intrinsically the same error detection capabilities. In
particular, this means that pSND1 = pMND1 = pND1 ≈ 2-c with
respect to multiple errors, where c designates the number
of checking bits of the various codes.
Accordingly, for SECF, PS1NDb ≈ 2-c. The only possibility to
increase the error detection capability for a set of messages
is to increase the number of check bits.
For MECF, assuming “full complementarity” among the
checking functions would lead to PMbNDb ≈ (2-c)b; this means
that the integrity over a set of messages can be increased
significantly by using moderate size codes for each checking
function. Actually, this is equivalent to a single code
featuring b x c check bits.
In practice, one may want to consider a fewer number of
functions than the size of the set (m < b). In that case, the
probability for a repetitive error affecting b messages to
remain undetected is governed by the number of distinct
functions, i.e., PMmNDb ≈ (2-c)m. Actually, in that case
pMNDj ≈ 1 for m < j ≤ b (as for SECF).
Thus, compared to the use of a single checking function
with m x c check bits, instead of being detected when
processing M1, it might occur that the detection of the
(repetitive) error would be delayed until the application of
the mth function Fm, i.e., when processing message Mm.
However, this is compensated by the fact that much less
control bits would be appended to each message. Indeed,
due to the slow dynamics of the considered class of systems,
there is no need to ensure a error detection for each
message, thus, MECF represents a solution satisfying both
the integrity objective and the requirements for restricting
the level of redundancy.
One may find some analogy with the principle underlying
the “Turbo Codes” identified in Section 3.3. However, two
main differences exist: i) we do not consider data inter-
leaving4, ii) we apply m distinct checking functions to m
successive messages, while the basic Turbo Codes apply
2 functions to each message.

4.2 Impact of the recovery strategies
The MECF scheme achieves a high power of detection of
errors affecting a set of successive messages, thus ensuring
high communication integrity between the control nodes
and the controlled nodes handling the flight control sur-
faces. Nevertheless, the avoidance of the undesired event
(namely, the runaway of some control surface) requires that
the number of undetected erroneous messages delivered
within a set of b messages remains lower than a prescribed
threshold.

4 The mathematical foundations that govern interleaving and that

would help choosing an interleaving function are still to be
studied. Conversely, a rational basis exists for selecting checking
functions for a CRC implementation of MECF (see Section 5).

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

Clearly, the use of either of the recovery strategies intro-
duced in Section 2.1.2 might result in a different impact on
the risk of a runaway. Indeed, the considered recovery
strategies are meant to maintain a certain level of avail-
ability for the controlled servomechanism. However,
delaying the triggering of the recovery action may have an
impact on safety (by maintaining the delivery of an
erroneous reference command whose accumulation might
lead to a runaway).
The aim of this section is to define the characteristics of the
preferred recovery strategy, i.e., that minimizes: i) the risk
of occurrence of a runaway and ii) the recovery latency that
we define as the time elapsed between the first reception of
an erroneous message (which could be detected or not) and
the initiation of the recovery action. Indeed, as usual, the
shortest the recovery latency, the most efficient the
recovery action.
Figure 3 describes the behaviors induced by the two instan-
tiations of the recovery strategies considered in
Section 2.1.2, RS1(3) and RS2(3,10), when considering
MECF with increasing values for the numbers of error
checking functions (m = 1, 2, 3, and 4). The basic cyclic
policy — see expression (1) — is used for scheduling these
functions. In order to support our analysis, we consider
scenarios in which the considered faults induce repetitive
erroneous messages that remain steadily undetected by a
specific checking function (F1, for sake of simplicity). Also,
it is worth pointing out that the behaviors observed for
m = 1 are obviously similar for the two recovery strategies.
The first main observation is that, whatever the recovery
strategy, the greater the number of checking functions, the
shorter the Recovery Latency (RL). Indeed, for the RS2
(3,10) strategy, this duration steadily decreases from 50 ms
for m = 2 to 30 ms for m = 4. However, it is worth noting
that the RL remains unchanged and equal to 30 ms when
m ≥ 4 for both recovery strategies. This explains our choice
to bound the analysis reported here to a cyclic policy of 4
checking functions in the case when r = 3.
The second main observation concerns the identification of
the preferable recovery strategy. Using RS2(3,10), the risk
of a runaway can be eliminated5 for m = 2, while for RS1(3),
4 functions are necessary to eliminate this risk and also to
achieve the same value for the RL as the one obtained for
RS2(3,10). Accordingly, for a fixed value of parameter m
(i.e., the number of error checking functions), RS2 is best
adapted to the case study, for the two following reasons:
1) It ensures the lowest risk of occurrence of the UE, which

is the primary objective considering the high integrity
requirement to ensure a rate of occurrence of the UE
lower than 10-9/h.

2) It leads to the lowest RL and thus to a better availability
of the FCS.

5 Implementation Using CRC
In practice, various types of detecting codes could be used
to implement the MECF scheme. In this section, we
describe an implementation based on CRC. Prior to
describing this implementation, we briefly present two
analyses that substantiate the choice of CRC. More details
can be found in [12].

5 Actually, the probability associated to this risk is lower than the

prescribed threshold.

Runaway
threshold

Valid
command

ND ND ND ND ND ND ND ND ND ND

F1 F1 F1 F1 F1 F1 F1 F1 F1 F1

Runaway

Recovery

Runaway

Recovery

RecoveryRecovery

RS1(3)
3 errors detected consecutively

RS2(3,10)
3 errors detected among 10 messages

ND D ND D ND D ND D ND D

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

ND D D ND D D ND D D ND

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1

ND D D D ND D D D ND D

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2

MECF scheme

SECF scheme

ND D ND D ND D ND D ND D

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

ND D D ND D D ND D D ND

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1

ND D D D ND D D D ND D

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2

m = 2

m = 3

m = 1

m = 4

Figure 3: Comparison of RS1(3) and RS2(3,10)

5.1 Some rationales for using CRC
We successively address two important items:
• complementarity of the error detection capabilities of the

checking functions to be included into the MECF scheme,
• compatibility of the processing (coding and decoding) of

the checking functions at application level with respect to
the temporal constraints of the targeted application.

5.1.1 Complementarity of detection capabilities
Since MECF involves several checking functions, it is
necessary to propose a sound basis to substantiate the
choice of functions that optimize the complementary of the
detection capabilities procured by each function.
In the case of CRC, the complementarity can be based on
the consideration of the properties of the generator poly-
nomials G(x) that underlie the respective codes (see [2],
p. 161). More precisely, the specific relevant property is
exhibited by considering the decomposition of the
generator polynomials into the product of irreducible poly-
nomials. Let us recall briefly that a polynomial is
considered as irreducible, if the greatest common divisor of
its coefficients is 16.
All the CRC coded words generated by polynomial G(x) are
inevitably multiple of it and thus contain the irreducible
factors of this polynomial. Accordingly, all errors that
remain undetected by such a code are necessarily multiple
of its generator polynomial. Thus, for another code gener-
ated by a distinct polynomial to exhibit the highest
(complementary) error detection capability, it is necessary
that the two polynomials share the least irreducible
polynomials. Accordingly, the examination of the features
of the underlying polynomials, according to the properties
of their irreducible factors, provides a strong and pragmatic
basis to support the decision whether to include a specific
set of CRC codes in the MECF scheme. Similar arguments
were used in [21], albeit in a slightly different context.

6 An analogy can be made to a prime number that is divisible only

by 1 and itself.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

5.1.2 Compatibility with temporal constraints
For an implementation of the MECF scheme using CRC to
be compatible with the temporal constraints, the compu-
tation time necessary to the generation and checking of the
CRC bits should be small with respect to the cycle time of
the control system (10 ms in our case).
The corresponding evaluation has consisted in the deter-
mination of the computation time for three algorithms
(Cyclic Redundancy Code Bitwise, Cyclic Redundancy Code
Table lookup, Cyclic Redundancy Code Reduced Table
lookup) corresponding to classical software implemen-
tations of CRC [24]. For the analysis, we have considered
the case of 128-bit data and 16-bit CRC size and a micro-
computer representative of those used on-board
commercial airplanes (PIC18C542 at 20Mhz).
Our analyses show that the computation times range
between 35 µs and 90 µs, depending on the algorithm.
These times obtained with computers of modest perform-
ance are less than 1% of the cycle duration. Accordingly, it
can be confidently concluded that a software implemen-
tation of the CRC codes is really compatible with the
temporal constraints. Recent work [25] proposes useful
hints to speed up computational issues.

5.2 CRC-based implementation of MECF
In the case of CRC, the MECF scheme consists in modifying
cyclically (i.e., according to the scheduling policy we
consider in this paper — see also (1)) the generator
polynomials G1, G2,..., Gm for the messages transmitted. As
discussed previously, the overall contribution in terms of
error detection capability depends on the choice of these
polynomials.
We specify in the next section the characteristics of the
generator polynomials composing the MECF scheme. For
this, we analyze the correlation that exists between the
complementarity of their intrinsic errors detection capa-
bilities and the resulting efficiency of MECF scheme they
compose. Then, we present the strategy allowing to select
or to derive these polynomials.

5.2.1 Generator polynomials characteristics
The generator polynomials to be considered for MECF must
possess two essential characteristics:
• significant intrinsic error detection capability for each

message,
• complementarity between their errors detection capa-

bilities with respect to a set of messages.
The complementarity between the errors detection
capabilities of the m functions used is all the more
significant as the m generator polynomials on which they
are based are such as the degree of the product of their
common factors is minimal.
Let us denote Π, the polynomial with smaller degree that
satisfies a set of “generic” or “standard” properties in terms
of error detection. Concretely, the polynomial Π will have to
satisfy the properties of the CRC standard codes concerning
the detection of the following error types:
• all single errors, if the coefficient of x0 of G(x) equals 1,
• all double errors, if G(x) contains a primitive polynomial

with a maximum of 3 terms,
• all odd weight errors, if G(x) contains the factor (1+x).
Thus, to detect these three types of errors, and to have
smallest degree, the polynomial Π should be equal to the

product of the two primitive polynomials Π1 = 1+x and
Π2 = 1+x+x2, i.e., Π = 1+x3.
In what follows, we describe the approach leading to the
identification of suitable generator polynomials that pos-
sess the double characteristics of intrinsic standard
detection capabilities and complementary detection
capabilities.

5.2.2 Selection of the generator polynomials
Figure 4 illustrates the process for selecting the generator
polynomials that are good candidates to compose a MECF
scheme. It is assumed that generator polynomial G1 is
decomposable into five irreducible polynomials: i) Π1 and
Π2 that form a polynomial Π satisfying the generic prop-
erties of the majority of standard CRC, e.g., as indicated in
Section 5.2.1 and ii) three additional irreducible polynomials
denoted P1, P2 and P3 of distinct degrees.

G1

Decomposition into irreducible polynomials

Potentially good candidates

P'1 P'2 P'3Π

P1Π1 P2 P3Π2
Π

Potentially bad candidates

P2 P3Π P'1

P3Π P"2P'1Π P"3P"1 P"4P"2
Figure 4: Selection of generator polynomials candidates

The figure exemplifies potentially good and bad candidates
for the selection of generator polynomials, on the basis of
polynomial G1. A judicious choice corresponds to a polyno-
mial including Π and one or several irreducible polynomials
all distinct from P1, P2 and P3. A bad candidate would corre-
spond to a polynomial including one or several irreducible
polynomials that already compose G1.
Table 1 provides examples of generator polynomials for
16-bit CRC that would constitute good and bad candidates
for the MECF scheme.
All polynomials shown are decomposable into Π and two
other factors that are irreducible polynomials of degrees 7
and 8. Here Π is simply 1+x. Good candidates shown
include factors that are all distinct from those of G1, while
the bad candidates share the same polynomial of degree 7.

6 Validation of the MECF Scheme
The goal of the validation studies conducted is twofold:
• confirm the guidelines proposed for preserving the

complementarity with respect to error detection
capabilities of the codes participating to the MECF
scheme,

• assess the improvement in integrity gained from the
application of the MECF scheme in the case of the target
FCS.

The validation is based on simulation models of the MECF
scheme developed in the Matlab-Simulink environment.
Figure 5 sketches the simulation framework using the
Matlab-Simulink syntax. The diagram illustrates the
process for assessing the complementarity with respect to
error detection capabilities between two generator polyno-
mials (namely, two standard polynomials CRC-16 and IEEE
WG77.1 — see also Table 2). CRC-16 is considered as the
reference polynomial (denoted G1 in Figure 4) and IEEE
WG77.1 as a candidate polynomial.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

To optimize the duration of the simulations and better
exemplify the impact of the proposed scheme, only (erro-
neous) messages that are multiple of the reference
generator polynomial are considered. This convincingly
models the case of repetitive errors that are undetected by
the classical application of CRC using a single error
checking function (i.e., the SECF scheme).

Sink Block

Source Block

~/IEEE WG77.1.mat

Bernoulli
Binary

Random
Binary Data

NOT

mod

Math
Function

[Error]

[Error] Frame
Error Rate
Calculation

[1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1]

CRC-16

CONV To
Frame

Conv

2

Constant

General CRC
Syndrome
Detector Err

IEEE WG77.1
[1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1]

1.3400e–05

1.3400e+02

1.0000e+07

Not-detected

Erroneous Frames

% Not-detected

double

Figure 5: The simulation framework

The top part of the diagram describes the generation of
(erroneous) message frames that are multiple of the refer-
ence polynomial (CRC-16 in this case). Message frames of
100 bits are being used. The lower part describes the
process for checking these erroneous frames using a
“General CRC Syndrome Detector” based on the candidate
polynomial (IEEE WG77.1). It also identifies and cumulates
the cases when no detection occurs. The data displayed are:
i) the percentage of errors not detected, ii) the number of
errors not detected, iii) the total number of erroneous

frames. For each candidate polynomial, the simulation runs
consisted in the injection of 107 (erroneous) message frames
multiple of the reference polynomial. The results obtained
are stored into a file (~/IEEE WG77.1.mat) for further
processing and analysis.
Such a process has been used to test several pairs of polyno-
mials. This addresses specifically the assessment of the
MECF for m = 2. A simple extension of this process has been
used to test the MECF scheme for m > 2 (e.g., see [12]).

6.1 Analysis of code complementarity
Two analyses are considered that successively study the
proposed criteria for discriminating good and bad gen-
erator polynomials for contributing to a MECF scheme and
study whether the selection of standard or purposely
designed (custom) polynomials has an impact on the error
detection capability of the MECF scheme.

6.1.1 Good vs. bad polynomial candidates
The analysis builds up on the detection complementarity
with respect to G1 procured by the polynomials of Table 1. It
is based on the comparison of simulation results obtained
with the estimated theoretical objective. Polynomials G2, G3
and G4 (good candidates) differ from G1 by a polynomial
factor of degree 15. Thus, one would expect that the
theoretical probability that erroneous messages (multiple of
G1) are also undetected by G2, G3 or G4 be equal to
2-15 ≈ 3 × 10-5. The probabilities obtained via simulation are:
3.05 × 10-5 for G2, 2.96 × 10-5 for G3, and 2.81 × 10-5 for G4.

Table 1: Generator polynomials for 16-bit CRC

G1(x) = (1+x) . (1+x+x7) . (1+x2+x3+x4+x8) = 1+x3+x5+x6+x7+x9+x10+x12+x15+x16

Examples of potentially good candidates
G(x) = (1+x) . 7-degree irreducible polynomial . 8-degree irreducible polynomial

Identifier Polynomial representation Decomposition into irreducible polynomials

G2(x) 1+x+x6+x7+x8+x9+x10+x13+x15+x16 (1+x) . (1+x+x3+x5+x7) . (1+x+x2+x4+x5+x6+x8)

G3(x) 1+x+x6+x10+x12+x16 (1+x) . (1+x+x2+x3+x7) . (1+x+x4+x5+x6+x7+x8)

G4(x) 1+x5+x6+x7+x8+x9+x10+x16 (1+x) . (1+x3+x7) . (1+x+x2+x5+x6+x7+x8)

Examples of potentially bad candidates

G(x) = (1+x) . (1+x+x7) . 8-degree irreducible polynomial

G5(x) 1+x+x2+x3+x5+x6+x9+x10+x12+x14+x15+x16 (1+x) . (1+x+x7) . (1+x+x5+x6+x8)

G6(x) 1+x3+x6+x7+x10+x13+x14+x16 (1+x) . (1+x+x7) . (1+x2+x3+x4+x5+x7+x8)

Table 2: Good candidate generator polynomials for CRC-16

Ga(x) = (1+x) . (1+x+x15) = 1+x2+x15+x16 — Standard generator polynomial: CRC-16

Standard generator polynomials
G(x) = (1+x) . 15-degree polynomial

Identifier Polynomial representation Decomposition into irreducible polynomials

Gb(x) : IEEE-WG77.1 1+x+x5+x6+x8+x9+x10+x11+x13+x14+x16 (1+x2+x3+x4+x8) . (1+x+x2+x4+x5+x6+x8)

Gc(x) : CRC-CCITT 1+x5+x12+x16 (1+x) . (1+x+x2+x3+x4+x12+x13+x14+x15)

Gd(x) : IBM-SDLC 1+x+x2+x4+x7+x13+x15+x16 (1+x) 2 . (1+x+x3+x4+x5+x6+x8+x10+x12+x13+x14)

Ge(x) : CRC-16Q* 1+x+x3+x4+x5+x6+x8+x11+x15+x16 (1+x) . (1+x3+x5+x8+x9+x10+x15)

Gf(x) : IEC-TC57 1+x+x4+x7+x8+x9+x11+x12+x14+x16 (1+x)2 . (1+x+x3+x6+x7) . (1+x2+x3+x4+x5+x6+x7)

Custom generator polynomials
G(x) = (1+x) . 7-degree irreducible polynomial . 8-degree irreducible polynomial

Gg(x) = G3(x) 1+x+x6+x10+x12+x16 (1+x) . (1+x+x2+x3+x7) . (1+x+x4+x5+x6+x7+x8)

Gh(x) = G4(x) 1+x5+x6+x7+x8+x9+x10+x16 (1+x) . (1+x3+x7) . (1+x+x2+x5+x6+x7+x8)

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

For polynomials G5 and G6 (bad candidates) that only differ
from G1 by a polynomial factor of degree 8, one would expect
that the theoretical probability that erroneous messages
(multiple of G1) are also undetected by G5 or G6 be equal to
2-8 ≈ 3.9 × 10-3. The figures obtained via simulation are
respectively equal to 3.89 x 10-3 and 3.91 × 10-3.
These analyses show a good match between the experi-
mental and theoretical results.

6.1.2 Standard vs. custom polynomials
We consider eight generator polynomials for the analyses
(Table 2): six are standard ones and two are “custom” poly-
nomials derived on the basis of the procedure sketched in
Section 5.2.2. The “reference” polynomial (Ga), with respect
to which the complementary error detectability provided by
the other codes is being evaluated, is the standard gen-
erator polynomial CRC-16. All these polynomials are
potential good candidates for MECF, according to the com-
plementarity criteria.
Figure 6 plots the ratio of erroneous messages (multiple of
Ga) not detected by the other polynomials in Table 2 when
paired to Ga, as a function of the number of pseudo-
randomly generated erroneous messages. To facilitate the
readability, the figure only shows the results for three
standard generator polynomials (namely, Gb, Gc and Gd), in
addition to the two custom polynomials Gg and Gh. The
simulation results show that the ratio of undetected errors for
the [Ga – Gb] pair converges to the theoretical value of
2-16 (≈ 1,5 × 10-5), while for all the other pairs is converges to
the theoretical value of 2-15 (≈ 3 × 10-5). These results reflect
the differences between Gb and the other polynomials:
all polynomials Gα, with α ∈ {c, d, e, f, g, h} share polynomial
(1+x) with Ga, while Gb has no polynomial in common
with Ga. These results fully support the validity of the criteria
put forward for optimizing the complementarity of error
detection by CRC code candidates for the MECF scheme

Number of injected erroneous messages (x 10)-6
2 4 6 1080

2-16

2-15

Pair [Ga - Gb]

Pairs [Ga - Gα] with α ∈{c, d, g, h}

5

4

3

2

1

0

Ratio of non detected errors (x 10)5

Figure 6: No detection for various Ga-related pairs

The results indicate also that the error detection
capabilities for the schemes pairing Ga, either a standard or
custom code are equivalent. More specifically, from the 107
simulation runs featuring (erroneous) messages multiple of
Ga, the number of errors not detected, when pairing Ga with
either a standard or a custom polynomial, were very
similar:
• Ga and standard: [Ga – Gc] = 318; [Ga – Gd] = 286;
 [Ga – Ge] = 294; [Ga – Gf] = 292;
• Ga and custom: [Ga – Gg] = 296; [Ga – Gh] = 281.

The figure also reveals a significantly different behavior for
the [Ga – Gb] pair, for which the number of non detections
is only 146 (about half of the figures observed for the other
pairs).

6.2 Assessment of the MECF scheme
We summarize here the main results of the risk analysis
that we have conducted for the FCS (see [12]). The objective
is to assess the gain procured by the application of the cyclic
scheduling MECF scheme with respect to the classical
application of CRC, i.e., the SECF scheme.
The focus is put on the study of the functional failures
affecting the interstage nodes between main control nodes
and the controlled nodes associated to the servo-
mechanisms of the flight surfaces, because it was shown
that they had the most severe impact on the risk of occur-
rence of the undesired event (control surface runaway). Let
us recall that the target is to maintain the rate of this risk
much lower than 10-9/h. As discussed in Section 2.2, we
assume a failure rate of about 10-7/h for repetitive errors
induced by an interstage node. More specifically, we focus
here on two fault classes affecting such nodes: i) stuck-at
faults affecting the buffers handling the messages and
ii) stuck-at faults on buffer address control.
Table 3 shows the risks induced by these failure modes for
several protection schemes, when considering 16-bit CRCs,
namely SECF and MECF (for m = 2 and 3), for which the
considered CRC groupings are respectively [Ga – Gb] and
[Ga – Gb – Gc] from Table 2.

Table 3: Rate of occurrence of UE (control surface runaway)

Protection
schemes →

SECF MECF

↓ Fault classes:
stuck-at on

(m = 1) m = 2 m = 3

 - buffer memory 1.5 x 10-12 / h 2.3 x 10-17 / h 6.9 x 10-22 / h
 - address control 10-7 / h 1.5 x 10-12 / h 4.5 x 10-17 / h

For SECF, the figures in the table show that, for the first
fault class, the simple use of a 16-bit CRC code leads to a
risk of 1.5 × 10-12/h, thus much lower than the threshold of
10-9/h. This is no longer the case for the second fault class
that induces repetitive errors for which no protection can
be obtained by means of a classical CRC coding scheme
(either at communication layer or at application layer). This
is why the related risk was estimated to be equal to a
fraction of the corresponding failure rate of the node.
Applying the MECF scheme significantly reduces the rates
and allows for meeting the integrity target. For example, for
the second fault class, it is decreased to 1.5 × 10-12 / h. This
rate is further reduced when using three error checking
functions to 4.5 x 10-17/h. It is also noteworthy that, while
the integrity objective was already satisfied by SECF for the
first fault class, the application of MECF significantly
reduces the risk figure.
The rates for MECF are confidently obtained thanks to the
match observed between the simulation and theoretical
results. For example, the figure for the first fault class for
MECF [m = 2] (2.3 × 10-17) is obtained as the product of the
related figure for the SECF scheme by the detection miss for
the [Ga – Gb] pair (i.e., 1.46 × 10-5 ≈ 2-16) as shown in Figure 6.
The fact that Gc shares the factor (1+x) in common with Ga,
means that the detection miss to be considered between
MECF [m = 2] and MECF [m = 3] is about 3 × 10-5 ≈ 2-15.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

These results clearly show the benefit gained from the
application of the MECF scheme we have proposed and
thus substantiate the claim that such a scheme is able to
maintain the rates of control surface runaway in-line with
the stringent integrity level assigned.

7 Concluding Remarks
The development of critical control systems, such as those
considered in this paper that aim at supporting the
deployment of fully digital devices for future flight control
systems (FCS), rely increasingly on the use of fieldbus
networks. In this context, we have focused our attention on
the communication integrity procured by this type of
networks. The analysis of the risks of suitable networks has
shown that the major difficulty was to cope with repetitive
errors that might be induced by the failures of complex
interstage nodes.
In order to achieve the stringent integrity level assigned to
the application, we have proposed an original approach that
departs from the classical end-to-end checking approaches
and solutions relying on redundant topologies for ensuring
communication integrity. Indeed, the specific features of
the class of control systems considered do not ask for a high
detection strength for every message, but rather for a set of
messages. We have taken advantage of this to devise a
solution able to achieve the assigned integrity at reduced
cost. The scheme we propose consists in using distinct error
checking functions for the transmission of successive
messages. This way, the detection capabilities of each
function can be cumulated to cope efficiently with repetitive
errors.
In this paper, we have also shown that cyclic redundancy
codes (CRC) are particularly well suited for implementing
our proposal. Actually, elaborating on the mathematical
foundations on which these codes rely, it has been possible
to identify checking functions that best exhibit
complementary error detection capabilities with respect to
repetitive errors. The basic guideline is to select functions
such as the degree of the product of their common
irreducible polynomials is minimal. Two main results
surface from the validation studies: i) the confirmation of
the criteria proposed for selecting the checking functions
and ii) the evidence that thanks to the proposed solution,
the rate of occurrence of the undesired event (runaway of
the flight control surfaces) can be kept at a value
compatible with the assigned target, i.e., lower than 10-9/h.

Acknowledgements
This work was supported in part by Contract Airbus —
LAAS-CNRS “Integrity of Communications for Advanced
Flight Control Systems”. The authors would like to thank
the anonymous reviewers for their helpful comments and
Geert Deconinck for his constructive feedback while “shep-
herding” the production of the final version of the paper.

References
[1] A. Avizienis, J-C. Laprie, B. Randell and C. Landwehr, “Basic

Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Trans. on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11-33, Jan.-March 2004.

[2] W. W. Peterson and E. J. Weldon, Error-Correcting Codes,
Cambridge, MA, USA: MIT Press, 1972.

[3] P. Koopman and T. Chakravarty, “Cyclic Redundancy Code
(CRC) Polynomial Selection For Embedded Networks,” Proc.
IEEE/IFIP DSN-2004, Florence, Italy, 2004, pp. 145-154.

[4] M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico and
P. Koopman, “Coverage and the Use of Cyclic Redundancy
Codes in Ultra-Dependable Systems,” Proc. IEEE/IFIP DSN-
2005, Yokohama, Japan, 2005, pp. 346-355.

[5] Software Considerations in Airborne Systems and
Equipment Certification, RTCA and EUROCAE Standard
Document no. DO178B/ED-12B, 1992.

[6] Certification Considerations for Highly-Integrated or
Complex Aircraft Systems, SAE Standard Document no. SAE
ARP 4754, 1996.

[7] R. C. Hammett and P. S. Babcock, “Achieving 10(-9)
Dependability with Drive-by-Wire Systems,” Proc. SAE World
Congress, Detroit, MI, USA, 2003. (Draper Report P-4027).

[8] C. Wilwert, Y. Song, F. Simonot-Lion and T. Clément,
“Evaluating Quality of Service and Behavioral Reliability of
Steer-by-Wire Systems,” Proc. ETFA’03, Lisbon, Portugal,
2003, pp. 193-200, (IEEE CS Press).

[9] Functional Safety of Electrical/Electronic/Programmable
IEC Standard Document no. 61508-3 - First edition, 1998.

[10] H. Kopetz, Real-Time Systems - Design Principles for
Distributed Embedded Applications, Springer, 1997.

[11] H. T. Brodtkorp, A Safety Layer for Foundation Fieldbus,
PhD Dissertation, University of Oslo, Norway, 2001.

[12] A. Youssef, High Integrity Communication Networks for
Critical Control Systems Integrating Microsystem Arrays,
PhD Dissertation, INP Toulouse, France, 2005. (In French).

[13] H. Kopetz, “A Comparison of CAN and TTP,” Proc. 15th IFAC
Workshop on Distributed Computer Control Systems (DCCS-
98), Como, Italy, 1998, pp. 117-128.

[14] D. Powell (Ed.) A Generic Fault-Tolerant Architecture for
Real-Time Dependable Systems, Kluwer, 2001.

[15] K. Hoyme and K. Driscoll, “SAFEbus™,” IEEE Aerosp. &
Electr. Syst. Mag., vol. 8, no. 3, pp. 34-39, March 1993.

[16] P. S. Miner, M. Malekpour and W. Torres, “A Conceptual Design
for a Reliable Optical Bus (ROBUS),” Proc. IEEE DASC-21,
Hampton, VA, USA, 2002, pp. 13D3-1-13D3-11.

[17] A. Grnarov, L. Kleinrock and M. Gerla, “A Highly Reliable
Distributed Loop Network Architecture,” Proc. IEEE FTCS-10,
Kyoto, Japan, 1980, pp. 319-324.

[18] B. Hall, K. Driscoll, M. Paulisch and S. Djani-Brown, “Ringing
Out Fault Tolerance. A New Ring Network for Superior Low-
Cost Dependability,” Proc. IEEE/IFIP DSN-2005, Yokohama,
Japan, 2005, pp. 298-307.

[19] H. Jitsukawa and T. Maruyama, “Method of Error Detection
and Correction by Majority,” US Patent no. 4670880, 1987,
available from www.freepatentsonline.com.

[20] S. Mitra and Edward J. McCluskey, “Design of Redundant
Systems Protected Against Common-Mode Failures,” Proc.
IEEE VTS 2001, Marina del Rey, CA, USA, 2002, pp. 190-197.

[21] J. E. Mazo and B. R. Saltzberg, “Error-Burst Detection with
Tandem CRCs,” IEEE Transactions on Communications, vol.
39, no. 8, pp. 1175-1178, August 1991.

[22] C. Berrou and A. Glavieux, “Near Optimum Error Correcting
Coding and Decoding: Turbo-Codes,” IEEE Trans. on Comm.,
vol. 44, no. 10, pp. 1261-1271, 1996.

[23] J. Aidemark, P. Folkesson and J. Karlsson, “A Framework for
Node-Level Fault Tolerance in Distributed Real-time
Systems,” Proc. IEEE/IFIP DSN-2005, Yokohama, Japan,
2005, pp. 656-665.

[24] T. V. Ramabadran and S. S. Gaitonde, “A Tutorial on CRC
Computations,” IEEE Micro, vol. 8, no. 4, pp. 62-75, 1988.

[25] J. Ray and P. Koopman, “Efficient High Hamming Distance
CRCs for Embedded Networks,” Proc. IEEE/IFIP DSN-2006,
Philadelphia, PA, USA, 2006, pp. 3-12.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

