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Abstract. This paper defines a methodology for developing wrappers for real-time
systems starting from temporal logic specifications. Error confinement wrappers are
automatically generated from the specifications of the target real-time system. The
resulting wrappers are the executable version of the specifications, and account for
both timing and functional constraints. They are executed on-line by a runtime
checker, a sort of virtual machine that interprets temporal logic. A reflective approach
is used to implement an observation layer placed between the runtime checker and the
target system. It allows the wrappers to obtain the necessary event and data items from
the target system so as to perform at runtime the checks defined by the temporal logic
specifications. The proposed method has been applied to the use of real-time
microkernels in dependable systems. Fault injection is used to assess the detection
coverage of the wrappers and analyze trade-offs between performance and coverage.

1. Introduction
A wrapper can be defined in general terms as a software component that sits around a
target component or system. Traditionally, wrappers have been used in the security
domain (e.g., [1]) to enforce security policies through firewalls.

The notion of wrapper was initially defined by the DARPA Information Science and
Technology working group, as a software entity composed of two parts: an adapter,
providing additional services to applications, and an encapsulation mechanism,
responsible for linking components. This definition is mostly related to interfacing
heterogeneous systems.

As far as dependability is concerned, the definition of error confinement wrappers
is a crucial issue. The notion of error confinement wrapper was defined by Voas [2,
3] in relation with the use of COTS (Commercial Off-The-Shelf) components in the
design and implementation of dependable systems. The author distinguishes between
input wrappers, which filter syntactically incorrect inputs, and output wrappers, which
submit outputs to an acceptance test. An example of such a type of input wrappers for
Windows-NT applications is provided in [4].

Error confinement wrappers are built from executable assertions [5-7]. Executable
assertions can be used during software development, to aid developers in finding faults in the
system [5], but also when the system is in operation, as part of fault-tolerance
mechanisms [6]. As an example of the latter, the work reported in [8] defines an
efficient platform for running wrappers based on executable assertions of COTS
microkernels.

When executable assertions are derived from formal specifications of the target
system, we talk of runtime verification [9-13]. In these works, a monitor checks
system constraints at runtime against an executable formal description of the system.
The wrapping approach proposed in this paper is related to runtime verification for
error confinement.
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Although the notion of wrapping is well established today, the means available to
support the implementation of wrappers remain very limited. In particular, executable
assertions do provide a nice paradigm to implement error confinement. However, no
wrapping framework has been defined to specify and integrate portable wrappers to
various real-time executive software components.

The aim of this work is to provide a methodology, an implementation framework
and supporting tools, to improve the dependability of real-time executive systems by
means of error confinement wrappers. The methodology aims at translating formal
specifications of system requirements into error confinement wrapping code, and
supports the verification of properties at runtime for a given target executive software.
The benefits of the wrapping are then evaluated by fault injection techniques.

In our framework, the expected behavior of real-time systems is expressed using
temporal logic specifications. Error confinement wrappers are automatically
generated by a compilation process from early defined temporal logic specifications
of the target real-time system services. The wrappers are the executable version of the
specifications, and account for both timing and functional constraints. They are
executed on-line by a runtime checker, a sort of virtual machine that interprets
temporal logic. A reflective approach is then used to implement an observation layer
placed between the runtime checker and the target system. Such a layer allows the
wrappers to obtain the necessary event and data items from the target system so as to
perform at runtime the checks defined by the temporal logic specifications. Fault
injection is then used to evaluate the efficiency of the selected wrappers.

The proposed method has been applied to the use of real-time microkernels in
dependable systems. We use software implemented fault injection (SWIFI) to
characterize the error detection coverage and the tradeoff between performance and
coverage of a set of wrappers generated from the microkernel specifications provided
in [14]. The target real-time system used is composed of the Chorus microkernel [15]
and the mine drainage control system application [16].

Significant research has been done in the field of runtime verification [9-13, 17].
The work in [9] proposes the concept of observer for designing self-checking
distributed systems. The observer is an on-line monitor that checks the system
behavior against an executable model of the system. In the paper, the observer
concept is developed for formal models based on Petri nets and LAN based
distributed systems built on a broadcast service. The approach is applied to a virtual
ring MAC protocol, the Link and Transport layers in an industrial LAN, and the OSI
layering in an open system architecture. Many works have used Real Time Logic
(RTL) to monitor timing constraints of real-time tasks at runtime. For instance, in the
work reported in [11], timing properties of tasks are modeled in RTL and an efficient
runtime monitor is derived from the defined set of constraints. The objective is to
detect timing violations as early as possible. The system is viewed as a sequence of
event occurrences triggered by tasks and sent to the monitor. The latter detects timing
violations by resolving constraints with the actual timestamps of events. The work
reported in [12] defines an out-of-time supervisor for programs whose requirements
specifications consist of nondeterministic SDL models. The system is viewed as a set
of input and output signals that are processed by the supervisor an arbitrary amount of
time after their occurrence (i.e., out-of-time). The approach is exemplified with a
simple telecom application.

A recent work [18] proposes an interesting approach to translate a past time linear
temporal logic formula into an executable algorithm based on dynamic programming.
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By analyzing the execution trace of a running program, this algorithm can determine
whether the program behavior conforms to its specification. The objective was to
monitor the execution of Java programs as part of the NASA PathExplorer project.

The paper is structured as follows. Section 2 provides an overview of the proposed
wrapping framework. Section 3 presents briefly some notions about temporal logic
and describes the runtime checker as well as the process of translating temporal logic
specifications into error confinement wrappers. In Section 4, a reflective approach is
defined to provide the wrappers with the information they need so as to check the
behavior of a real-time microkernel-based system. In Section 5, fault injection is used
to characterize a real-time system encapsulated with a set of microkernel wrappers.
Section 6 sketches the conclusion to the paper.

The proposed framework is composed of four elements: i) the reference, which is the
formal description of the system requirements, ii) the wrapping, which comprises the
wrappers and the runtime checker, iii) the observation, which characterizes how the
behavior of the system is perceived by the wrappers, and iv) the Target Software
Component (TSC), which consists of the target component of the system that is to be
wrapped. Fig. 1 provides an overall description of this framework. It is worth noting
that while this framework is generic and can be used with any TSC, our work focuses
on its application to real-time microkernel-based systems.

Target  
Software  

Component 

Runtime Checker 

WF2 WFn 

Wrappers  
WF1 

Formula F1 
Formula F2 
... 
Formula Fn 

TSC specification in temporal logic 

COMPILATION 

Error signal 

... 

Observation 
(data, clock triggers, events)

Reference 

Wrapping 

Observation 

TSC 

Fig. 1. Overall framework

The reference consists of the specification of a set of temporal and functional properties of
the TSC that are to be verified at runtime (NB. the issue of proving the specification correct
is out of the scope of the paper). This specification is given as a set of formulas (F1, F2, …,
Fn in the figure) expressed in future time linear temporal logic [19], which has proved to be a
suitable logic for specifying properties of reactive and concurrent systems. The formulas of
the specification are written in the form of assertions (i.e., antecedent ⇒ consequent, which
means that the consequent is not checked until the antecedent is true). We have extended
some temporal operators of standard temporal logic to manage clock ticks and asynchronous
events explicitly. The so-extended temporal logic has been called CETL (see Section 3.1).

A salient feature of our approach is that the wrapping software is divided into two
layers, consisting of the runtime checker and the wrappers (Section 3). The runtime
checker is a sort of virtual machine in charge of executing the wrappers (WF1, WF2,
…, WFn in Fig. 1). Essentially, the runtime checker is an interpreter of temporal logic

2. Wrapping Framework
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that raises an error signal whenever the consequent of an assertion is evaluated to
false. Conversely, the wrappers are the executable version of the specification. Their
role is to detect timing and value failures of the TSC operation at runtime. We have
developed a compiler that automatically translates each assertion into a single
wrapper in C language (e.g., F1 into WF1, F2 into WF2, etc.). The compilation
process mechanizes the task of writing wrappers from specifications, so it helps make
the wrapper code more robust.

The observation layer is in charge of providing the necessary TSC information to
the runtime checker and the wrappers. Such an information may consist of messages
[9], event occurrences [11], signals [12], or states [13]. Indeed, it depends very much
on the formalism used to describe the TSC requirements. In our case, temporal logic
is built from predicates that describe the internal state of the TSC at different instants
of time signaled by clock triggers and event occurrences. Accordingly, the type of
information we need to observe correspond to internal TSC data, clock triggers and
asynchronous events, as indicated in Fig. 1. Note also that the observation layer
makes the runtime checker and the wrappers independent from the particular
implementation of the underlying TSC. In other words, when different
implementations of the same TSC are to be tested (e.g., different implementations of
the same POSIX interface), only the observation layer must be modified. We have
used a reflective approach [20] to develop such an observation layer, which is
described in Section 4.2 in the framework of real-time microkernels.

Finally, note that the wrapping code (wrappers and runtime checker) can run either
in a separate machine or in the same target machine. In the first case, the wrapping
code does not introduce any temporal overhead, and can also run asynchronously with
the target component. In this paper, we deal with the second case, which is, in our
opinion the most complex situation, given that the temporal overhead introduced by
the wrapping code has to be considered. During the testing phase (see Section 5.1),
we eliminate such an overhead by means of the evaluation tool used
(MAFALDA-RT). In this way, the original execution times of the system are
preserved, and it is possible to obtain precise evaluation measurements. During the
operational phase, however, the wrapping overhead must be taken into account so as
to check whether task deadlines are met (see Section 5.2).

This section describes the way temporal logic specifications are translated into wrappers.
First, we introduce the extensions done to standard future time linear temporal logic.
Wrappers are executed on-line by the runtime checker. Accordingly, we then describe this
important component of our approach. Finally, we illustrate with a simple example the
process of translating an assertion into an error confinement wrapper.

Linear temporal logic is built on the notion of sequence of states, and does not take into
account the type of event that originates a state change. As we are interested in differentiating
several types of events triggering a state change, we have extended some of the standard
operators of linear temporal logic (i.e., operators next ( ) and sometime ( )) in order to deal
with two types of events: clock triggers and asynchronous events. Clock triggers (or ticks)
correspond to the interrupts triggered by the clock of a real-time system (normally, every
10 ms.). Asynchronous events correspond to specific actions leading to state changes in an
asynchronous way (for instance, system calls issued by real-time tasks or interrupts triggered

3. From Temporal Logic Specifications to Error Confinement Wrappers

3.1. The Temporal Logic CETL
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by external events, signals or messages). The extended operators that we are considering
are the following:  (next state triggered by a clock trigger),  (next state triggered
by an asynchronous event), [e] (some future state triggered by the asynchronous
event called e), [e]

<k
 (some future state triggered by the asynchronous event called e

before the occurrence of k clock triggers).
The linear temporal logic extended with these temporal operators is referred to in

the paper as CETL, for Clock and Event driven Temporal Logic. Note that this type of
extension is a common practice in the domain of runtime verification. For instance, in
[18], past time linear temporal logic is extended with four new temporal operators
(called monitoring operators), which are more intuitive and compact than the
standard temporal operators. The authors call this extended logic ptLTL. In the
domain of static verification, the work reported in [21] extends operator until of future
time linear temporal logic to operator during, which is more appropriate to check
temporal properties of fault tolerant circuits. The so-extended temporal logic is called TL.

Our main objective in this paper is to show how executable algorithms (i.e., the
wrappers), that are derived from specifications can be efficiently run by a runtime
checker, in order to check system properties on-line. Thus, we mainly focus on the
practical issues of our approach. Due to space limitation, the complete definitions and
semantics of CETL are not included in this paper; the interested reader can refer
to [22]. Nevertheless, it is worth noting that an important property of CETL is that the
extended operators are equivalent to the standard ones, as long as information
concerning the type and the number of triggered states is available.

As any temporal logic, CETL is built from temporal operators (e.g., see the
operators previously identified) and a first order logic. The first order logic is built
from Boolean predicates combined with logical operators (∧,¬, etc.), predicates
which in turn are built from variables combined with relational (<, ≤, etc.) and
arithmetic (+, –, etc.) operators. Moreover, in temporal logic a difference is usually
made between state variables and constant variables. State variables refer to the
current state of the target system, and hence their value can vary between states.
However, the value of a constant variable is fixed all time, and there exists a (implicit)
universal quantification over all the constant variables defined in a formula.

Essentially, the runtime checker supports the execution of the wrappers by
interpreting the temporal logic CETL. Accordingly, the runtime checker provides an
interface to the wrappers with services for managing the temporal operators
(Table 1a), the predicates of the antecedent and the consequent of an assertion
(Table 1b), and the constant variables (Table 1c). Note that, an error is signaled by the
runtime checker, when a predicate of the consequent of an assertion is evaluated to
false (service ASSERT).

The wrappers are executed concurrently by the runtime checker. Concurrency is
made possible thanks to the functional decomposition of a wrapper into several tasks
that are to be run at different instants. Internally, the runtime checker maintains a sort
of process context block for each wrapper, which characterizes the state of the
execution of the wrapper at different instants. Such an information is referred to as
wrapper context, and corresponds to the values of the constant variables of a formula
for such a particular execution of the wrapper. The related services are listed in
Table 1c.

3.2. Runtime Checker
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Services (C language) Meaning
a) Management of temporal operators (F is a CETL formula, and e is an event identifier)
NEXT (k, F, context); k(F), F is true at the kth state
NEXT_CLOCK (k, F, context); k(F), F is true at the kth state triggered by a tick
NEXT_EVENT (k, F, context); k(F), F is true at the kth state triggered by an event
SOMETIME (e, F, context); [e](F), F is true in a future state triggered by event e
K_SOMETIME (e,k,F,context); [e]<k(F), F is true in a future state triggered by event e,

before the occurrence of k ticks
b) Management of predicates
CONDITION (predicates); Evaluates predicates of the antecedent
ASSERT (predicates); Evaluates predicates of the consequent

and signals an error when false
c) Management of the wrapper context
NEW_CONTEXT (); Creates a context from a static memory pool
CONTEXT_SET(value,context,index); Assigns parameter value to context[index]
CONTEXT_GET (context, index) Returns the contents of context[index]
DELETE_CONTEXT (context); Deletes a wrapper context

Table 1. Services provided by the runtime checker

The translation of a CETL assertion into an algorithm is based on a simple
rewriting process. Indeed, the original CETL assertion is just rewritten into an
algorithm that can be effectively executed by the runtime checker. This rewriting
process is carried out by a compiler, which automatically translates a CETL assertion
into its corresponding wrapper. The compiler has been developed using PCCTS, a C
version of ANTRL [23]. Instead of giving the long and tedious list of the rewriting
rules used by the compiler, we illustrate the rewriting process by means of a simple
example. Our objective here is that the reader has a general but precise idea of how
the global rewriting process works.

Table 2 shows the rewriting of a CETL assertion into an error confinement
wrapper. Let us consider assertion AS defined in Table 2a. The antecedent of
assertion AS is represented by the term [e](a=t ∧ a=u), while its consequent
corresponds to (a<u ∧ 2(a>u)). Variable a is a constant integer number. Note that
this way of specifying constant variables is a standard notation in temporal logic.

Assertion AS verifies that, it is always true ( ) that, whenever event e occurs and
system variable t is equal to system variable u , at the next occurrence of an
asynchronous event, the old value of t (represented by variable a) is lower than u, and
two clock triggers later, it is higher than u. The pseudo algorithm in Table 2b
implements assertion AS by using runtime checker services. Note that symbol ⇒ does
not correspond to the standard logical implication, but it means that the consequent of
an assertion is not checked until the antecedent is true. For didactic reasons, we
provide an equivalent pseudo algorithm in Table 2c that illustrates the behavior of the
runtime checker services when executing algorithm in Table 2b. The rewriting
process works globally as follows. In the pseudo algorithm shown in Table 2b, each
temporal operator of assertion AS is substituted by a call to a temporal operator
service of the runtime checker (SOMETIME, NEXT_EVENT, NEXT_CLOCK); the
actual values of the variables are obtained by executing a get_ instruction (get_t,
get_u); predicates of the antecedent are assessed by service CONDITION, while those
of the consequent are evaluated by service ASSERT. Note the particular case of
variable a, which is assigned the value of variable t and is never modified in the
sequel.

3.3. Error Confinement Wrappers
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a) Assertion AS
∀a ∈ Ζ, ( [e](a = t ∧ a = u) ⇒ (a < u ∧ 2(a > u)))

b) Pseudo algorithm
with runtime checker services

c) Plain pseudo algorithm
equivalent to assertion AS of a)

Function AS
int a, u;
loop

/* Antecedent */
SOMETIME (e);
a = get_t ();
t = get_t ();
CONDITION (a == t);
u = get_u ();
CONDITION (a == u);

/* Consequent */
NEXT_EVENT (1);
u = get_u ();
ASSERT (a < u);
NEXT_CLOCK (2);
u = get_u ();
ASSERT (a > u);

end loop

Function AS
int a, u;
loop

/* Antecedent */
wait_event (e);
a = get_t ();
t = get_t ();
if (a == t)

u = get_u ();
if (a == u)

/* Consequent */
wait_event (any);
u = get_u ();
if not (a < u)

signal_error ()
else

wait_clock_triggers (2);
u = get_u ();
if not (a > u)

signal_error ()
end if

end if
end if

end if
end loop

d) Error confinement wrapper (C language)
int start () {return SOMETIME (e, ANT, null) ;}
/* Antecedent */
int ANT (Context* context) {
int a = get_t ();
int t = get_t ();
CONDITION (a == t);
int u = get_u ();
CONDITION (a == u);
context = NEW_CONTEXT ();
CONTEXT_SET (a, context, 1);
return NEXT_EVENT (1, CON_1, context);

}
/* Consequent */

int CON_1 (Context* context) {
int a = CONTEXT_GET (context, 1); /* Retrieve data from the context */
int u = get_u (); /* Obtain TSC data */
ASSERT (a < u); /* Request the evaluation of predicates */
return NEXT_CLOCK (2, CON_2, context); /*Set the next temporal operator*/

}
int CON_2 (Context* context) {

int a = CONTEXT_GET (context, 1);
int u = get_u ();
ASSERT (a > u);
DELETE_CONTEXT ();

}

Table 2. From a CETL assertion to a wrapper

To handle concurrent evaluations of wrappers at runtime (in a similar way to the
concurrent execution of real-time tasks), algorithm in Table 2b must be divided into
several routines, one for each temporal operator defined in assertion AS. The resulting
algorithm is provided in Table 2d, and corresponds to the error confinement wrapper
for assertion AS. Routine ANT represents the antecedent, routines CON_1 and CON_2
represent the consequent, plus the initialization function start). In each routine, a
group of predicates is to be checked together against the state of the system at a given
instant. Note that the wrapper in Table 2d introduces the notion of wrapper context.
The wrapper context is composed of the set of constant variables defined by a
formula. Thus, the wrapper context for assertion AS is composed of constant variable
a. The wrapper context is retrieved at the beginning of each routine (e.g., see routines
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CON_1 and CON_2), and extended (when applicable) at the end of the routine. The
exception to this is the first routine of the antecedent (routine ANT), where the
wrapper context is not retrieved but created for the first time. The last routine of the
consequent (routine CON_2) deletes the context. Note that the context can be deleted
before by the runtime checker, if a predicate is evaluated to false.

The runtime checker executes a wrapper according to the algorithm shown in Fig. 2.
For example, a run of routine CON_1 in Table 2d is as follows:
−  Upon receipt of any event, routine CON_1 executes and retrieves the wrapper
context, composed of variable a (int a = CONTEXT_GET (context, 1)).

− The value for variable u is obtained from the TSC (int u = get_u ()).
− Predicate a < u is evaluated (ASSERT (a < u)).
− Finally, the subsequent temporal operator is set (NEXT_CLOCK (2, CON_2, context)).

1. Upon receipt of either a clock trigger or an event occurrence, check whether a wrapper is waiting for it.
2. If not, return control to the TSC.
3. If yes, for each wrapper:

3.1. Let the wrapper retrieve the context (if applicable).
3.2. Let the wrapper obtain the data needed for the assessment of the predicates from the TSC.
3.3. Evaluate the predicates.

3.3.1. If a predicate part of the antecedent is false, finish the wrapper instance (no error signal is raised).
3.3.2. If a predicate part of the consequent is false, raise an error signal and finish the wrapper instance.

3.4. Let the wrapper extend the context (or create or destroy it when applicable).
3.5. Set up the subsequent temporal operator (if applicable).

4. Return control to the TSC.

Fig. 2. Execution steps carried out by the runtime checker

A microkernel is an essential component of a system responsible for providing basic
services to upper layers, such as scheduling, synchronization, process management or
time management. This section describes how microkernel services specified in
CETL can be verified in practice by means of error confinement wrappers. A simple
example illustrates all the steps described in Fig. 1 when the TSC is a real-time
microkernel. We first introduce a simple kernel specification and its corresponding
error confinement wrapper. Then, we describe the approach used to observe the
internal state of the microkernel. Finally, we exemplify how wrappers execute with
the help of the runtime checker.

Let consider a typical kernel service, namely Create (Fig. 3). Fig. 3a gives the
CETL specification for the creation of higher priority tasks by means of service
Create. A comprehensive temporal logic specification of real-time microkernels can
be found in [14]. Fig. 3b provides the wrapper generated by the CETL compiler for
assertion Create. The interpretation of assertion Create is as follows. When the
running task, represented by tha, requests the creation of a higher priority task thb, the
kernel routine corresponding to service Create is then executed (indicated by event
↑Create). Some time later, the kernel inserts the newly created task thb into the ready
queue (event ↑signal). As the child task has a higher priority than its parent, the latter
is preempted after a context switch operation (event ↓context_switch). As a result,
child task thb is elected to run (predicate running = thb), while parent task tha is
inserted back into the ready queue (predicate tha ∈ ready (prio(tha))).

4. Wrapping Real-Time Microkernel-Based Systems

4.1. Compiling kernel Specifications into Wrappers: Example
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∀tha, thb ∈ Ζ, ( [↑Create] (created_th = thb ∧ running = tha ∧ prio(thb) > prio(tha)
∧ [↑signal] (signaled_th = thb ∧ running = tha))
⇒ (event = ↓context_switch ∧ running = thb ∧ tha ∈ ready (prio(tha))))

a) Assertion Create

int start () {
return SOMETIME (ev_begin_Create, ANT_1, null);

}
int ANT_1 (Context* context) {

int created_th = get_created_th ();
int thb = get_created_th (); 
CONDITION (created_th == thb);
int running = get_running ();
int tha = get_running ();
CONDITION (running == tha);
CONDITION (prio(thb) > prio(tha));  
context = NEW_CONTEXT ();
CONTEXT_SET (thb, context, 1);
CONTEXT_SET (tha, context, 2);
return SOMETIME (ev_begin_signal, ANT_2, context);

}
int ANT_2 (Context* context) {

int thb = CONTEXT_GET (context, 1);
int tha = CONTEXT_GET (context, 2);
int signaled_th = get_signaled_th ();
CONDITION (signaled_th == thb);
int running = get_running ();
CONDITION (running == tha);
return NEXT_EVENT (1, CON, context);

}
int CON (Context* context) {

int thb = CONTEXT_GET (context, 1);
int tha = CONTEXT_GET (context, 2);
int event = get_event ();
ASSERT (event == ev_end_context_switch);
int running = get_running ();
ASSERT (running == thb);
ASSERT (isInQueue (tha, ready (prio(tha))));;

}

b) Wrapper Create

Fig. 3. Assertion Create and its associated wrapper

We describe now how the internal state of a microkernel can be observed using
reflection [20]. In a reflective approach, the target system delivers events to the
wrappers (reification) and the wrappers get the necessary information from the target
system (introspection). In addition, reflection also allows the behavior of the target
system to be controlled using mechanisms based on the concept of intercession. These
notions are refined in the next paragraphs.

In a reflective system [24, 25], a clear distinction is made between the so-called
base-level, running the target system, and the metalevel, responsible for controlling
and updating the behavior of the target system. Information is provided from the base-
level to the metalevel, that becomes metalevel data or metainformation. Any change
in the metainformation is reflected to the base-level. The distinction made between
the base-level and the metalevel provides a clear separation of concerns between the
functional aspects handled at the base-level and the non-functional aspects (here, error
detection and error confinement) handled at the metalevel.

Fig. 4 illustrates the various layers, components and mechanisms that make up the
reflective framework. This framework complies with and extends the principles
introduced in [8]. Here, the base-level is the real-time microkernel, while the
metalevel (the metakernel) is composed of both the wrappers and the runtime checker.
The association of both layers leads to the notion of reflective real-time microkernel.

4.2. Using Reflection to observe the Target System
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Fig. 4. Reflective framework

The kernel provides the necessary observation through the so-called reflection
component, which is a special component added to the target microkernel. The
reflection component is responsible for the management of the intercepted events
(i.e., reification), the observation of internal items (i.e., introspection), and the
required actions down into the real-time kernel (i.e., intercession). The reified events
are delivered as upcalls to the metakernel, whereas introspection and intercession are
provided by the reflection component through the so-called metainterface. The
metainterface is defined as a set of services providing access to the necessary
information from and actions into the real-time kernel. It is worth noting, however,
that the metainterface we define in this section only considers introspection services.

Reification is carried out using upcalls, a jump instruction inserted into the kernel
that diverts the execution flow from the kernel to the metakernel, thus not triggering
any context switch. For example, assertion Create defines event ↑Create, which
corresponds to the start of the kernel service that carries out the execution of system
call Create. Accordingly, an upcall is inserted at the beginning of the Create routine
of the kernel, which takes as an input parameter the identifier of event ↑Create. When
the kernel enters routine service_create, the upcall is executed and diverts
execution to the runtime checker. Events ↑signal and↓context_switch of assertion
Create are reified in a similar way — see hereafter (left).

service_create (...) {
upcall (ev_begin_create);

...
}

clock_handler (...) {
upcall (clock_trigger);

...
}

Clock triggers can also be reified by inserting an upcall at the beginning of the
clock handler routine of the kernel as shown above (right).

On the other hand, introspection consists in obtaining the necessary information
through the metainterface. The definition of the metainterface is directly derived from
the kernel specification. Indeed, the specification points out the necessary events, data
structures and functions of the kernel that must be observed and controlled. To
illustrate this point, Table 3 lists the set of services of the metainterface corresponding
to assertion Create.

Temporal logic Metainterface
created_th int get_created_th ()

running int get_running ()

signaled_th int get_signaled_th ()

event int get_event_id ()

prio(th) int prio (int th)

ready (level) int ready (int level)

th ∈∈∈∈ queue int isInQueue (int th, int queue)

Table 3. Metainterface necessary to wrapper Create

262 Manuel Rodríguez  et al.



Porting the kernel wrappers to other systems depends on the ability of supplying
the microkernel with the adequate reflection component. Indeed, the reflection
component makes both the wrappers and the runtime checker independent from the
underlying kernel. The specification of the reflection component, comprising both the
metainterface and the identified upcalls, remains the same whenever the same set of
assertions is used. For instance, the reflection component for assertion Create is fully
defined by services in Table 3 plus the associated upcalls. Therefore, to port wrapper
Create to another system it is only necessary to recompile the runtime checker on the
new system, as long as the target kernel provides the corresponding reflection component.

This section illustrates the execution of error confinement wrappers and the checks
they perform on the target system. The target system is represented in Fig. 5 by a set
of real-time tasks executing concurrently and requesting kernel service Create. Fig. 5a
represents the original execution of such tasks together with the events triggered into
the microkernel, while Fig. 5b represents the same set of tasks extended with the
runtime checker, which executes wrapper Create. The horizontal axis represents the
pass of time. The vertical axis represents real-time tasks with respect to their priority
(τ1 has higher priority than τ2, and so on). A white box represents the execution of a
task in user mode, while a pattern box represents its execution in kernel mode. A task
that enters ready state is represented by a circle on the bottom left corner of the box; a
circle on the top right corner means that the task leaves the ready state (e.g., task τ3 is
ready to run during the whole interval represented in Fig. 5a).

↑↑↑↑Create (CRT_1)

↓↓↓↓context_switch (CS_3)

↑↑↑↑signal
(S_1)

↓↓↓↓context_switch (CS_1)

↓↓↓↓context_switch
(CS_2)

↓↓↓↓context_switch 
(CS_4)

ττττ1

ττττ2

ττττ3

t0 t1 t2 t3 t4 t5 t6 t7 t8
a) Original execution of tasks

ττττ1

ττττ2

ττττ3

CRT_1 S_1 CS_3

CRT_1

CS_1

CS_2 S 1

CS_3

CS_4

runtime
checker

b) Verification by the runtime checker

Fig. 5. Execution of wrapper Create by the runtime checker

4.3. Executing the Error Confinement Wrappers
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t0 Task τ3 is running in user mode.

t1 τ3 requests the creation of a higher priority task (τ1) by means of system call Create. Event CRT_1 is
triggered when task τ3 enters service Create in kernel mode.

t2 A higher priority task τ2 preempts tasks τ3. Task τ2 obtains the processor after a context switch (event CS_1).
t2-t3 Task τ2 executes.
t3 Task τ2 suspends and task τ3 is given the processor after a context switch (event CS_2). Task τ3 continues

execution of service Create in kernel mode.

t4 Creation of task τ1 is completed (event S_1).
t5 Because priority of τ1 is higher than priority of τ3, the latter is preempted by its child, which obtains the

processor after a context switch (event CS_3).

t5-t6 Child task executes.

t6 Child task ends execution. Its parent obtains the processor after a context switch (event CS_4).

t7 Task τ3 finishes executing service Create in kernel mode, and continues execution in user mode.

t8 Task τ3 ends execution.

Table 4. Original execution of tasks

The detailed behavior of the original set of tasks represented in Fig. 5a is described
in Table 4. Wrapper Create is executed by the runtime checker during the intervals
represented in Fig. 5b, labeled by the kernel event at the origin of the activation of the
runtime checker. Remember that the runtime checker is a sort of virtual machine in
charge of executing wrappers, which is activated after the occurrence of an event
triggered within the target system. Note also that the runtime checker does not
preempt, but simply interrupts, the task executing at the moment of its activation, so
no context switch is triggered.

In other words, the runtime checker executes at the highest priority on behalf of the
running task. In consequence, checks carried out by the wrappers by means of the
runtime checker do not modify the original scheduling of tasks, as shown in Fig. 5b.
However, the time needed for the wrappers to execute have to be taken into account
during the operational phase of the system, in order to check that task deadlines are
not violated because of the additional temporal overhead introduced by the wrappers
(see Section 5.2).

Each activation of the runtime checker leads thus to the execution of one or several
wrappers concurrently. The steps followed by the runtime checker to execute wrapper
Create, as well as the checks performed by this wrapper, are detailed in Table 5.

Events Runtime checker actions

Activated Expected Wrapper Routine Cxt Expressions checked by services
CONDITION and ASSERT Result

… CRT
CRT_1 CRT Create ANT_1 created_th == τ1 TRUE

running == τ3 TRUE
prio(τ1) > prio(τ3) TRUE

CS_1 S, CRT
CS_2 S, CRT
S_1 S, CRT Create ANT_2 c1 signaled_th == τ1 TRUE

running == τ3 TRUE
CS_3 Any Create CON c1 event == CS TRUE

running == τ1 TRUE
isInQueue (τ3, ready (prio(τ3))) TRUE

CS_4 CRT
… CRT

Table 5. Event occurrences and actions carried out by the runtime checker to verify Create
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Column Activated event contains the various events triggered during the execution
of the system, while column Expected event corresponds to the events waited for by
the runtime checker at a given moment. Columns Wrapper, Routine and Ctx refer
respectively to the name of the wrapper activated, to the wrapper routine executed,
and to the wrapper context used. Column Expressions checked reports the
verifications performed by the wrappers by means of services CONDITION and
ASSERT of the runtime checker. Note that constant variables tha and thb have been
substituted by the task identifier they represent (τ1, τ2, etc.), depending on the
information contained into the corresponding wrapper context.
−  Initially, given that Create is the only wrapper installed, the single event expected
by the runtime checker is ↑Create (CRT).

− At the occurrence of event CRT_1, routine ANT_1 of wrapper Create is executed.
As the child task has higher priority than its parent, event ↑ signal  (S) is
programmed. Context c1 is then allocated with information tha = τ3 and thb = τ1.
Next, the runtime checker suspends and waits for events ↑Create and ↑signal.

− Events CS_1 and CS_2 are ignored since they are not expected.
−  Event S_1 triggers routine ANT_2 of wrapper Create under wrapper context c1.
The antecedent of Create is then evaluated to true, since the task signaled during the
execution of τ3 is indeed τ1. The runtime checker waits then for any event.

−  At the occurrence of the next event (CS_3), the consequent of Create is evaluated
under context c1. It is verified that: the event triggered is a context switch, the
running task is τ1, and task τ3 has been preempted into the ready queue. Since this
expression evaluates to true, assertion Create succeeds and no error is thus signaled.

− Finally, event CS_4 is ignored and the running checker waits for event ↑Create.

We characterize the failure coverage and the performance of wrappers in a real-time
system consisting of the Chorus microkernel [15] and the mine drainage control
application [16]. The Chorus kernel was protected by a set of error confinement
wrappers derived from an extended kernel specification (see [14]). Note that we first
translated these specifications into CETL before compiling them into wrappers. In
total, 31 wrappers were used, corresponding to 18 scheduling assertions, 2 timer
assertions and 11 synchronization assertions.

The mine drainage control application [16] was used by a number of authors (e.g.,
[26, 27]). Table 6 shows the main attributes of the tasks of this application. The
objective is to pump to the surface mine water collected in a sump at the bottom of the
shaft. The main safety requirement is that the pump should not be operated when the
level of methane gas in the mine reaches a high value to avoid an explosion. The level
of methane is monitored by task CH4 Sensor. Other environment parameters monitored
are the level of carbon monoxide (task CO Sensor) and the flow of air in the mine (task
Air-Flow Sensor). The flow of water in the pipes of the pump is checked by task Water-
Flow Sensor, whereas the water levels in the sump are detected by task Hlw Handler.

Task Type Deadline (ms) Period (ms) Priority
CH4 Sensor Periodic 30 80 10
CO Sensor Periodic 60 100 8

Air-Flow Sensor Periodic 100 100 7
Water-Flow Sensor Periodic 40 1000 9

Hlw Handler Sporadic 200 6000 6

Table 6. Attributes of tasks

5. Assessment by Fault Injection
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MAFALDA-RT [28, 29] was used to assess the error detection coverage and the
performance of the kernel wrappers. The tool has been developed to encompass the
assessment by fault injection of both hard and soft real-time systems. It provides a
facility to eliminate time intrusiveness by controlling the hardware clock of the target
system. Such a facility was used to eliminate the temporal overhead introduced both
by the tool itself and by the error confinement wrappers. Therefore, tasks were not
aware neither of the execution of tool nor of the wrappers from a temporal viewpoint.
Note that we are using the wrappers in a testbed system, not in the final system; we
are thus interested in evaluating wrapper coverage and wrapper performance without
increasing the original execution time of the tasks.

Table 7 briefly describes the three different fault injection campaigns carried out
with and without wrappers. MAFALDA-RT selects randomly the injection target
(bits, parameters, etc.) and checks whether the corrupted element is accessed during
the experiment, i.e., whether the fault is activated (only activated faults are considered).

↓↓↓↓ Target  components Injected fauts →→→→ Bit-flip Specific (Table 8)
Priority Ceiling Protocol (PCP) pPCP (parameters of PCP system calls) —

Timers (TIM) mTIM (code segment of TIM) sTIM

Table 7. Target components and types of injected faults for the three campaigns carried out

The targets of the injected faults were the Priority Ceiling Protocol component
(PCP) and the timers component (TIM) of the microkernel. Faults based on bit-flips
were uniformly injected over the memory image of the PCP parameters stack
(campaign pPCP) and of the timers code segment (campaign mTIM). The specific
faults considered in campaign sTIM are specified in Table 8.

#1 Random corruption by single bit-flip of the expiration time of a randomly selected sporadic timer.
#2 Avoiding once the insertion of a randomly selected sporadic timer into the timeout queue.
#3 Avoiding once the deletion of a randomly selected timer from the timeout queue.
#4 Random corruption by single bit-flip of the expiration time of a randomly selected periodic timer.
#5 Avoiding once the insertion of a randomly selected periodic timer into the timeout queue.
#6 Avoiding once the expiration of a randomly selected timer.

Table 8. Specific high-level faults injected in sTIM (only one fault injected by experiment)

Fig. 6 reports both the first fault manifestations observed for the standard kernel
(campaigns pPCP, mTIM, sTIM), and the corresponding wrapper detection coverage
observed for the wrapped version of the kernel (campaigns wrap-pPCP, wrap-mTIM,
wrap-sTIM). Few errors impaired the system when the parameters of the
synchronization system calls were corrupted (campaign pPCP), because of the high ratio
of correct experiments observed (79.7%). This is mostly due to the corruption of unused
bits within parameters (random selection by the fault injection tool). Conversely, the
consistency checks implemented within the API (represented by class error status)
detected most errors (19.4%). Few errors (0.9%) could thus propagate and lead to the
failure of the application (classes deadline missed, incorrect results, application hang
and system hang). In the wrapped version of the kernel (campaign wrap-pPCP), the
wrappers detected the same class of errors previously detected by means of an error
status with a shorter latency. All of them were related to the corruption of a parameter
handling a critical section identifier. Obviously, wrappers cannot improve here error
detection coverage, since it was already good in the standard kernel.

5.1. Error detection Coverage
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• The most critical situation occurs when an error propagates to the application, making it fail either in the time or in the

value domain. Timing failures are represented by classes Deadline missed, Application hang and System hang, while
value failures are represented by class Incorrect result.

• The error detection mechanisms of the microkernel are represented by classes Alarm, Error status and Exception.
• Class Wrapper detection represents timing and value errors detected by the wrappers.
• Class Correct represents the case when both the time production and the value of the application results are correct.

Fig. 6. First fault manifestations and wrapper detection coverage

However, if wrappers are to be used as a support to recovery actions, a wrapper
profile as the one represented in Fig. 6b can result interesting.

When the code segment of the timers component was subjected to injection
(campaign mTIM), more failures occurred (5.4%) than in campaign pPCP. Still, the
majority of the errors were detected by means of an exception (50.5%). Indeed, the
kind of errors induced by bit-flips affecting code segment cells corresponds very
frequently to low-level errors readily detectable by exceptions (e.g., incorrect
operation codes, segmentation faults, etc.). This is the main reason why the wrappers
were little activated (3.7%) in campaign wrap-mTIM (also because only first
detections are reported). Indeed, the used wrappers have been developed from a high
level specification (see [14]), and the type of problems they detect are accordingly
also complex. Since most bit-flips were intercepted by exceptions, they could not
propagate and originate complex errors.

For that reason, we carried out a new fault injection campaign, sTIM, where the
injected faults corresponded to the specific set of high level errors specified in Table 
8. As shown by Fig. 6e, 28.7% of the injections led the application to issue incorrect
results. Here, the injected faults are out of reach of the exception mechanism. Fig. 6g
indicates that 97% of the failures were caused by fault types #5 and #6. Indeed, both
of them prevented a periodic task, required for the correct computation of results,
from being released. Interestingly, the wrappers avoided all the failures, but also caught
all errors that did not previously lead to any observable abnormal situation (Fig. 6f).

In summary, we observed that the error detection mechanisms embedded in the
standard kernel provided a high detection coverage with regard to errors caused by
bit-flips in system call parameters and in code segment cells. It was thus expected that

Wrapper detection 100%

267Wrapping Real-Time Systems from Temporal Logic Specifications     



the improvement provided by error confinement wrappers be either redundant (as in
campaign wrap-pPCP) or poor (as in campaign wrap-mTIM). However, using a
different fault model, the standard kernel was unable to avoid the propagation of
errors to upper layers that provoked an important rate of application failures. The
coverage of the error confinement wrappers was then demonstrated, since they
systematically prevented the application from misbehaving.

Measuring the execution time of the wrappers is of primary importance to
determine the feasibility of the wrappers with respect to the timing requirements of
the real-time application. During the fault injection experiments carried out with
MAFALDA-RT, the execution time of the wrappers could be eliminated (see
Section 5.1 and [28]). However, when wrappers are to be integrated into the final
system, their execution times must be explicitly taken into account.

Each release of the runtime checker leads to the concurrent execution of several
instances of the wrappers. The maximum number of such wrapper instances running
concurrently at any time was 9, even though a peak of 47 wrapper instances ready to
run was observed. Table 9 shows the worst case overhead (OVH) and the worst case
number of releases (REL) of the runtime checker observed in a task instance (i.e.,
interval between two consecutive releases of a task). The target system used was
based on a Pentium running at 75Mhz.

Task OVH (ms) REL OVH/REL
CH4 Sensor 18.119 32 0.566
CO Sensor   6.909 15 0.461

Air-Flow Sensor   6.884 15 0.459
Water-Flow Sensor   6.814 15 0.445

Hlw Handler 13.327 28 0.476

Table 9. Overhead (OVH), releases (REL) and ratio (OVH/REL)

The overhead depends on the number of releases of the runtime checker, i.e., the
higher the number of runtime checker releases, the higher the overhead. Conversely,
the higher the number of wrapped kernel services requested by a task, the higher the
number of releases of the runtime checker. For instance, task CH4 Sensor presents the
maximum overhead because it involves more wrapped operations than the other tasks.
This means that the runtime checker overhead does not depend on the duration of a
task, but rather on its behavior profile, i.e., the type and number of services the task
requests to the kernel. For instance, the total overhead introduced by the runtime
checker would be the same for two tasks with different computation times but with
the same type and number of wrapped services requested. Hence, the overhead of the
runtime checker is independent from the execution time of the tasks. This is supported
by the low variation of ratio OVH/REL (Table 9). This indicates that a single release of
the runtime checker always incurs a similar overhead, no matter the task on behalf of
which it is executed. As a result, since the worst case execution times of the wrappers
and the runtime checker can be known a priori (e.g., using static code analysis), the
exact overhead induced by a given wrapped task can be determined beforehand by
analyzing its behavior profile. The overhead can thus be tuned either by selecting the
minimum set of wrappers that minimize the ratio between the overhead and the error
detection coverage, or by deciding on-the-fly, whether enough spare time is available
in the system to wrap a service requested by a task. The latter approach is similar to
the way aperiodic servers accept or reject the execution of aperiodic tasks [30].

5.2. Worst Case Performance Measurements
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6. Conclusion
This paper proposed a methodology, a framework and supporting tools (e.g., fault
injector, temporal logic compiler, etc.) for wrapping real-time systems from temporal
logic specifications. System specifications expressed in linear temporal logic are
automatically translated by a compiler into error confinement wrappers. Temporal
logic provides a consistent way (few operators and state variables in the predicates)
for describing the specifications of traditional executive functions. The case study
illustrated this feature by considering complex functions, such as scheduling of
real-time tasks.

A relevant attribute of our approach is that the wrappers are executed concurrently
by a runtime checker, a sort of virtual machine that interprets temporal logic. The
reflective approach provides the wrappers with the information they need to check the
system behavior at runtime. The reflective software layer makes both the wrappers
and the runtime checker independent from the underlying system: only this layer must
be modified when different implementations of the same system are to be checked
(e.g., different implementations of the same POSIX interface).

This methodology was applied to the wrapping of real-time microkernel-based
systems. The behavior of the wrappers and the runtime checker was illustrated with a
significant example, based on the verification of a well-known microkernel service
(task creation and scheduling). It showed that the execution of the wrappers does not
alter the original scheduling of the real-time tasks running on the target system.

The MAFALDA-RT tool was used to evaluate by fault injection (both bit flips and
specific faults) a real-time system composed of the Chorus microkernel and a mine
drainage control application. In that case, the error detection mechanisms embedded
in the original kernel provided already good detection coverage. Accordingly, the
wrappers used to protect the kernel could not significantly improve such coverage.
However, when a different fault model based on high-level faults was used, most
generated errors propagated and provoked the failure of the application. Such failures
were systematically avoided by the wrappers. In addition, the performance measures
reported showed that the overhead of the wrappers is bounded and can be tuned (e.g.,
by selecting the minimum set of wrappers minimizing the rate overhead–coverage, or
by deciding on-the-fly whether enough time is available to execute a wrapper).

It is worth noting that the applicability of the proposed wrapping approach goes
beyond real-time kernel functions, and can be of high benefit for various software
components and applications. Indeed, it would also benefit embedded real-time systems
that cannot accommodate massive redundancy due to weight and/or power constraints.

As a future work, we are currently extending the wrappers with error recovery
mechanisms for real-time microkernel-based systems. The objective is not only to
detect errors, but also to be able to recover from errors in a bounded time.
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