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Notation

Frames, Scalars, Vectors and Matrices
In this thesis, we used in general the following conventions;

• scalars are presented using normal weighted characters, e.g. a ∈ R,

• vectors are denoted with boldfaced symbols, e.g. v ∈ Rn,

• matrices are indicated with capital boldfaced symbols, e.g. M ∈ Rn×n.

For a vector v = [vx vy vz]T ∈ R3, the operator [v]∧ : R3 → so(3) performs the skew-
symmetric operation as

[v]∧ =

 0 −vz vy
vz 0 −vx
−vy vx 0

 ∈ so(3).

The frames are shown with F?, which are always described with the point placed at the
center of the frame and three principle Cartesian axes. For example, the inertial (world)
frame is denoted with FW : {PW,xW ,yW , zW}. For the body frame of an aerial robot, it is
FB : {PB,xB,yB, zB}.
The interconnection matrix, J , and the dissipation matrix R in Chapter 4 are shown

differently from the usual matrix convention used in the overall thesis.
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Nomenclature
Here we list not all, but some important Greek/Latin characters used in this thesis.

Rn Set of real numbers in dimension of n
N Set of all natural numbers (in this thesis, including 0)
Z Set of all integers
PB,PC0 Point placed at the Center of Mass (CoM) of the aerial robot
PG Point placed at the Center of Actuation (CoA) of the aerial robot
x∗,y∗, z∗ Principal axes placed at point P∗
qq ∈ R6 Generalized coordinates of PB
pq ∈ R3 Position of PB in the world frame
R ∈ R3×3 Orientation of the body frame (FB) w.r.t. the world frame (FW )
ηηη ∈ R3 Minimal representation of R using roll-pitch-yaw convention
ωωω ∈ R3 Angular velocity of the aerial robot rigid body in FB
Ωi ∈ R Spinning velocity of the i-th propeller
T ∈ R3×3 Transformation matrix from η̇ηη to ωωω
Mqr ∈ R3×3 Quadrotor inertia matrix (of PB in FB)
C Coriolis matrix for a considered system dynamics
g Gravitational forces for a considered system dynamics
G Control input matrix for a considered system dynamics
u Control input vector for a considered system dynamics
ur Torque vector acting to the CoM of the quadrotor
d Distance between two points
wext External wrench acting on the quadrotor CoM
ut Thrust intensity acting at the CoM of the aerial robot
φ, θ, ψ Roll,Pitch,Yaw angles, respectively. Also, φ : elastic deflection in Sec. 6.2.8.
mq Mass of the aerial robot
ke Linear elastic spring constant
ωn Natural frequency
H Total amount of energy (Hamiltonian) stored in a system
V Lyapunov candidate
|| ∗ ||, || ∗ ||2 2-norm of ∗
| ∗ | Determinant of ∗
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Abbreviations

APhI Aerial Physical Interaction
BL BrushLess
BL-CTRL BrushLess-ConTROLler
CAD Computer Aided Design
CAN Controller Area Network
CoA Center of Actuation
CoM Center of Mass
DAQ Data Acquisition Box
DFL Dynamic Feedback Linearization
DoF Degrees of Freedom
F/T Force/Torque
IDA-PBC Interconnection and Damping Assignment - Passivity Based Control
IMU Inertial Measurement Unit
MAV Micro Aerial Vehicle
MoCap Motion Capture system
NED North-East-Down
ODE Ordinary Differential Equation
PC Personal Computer
PDE Partial Differential Equation
PH Port Hamiltonian
PWM Pulse Width Modulation
PVTOL Planar Vertical Take-Off and Landing
ROS Robot Operating System
UAV Unmanned Aerial Vehicle
USB Universal Serial Bus
UKF Unscented Kalman Filter
VTOL Vertical Take-Off and Landing
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Abstract
Robots with flying capabilities, so called aerial robots, are essentially robotic platforms,
which are autonomously controlled via some sophisticated control engineering tools. Similar
to many aerial vehicles (e.g. fixed-wing planes or the helicopters which are already an
important part of our lives since almost a century), they can overcome the gravitational
forces thanks to their design and/or actuation type. What makes them different from the
conventional aerial vehicles, is the level of their autonomy. Reducing the complexity for
piloting of such robots/vehicles provide the human operator more freedom and comfort.
Particularly the small size (or miniature) aerial robots (such as quadrotors) are becoming a
bigger part of our lives, while they are rapidly advanced in the robotics society for improving
our life quality. With their increasing autonomy, they can perform many complicated tasks
by their own (such as surveillance, monitoring, or inspection), leaving the human operator
the most high-level decisions to be made, if necessary. In this way they can be operated
in hazardous and challenging environments, which might posses high risks to the human
health. Thanks to their wide range of usage, the ongoing researches on these robots will
have an increasing impact on the human life.
Over the past two decades, aerial robots have been extremely put in use for tasks e.g.

surveillance, monitoring, filming, obstacle avoidance, etc. All these tasks had at least one
thing in common: avoiding the flying robot any physical interaction with its environment.
The obvious reason is because such interaction could lead the robot to a crash or to an
unstable/uncontrolled scenario. This would be of course undesired, because it might finish
the mission earlier than planned and even damage the fragile electronics onboard of the
robot. In the time this thesis work had started, novel methods and technologies were
becoming emerging needs on how to perform meaningful physical interaction tasks with
aerial robots, while maintaining their stable flight.
Today, using the aerial robots for physical interaction and manipulation is a popular

topic, with a great interest of many researchers. Including this thesis work, there have been
various studies addressing the design, modeling and control problem of Aerial Physical
Interaction (APhI) and Aerial Manipulation. A clear motivation of using aerial robots for
physical interaction, is to benefit their great workspace and agility. Moreover, developing
robots that can perform not only APhI but also aerial manipulation can bring the great
workspace of the flying robots together with the vast dexterity of the manipulating arms.
However achieving this is not only challenged by the limited technology, but also by the
lack of sophisticated methods for handling the control of the system in a desired and stable
way during physical interaction. It is important to note, that the APhI is still an open topic
in many senses, and many studies are addressing it using different perspectives. This thesis
work is one of those, which humbly tries to provide rigorous solutions to that problem using
System/Control, Mechanics, Electronics and Computer Engineering tools.
In this doctoral thesis, the APhI and the Aerial Manipulation is studied in terms of

design, modeling and control of aerial robots and manipulating arms; when they come
together and become one system. Although fixed-wing planes, or helicopters can be (and
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Abstract

are) considered as aerial robots, during the course of this thesis we focus on the quadrotors,
mostly because of their accessibility and Vertical Take-off and Landing (VTOL) ability.
Using the nonlinear mathematical models of the robots at hand, here we propose several
different control methods for APhI and aerial manipulation tasks. Furthermore, we present
novel design tools (e.g. new manipulating arms) to be used together with miniature aerial
robots, and contribute to the robotics society not only in terms of theory but also practical
implementation and experimental robotics.
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Deutsche Kurzfassung
Entwurf, Modellierung und Regelung
eines fliegenden Roboters für
physikalische Interaktion und
Manipulation
Roboter mit Flugfähigkeit, sogenannte fliegende Roboter, sind Plattformen, die mittels
Regelungsalgorithmen autonom gesteuert werden können. Analog zu zahllosen anderen Flug-
geräten (z.B. die Starrflügelflugzeuge oder Hubschrauber) , können fliegende Roboter die
Gravitationskraft, aufgrund ihres Designs und ihres Antriebs, überwinden. Was die fliegen-
den Roboter jedoch von konventionellen Flugzeugen unterscheidet, ist ihre Autonomie. Diese
Autonomie macht die Steuerung solcher Roboter einfacher und komfortabler. Insbesondere
kleine fliegende Roboter, wie die Quadrotoren, werden durch die stetige Weiterentwicklung
ein immer wichtigerer Teil unseres täglichen Lebens. Durch ihre steigende Autonomie,
können solche Roboter eine Vielzahl komplizierter Aufgaben, wie zum Beispiel die Über-
wachung und Inspektion, eigenständig ausführen. Da diese Roboter für eine Vielzahl von
Aufgaben eingesetzt werden können, werden sie einen immer wichtigeren Einfluss auf unser
Leben haben.

In den letzten 20 Jahren wurden fliegende Roboter für eine wachsende Anzahl von Auf-
gaben eingesetzt. Bei all diesen Aufgaben wurde jedoch eines immer vermieden: Die direkte
physische Interaktion des fliegenden Roboters mit seiner Umgebung. Der offensichtliche
Grund dafür ist, dass eine solche Interaktion dazu führen kann, dass der Roboter in einen in-
stabilen Zustand gerät. Dies kann zum Absturz und damit zur Zerstörung der empfindlichen
Elektronik des Roboters führen. Zu dem Zeitpunkt als die vorliegende Doktorarbeit ihren
Anfang nahm, wurden deshalb dringend neue Methoden und Technologien benötigt, die
eine sinnvolle physische Interaktion, bei stabilem Flug, ermöglichten. Heute ist die physische
Interaktion von fliegenden Robotern ein beliebtes Thema, das von vielen Wissenschaftlern
bearbeitet wird. Neben der vorliegenden Arbeit, wurden zahlreiche Studien durchgeführt,
die das Design, die Modellierung und die Regelung der Aerial Physical Interaction (APhI)
und der Aerial Manipulation zum Thema hatten. Der enorme Vorteil den fliegende Ro-
boter bei der physischen Interaktion, gegenüber traditionellen Methoden haben, ist ihr
große Reichweite und ihre Beweglichkeit. Wenn zudem Roboter entwickelt werden, die
nicht nur mit der Umgebung interagieren können, sondern auch in der Lage sind, diese zu
manipulieren, wird die große Reichweite der Roboter mit der enormen Geschicklichkeit der
Manipulator-Arme ergänzt. Die Verbindung der Roboter mit einem solchen Manipulator-
Arm ist jedoch aufgrund technischer Limitierungen und dem Fehlen ausgereifter Methoden,
die eine stabiles Verhalten des Gesamtsystems während der Interaktion ermöglichen, eine
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Herausforderung. Und auch heute noch sind viele Fragen, die die Interaktion von fliegenden
Robotern mit ihrer Umgebung betreffen, ungeklärt und das Thema verschiedenster Studien.
Die Arbeit, die in der vorliegenden Doktorarbeit beschrieben wird, ist ein Teil davon und
versucht einen Beitrag zur Lösung dieser offenen Fragen beizutragen.

In der vorliegenden Doktorarbeit wird sowohl die Aerial Physical Interaction als auch
die Aerial Manipulation in Bezug auf das Design, die Modellierung und die Regelung von
fliegenden Robotern, Manipulator-Armen und dem Gesamtsystem aus beiden untersucht.
Obwohl auch Starrflügelflugzeuge und Hubschrauber als fliegende Roboter betrachtet werden
können und sollten, liegt der Fokus der vorliegenden Arbeit auf den Quadrotoren, unter
anderem wegen ihrer Zugänglichkeit und weil diese in der Lage sind vertikal zu starten
und zu landen. Mittels nonlinearer mathematischer Modelle dieser Roboter, werden in der
vorliegenden Arbeit unterschiedliche Methoden zur Regelung und Steuerung der physischen
Interaktion und Manipulation vorgeschlagen. Des Weiteren werden neue Werkzeuge (z.B.
neue Manipulator-Arme) vorgestellt, die mit den fliegenden Robotern kombiniert werden
können. Auf diese Weise kann die vorliegende Arbeit, neben theoretischen Methoden, auch
mittels praktischer Anwendungen und Experimenten zum Fortschritt der Robotik beitragen.

xx



Chapter 1

Introduction

1.1 Aerial Robots
Today, in daily life, we are encountered with various types of robots. From transportation
to manufacture, surgery, automation and in many other fields, the robots are actively
involved in our lives (Siciliano and Khatib (2008)). In most of the scenarios, these robots
are fixed to their base, making them so called ground robots. Example to such robots could
be the fixed-base manipulators as deeply studied in Murray et al. (1994) and in Siciliano
et al. (2009). Clearly, mobilization of the robots comes with the great advantage of their
increased workspace. However, the vast number of the mobile robots are still constrained
to the ground they are in contact with, e.g. the wheeled robots (see Campion and Chung
(2008)) or the legged ones, e.g. bipeds, humanoids, etc (see Kajita and Espiau (2008)).

It is obvious that the robots which can freely fly have greater workspace than those
which cannot. Such robots, called aerial robots, can overcome the pulling gravity force
using mechanisms e.g. fixed-wings (see Fig. 1.1) or propellers (see Fig. 1.2). The flight of
the aerial robots is achieved by the aerodynamics of the body or the actuated parts of the
system. The stable flight of such systems is achieved using sophisticated control methods.
Although the aerodynamics of such systems is crucial for a stable flight, in this thesis we
study the autonomy of the flying robots and appropriate control methods for it.

In the scope of this thesis, by aerial robots, we will mean the autonomous systems, which
can perform robotic tasks while performing a stable flight. A robotic task can be; trajectory
tracking (see Mistler et al. (2001) and Lee et al. (2010)), search-and-rescue/surveillance
(see ICARUS (2011- 2015) and SHERPA (2013- 2017)), manipulation (see ARCAS (2011-
2015) and AeRoArms (2015-2019)), etc. Compared to the other mobile robots, e.g. au-
tomobiles, humanoids and Autonomous Underwater Vehicles (AUV), the aerial robots,
e.g. Unmanned Aerial Vehicles (UAV) or also called Unmanned Aerial Systems (UAS), face
different physical challenges, since their floating bases need to counter-balance the gravity
forces at all time. In a non-vacuum environment, e.g. in the earth atmosphere, this is
mostly accomplished thanks to the difference in the air pressure. This can be achieved
with a fixed-wing design, as for the airplanes, such as in Fig. 1.1. However such designs
require high cruise velocities of the robot for a stable flight, which usually limits the robot
for performing tasks that needs hovering condition, e.g. in the case of aerial manipulation.
Hovering and stable flight can be achieved, if the aerial robot is flying thanks to the rotating
propellers, like for the helicopters as given in Fig. 1.2.
The control of conventional helicopters is not a trivial task, even when this control is

shared with an experienced pilot (see myCopter Project (Jan 2011- Dec 2014) for the
research results on this matter). Sophisticated methods for full autonomous control of
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Wing

Slow Moving Air, More Pressure

Fast Moving Air, Less Pressure

lift up

Figure 1.1: -Left: An airplane taking off.
-Right: Schematic figure of a wing of an airplane. Due to the aerodynamic
design, the air below the wing moves slower than the one above, creating more
pressure and hence a lifting force.

large size helicopters have been studied using simplified nonlinear dynamic models of the
system, e.g. in Isidori et al. (2003). However their implementation in real robots/vehicles
is still an open problem, mostly due to the large sizes of the system, which relate to their
highly detailed and nonlinear dynamics (see Padfield (2007) and Ren et al. (2012)). It is
important to note that the identification of the system parameters including aerodynamics
effects is nontrivial as well. This makes the nonlinear mathematical models of such vehicles
less reliable, hindering the implementation of sophisticated nonlinear control methods to
the real systems (see Remple and Tischler (2012)).
On the other hand, it is much easier to develop advanced autonomous controllers for

smaller flying robots, e.g. Micro Aerial Vehicles (MAV); because their mathematical models
are much more reliable for developing advanced nonlinear controllers implementable into the
real systems (see Cai et al. (2014) for a detailed survey on the existing MAVs). Especially
the robots with stationary flight capability, e.g. Vertical Take-off and Landing (VTOL)
vehicles are the one of the most accessible aerial robots for such implementation among the
others. They are particularly interesting for us, because of their hovering capability, which
upper hands them for the APhI and Aerial Manipulation tasks.

1.1.1 VTOLs for Aerial Robotics
There has been different types of VTOLs in the literature used for the purpose of aerial
robotics. A very detailed survey is done in Cai et al. (2014) including 132 different
models of small-scaled aerial vehicles used worldwide. We are particularly interested in
the Vertical Take-off and Landing (VTOL) vehicles, and their implementation for aerial
robotics. Helicopters (medium or small size) are one of those that was considered by the
researchers for aerial robotics. In Naldi (2008) a detailed modeling of a miniature helicopter
is explained; from its rigid body to the engine dynamics. Furthermore, different from the
conventional helicopters, other types of aerial robots with hovering capabilities have also
been designed and controlled. One example is the aerial robots with ducted-fan, which
are effective designs for the applications where, the size is limited and static thrusts are
important. A ducted-fan design has been developed and tested in Naldi et al. (2010), which
can also use its stationary flight capacity for interacting with the environment, as described
in Marconi et al. (2011). This design is consisting of one propeller and flapping mechanisms

2
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Figure 1.2: -Left: A Bell 206 Helicopter used by the US police.
-Right: A propeller produced by HiSystems GmbH (Mikrokopter.de) for small-
sized VTOLs, e.g. quadrotors. Due to the particular shape of this propeller,
when it rotates clockwise (CW) with the velocity of Ωi, it creates a thrust force
fi upwards and a drag force opposite to the direction of rotation, τi. The same
notations are used in Fig. 2.1 as well.

controlled by three more inputs; making it an underactuated system with four control
inputs. Another ducted-fan design is used in Hofer et al. (2016). In Papachristos et al.
(2015) a Tri–TiltRotor design is presented, where a VTOL actuated with three propellers
is realized with two front propellers can tilt together using another control input; making
the system underactuated with four inputs. This design allows achieving direct actuation
along the translational directions, although the standard body-pitching underactuation still
remains. Implementing tilting mechanisms to the propellers of the standard VTOLs can
overcome the underactuation of the system in the design phase, which is exactly what it is
done in Ryll et al. (2015). There, authors developed a custom aerial VTOL robot based on
a standard quadrotor (see Sec. 1.1.2) by adding an independent tilting mechanism to each
propeller, which turned it into an overactuated aerial robot with eight control inputs (see
also the middle picture of Fig. 1.3). Full actuation or even redundancy has been studied
further for VTOLs by different researchers, and the examples can be found e.g. in Rajappa
et al. (2015) and in Brescianini and D’Andrea (2016). Although increasing number of
actuation can boost the capabilities of the VTOL system, it is intriguing to study the robots
with fewer number of actuations. Studying underactuation of the mechanisms, besides an
attractive challenge for the Control Engineers, can be beneficial depending on the task of
the robot (e.g. the ones in Sec. 1.1.2), can allow reduced energy consumption and lighter
designs, and as well as let on developing controllers accounting for some system failure, e.g.
the ones studied in Mueller and D’Andrea (2016).
Over and above, the quadrotors, with four symmetrically aligned propellers all facing

upwards, are one of the most used VTOL designs in the field of robotics. It is worth
mentioning again, that one (but not only) important reason for this is; they are broadly
available to the public, and this makes them a suited setup for generating high impact on
our daily life. We dedicate the following section for its state of art.
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Figure 1.3: Three different multirotor VTOL examples from the literature, used for aerial
robotics. On the left, a quadrotor VTOL used also as the experimental setup in
this thesis. In the middle an overactuated VTOL (see Ryll et al. (2015)). On
the right, an omni-directional VTOL (see Brescianini and D’Andea (2016)).

1.1.2 Quadrotors

In this thesis, we chose the Quadrotor Vertical Take-off and Landing (VTOL) vehicles as
the aerial platform to be studied and finally used in our experiments (see the first picture
from left of Fig. 1.3). The main reason is that they are easily accessible to the broad range
of people, they are affordable, and their underactuated dynamics create exclusive control
challenges for the researchers while allowing these robots quickly accelerating along the
translational directions (see Mahony et al. (2016)). A quadrotor is an aerial robot/vehicle
which is lifted by four symmetrically aligned propellers, all facing upwards; opposite
direction of the gravity vector (Bouabdallah et al. (2007)). Thanks to this symmetry one
can formalize a very realistic mathematical model of the robot (See Mahony et al. (2012)
and Chapter 2 of this thesis for the details), which finally allows developing advanced
control techniques for this system. Notice that a quadrotor has four control inputs (the
velocities of the four propellers), but it moves in the 6 Dimensional Cartesian space (3D: 3
translation and 3 rotation). Hence it is underactuated and also considering its nonlinear
dynamics, its control as well as the generation of feasible trajectories for this kind of system
in general is not a trivial task (Mellinger et al. (2010)). This challenge was taken by the
scientists since more than a decade. In Mistler et al. (2001) the exact linearization of a
quadrotor VTOL has been shown, with the flat outputs of the system. Later, a geometric
tracking control for quadrotors was proposed in Lee et al. (2010). This control is developed
on the special Euclidean group SE(3), allowing the quadrotor tracking complex rotational
maneuvers which can exhibit singularities when they would be represented using Euler
angles. In Liu et al. (2015) these technique has been improved including robustness analysis
of the system (based on the work done in Schmidt et al. (2014)) and using Model Predictive
Controller for trajectory planning. Turning the underactuation of the quadrotors to their
advantage is nicely put in example by Mueller et al. (2011), where quadrotor is performing
aggressive maneuvers for juggling a ball.
Besides control of the quadrotors, their state estimation is another challenge. Most of

the works mentioned above are performed indoor and benefiting from the Motion Capture
(MoCap) systems, allowing researchers to acquire precise (or relatively good) measurements
of the robot’s state. Due to the relatively small sizes of most of the quadrotors, relying
only on board measurements (e.g. using cameras, Inertial Measurement Unit (IMU), etc.)
means adding more hardware to the flying system, which increases its weight and reduces

4



1.2 Aerial Physical Interaction (APhI)

its load range and the flight capacity1. However very recent promising developments are
giving the sign of overcoming this practical/technological challenge in the near future. For
example, in Loianno et al. (submitted) and in Falanga et al. (submitted) authors show two
different methods for performing aggressive trajectory tracking of the quadrotors using only
on board sensors, where the former one can pass through gaps by tilting 90 [deg] using an
off-line planning algorithm, while the latter can do the same up to 45 [deg] but performing
trajectory planning in real time.

Until recently, the main field of application for the quadrotors was focused on surveillance
and patrolling (Mahony and Kumar (2012)), search and rescue (SHERPA (2013- 2017)),
civil monitoring and agriculture (Duggal et al. (2016)); with full autonomy or with human-
in-the-loop using e.g. haptic devices (Franchi et al. (2012b)). All these examples have one
thing in common; the flying robots are kind of passive observers, meaning that they do not
actively and physically interact with their environment. Recently, a new field of application
emerged in the literature, which requires the physical interaction of the aerial robots. We
dedicated the next two sections for the research made in this particular area.

1.2 Aerial Physical Interaction (APhI)
Aerial Physical Interaction (APhI) is a case, in which the aerial robot exerts meaningful
forces and torques (wrench) to its environment while preserving its stable flight. In this
case, the robot does not try avoiding every obstacle in its environment, but prepare itself
for embracing the effect of a physical interaction, furthermore turn this interaction into
some meaningful robotic tasks. Some examples to such tasks are; surface inspection, tool
operation, object transformation and manipulation. This is a relatively new research topic,
promising novel theoretical and practical challenges for the researchers. In fact, by the
time this thesis work has started, there were few examples of APhI in the literature, and in
couple of years this has dramatically changed. An admittance control framework presented
in Augugliaro and D’Andrea (2013), allowing quadrotors interact with humans, physically.
The controller presented there is proposed for the partially linearized translational dynamics
in near-hovering configuration of the robot, which provides a local solution in terms of
physical interaction. A hybrid position and wrench control for quadrotors is presented
in Bellens et al. (2012), where for dealing with poorly structured environment, an impedance
control has been exploited. Authors of Gioioso et al. (2014) turned a standard near-hovering
controller into a 3D force controller, and implemented it on a quadrotor for effectively
exerting desired forces to its environment via a rigid tool. Using quadrotors equipped with
rigid tools for APhI is further studied in Ha et al. (2015) and Nguyen and Lee (2013),
where the nonlinear quadrotor dynamics is exploited for performing tool operations e.g.
screw-driving. In Fumagalli et al. (2012b), researchers presented a design of a quadrotor
VTOL for contact inspection purposes. The controller presented there is a passivity-based
controller; shaping only the potential energy of the quadrotor for setting a desired stiffness
behavior2(see also Mersha et al. (2011)).

1Also with today’s technology, on board state estimation is still not as good as when using external
measuring methods, e.g. MoCap systems

2Potential energy is only one of the factors affecting the way a mechanical system interacts with the
environment. Inertial properties and damping also play a major role for determining the interactive
behavior. Furthermore, since the direction of the thrust of a quadrotor depends on the orientation of
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In order to achieve APhI, knowledge of the interaction forces/torques (wrench) is crucial.
This knowledge can be acquired either by using some (indirect) estimation methods, or
directly measuring them with Force/Torque (F/T) transducers. Using estimators has
advantages of avoiding additional sensors on the flying robot, reducing the computation
power and also spending less money for the hardware. Examples are various; in Augugliaro
and D’Andrea (2013) Kalman filters are used to estimate the external forces. A more
general method is proposed in Ruggiero et al. (2014), where a residual momentum-based
wrench estimator for quadrotors is presented. This method is further analyzed in Tomic
and Haddadin (2014). In McKinnon and Schoellig (2016) an algorithm based on unscented
quaternion estimator is used for estimating the external wrenches acting on a quadrotor
body. During the course of this thesis, we have developed a nonlinear Lyapunov-based
disturbance observer for estimating the external wrenches acting on the quadrotors (Yüksel
et al. (2014b)). These results are summarized in Sec. 3.3 of this thesis. Notice that all the
estimation methods presented so far are dependent on other sensor measurements, and they
require some kind of system model. On the other hand, transducers has its own advantages,
e.g. it provides reliable measurements independent of other sensors or any system model.
Implementation of the F/T transducers can be done in two ways; by placing it on board of
the flying robot, e.g, in Fig. 3.2, or on the surface of the interaction, e.g. in Gioioso et al.
(2014). Although the former is clearly more preferable, it is not always straight-forward to
implement it, due to the limited load capacity of the flying robots. In Chapter 3 we discuss
this in detail, and in Sec. 3.2 we describe a setup, built as a part of this thesis, allowing
us using F/T transducers on board of a flying quadrotor for measuring the interaction
wrenches.

1.3 Aerial Manipulation
Aerial Manipulation can be considered as a subset of APhI, where the flying robot is
designed and controlled in purpose of manipulating its environment. Motivating examples
of aerial manipulation are; inspection and maintenance, construction and precision requiring
implementations in hazardous or high-rise environments (see Fig. 1.4). Although the aerial
robot itself can be used as a flying manipulator (e.g. the designs presented in Ryll et al.
(2015), Ryll et al. (2016) would be suitable choices), in the most common scenarios the
overall flying robot is a binomial of a flying base, and one or multiple mechanisms used for
manipulation, e.g. manipulating arms (see Fig. 1.5 for some examples). Such designs have
been adopted by the researchers so far, because it combines the flying capability of an aerial
vehicle with its vast workspace and the dexterity of a manipulating arm (or even multiple
arms). In Thomas et al. (2013) authors presented a quadrotor equipped with a 1 DoF
rigid arm, performing an aerial grasping task. This is an agile aerial manipulation task,
performed thanks to the differential flatness property of the system (we deeply studied this
as well and extended this work to many directions in Chapter 6). In Yang and Lee (2014) a
generic model of a quadrotor equipped with a manipulating arm is studied, where a passive-
decomposition method is implemented for controlling the Center of Mass (CoM) positions
of the overall system, and then a back-stepping like controller is proposed for regulating

the system, it is not sufficient to shape the Cartesian impedance for achieving an effective control of
interaction. In light of this, we improved this controller in Yüksel et al. (2014a), which is also explained
in Chapter 4 of this thesis.
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Figure 1.4: A motivating real-life challenge for enabling aerial robots to perform APhI
and manipulation tasks in hazardous environments. The most left figure
shows pictures from such environments as the motivating challenges. In the
middle today’s practice is depicted. The most right figure shows the visions of
three different European Projects: ARCAS (2011-2015), AeRoArms (2015-2019)
and AEROworks.

the end-effector motions. In Ruggiero et al. (2016) a 6 DoF servo manipulating arm is used
for aerial manipulation, on board of a multirotor VTOL, which is an eight-rotor aircraft
in coaxial configuration3 (see also the middle picture of Fig. 1.5). Such designs clearly
increase the dexterity of the aerial manipulator, while increasing the complexity of the
system. With increasing capacity of the flying platform, one can improve the effectiveness
of the aerial manipulation. In Kondak et al. (2014) a double-rotor helicopter equipped
with a KUKA LWR 7 DoF manipulating arm is presented, where the overall system can
perform aerial grasping in outdoor (see also third picture of Fig. 1.5). A valve turning
application is performed in Korpela et al. (2014), where a quadrotor is equipped with a
dual-arm mechanism. In Garimella and Kobilarov (2015) a model-predictive controller is
adopted for an aerial manipulation task.

The most of the manipulating arm designs studied in the literature are rigidly actuated,
i.e. the actuator of the individual joints are rigidly attached to their links. To our best
knowledge, a compliant (or elastic) manipulating arm on a quadrotor has been first time
considered in Yüksel et al. (2015), where design, modeling and identification of a light-weight
elastic-joint arm has been used for link velocity amplification and aerial physical interaction
(also see Chapter 5). This study has been improved in different directions, which is a part
of this thesis work and given in Chapter 6.
Alternatively, in Nguyen et al. (2015) a framework for multiple quadrotors connected

to a tool is shown, where the quadrotors are used as rotating thrust generators (flying
actuators) and the overall setup is an aerial tool. Aerial robots with suspended cables
are also studied for aerial manipulation, e.g. in Sreenath and Kumar (2013). Besides all

3In that work the arm is not dynamically controlled, but using its kinematics only. The reason is that its
actuators cannot be used in torque-control mode. The method we proposed in Section 6.4.2 is elegantly
overcoming this issue for such actuators, while allowing dynamics-aware control of the overall system.
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Figure 1.5: Three different aerial manipulator examples from the literature. On the left, a
quadrotor equipped with a 2 DoF manipulating arm (AeRoArms (2015-2019))
and its details are given in Section 6.4.3 of this thesis. In the middle a multirotor
VTOL equipped with a 6 DoF servo manipulating arm as part of ARCAS (2011-
2015) and used in Ruggiero et al. (2016). On the right a double-rotor helicopter
from SwissDrones is equipped with a KUKA LWR 7 DoF manipulating arm and
a gripper (ARCAS (2011-2015),AeRoArms (2015-2019), Kondak et al. (2014)).

these works, we note that there are at least two European Union projects focusing on aerial
manipulation; ARCAS (2011-2015) (finished) and AeRoArms (2015-2019) (ongoing).

1.4 On the Control of Underactuated Aerial Robots
for APhI and Manipulation

The robot designs we consider in this thesis are decidedly including an underactuated
flying base, mainly for the reasons explained in Section 1.1.2. By underactuation we mean
that the system cannot be commended to follow arbitrary trajectories in its configuration
space. Particularly in this thesis, we will consider the trivial underactuation, i.e. that
the number of the control inputs is less than the number of the independent DoF of the
system. In practice, underactuation can be thought of controlling a system using lesser
number of actuators (e.g. motors), which might help reducing the overall operation costs.
Moreover it can be even useful for specific tasks, as for the quadrotors it helps them swiftly
accelerate along the translational directions, so that they can perform agile and dynamic
trajectory tracking tasks. However underactuation of a system is a challenging problem
from the control theory point of view, and it needs to be handled properly (see Spong
(1998) and Fantoni and Lozano (2002)). Especially in the case of physical interaction, or
control of a flying manipulator; the underactuation might become a greater problem, due
to the reasons mentioned in Section 1.2 and Section 1.3.

1.4.1 Control of APhI
In this thesis, for APhI of an underactuated aerial robot, quadrotor, we used passivity-based
controllers. It is well known that the term passivity has an important role in system analysis
and it leads to powerful methods for designing feedback laws for nonlinear systems (also
see Isidori (2013)). Furthermore, passivity as a property of a nonlinear system, can be used
as a stabilization tool. In fact, in Sepulchre et al. (1997) it is exampled as the Nyquist-Bode
180 degree phase lag criterion for the nonlinear systems. Without giving a concrete and
detailed definition of passivity, let us here try to conceptualize it in brief words, by starting
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with the definitions of two important concepts: storage function- a positive semidefinite
energetic function of the state, and the supply rate- a term in units of power computed as a
bilinear function of the input and the output of the system. Then, in short words, passivity
is a property, which satisfies that the rate of increase of the storage function of a system is
not higher than its supply rate, setting an upper bound to the system energy. This also
means that the increase in any storage function of the system can only be done exogenously.
This making sure that the external inputs, i.e. control inputs or the external (disturbing or
meaningful) forces and torques, are the only reasons of an increase in the storage function,
allows us developing control methods for achieving input/output stability in case of e.g.
physical interaction (or APhI) using the concepts developed based on Theorem 1. The
precise definition of passivity can be found in Willems (1972) and in Khalil (2001). The
aforementioned upper bound on the system energy is fundamentally linked to the stability
of the system. In fact by employing the storage function as the Lyapunov function of the
system, one can show that passivity also implies Lyapunov stability (see Appendix C.2
of this thesis and also Sepulchre et al. (1997) with Khalil (2001)). Similarly, one can use
the total energy of the system as the storage function, i.e. Hamiltonian, for analyzing the
passivity. In fact, this is exactly what we do in Section 4.1.1 of this thesis, by taking the
system underactuation into account. There, using the Hamiltonian as the storage function,
we first bring the quadrotor dynamics into its Port-Hamiltonian (PH) form (so that in a
later stage we can reshape its physical properties), and finally analyze the stability of the
controlled system using passivity.
We would like to note that the passivity is certainly not the ultimate way of analyz-

ing/monitoring/achieving stability, since the term stability is a very general concept. Surely
many other criteria exist for providing a stable behavior to a nonlinear system, and from
energetic point of view they can be linked to each other (see Khalil (2001) and the Ap-
pendix C of this thesis). Passivity is one of these methods, which can be used for rendering
a nonlinear system to a stable behavior. It is also noticeable, that in Zames (1966) it
is shown how the passivity is a more conservative way for providing stability, when it is
compared to other methods developed based on input-output stability, e.g. conic sector
stability theorem (more detail can be found given in Forbes (2012) and Bridgeman and
Forbes (2015).

1.4.2 Control of Aerial Manipulators
In this thesis, besides APhI, we also study the control of aerial manipulation. To do so,
we focus mainly on the motion tracking control of the aerial manipulators. For this, we
greatly benefit from two important properties of the nonlinear systems; the differential
flatness and exact linearizability. A differentially flat system has certain outputs (which
can be detected using a proper coordinate transform of the state), that can represent all
the states and the control inputs of the nonlinear system using only these outputs and
their finite number of derivatives (see Murray et al. (1995) and also Section 6.2.2 of this
thesis). These system outputs are in general called as the flat outputs, as also within this
thesis. Obviously, being able to represent all the states and the inputs as functions of the
flat outputs is practical and important property, especially in the phase of control and
trajectory planning. In this thesis (Chapter 6), we present the flat outputs of various aerial
manipulator models, together with Dynamic Feedback Linearization (DFL) controllers
which brings the overall nonlinear system dynamics to its linear controllable form using
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its flat (or exactly linearizing) outputs4. DFL can use the flatness property of the system,
and allow implementing widely used linear control methods for nonlinear systems (see e.g.
Section 6.2.2). Notice that wiht DFL, we perform in this thesis an exact linearization,
which is completely different from linearization of a nonlinear system around a point at
the state space. On the contrary it is the exact linearization via dynamic feedback in an
open and dense set of the state space (see Fact 1 of Section 6.2.2 and De Luca and Oriolo
(2002)). Note that due to the matching of the total relative degree of the system with the
dimension of the augmented (total) state after DFL (see Definition 7), the nonlinear system
is rendered to a minimum phase system, i.e. all destabilizing effects in the zero dynamics
are canceled (or they become trivial as elegantly stated in Isidori (1995) and Isidori (2013)).
Furthermore, with DFL, exact tracking of the flat outputs can be achieved. More emphasis
on this matter is given in Sections 6.1.1 and 6.2.2. Chapter 6 of this thesis is dedicated for
exposing what are the flat outputs of different types of aerial manipulators, which of them
are interesting to control, and how their tracking control can be achieved using DFL.

It is noticeable that despite the useful properties of DFL and its convenience on turning
a highly nonlinear system to a linear controllable one; it has drawbacks as well. First of
all, as mentioned in Sepulchre et al. (1997), DFL cancels all the nonlinearities, including
the useful ones. This might mean an additional effort on the control without any use,
or it might even be harmful in terms of system stability. Second, DFL is sensitive to
uncertainties; i.e. not robust. The first drawback might be inevitable, or be avoided using
more adaptive linear controllers, although more sophisticated methods are available in the
literature, e.g. back-stepping/forwarding controllers (see Sepulchre et al. (1997), Khalil
(2001) and Krstic et al. (1995)). A notable characteristic of this method is, that the control
is achieved through feedback passivation, i.e. in every step of the back-stepping/forwarding
the considered output is constructed in a way that the entire system is minimum phase, and
at each step the considered system is relative degree one (see Sepulchre et al. (1997)). The
second drawback of DFL can be avoided improving the robustness of the linear controller
(e.g. the integrator term we added in the linear controllers described in Chapter 6), which
might be a conservative way of controlling a system. Hence it might be more preferable
considering other robust nonlinear control techniques, e.g. sliding-mode controllers (Khalil
(2001)) or the methods described in Krstic et al. (1995). On top of these, flatness-based
controllers, e.g. the one presented in Section 6.4, are another way of controlling the nonlinear
system considering its flatness, without doing an exact linearization. In fact, as shown in
Sec. 6.4.1 they are more implementable than e.g. DFL for the practical reasons.

We are certainly interested in considering different nonlinear control techniques for APhI
and Aerial Manipulation in the future, e.g. back-stepping/forwarding and sliding-mode like
controllers, which are not outlined within this thesis.

1.5 Outline of this Thesis
Let us give the outline of this thesis in the following;

• In Chapter 2, we describe the mathematical model of a quadrotor VTOL and its
experimental setup. We made the choice of using quadrotor as the aerial platform, due

4If the zero dynamics of the system has an asymptotically stable equilibrium, then it can be stabilized
using a dynamic output feedback. With this in mind, we study the aerial manipulators in Chapter 6.
More on this matter can be found in Isidori (1995).
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to the reasons explained in Chapter 1, and highlighted in Section 1.1.2. In Section 2.1
we describe the well-known kinematics of a quadrotor, and two dynamics model used
within this thesis. The controllers studied in this thesis are numerically validated
using different simulation environments, and they are described in Section 2.2. The
experimental setup of a quadrotor, including all its fundamental mechanics, electronics,
sensors (hardware) and their managing softwares are described in detail in Section 2.3.

• In Chapter 3 we study the external wrench measurement and estimation for the
quadrotors. For achieving APhI, the knowledge of the external wrench is crucial.
Here, we first present the possible measurement technologies for acquiring the wrench
information using transducers, as put in Section 3.2. Then in Section 3.3 we present
a Lyapunov-based nonlinear disturbance observer for estimating the external wrenches
acting on a quadrotor. These two ways of collecting the wrench information have their
own advantages and disadvantages, which are compared and discussed in Section 3.4.

• Chapter 4 is presenting a novel controller for the quadrotors, when they are performing
APhI. This controller is developed based on the Interconnection and Damping Assign-
ment - Passivity Based Control (IDA-PBC) method, allowing controlling the APhI by
reshaping the physical properties of the flying robot. After giving some preliminaries
on passivity theorem in Sec. 4.1.1, we introduce our controller in Section 4.2. We
present both numerical and experimental results of the proposed controller in Sec. 4.3,
where the flying robot is exposed to certain external forces/torques; e.g. hitting, or it
is performing meaningful interaction tasks, e.g. sliding on a ceiling surface.

• In Chapter 5, we introduce the design, modeling and identification of a novel elastic-
joint arm, to be used for APhI and aerial manipulation. In this chapter we approach
to these two problems from design point of view, and provide experimental results
showing the advantages of using compliant actuators.

• Aerial manipulation is studied deeply in Chapter 6. Here by an aerial manipulator, we
consider a binomial of a flying platform and one or more manipulating arms. There,
we study the tracking control problem of such systems by analyzing their differential
flatness property (some preliminaries are given in Sec. 6.1). In Section 6.2 we consider
a Planar-VTOL (PVTOL) aerial robot, equipped with a joint arm, which can be
actuated rigidly or via some compliant elements. This entire section is dedicated
to the modeling, and control of such systems, as well as exposing their differential
flatness property and providing Dynamic Feedback Linearizing (DFL) controllers. We
validate our theoretical results in Section 6.2.9 with extensive and realistic simulations,
and in Sec. 6.2.10 with preliminary experiments for a quadrotor equipped with a
Variable Stiffness Actuator (VSA). In Section 6.3 we extend our theory for the aerial
manipulators, which having a PVTOL again as a flying platform, but this time
equipped with a generic number of manipulating arms, each having any numbers
of DoF, can be actuated rigidly or with some elastic elements. Their differential
flatness property is shown here together with a proper DFL controller. The numerical
simulation results are provided in Sec. 6.3.4 for an aerial grasping scenario. In
Section 6.4 we extend our previous findings into 3D, where a decentralized flatness-
based controller is presented. Its experimental validation is resulted in 6.4.3.
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We conclude this thesis in Chapter 7, where the summary of the discussions together
with idea of future perspectives are shared.

Note that we have provided the technical proofs of the propositions made in this thesis
within Appendix A, and necessary technical computations in Appendix B. They are part
of this thesis as much as any other chapter, but for brevity reasons they are added as
appendices, ready to be reached at reader’s will. Furthermore, a summarizing knowledge on
the nonlinear system stability is shared in Appendix C, where we highlight the relationships
between different stability concepts for the nonlinear systems.

1.6 Open Problems and Contributions
By the time of this thesis work has started, there were few works on the APhI and aerial
manipulation. Both theoretical and practical novelties were required, and in parallel to many
other researchers, we have contributed to the robotics society with several publications,
which eventually brought out this thesis.

In the first year of this thesis work, we have focused on the control theory for controlling
the APhI of the quadrotor VTOLs. This has been achieved by IDA-PBC, and described in
Chapter 4 of this thesis, which is written based on our published papers in Yüksel et al.
(2014a) and Yüksel et al. (2014b). For enabling this kind of controls, knowledge of the
external wrench is required. We proposed an estimation method for external forces and
torques acting on a quadrotor in Chapter 3, which is partially written based on what we
have published in Yüksel et al. (2014b).
Second year of the work was mainly dedicated on the design of the mechanisms, and

improvement of the electronics and the software of our experimental setup. In this time
period, together with two master level students; Saber Mahboubi (funded by Max Planck
Society) and Nicolas A. Rongione (funded by DAAD-RISE) we have developed an in-home
light-weight elastic joint-arm for APhI. This work is published in Yüksel et al. (2015), and
finally became the Chapter 5 of this thesis. Later, the majority of the workload was spared
for the hardware/software improvement of the experimental setup. With great helps of
Anthony Mallet from LAAS-CNRS, and Dr. Paolo Stegagno from MPI-Tübingen, we have
developed and implemented new interfaces that enabled the experimental validations of the
proposed theories. This part is detailed in Section 2.3 of the thesis, where the mentioned
softwares are made available to the public.
In the final part of this thesis work, we dedicated our focus on aerial manipulation.

Especially after being experienced with a quadrotor+elastic-joint arm setup (as mentioned
in Chapter 5), we further studied such systems. Overall Chapter 6 is dedicated to the
control of aerial manipulators, and their differential flatness property. In Yüksel et al.
(2016b) and in Yüksel and Franchi (2016) we have published our first studies on the control
of aerial robots equipped with rigid or elastic-joint arms, and they shaped the Section 6.2 of
this thesis. We further studied such systems considering a case, where the aerial robot can
be equipped with a generic number of manipulating arm, each having any numbers of DoF,
rigidly or elastically actuated. Together with their differential flatness property, we studied
their control and published our results in Yüksel et al. (2016a), which esentially made
Section 6.3. Finally based on this, we proposed a decentralized flatness based controller for
aerial manipulators, and this work appeared as Tognon et al. (2017) created Section 6.4 of
this thesis.
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1.6 Open Problems and Contributions

Although we have approached the open problems of APhI and aerial manipulation in terms
of both theory and application, they are still not completely closed. Many improvements
need to be done, and instead of listing them here, we prefer to discuss them at the end of
each relevant chapter or section of this thesis. Also we note that a list of future possible
developments are listed in Chapter 7.
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Chapter 2

Quadrotor: Mathematical Model and
Experimental Setup
Quadrotors are in general light-weight aerial robots with high agility and great workspace.
They are also off-the-shelf products today which makes them easy to acquire, and preferable
platforms for the researchers (see Sec. 1.1 for an extensive literature review). In this chapter,
we provide the base model of a quadrotor, together with its kinematics and dynamics. Our
goal is to provide a clear mathematical model of this kind of aerial robot, which is going
to be used for developing the control methods in the following chapters. In addition, we
present here the real quadrotor setup in detail, which is used in our experiments. From
electronics to software, we give the details of the tools we developed and used in the frame
of this thesis.

2.1 Quadrotor Model
In this section we describe the frames of references, kinematics and two different dynamic
models of a quadrotor VTOL, which will be used through this thesis.

Consider the model of a quadrotor as sketched in Fig. 2.1. The North-East-Down (NED)
convention is used for every frame. We denote with FW : {PW,xW ,yW , zW} the world
(inertial) frame. The body (base) frame of the quadrotor is placed at its Center of Mass
(CoM) and denoted with FB : {PB,xB,yB, zB}. The rotation matrix representing the
orientation of FB in FW follows the roll-pitch-yaw convention (Siciliano and Khatib (2008))
and it is

R(ηηη) =

cθcψ cψsθsφ − cφsψ sφsψ + cφcψsθ
cθsψ cφcψ + sθsφsψ cφsθsψ − cψsφ
−sθ cθsφ cθcφ

 ∈ SO(3), (2.1)

where ηηη = [φ θ ψ]T ∈ R3 are the roll, pitch, and yaw angles in the minimalistic representation
of the orientation, and clearly R(ηηη) ∈ SO(3) is the associated orthogonal rotational matrix
with |R| = 1. Notice that s∗ and c∗ stands for sin(∗) and cos(∗), respectively. Furthermore,
the transformation between the body frame angular velocity ωωω = [ωx ωy ωz]T ∈ R3 to the
euler rates η̇ηη = [φ̇ θ̇ ψ̇]T ∈ R3 can be done using

ωωω = T(ηηη)η̇ηη, η̇ηη = T(ηηη)−1ωωω

T(ηηη) =

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

 , T(ηηη)−1 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.2)
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Figure 2.1: Schematic figure of a quadrotor and notation used in the thesis. For the i-th
propeller, Ωi is the spinning velocity, fi the thruster forces, τi is the reaction
torque of the i-th motor due to the shaft acceleration and the propeller blade
drag. Also see Fig. 1.2. Gravity is facing the positive zW .

with t∗ is tan(∗). Notice that ωωω ∈ R3 is the angular velocity of FB w.r.t. FW expressed
in FB. Each propeller of the quadrotor is assumed to be placed with the same distance
from the CoM, and it is dp ∈ R>0. In our configuration the first and second propellers
are counter-rotating to those of third and fourth (see Fig. 2.1). Hence using the following
constant transformation, we can map the spinning velocities of the propellers to the well
known body-fixed forces of a quadrotor

u =
[
ut
ur

]
=


ut
uφ
uθ
uψ

 =


cf cf cf cf
0 0 −dpcf dpcf

dpcf −dpcf 0 0
−ct −ct ct ct




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 ∈ R4×1, (2.3)

where ut is the total thrust force, uφ is the roll, uθ is the pitch and uψ is the yaw torque.
Note that positive ut is facing the −zB direction, which is upwards. The spinning velocity
of the i-th propeller is depicted with Ωi and its direction is as in Fig. 2.1. The constants
cf and ct are to be identified parameters (see Sec. 2.3.1), which satisfy fi = cfΩ2

i and
τi = ctΩ2

i .
Now with these in mind, we can derive the dynamic model for the CoM of a quadrotor.

Newton-Euler Dynamics

Consider the CoM of the quadrotor placed at PB. Similar to Lee et al. (2013), the
Newton-Euler dynamics of this point will be given in two parts; rotational

Σr :

Mqrω̇ωω = [ωωω]∧Mqrωωω + ur + τττ ext

η̇ηη = T(ηηη)ωωω,
(2.4)

and the translational

Σt :
{
mqp̈q = −utR(ηηη)e3 +mqge3 + fext, (2.5)
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where mq ∈ R>0 is the mass of the quadrotor; e3 = [0 0 1]T ∈ R3; R(ηηη) is the rotation
matrix as in (2.1); pq = [xq yq zq]T ∈ R3 is the position of PB in FW ; ut ∈ R is the thrust1

control input along −zB; ωωω ∈ R3 is the body frame angular velocity as mentioned above;
Mqr = diag([Jxx, Jyy, Jzz]) ∈ R3×3 is the inertia matrix w.r.t. the body frame; g ∈ R+ is the
gravity acceleration directed along zW ; ur ∈ R3 and τττ ext ∈ R3 represent the torque inputs
and the external (environment) torques, respectively, both expressed in FB; fext ∈ R3 is the
external (environment) force expressed in FW ; T(ηηη) ∈ R3 is as in (2.2); and [?]∧ : R3 → so(3)
is the skew-symmetric operator.

Lagrange Dynamics

In this thesis we will also use the Lagrange formalism of the quadrotor CoM (placed at
PB) depicted in Fig. 2.1. The translational dynamics of the system remains the same as
in (2.5). The rotational dynamics however is

Σr :
{
WMqr(ηηη)η̈ηη = −Cr(ηηη, η̇ηη)η̇ηη + ur + τττ ext, (2.6)

where WMqr(ηηη) = T(ηηη)TMqrT(ηηη) ∈ R3×3 is the rotational inertia matrix w.r.t FW and
Cr(ηηη, η̇ηη) ∈ R3×3 is the matrix representing the Coriolis terms for the rotational dynamics,
whose components ij-th are (Cij);

C11 = 0
C12 = (Jyy − Jzz)(θ̇cφsφ + ψ̇s2

φcθ) + (Jzz − Jyy)ψ̇c2
φcθ − Jxxψ̇cθ

C13 = (Jzz − Jyy)ψ̇cφsφc2
θ

C21 = (Jzz − Jyy)(θ̇cφsφ + ψ̇s2
φcθ) + (Jyy − Jzz)ψ̇c2

φcθ − Jxxψ̇cθ
C22 = (Jzz − Jyy)φ̇cφsφ
C23 = −Jxxψ̇sθcθ + Jyyψ̇s

2
φcθsθ + Jzzψ̇c

2
φsθcθ

C31 = (Jyy − Jzz)ψ̇c2
θsφcφ − Jxxθ̇cθ

C32 = (Jzz − Jyy)(θ̇cφsφsθ + φ̇s2
φcθ) + (Jyy − Jzz)φ̇c2

φcθ+
+ Jxxψ̇sθcθ − Jyyψ̇s2

φsθcθ − Jzzψ̇c2
φsθcθ

C33 = (Jyy − Jzz)φ̇cφsφc2
θ − Jyyθ̇s2

φcθsθ − Jzz θ̇c2
φcθsθ + Jxxθ̇cθsθ.

(2.7)

2.2 Simulation Setups of the Quadrotor
In the course of this thesis, we present several control methods for achieving aerial physical
interaction and manipulation. Before validating these methods experimentally using the
real robot, we first test them numerically using computer simulations.

The most frequently used simulation environment for this thesis is Matlab/Simulink with
its ODE solvers. In fact, the numerical results in Sec. 4.3.1, Sec. 6.2.9 and in Sec. 6.3.4 are
acquired using Matlab/Simulink. For simulations, we put additional effort to make them
realistic, by adding noises to the measured quantities, implement low-sampled discretization
on some of them replicating the transmission frequency of the real sensors, and even adding

1In normal situations it is actually ut > 0. However, if needed by the task, negative thrust can always be
achieved in the implementation, as, e.g., in Cutler et al. (2011).
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Parameters Notation Value Unit
Mass mq 1.2 [kg]
Moment of Inertia Mqr diag([0.015, 0.015, 0.026]) [kgm2]
Link distance dp 0.2 [m]
Max. Propeller Velocity Ωmax

i 95 [Hz]
Max. Propeller Thrust fmaxi 7 [N]
Identified Propeller Parameters cf , ct 0.00065, 0.00001 See (2.3) and Sec. 2.3.1

Table 2.1: Approximate physical parameters of the quadrotor setup shown in Fig. 2.2.
Notice that depending on the design or experiment, these parameters can (and
will) change.

parametric uncertainties making the controllers less confident about the real model of the
system.
We also implemented some of the controllers presented in this thesis using physics-

based simulators, e.g. Sim Mechanics of Matlab. There, a CAD model of the robot is
designed, which is more realistic than using the mathematical model of the system. Then
the controllers developed based on the mathematical model of the system are tested for
controlling this CAD model. For example, when testing the controller presented in Sec. 6.2.7
for a quadrotor + VSA setup, right after the Matlab/Simulink simulations and before the
experimental validation, we implemented it together with the CAD model of the system,
as depicted in Fig. 6.18.

For solving the optimal control problem, described in (6.74) of Sec. 6.2.8, we used ACADO
numerical optimizer. The details of ACADO can be found in Houska et al. (2011).
Finally, mostly for visualization purposes of some of the Matlab/Simulink simulations,

we used UNITY Game Engine2, which is used to simulate the motion of the CAD model of
the quadrotor.

2.3 Experimental Setup of the Quadrotor
In this section we will briefly present the quadrotor we used for our experiments, as
well as the hardware and the software for the experimental setup. The main body of
the quadrotor setup is manufactured by HiSystems GmbH, and named as Mikrokopter
Quadrotor3. A picture of the quadrotor setup is given in Fig. 2.2, and its physical parameters
are summarized in Table 2.1. This is the flying robot base, and depending on the experiment,
we mount additional parts on it (e.g. Force/Torque (F/T) sensor onbard as shown in Fig. 3.2,
or any additional manipulator arm, e.g. in Fig. 5.7, Fig. 6.18 or in Fig. 6.26).

2.3.1 Hardware
The flying robot, quadrotor, is consisting of various mechanical parts and electronics.
The quadrotor has four rigid bars, connecting four burshless motors (will be referred as
BL-Motors or BLDC) and their propellers to the main body of the robot (see Fig. 2.2).
Notice that propellers are rigidly attached to their motors, as well as the motors to the

2https://unity3d.com/
3http://www.mikrokopter.de/en/home
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2.3 Experimental Setup of the Quadrotor

Figure 2.2: Experimental setup of the quadrotor VTOL. From top to bottom, there is first
the MoCap markers to be detected by the MoCap system. Later there is the
flight controller, which has the IMU on it. Below there are four brushless (BL)
motor controllers (symmetrically placed around the flight controller), connected
to the flight controller via an I2C Bus. These brushless motor controllers are also
connected to a square-shaped power board, which is powering all the electronics
on board and connected to a 16 [V] DC battery. Between battery and the
powerboard, four rigid bars are rigidly attached to the whole system, each
carrying one brushless motor. Each motor is rigidly attached to its propeller
via screws.

bars, and bars to the body. On top of them there are four brushless motor controllers, a
flight controller with an Inertial Measurement Unit (IMU) on it and markers for a Motion
Capture (MoCap) system, in this order. Below the rigid bars there is the battery as the
energy source.

Micro-controllers and the Brushless Motors

On the platform, there are four control circuits for the brushless motors, each having
one ATMEGA168 µ-controller4 (see Fig. 2.2). These controllers are connected to a flight
controller via I2C bus, which has an Inertial Measurement Unit (IMU) on board. Through
a serial channel we communicate with the flight controller, allowing us to read/write data
from/to both the flight controller and the brushless motor controllers.

A Motion Capture System (MoCap) is placed in the room of the experiments5, which is
acquiring the poses of specific markers using 6 different fixed near-infrared cameras (see

4http://wiki.mikrokopter.de/en/BL-Ctrl_2.0
5https://www.vicon.com/
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CAM1

CAM2
CAM3

CAM4
CAM5CAM6

Markers

Brushless Motor
Controllers

IMU

Figure 2.3: Schematic figure of an indoor experimental setup with a quadrotor. In the room
there are 6 different near-infrared cameras tracking the pose of the markers in
the global frame, and this information is given by a Motion Capture System
at 120 [Hz]. The Inertial Measurement Unit (IMU) is providing the linear
acceleration and the rotational velocity of the quadrotor body, former in the
global and the latter in the body frame. This information is provided by the
flight controller, through the serial communication at 1 [kHz]. The brushless
motor controllers are for controlling the propeller velocities.

Figure 2.4: Test setup for identification of the propeller parameters cf and ct to be used
in (2.3). The force/torque sensor used in this setup is an ATI-Mini45 with
calibration according to Si-145-5 and a readily available software. The BL-
CTRL can set the desired velocity (so it is an Electronic Speed Control - ESC )
of the propellers and measure it using the software explained in Sec. 2.3.2.

Fig. 2.3). These special markers are rigidly fixed on the quadrotor body.
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2.3 Experimental Setup of the Quadrotor

Sensors for the State Estimation

For state estimation of the robot, we use an external MoCap system and the IMU on board
of the quadrotor. MoCap system is providing the pose of the quadrotor, qq = [pTq , ηηηT ]T ∈ R6

in the world frame at 120 [Hz]; while the IMU is giving the linear acceleration, p̈q ∈ R3, in
the world frame and the angular velocity of the body (in the body frame), ωωω ∈ R3, both at
1 [kHz].

F/T Sensor Hardware

In our experiments we used two different Force/Torque (F/T) sensors. The first one is ATI
Mini45 F/T sensor, calibrated according to SI-145-5, and located at LAAS-CNRS, Toulouse,
which is a heavy sensor considering its electronics for data acquisition (all together weights
about 4 [kg]). Since the total weight is way more than the load limit of our quadrotor, this
sensor is not suitable to be placed on board of it. However thanks to its readily working
hardware/software (of the ATI sensor with its drivers6 and the brushless controllers allowing
the velocity control of the propellers), we used it to identify the propeller parameters,
cf and ct, which were required for calculating the propeller velocities, Ωi, which can be
mapped directly to the quadrotor control input vector u, using the conversion in (2.3). So
for implementing any given control method providing u, we need the parameters cf and ct
for computing the necessary propeller velocities Ωi, which will be sent as the commands of
the four BL-CTRLs on board. The setup used for identification is shown in Fig. 2.4, where
the propeller+brushless motor (BL-motor) is rigidly attached on the ATI-Mini45 sensor,
and the sensor is rigidly connected to a platform below. The BL-motor is connected to
a brushless controller (BL-CTRL), which can measure and control the propeller velocity
(using the software explained in Sec. 2.3.2). The sensor is connected to its data acquisition
(DAQ) box (not given in the figure). Both the DAQ box and the BL-CTR are connected to
a personal computer (PC), where an authentic software runs to control the identification
process. There, we repeatedly set the desired BL-motor velocity for various values, and
measure both its velocity (via BL-CTRL) and the forces/torques (via the F/T sensor). At
the end, the propeller values are identified as cf = 0.00065 and ct = 0.00001, which are also
depicted in Table 2.1.

The second F/T Sensor is the FTSens, produced by IIT originally for the ICub humanoid
robots (see Fumagalli et al. (2012a)). There are two reasons why we chose this sensor; first
it was relatively cheaper than its peers in the market, and second it weights 122gr together
with its electronics. This is definitely in the load range of our quadrotor. A challenge of
using this sensor was implementing the software for acquiring the meaningful force/torque
measurements, from scratch. The FTSens communicates through the Controller Area
Network (CAN) bus channel, in which it receives the commands and sends the sensor data
based on the CAN protocol. An additional hardware setting is required for acquiring the
F/T data through CAN using the conventional computers which have serial channels, e.g.
the Universal Serial Bus (USB). Such conversion can be done using the hardware setup
shown and explained in detail in Fig. 2.5. For this setup to work, both the computer and
the sensor need to be programmed properly. The details of the software packages developed
in this thesis are explained in Sec. 2.3.2.

6http://robotpkg.openrobots.org/robotpkg/hardware/daqflex-libs/index.html
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Figure 2.5: Hardware setup and detailed connections of the USB-CAN bus communication
for the FTSens F/T sensor. From USB to the F/T sensor, the following
connections are used: (A): PEAK USB-CAN converter, (B-C-D): CAN-BUS
connectors properly adjusted, (E): CAN-BUS input of the F/T sensor. Above
in the figure, these connections are shown using the real pictures of the setup.
Below, a sketch of the proper connections are given for the convenience of the
reader. Here, we respected the color code of the real connections.

2.3.2 Software

During the course of this thesis, we have improved the tools available for the APhI not
only theoretically, but also practically. For implementation of the controllers we have
presented in this thesis, it was necessary to set the hardwares (as explained in Sec. 2.3.1)
and implement/create proper softwares for them to work.

For our experiments, we benefited greatly from the Robot Operation System (ROS): a
collection of different robotic software frameworks providing standard operating system
services, e.g. hardware abstraction, low-level control, high level operation, etc. (see
also Quigley et al. (2009)). Furthermore, we have implemented all of our software packages
compatible with ROS, and TeleKyb framework: an open-source end-to-end ROS-based
software for general purpose of mobile robot control developed at Max Planck Institute
for Biological Cybernetics, Tübingen (for details, see Grabe et al. (2013). Hence all the
estimators (state and force/torque) or controllers presented in this thesis, and the softwares
for e.g. flight controllers, brushless motor controllers, sensors, are implemented in a way
that they can work with ROS and TeleKyb.

We would like to thank Dr. Paolo Stegagno and Dr. Anthony Mallet for their involvement
during the development of these software packages. Especially we note that Dr. Anthony
Mallet has developed personally most of the low-level software (LAAS-CNRS side) as
explained in the following.
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Telekyb and the Low-Level Software

The quadrotor setup we use in our experiments has one flight-controller (with IMU on it)
and four brushless-motor controllers regulating the spinning velocities of the propellers, Ωi

(see Fig. 2.2).
Until recently, as for the most of the quadrotor setups in the market, the spinning of the

propellers were controlled by setting the duty cycle of the Pulse Width Modulated (PWM)
signal of the input voltage of the brushless motors. This open-loop way of controlling the
propeller rotation rate assumes that the battery voltage of the quadrotor is not changing,
and there is a constant one-to-one mapping between the propeller (or brushless motor)
velocity and the PWM duty cycle. Clearly, in reality this is not the case, since with the
dropping battery voltage during the flight of the quadrotor, a non-linear mapping between
the propeller velocity (Ωi in Fig. 2.1) and the PWM input occurs, which is hard to identify.
Furthermore a static nonlinear mapping is valid only at steady state while inertial and
dissipative phenomena have to be taken forcibly into account, when the rotational speed
is changing, in order to achieve good tracking performances. For this reason, a low-level
controller on the brushless controllers (BL-CTLR) for tracking the propeller velocity, Ωi, was
needed. A Sliding Mode Controller is developed at LAAS-CNRS by Dr. Antonio Franchi
and Dr. Anthony Mallet for this purpose and implemented on each µ-controller of the
four brushless motors7. This very low-level control loop makes sure that the propellers are
rotating at the velocity, which is computed by a higher control loop using the transformation
given in (2.3). This setup allows us implementing the controllers developed based on the
explicit system dynamics, e.g. the ones presented in Chapter 4 and Chapter 6.

The flight controller on board (with IMU) connects the brushless controllers to a higher-
level control framework. By doing so, it provides the IMU measurements to a computer,
while sending the desired propeller spinning velocities to the brushless motors. The
software managing this is also implemented at LAAS-CNRS7 with extended capabilities,
e.g. measurements of the motor currents, velocities, battery voltages, etc.
We have implemented an interface, connecting both these low-level softwares with a

higher control loop in TeleKyb framework8. This interface can work with already developed
packages of TeleKyb, e.g. obstacle avoidance, state estimation, etc., while allowing us
testing our model-based controllers using cutting-edge low-level softwares developed in the
time of this thesis7.

Data Fusion for State Estimation

It is obvious that for realizing a closed-loop control for the system at hand, the state
estimation is crucial. As mentioned before, for this purpose two types of sensors are used;
a MoCap system implemented in the experiment room measuring the pose of the MoCap
markers’, hence quadrotor’s, pose qq = [pTq , ηηηT ]T ∈ R6 in FW at 120 [Hz]9, and an IMU
implemented on board of the quadrotor measuring its linear acceleration p̈q ∈ R3 in FW
and its rotational velocity ωωω ∈ R3 in FB both at 1 [kHz]. However, for our controllers what
we need is the state of the quadrotor, i.e. qq and q̇q. For this reason, we use an Unscented

7https://git.openrobots.org/projects/tk3-mikrokopter
8https://svn.tuebingen.mpg.de/humus-telekyb/hydro/trunk/packages/telekyb_uavs/tk_

mkomegacontrolinterface/
9Actually, MoCap measurements give the quaternions instead of the Euler angles; however the transition
from one to another is clear considering the convention used in (2.1).
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Kalman Filter (UKF) for fusing the data of the different sensors and estimating the
quadrotor state at 1 [kHz]. The algorithm for this UKF is developed at LAAS-CNRS and
made available for the public10.

F/T Sensor Software

In our experiments we used the IIT’s F/T sensor developed for ICub robots11, which is a
6D force/torque sensor, relatively cheap w.r.t. its peers and it does not require additional
heavy data acquisition unit. Its low cost and light weight makes it a good choice to be used
for APhI experiments. The sensor has been successfully tested and used before in ICub
robots, as reported in Fumagalli et al. (2012a).
By the time we acquired it, we only received the hardware with no software package

directly providing the sensor measurements in proper units, e.g. N or Nm. The sensor
transmits its raw data through a CAN bus, hence within the time of this thesis we have
implemented a CAN bus-Serial communication software (driver) providing the raw sensor
data, and a ROS based software acquiring the force and torque measurements in meaningful
units.
The software package we have created for this sensor is available for the public use12.

There we provide:

• how to set up your computer (for both Intel or ARM processors) for using the
CAN-USB converter,

• how to get the calibration data from the sensor,

• how to ping the sensor and let it send the raw data to your computer.

The details on the communication protocol of the sensor are available in the wiki-page of
the ICub11. Using this driver and following the instructions explained in Fig. 2.5, it is now
straightforward to receive the raw data from the FTSens F/T sensor.

For processing this raw data, we implemented a ROS (C++) based software within the
TeleKyb framework. This software is tested with ROS-Indigo in Ubuntu 14.04 OS. It13

receives the raw data from the serial channel the sensor is connected to (through a CAN-USB
converter) and as output returns the force and torque measurements in meaningful units in
a ROS topic. In this way the output can also be used by other ROS-based packages, e.g.
the controller tested in Sec. 4.3.2. Notice that this code is strongly depended on both ROS
and TeleKyb message types and their existing packages. Its usage for our experiments is
also made available to the public14, but for the initial access a permission from Max Planck
Society would be needed.

10http://robotpkg.openrobots.org/robotpkg/localization/pom-genom3/index.html
11http://wiki.icub.org/wiki/FT_sensor
12https://redmine.laas.fr/projects/byueksel/repository/ftsens_iit
13https://svn.tuebingen.mpg.de/humus-telekyb/hydro/trunk/packages/telekyb_users/tk_

byueksel/src/ftsens_subpub.cpp
14https://svn.tuebingen.mpg.de/humus-telekyb/hydro/trunk/packages/telekyb_users/tk_

byueksel/
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Chapter 3

External Wrench Measurement and
Estimation for an Aerial Robot

To perform a meaningful physical interaction task, the knowledge of the interactive forces
and torques (F/T, or wrench) is required. In robotics, especially for the ground robots,
it is common to use an F/T sensor or transducer for measuring this information. Using
an F/T sensor comes with the advantage of having accurate measurements, which are
certainly independent of any system model of the robot/the environment they are used
with/at. However, this measurement brings additional costs in terms of power, money, but
especially the weight. Particularly for aerial robots, the additional weight of the sensor
could dramatically limit the capabilities of the system. Moreover, the measurement is
limited to the location of its transducer. These in mind, estimation of the external wrench
is a computationally cheap way, which is adding no cost of weight or money and can be
performed for any point on the system. For this reason it is reasonable, and necessary to
study the estimation methods for the external wrenches, as well as improve the existing
transducers for the use of aerial physical interaction.

In this chapter we will first introduce some of the external measurement methods available
in the market, and describe the transducer we used which is suitable for aerial physical
interaction. Recall from Sec. 2.3.2, during the time of this thesis work we have developed
necessary drivers and software for this sensor. Later, we will introduce an external wrench
estimator for quadrotor VTOLs, developed based on Lyapunov-based nonlinear disturbance
observers and present its performance using numerical data. Finally we compare both
wrench measurement and the estimation methods using the experimental data, and discuss
the results. Based on this discussion, we decide for one of these two methods for acquiring
the external wrench information to be used in the controller presented in Chapter 4.

We note that the content of this chapter, to be exact the Section 3.3, where we explain
the nonlinear wrench observer, is published in Yüksel et al. (2014b).

3.1 Introduction
The physical interaction of flying systems is a challenging control and design problem
and it became recently the interest of many researchers. Especially quadrotor VTOLs are
becoming popular tools for physical interaction tasks, and for a broad literature review
please refer to Section 1.2.

One of the challenges when flying machines are interacting with their environment is the
stabilization and the control of this interaction in a meaningful way, i.e., they can exploit
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interactive forces for achieving a desired task1. Another crucial issue for aerial physical
interaction is measuring the external wrenches (i.e., forces and torques) acting on the body
of the flying system. This can be done using force/torque sensors that, on one side, give
reliable independent and accurate measure. On the other side, using sensor can increase
the cost of the equipment, the demand from the power supply and the weight of the robot,
which consequently can decrease the flight capacity of the aerial vehicle. Another viable
solution is the use of a wrench estimator, which proposes a cheaper solution. The estimator
might give a sufficiently accurate estimate of the wrench, if it is properly designed and if
the other sensors (for e.g. velocity, pose and, if available, acceleration) are accurate and
reliable enough. Furthermore, using a wrench estimator would mean lighter and more
power efficient aerial robots, which is a critical fact considering their low load capabilities.

With these insights, we set our goals for this chapter as: i) finding an appropriate F/T
sensor hardware for APhI, and implementing it on a quadrotor, ii) developing an F/T
estimation method for quadrotors, iii) comparing these two techniques to find the most
suitable one to be used later for APhI.

Now, in the following we start with the F/T sensor setup we implemented to be used for
APhI. Then we present a wrench estimation method in Sec. 3.3. In Sec. 3.4 we compare
these two techniques and discuss their advantages over each other.

3.2 Measurement of the External Wrench
Acquiring the knowledge of the forces and the torques in 3D (wrench) is possible using F/T
sensors, which are already in use for robotic manipulators and humanoids (see Siciliano
and Khatib (2008)). Recently they have been in use also for the aerial robots. In Gioioso
et al. (2014) it has been shown how to turn a quadrotor into a 3D force tool, and for the
experimental setup an ATI-Gamma F/T sensor was used. In that work, like in many, the
F/T sensor is either placed in the environment, e.g. mounted on a wall, or on the robot
but only when it is not completely flying, i.e. when the robot is fixed to a test bench as
in Yu and Ding (2012) and in Schiano et al. (2014). One of the main reason why these
sensors are not yet used on board of a flying aerial vehicle, is because of their weight.
Especially considering their electronics, e.g. the data acquisition box of the ATI-Gamma
sensor mentioned above, most of the aerial robots used in research are not capable of flying
with them on board.

This have been told, there are more light-weight 6D F/T sensors available in the market.
For the part of the experiments of this thesis, we have decided to use the FTSens 6D F/T
sensor, developed by the Italian Institute of Technology (IIT), as introduced in Fumagalli
et al. (2012a). This sensor weights 122 [gr] with all electronics (but without the CAN-USB
hardware explained in Fig. 2.5), which makes it a suitable candidate to be used on board
of an aerial robot. In this way, the F/T sensors can be used not only as ground truths, but
also as the direct measurements fed back to the control algorithms.

We explained the hardware and the software for the communication with the F/T sensor,
in Sec. 2.3.1 and in Sec. 2.3.2, respectively. Now let us give the details on its usage on
board of a quadrotor VTOL. A sketch of our quadrotor and the F/T sensor setup is

1There are various ways of approaching this challenge, as listed in Sec. 1.2, and the way we see this
problem is summarized in Sec. 1.4.1. Moreover, we address the problem of APhI not here but in
Chapter 4.
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Figure 3.1: Placement of the interaction tooptip on top of the quadrotor: IMU (PB),
Force/Torque sensor (PS), the rigid tool and its tip (PT). This setup is later
realized both as CAD model and in reality as shown in Fig. 3.2.

given in Fig. 3.1. On top of the F/T sensor a rigid tool is placed, intended to be used
as the interaction tool with the environment. We intentionally placed this rigid tool in a
way there is |π/4| [rad] between the tool tip and the quadrotor frame; so that during a
physical interaction the propellers will be away from the obstacles. The CAD design of this
setup is shown in Fig. 3.2, where we also give its realization in detail. We note here that
such design is also depicted in Fig. 4.4, where it is used for numerical simulations of the
controller presented in Chapter 4. Moreover, the real setup shown in Fig. 3.2 is used for its
experimental validation of the same controller in Sec. 4.3.2.

Now let us then compute the external wrenches acting on different parts of the quadrotor,
using the measurements acquired from the F/T sensor. We had previously defined FW :
{PW,xW ,yW , zW} as the world frame, and FB : {PB,xB,yB, zB} is the body-fixed frame
of the quadrotor. Now, let us define the FS : {PS,xS,yS, zS} as the F/T sensor frame.
Assume that the IMU frame is same as FB. Then define FSb : {PS,xSb,ySb, zSb} as the
frame of the F/T sensor, after its orientation is aligned with the orientation of the body-fixed
frame. Then let us define the following wrench informations:

• The external wrench acting at and about the tip point of the tool (PT), is defined
with wt ∈ R6 in FW , since the external forces and torques are coming from the world
frame.

• The wrench measured by the sensor, is defined with w̃s ∈ R6 in FS, since the
measurements are done in the sensor frame,

• The wrench measured by the sensor and adapted to the body frame, is defined with
ws ∈ R6 in FSb, since the sensor is fixed on the body of the quadrotor,

• The wrench entering to the quadrotor dynamics, is defined with wext ∈ R6, where
the forces are defined in FW and the torques are in FB so equivalently in FSb. This
is because of the choice made when writing the quadrotor equations of motion in
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Figure 3.2: Quadrotor with F/T sensor (FTSens) on board. This is the experimental setup
used for validating the IDA-PBC controller presented in Chapter 4. Notice that
the CAD model is developed based on the description in Fig. 3.1, and so is
the real robot. MoCap markers are placed different than the one in Fig. 2.2
so that both the F/T sensor and the interaction tool can be placed on top of
the quadrotor. The hardware for the CAN-USB communication, described in
Fig. 2.5 is placed on the bottom of the robot. For this setup, it is mq = 1.49 [kg],
and Mqr = diag([0.01708, 0.0172, 0.0274]) ∈ R3×3 in units of [kgm2].

Sec. 2.1, where the translational dynamics is written in the world frame, while the
rotational one is in the body frame.

Now, it is clear that the only measurement we get is w̃s ∈ R6 in FS, but we need wext ∈ R6

for the controller presented in Chapter 4, and maybe also wt ∈ R6 in FW for visualization
or for another type of controller. Then let us clarify the following relationship between the
different wrench informations:

• Find ws ∈ R6 in FSb. To do so, change the F/T sensor frame from FS to FSb.
Notice that it can be done using time invariant rotations only (see Fig. 3.1 for the
orientations of the frames). More specifically, remembering that FS : {PS,xS,yS, zS}
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and FSb : {PS,xSb,ySb, zSb}, we havexSbySb
zSb

 = RB
S

xSyS
zS

 , RB
S = RxS(π)RzS(π/4), (3.1)

where R∗S is the rotation matrix defined in FS and around ∗-axis. Hence, if the
w̃s ∈ R6 is the measurement of the F/T sensor defined in FS (because it is fixed in
the sensor frame), then

ws =
[
RB
S 03

03 RB
S

]
w̃s (3.2)

is the measurement but defined2 in FSb. Notice that RB
S is a constant (time invariant)

matrix, and 0i is a i× i zero matrix.

• Find wt ∈ R6 in FW . To do so, let us use the recently computed ws. This can be
done using the following relation:

ws =
[

RB
W (ηηη) 03

[dl]∧RB
W (ηηη) RB

W (ηηη)

]
wt, (3.3)

where RB
W (ηηη) is the rotation matrix representing the orientation of FW in FB, which

is time variant due to the dependency of the quadrotor orientation ηηη ∈ R3. Notice
that dl ∈ R3 is the distance between PT and PS in FSb frame3, and [?]∧ : R3 → so(3)
is the skew-symmetric operator. Hence, using ws from (3.2), we can acquire wt using
the relation in (3.3).

• Find wext ∈ R6. To do so, use the rigid transformation from ws to wext:

wext =
[

RW
B (ηηη) 03

[ds]∧RW
B (ηηη) I3

]
ws, (3.4)

where RW
B (ηηη) is the rotation matrix representing the orientation of FB in FW , Ii is

a i × i identity matrix, and ds is the distance between PS and PB in FB, which is
ds = [0 0 − 0.05] [m].

Hence, for finding the effect of wt defined FW and applied in the body-fixed frame of the
quadrotor (this effect is defined as wext), one can first use the F/T sensor measurements
w̃s in FS, then compute ws in FSb, and then finally use (3.3) and (3.4), respectively.

Notice that when using the NED convention, the rotation matrix from body to the world
frame is RW

B (ηηη) = R where R ∈ SO(3) is given in (2.1) and it is true that RB
W (ηηη) = RW

B
T (ηηη),

and ηηη = [φ θ ψ]T ∈ R3 is the minimal representation of the rotations using Euler angles in
the following order: roll-pitch-yaw.
We note that the F/T sensors we have used in this thesis are strain-gauge based

transducers, i.e. a so called spring element measures the forces and torques based on
2This implies the following: from the force/torque sensor we get w̃s ∈ R6 which is naturally given in the
sensors body frame, FS . However for our convenience we want to transform it to ws defined in FSb,
because it has the same orientation as the body frame of the quadrotor. To do so, we apply (3.2).

3Notice that if d̄l is the distance between PT and PS in FS , then according to Fig. 3.1 it is true that
dl = RB

S d̄l, where d̄l = [0.2 0 0.15]T [m].
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the deflections of this element. Recently, new type of transducers are being produced using
optical grade elastomers4, making them more robust to the environmental change, e.g.
temperature and pressure. With their increasing availability, they can be an alternative to
the strain-gauge based sensors.

3.3 Estimation of the External Wrench
As discussed in Sec. 3.1, it is very convenient in many cases to use a wrench estimator
rather than a force sensor, which is mounted on a specific point of the system. For this
reason, in this section, we will present a wrench estimator that is inspired by the nonlinear
disturbance observers presented for the robotic manipulators in Chen et al. (2000) and
more general in Nikoobin and Haghighi (2009).

First of all, consider the Lagrange dynamics of a quadrotor VTOL as described in Sec. 2.1
(to be exact; translational from (2.5) and the rotational dynamics from (2.6)). Assigning
the configuration variables of the quadrotor CoM using qq = [pTq ηηηT ]T = [q1 · · · q6]T ∈ R6,
we can write its dynamics as

wext = B(qq)q̈q + C(qq, q̇q)q̇q + g−G(qq)u, (3.5)

with

B(qq) =
[
mqI3 ∗
03

WMqr(ηηη)

]
= BT ∈ R6×6 C(qq, q̇q) =

[
03 03
03 Cr

]
∈ R6×6 (3.6)

g =
[
−mqge3

03×1

]
∈ R6 G(qq) =

[
−R(ηηη)e3 03

03×1 I3

]
∈ R6×4,

where B is the generalized inertia matrix, Cr is the matrix representing the Coriolis terms
as in (2.7), g is the vector for the gravitational forces, G is the control input matrix,
u = [ut uTr ]T ∈ R4 is the control input as in (2.3), and finally wext = [fText τττText]T ∈ R6

represents the external wrench acting on the quadrotor.
Let us then propose the following disturbance observer based on Chen et al. (2000)

and Nikoobin and Haghighi (2009):
˙̂wext = L(qq, q̇q)(wext − ŵext)

= −L(qq, q̇q)ŵext + L(qq, q̇q)
(
B(qq)q̈q + C(qq, q̇q)q̇q + g−G(qq)u

)
,

(3.7)

where ŵext = [f̂Text τ̂ττ
T
ext]T ∈ R6 is the estimated wrench and L(qq, q̇q) ∈ R6×6 will be designed

in order to ensure the convergence of the observer. Since we do not assume any specific
model for the external wrench, we have no prior information about the derivative of the
external wrenches (or disturbances). Therefore it is assumed that

ẇext = 0, (3.8)

which is inevitable if one does not know anything about the environment geometry and
dynamics. However, one can improve the observer performance if a good model of the
environment is known. Now, by defining the observer error

eo = wext − ŵext (3.9)
4http://optoforce.com/
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and considering both (3.7) and (3.8), we can now calculate

ėo = ẇext − ˙̂wext = L(qq, q̇q)ŵext − L(qq, q̇q)wext, (3.10)

which can be expressed, by considering (3.9), as below;

ėo + L(qq, q̇q)eo = 0. (3.11)

This means that the choice of L(qq, q̇q) will directly affect the asymptotic stability of
the error dynamics. In order to implement (3.7) one needs the knowledge of q̇q, q̇q,
and q̈q. Measuring or estimating qq and q̇q is quite standard in current platforms (see,
e.g., Abeywardena et al. (2013), and Section 2.3 of this thesis). However, for many
applications, a reliable measurement of the acceleration q̈q (i.e., both the linear and angular
acceleration) is not always available. For this purpose we define the auxiliary vector:

ΨΨΨ = ŵext − γγγ(q̇q). (3.12)

Taking the time derivative of (3.12) we have

˙̂wext = Ψ̇ΨΨ + ∂γγγ(q̇q)
∂q̇q

q̈q. (3.13)

By equating (3.7) and (3.13) we get

Ψ̇ΨΨ + ∂γγγ(q̇q)
∂q̇q

q̈q = −L(qq, q̇q) + L(qq, q̇q)
(
B(qq)q̈q + C(qq, q̇q)q̇q + g−G(qq)u

)
. (3.14)

By choosing
∂γγγ(q̇q)
∂q̇q

= L(qq, q̇q)B(qq) (3.15)

the dynamics of the nonlinear observer can be written as following

Ψ̇ΨΨ = −L(qq, q̇q)ΨΨΨ + L(qq, q̇q)
(
C(qq, q̇q)q̇q + g−G(qq)u− γγγ(q̇q)

)
ŵext = ΨΨΨ + γγγ(q̇q),

(3.16)

which is not depending anymore on q̈q. Therefore this scheme can be implemented
without measuring the acceleration of the generalized coordinates qq on commonly available
quadrotor platforms5. As it is seen from (3.11), we must choose L(qq, q̇q) such a way that
the error dynamics become asymptotically stable. Moreover, the decision made in (3.15)
brings a strict dependency of L(qq, q̇q) on the choice of γγγ(q̇q). Consider the following choice

γγγ(q̇q) = coq̇q, (3.17)
where co > 0 is an observer gain. The choice of γγγ(q̇q) is different from the one made for
robot manipulators as shown in Chen et al. (2000) and Nikoobin and Haghighi (2009),
since we are dealing with quadrotor dynamics. We obtain that

L(qq, q̇q) = coB(qq)−1. (3.18)

5Note again that actually p̈q is available from the IMU of the quadrotor, as explained in Sec. 2.3. One
can use this measurement directly if it is accurate enough. If not, or if it is quite noisy, both the
translational and rotational parts of the estimator presented here provide smoothen estimations.
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Proposition 1. Consider the wrench estimator (3.16) and assume that the roll and
pitch velocities are bounded, i.e. |φ̇| < φ̃ and |θ̇| < θ̃, where φ̃, θ̃ ∈ R+. If (3.8) holds
and if L(qq, q̇q) is defined as in (3.18), then it is possible to have ŵext → wext.

Proof. See Appendix A.1.

3.4 Measurement vs Estimation
For the controllers developed for achieving APhI, e.g. the one presented in Sec. 4.2.2, the
knowledge on the external wrench is crucial. The external wrench observer presented in
Sec. 3.3 is tested numerically in Sec. 4.3.1, which will be explained better and more in
detail in the next chapter. However, for now we can state that in numerical simulations,
very good wrench estimation performances have been achieved, even when the noises of the
other measurements are taken into account. This performance of the proposed observer
strongly relies on the choice of the observer gain, co, which is introduced in (3.17).
Although tuning this gain in the numerical simulations was relatively easy, for the real

experiments it was hard to find a compromise between the convergence of the estimation (see
Proposition 1) and its performance. For this reason, here we compare the performances of
the F/T sensor measurement (ground truth) explained in Sec. 3.2 with the wrench observer
introduced in Sec. 3.3. For the experimental setup, we used the aerial robot in Fig. 3.2,
where the overall quadrotor is controlled using IDA-PBC controller (explained in Sec. 4.2.2).
In addition, we implemented the nonlinear wrench observer (given in Sec. 3.3), all working
together within the ROS environment. Then we disturbed the hovering quadrotor by
imposing external forces and torques at the tip point of the rigid link (see Fig. 3.2), which
is rigidly attached to the F/T sensor, that is placed on board of the quadrotor.
The online collected external force/torque data is presented in Fig. 3.3, where the F/T

sensor measurements are compared with the wrench observer values. The blue curves stand
for the raw sensor measurements, while the green one is when they are low-pass filtered.
Further fining is done by removing the sensor bias online, and the final sensor data is shown
with black curves. The observer data is shown with red. As it is seen from Fig. 3.3, the
observer follows the sensor data (which is also the ground truth), but with some oscillations
and even with some bias. This is mainly due to the poor tuning of the observer gain co, and
partly due to the small imprecision of the mathematical model. Especially for fex and fey ,
the observer performs weaker w.r.t. the sensor data. However, notice that for fez , observer
tracks the sensor data much better, which is the direction where the aerial platform is fully
actuated.

3.5 Discussions
Using external wrench estimators based on the nonlinear model of the system, e.g. the one
presented in Sec. 3.3, is a straight-forward way since especially for the quadrotor VTOLs
we have relatively reliable mathematical models of the system (see Sec. 2.1). However, as
also discussed in McKinnon and Schoellig (2016), this requires fine tuning of the estimator,
which in real experiments might not be always as easy as it is for the simulations (see
Sec. 3.4).
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Figure 3.3: Comparison between the F/T sensor (see Sec. 3.2) and the observer (see Sec. 3.3).
Only the measured/estimated forces are shown, in units of [N]. Raw sensor
readings are depicted with blue curves, and the output of the observer is with
red ones. Green color is used for the measured forces which are low-pass filtered.
Dark curves are used when the bias of this low-pass filtered data is removed in
real time. The magnified plots of the each grayed box is placed close by, for
better comparison of the different values.

In Fig. 3.3, a comparison between the F/T sensor measurement (provided by the setup
explained in Sec. 3.2) and the wrench estimation (provided by the method described
in Sec. 3.3) is given. These results are from a real time experiment, where a human is
interacting with the flying quadrotor, as explained in Sec. 3.4. Clearly a varying external
F/T profile is imposed to the quadrotor, and for a fixed observer gain co, the estimator is
sometimes doing a good job, and sometimes not. For example, for fex values (first plot,
left), in the first grayed box the performance of the estimator is quite poor, while it gets
better in the second grayed box. An adaptive gain tuning method for the estimator might
solve this problem. On the other hand, the F/T sensor measurement (also the ground
truth) is always providing reliable measurements.
We note that different estimation methods, e.g. in McKinnon and Schoellig (2016),

might perform better under certain conditions. However, it is noticeable that using an F/T
sensor allows acquiring the exact wrench information, independent from any system model.
Moreover, in this case the wrench information would not be corrupted by any other sensor
measurement, e.g. the ones provide the state of the robot (see Sec. 2.3). There could be a
case, in which let’s say the state of the robot might be miscalculated, which might not be
crucial when the robot is in free flight, i.e. no APhI, but in case of APhI this might bring
instability if the wrench estimation is used in the controller. Such a case can occur more
frequently, especially when the robot is performing an outdoor task, where accurate state
estimation of the flying robots is already a great challenge considering different weather,
light and environment conditions.
Consequently, using a low-cost, light weight F/T sensor could be a beneficial choice,

providing robust measurements for the indoor and future outdoor experiments; also consid-
ering the recent technological developments in transducers, e.g. usage of the optical grade
elastomers6.

6http://optoforce.com/
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Chapter 4

Control of Aerial Physical
Interaction using IDA-PBC
Using aerial robots as passive observers for tasks such as surveillance, monitoring, target
tracking while avoiding any kind of physical interaction (e.g. obstacles) was the main
objective of the major research done in control of the aerial robots (please refer to Sec. 1.1.2
for a literature review). But, what if we want them to bump to the objects, interact with
their environment physically, and exert meaningful forces and torques on them?

In this chapter we address the control problem of the aerial robots when they are physically
interacting with their environments. To do so, we exploit the cyclo-passive property of a
quadrotor VTOL aerial robotic system. Using the Interconnection and Damping Assignment
- Passivity Based Control (IDA-PBC) method; we steer the quadrotor through a desired
behavior during a physical interaction, by reshaping its physical properties at will, and in a
stable manner.

We note that the control method presented in this chapter and its numerical validation
is published in Yüksel et al. (2014a), in Yüksel et al. (2014b) and finally in Yüksel et al.
(2017).

4.1 Introduction
Physical interaction between objects, robots, or living organisms occurs all the time
inevitably, this is due to the nature of the physical laws were are all exposed to. This
actually turns the term physical interaction into a very fundamental question, since our
understanding of the ‘matter ’ itself is not yet in a complete stage. Recalling from Physics
lectures, there are four conventionally excepted fundamental interactions/forces1, that
clearly modifies the definition of interaction, based on from which scale one looks at the
problem. In this thesis, we look at this problem in the level of so called weak or gravitational
forces, where the physical interaction acts on the mass of a system and varies its energy
(kinetic and/or potential). In fact, by physical interaction, we will mean exerting some
real energy to some system, e.g. by establishing some level of contact with it. Here, the
mechanical systems are in our interest, and the exertion of this energy will be considered
through applying some forces and torques on it.
In particular, here we will be studying Aerial Physical Interaction (APhI) and show

how one can shape the physical properties of a flying robot when it is interacting with
1https://web.archive.org/web/20160304133522/https://www.pha.jhu.edu/~dfehling/particle.

gif
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Chapter 4 Control of Aerial Physical Interaction using IDA-PBC

its environment. Energy clearly plays an important role for both modeling and control
of the mechanical systems, and we will exploit this fact in this chapter for APhI of the
quadrotors. In Sec. 4.1.1 we give the preliminaries on some important energetic properties of
the nonlinear systems, and their connections to the concept of stability. We then propose the
Interconnection and Damping Assignment - Passivity Based Control (IDA-PBC) method
for quadrotors in Sec. 4.2, which can render the nonlinear quadrotor dynamics into a
stable behavior (thanks to its passiveness), and reshape its dynamics properties (thanks
to the port-Hamiltonian (PH) formalization of the system) during a physical interaction.
In Sec. 4.3.1 we present the numerical results of this controller for relevant APhI tasks,
e.g. sliding on a ceiling surface. We further experimentally validate IDA-PBC method in
Sec. 4.3.2 for similar tasks.

4.1.1 Preliminaries
In this section we briefly recall the basics of passivity theory, and its link to stability, and
finally to the port-Hamiltonian (PH) systems. Later we describe how to implement the
IDA-PBC method for the PH systems.

A detailed, yet still narrowed summary of the nonlinear system stability and its connection
the concept of passivity is given in Appendix C of this thesis.

Dissipative Systems and Passivity

Consider a dynamical system satisfying Def.1.16 of Secchi et al. (2007), represented by the
affine nonlinear function ẋ = f(x) + g(x)u

y = h(x),
(4.1)

where x ∈ X is the state, f , g are smooth vector fields and h is a smooth mapping.
Moreover, u ∈ U is the input and y ∈ Y is the output of this system. Call ρ : U × Y → R
as the supply rate.

Definition 1 (Dissipative system-Secchi et al. (2007)). A system of the form (4.1)
is said to be dissipative w.r.t. the supply rate ρ; if ∀t ≥ 0, ∀u ∈ U ,∀xo ∈ X ,∃ a
continuous function H : X → R+, s.t. it holds

H(x(t))−H(x0) ≤
∫ t

0
ρ(τ)dτ.

Moreover, this function is called as the storage function.

A detailed description of the dissipative systems can be found in Willems (1972).

Definition 2 (Passive system-Secchi et al. (2007)). A system of the form (4.1) is said
to be passive if it is dissipative w.r.t. the supply rate ρ(u, y) = 〈u, y〉 = yTu.
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In Definition 2 we used brackets, a well-known Dirac notation, for representing the input-
output pairs (see details in Secchi et al. (2007)). From the time derivative of the dissipation
inequality given in Definition 1, it is trivial to observe that for a passive system Ḣ ≤ yTu.
holds.
Another definition of the passivity can be done as the following:

Definition 3 (Passivity-Sepulchre et al. (1997)). A nonlinear system given in (4.1) is
said to be passive if

(i) it is relative degree one,

(ii) it is weakly minimum phase.

The relative degree of a nonlinear system is explained in Definitions 4 and 5 of this thesis.
For the first condition of Definition 3 to hold, the control input matrix g of (4.1) must be full
rank. For IDA-PBC, to be explained later, this means the matching condition given in (4.6)
holds. The second condition holds when the system in (4.1) is weakly minimum phase,
i.e. it is passive with a C1 positive definite storage function H(x) (see Proposition 2.46
of Sepulchre et al. (1997)).

Passivity and Stability

Passivity, or feedback passivity, can be used as a tool for the stabilization of the nonlinear
systems. For brevity, by stability of a system, we mean the stability of its equilibrium. There
are different ways of analyzing the stability of a nonlinear system, and Lyapunov stability
and the input-output stability are two celebrated and widely used concepts in control theory
(see also Appendix C). Without giving a detailed explanation of the Lyapunov stability, it
can be named as a continuity property of x(t; x0, t0) of (4.1), for u = 0 (so called unforced
state equation), with respect to x0. Notice that x0 is the solution of (4.1) for u = 0 at
time t0. More details on Lyapunov stability, its connection to asymptotic stability and its
global properties can be found in Khalil (2001), Sepulchre et al. (1997).

Let us briefly give the relation between stability and passivity in the following theorem:

Theorem 1 (Passivity and stability-Sepulchre et al. (1997)). Let the system in (4.1)
be passive with a storage function H, and h(x,u) be C1 in u, ∀x. Then the following
properties hold:

(i) if H is positive definite, then the equilibrium x = 0 of (4.1) with u = 0 is stable,

(ii) if H is zero-state detectable (ZSD, see Definition C.2.2), then the equilibrium
x = 0 of (4.1) with u = 0 is stable,

(iii) when there is no throughput, y = h(x), then the feedback u = −y achieves
asymptotic stability of x = 0, if and only if (4.1) is ZSD.

The proof is available together with the Theorem 2.28 of Sepulchre et al. (1997). A detailed
explanation of passivity and its connection to several stability criteria for the nonlinear
systems can be found in Sepulchre et al. (1997) and Khalil (2001). Especially in the Chapter
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2 of Secchi et al. (2007) and Chapter 6 of Khalil (2001) it is reported that this storage
function is actually a Lyapunov candidate, hence if the system in (4.1) is passive, then it is
also Lyapunov stable (also see Theorem C.1.1 and Appendix C.2).

Passivity and Port-Hamiltonian (PH) Systems

The port-Hamiltonian (PH) framework is a generalization of the standard Hamiltonian
mechanics and energetic features play a primary role in the modeling process. The most
common representation of a port-Hamiltonian system is the following:

ẋ = [J (x)−R(x)] ∂H
∂x + G(x)u

y = G(x)T ∂H
∂x ,

(4.2)

where x ∈ Rn is the state and H(x) : Rn → R represents the total amount of energy
(Hamiltonian) stored in the system and is non negative. Matrices J (x) = −J (x)T and
R(x) ≥ 0 represent the internal energetic interconnections and the dissipation of the
port-Hamiltonian system, respectively. Furthermore, G(x) is the input matrix and the
input-output pair 〈u,y〉 represents a power port, namely a pair of variables whose product
gives (generalized) power that is either stored or dissipated by the system.

In Proposition 2.18 of Secchi et al. (2007) it is formally proven that a port-Hamiltonian
(PH) system in form of (4.2) is a passive system, and the storage function is its Hamiltonian
function.

Using IDA-PBC for PH Systems

By using IDA-PBC from Ortega et al. (2002) together with its extension proposed in Wang
et al. (2009), it is possible to control a port-Hamiltonian system in such a way that it
behaves as a target dynamics, namely as a new port-Hamiltonian system with a desired
interconnection matrix, damping matrix and energy function and even with a different
state variable x̄ ∈ Rn. Formally, let

x = ΦΦΦ(x̄, t) (4.3)

be the map relating x̄ and x, where ΦΦΦ and ∂ΦΦΦ
∂x̄ are invertible at any time t. Let Jd, Rd

and Hd be the desired interconnection matrix, dissipation matrix and energy function,
respectively. The port-Hamiltonian system in (4.2) can be transformed into the target
port-Hamiltonian dynamics described by

˙̄x = [Jd(x̄)−Rd(x̄)] ∂Hd

∂x̄
(4.4)

using

u = (GT (x)G(x))−1GT (x)
[
∂ΦΦΦ
∂x̄

(Jd(x̄)−Rd(x̄))∂Hd

∂x̄
− (J (x)−R(x))∂H

∂x
+ ∂ΦΦΦ
∂t

]
,

(4.5)
where (GT (x)G(x))−1GT (x) is the pseudoinverse of G(x), if and only if the following
matching equation holds:

G⊥(x)
[
∂ΦΦΦ
∂x̄

(Jd(x̄)−Rd(x̄))∂Hd

∂x̄
+ ∂ΦΦΦ
∂t
− (J (x)−R(x))∂H

∂x

]
= 0, (4.6)
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where G⊥(x) is the full rank left annihilator of G(x) .
The main drawback of IDA-PBC is the necessity of solving the nonlinear partial differential

equations (PDE) (4.6). In general it is not possible to find a closed form solution of the
matching equation and, therefore, it is not possible to find all the possible achievable target
dynamics. In practice, it is necessary to test if the desired target dynamics is achievable
and, if not, to modify it until (4.6) is satisfied.

More information on PH systems and IDA-PBC can be found in Secchi et al. (2007), Or-
tega et al. (2002) and Wang et al. (2009).

4.2 Reshaping the Physical Properties of a Quadrotor
for APhI

In this section, we improve the IDA-PBC method for quadrotor VTOLs in a way that we
can assign a desired physical behavior to the system. It is, as if we reshape its physics, for
the purpose of APhI. To do so, in the following we first bring the quadrotor dynamics into
its PH formulation, similar to (4.2), and then later control it using the IDA-PBC method.

4.2.1 Port-Hamiltonian Dynamics of a Quadrotor
Consider the Newton-Euler dynamics of a quadrotor, where the rotational dynamics is as
in (2.4) and the translational dynamics is as in (2.5). In order to simplify the structure
of the matching condition and, consequently, to enlarge the set of target dynamics that
can be achieved, we consider a control input ūr similar to Lee et al. (2013) but without
near-hovering purposes, defined as

ur = MqrT−1
[
(−kdI + W)η̇ηη + ūr + (I−M−1

qr )τττ ext
]
, (4.7)

where I is the identity matrix of proper dimension, kd ∈ R+, ur = [uφ uθ uψ]T ∈ R3 the
control torque and

W = TṪ−1 + TM−1
qr [ωωω]∧MqrT−1. (4.8)

Notice that T and T−1 are available from (2.2). Therefore, substituting (4.7) in (2.4), we
can rewrite the rotational dynamics as follows

η̈ηη = −kdη̇ηη + ūr + τττ ext. (4.9)

The plant represented by (2.5) and (4.9) can be modeled as a mechanical port-Hamiltonian
system. Let M ∈ R6×6 be

M =
[
mqI 0
0 I

]
∈ R6×6, (4.10)

where 0 is the zero matrix of proper dimension. Recall that qq = [pTq ηηηT ]T = [q1, · · · , q6] ∈
R6 and p = Mq̇q ∈ R6 are the configuration and momentum variables. Furthermore, let
ui = [ut ūTr ]T ∈ R4 be the input vector. The quadrotor dynamics can be rewritten as:[

q̇q
ṗ

]
=
[(

0 I
−I 0

)
−
(

0 0
0 R

)] [ ∂H
∂qq
∂H
∂p

]
+
[

0 0
G I

] [
ui

wext

]
, (4.11)
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where R = kdI models the dissipation introduced by (4.7) and wext = [fText τττText]T is the
external wrench acting on the quadrotor. Remember that this wrench can either be
measured or estimated using the methods described in Chapter 3. The total energy function
and the control input G are given by:

H(qq,p) = 1
2pTM−1p + V (qq) = 1

2pTM−1p−mqgq3, (4.12)

G =
[
g1 0
0 I

]
∈ R6×4 with g1 = −Re3 ∈ R3. (4.13)

It can be shown that the quadrotor has the property of cyclo-passivity (see also Willems
(1972)), namely it cannot create energy over closed paths in the state space. Passivity, a
stronger property, cannot be proven because the gravitational potential energy V (qq), and,
consequently, the total energy (4.12) is not lower bounded.

Proposition 2. The system (4.11) is cyclo-passive with respect to the pair

〈 [ ui
wext

]
,

GT ∂H
∂p

∂H
∂p

 〉.

Proof. See Appendix A.2.

Remark 1. The cyclopassivity property can be interpreted as an extension of the more
standard passivity property. It requires that the system behaves as a physical system
from an energetic point of view (i.e., that the energy introduced into the system from
the external world is either stored or dissipated) but it does not require that the energy
function is lower bounded. Cyclopassivity, unlike passivity, prevents from proving
the stability of an equilibrium point of the unforced system but, nevertheless, this is
consistent with the physics of the quadrotor that has no equilibrium points in case all
the inputs (both the control input and the external wrench) are null.

4.2.2 IDA-PBC of Quadrotors for Aerial Physical Interaction
In this section we will exploit and extend the IDA-PBC formulation presented in Wang
et al. (2009) in order to completely change the physical properties of a quadrotor and the
way it reacts to external forces and torques. In other words, rather than controlling the
position or the velocity, we aim at transforming the quadrotor into a physically different
quadrotor that reacts as a new desired physical system to external solicitations.
More formally, we aim at controlling (4.11) in such a way that it behaves as a new

mechanical system described by:[
q̇
˙̄p

]
=
[(

0 I
−I 0

)
−
(

0 0
0 Rd

)] [∂Hd
∂qq
∂Hd
∂p̄

]
+
[
0
I

]
w̃ext, (4.14)
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UAV Dynamics

Total Energy

Dampingudi

ues

Injection

y1qqui

Shaping

v′
uo

wext
Compensation

Figure 4.1: Control design using IDA-PBC and Damping Injection. Dynamic transformation
and energy shaping is performed inside the dashed set of blocks. After damping
injection, the external wrench is compensated.

where the new state p̄ = Mdq̇q is the new momentum, associated with the new inertia
matrix Md that is chosen to be constant and with the following structure:

Md =
[
mdI 0
0 N

]
∈ R6×6, (4.15)

where md ∈ R+ and N ∈ R3×3 is a symmetric positive definite matrix, representing the
desired mass and the desired rotational inertia respectively. The desired energy function is

Hd = 1
2 p̄TM−1

d p̄ + Vd(qq). (4.16)

The choice of Md has been made in order to mimic the structure of (4.10) such that the
controlled system will have an inertia that is consistent with the mechanics of the quadrotor.
Furthermore, (4.15) has the advantage of decoupling rotational and Cartesian kinetic energy,
simplifying the design of the IDA-PBC control law. The desired potential function Vd
can be any function such that the matching equation of the IDA-PBC is satisfied. Rd is
the desired dissipation matrix that will also be constrained by the underactuation of the
quadrotor. Finally, w̃ext is the partially compensated external wrench and it will be defined
more clearly later in the following.
The control law, whose block diagram is depicted in Fig. 4.1, will be designed in two

steps. In the first step (developed in Sec. 4.2.3) the non conservative wrenches will be
disregarded and the internal energetic structure of the quadrotor will be shaped. In the
second step (detailed in Sec. 4.2.4) dissipation and external wrench will be considered and
the control input will be adjusted in such a way to achieve the target dynamics (4.14).

4.2.3 Total Energy Shaping
For the reasons reported in Gomez-Estern and van der Schaft (2004), when the plant
contains some inherent dissipation as in (4.11), it is convenient to firstly shape the energy
disregarding the inherent dissipation and then to tune the dissipation by damping injection.
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Thus, in order to shape the energy of the plant, we consider the following undamped
plant, where also the external wrench is disregarded[

q̇
ṗ

]
=
[

0 I
−I 0

] [ ∂H
∂qq
∂H
∂p

]
+
[

0
G

]
ues, (4.17)

and we design the input ues in order to obtain an undamped controlled system with the
desired energy function Hd and with the desired momentum p̄:[

q̇q
˙̄p

]
=
[

0 I
−I 0

] [∂Hd
∂qq
∂Hd
∂p̄

]
(4.18)

Since p̄ = Mdq̇q = MdM−1Mq̇q = MdM−1p, we have that the relation between the
state of (4.17) and the state of the target dynamics (4.18) is given by:

x =
[
qq
p

]
=
[
I 0
0 MM−1

d

] [
qq
p̄

]
= F

[
qq
p̄

]
= ΦΦΦ(x̄), (4.19)

and, consequently,
∂ΦΦΦ
∂x̄

= F,
∂ΦΦΦ
∂t

= 0. (4.20)

Substituting (4.17), (4.18), and (4.20) in (4.6) we obtain the following matching equations:
∂Hd
∂p̄ −

∂H
∂p = 0

G⊥
{
∂H
∂qq −MM−1

d
∂Hd
∂qq

}
= 0.

(4.21)

It easy to check that the first equation is always satisfied. Furthermore, since both M and
Md are constant, using (4.12) and (4.16) the second condition can be rewritten as:

G⊥
{
∂V

∂qq
−MM−1

d

∂Vd
∂qq

}
= 0. (4.22)

Thus, it is possible to choose md and N in (4.15) arbitrarily while the desired potential
energy for the controlled system must satisfy (4.22).
A possible choice for the full rank left annihilator G⊥ is

G⊥ =
 0 −1 g1(2)

g1(3) 0 0 0
−1 0 g1(1)

g1(3) 0 0 0

 , (4.23)

where g1(i) indicates the i-th component of the vector g1, which was defined in (4.13).
Using (4.23) with (4.22) yields:

∂Vd
∂q2
− g1(2)

g1(3)

(
∂V
∂q3
− mq

md

∂Vd
∂q3

)
= 0

∂Vd
∂q1
− g1(1)

g1(3)

(
∂V
∂q3
− mq

md

∂Vd
∂q3

)
= 0.

(4.24)

Admissible potentials are all and only the solutions of the PDEs (4.24). A possible simple
solution is:

Vd(qq) = −mdgq3 + V̄d(q4, q5, q6). (4.25)
This potential energy function is consistent with the desired mass md since it scales

the gravity force accordingly and it allows to arbitrarily shape the potential energy of the
rotational part.
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Remark 2. The non-constant terms of (4.23), and consequently (4.24) have a sin-
gularity corresponding to the configurations where the pitch or the roll are at π

2 + kπ,
where k ∈ Z. In order for the controller to work properly, the quadrotor should be kept
away from these configurations.

Remark 3. The limits in the choice of the potential are due to the underactuation of
the quadrotor. Since the attitude is fully actuated, it is possible to arbitrarily choose
a potential on the orientation while the underactuation in the Cartesian coordinates
limits the choice of a translational potential.

Thus, once an admissible potential has been chosen, using (4.5), the control input shaping
the dynamics of (4.17) in (4.18) is given by:

ues = (GTG)−1GT

(
∂H

∂qq
−MM−1

d

∂Hd

∂qq

)
. (4.26)

4.2.4 Dissipation and External Wrench Shaping
We will now consider the full model of the plant and we will design the input u = ues + u′
for shaping the damping and the external wrenches.
Considering (4.19) it is possible to rewrite (4.11) as:[

q̇q
˙̄p

]
=F−1

[
0 I
−I 0

] [ ∂H
∂qq
∂H
∂p

]
+ F−1

[
0
G

]
ues−

− F−1
[
0 0
0 R

] [ ∂H
∂qq
∂H
∂p

]
+ F−1

[
0
G

]
u′ + F−1

[
0
I

]
wext.

(4.27)

Considering the results of Sec. 4.2.3 and recalling that

∂H

∂p
= ∂Hd

∂p̄
,

we can rewrite (4.27) as:[
q̇q
˙̄p

]
=
[

0 I
−I 0

] [∂Hd
∂qq
∂Hd
∂p̄

]
−
[
0 0
0 MdM−1R

] [ ∂H
∂qq
∂Hd
∂p̄

]
+
[

0
MdM−1G

]
u′ +

[
0

MdM−1

]
wext.

(4.28)

Decompose the input as u′ = udi + v′ and set

udi = −Kvy1, (4.29)

where
y1 = GTM−TMT

d

∂Hd

∂p̄
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is the natural velocity-like output of (4.28) and

Kv =
[
kT 0
0 KR

]
∈ R4×4,

with kT ∈ R+ and R3×3 3 KR > 0. The input udi can be used for tuning the desired
damping. Thus, it is possible to rewrite (4.28) as:[

q̇q
˙̄p

]
=
[(

0 I
−I 0

)
−
(

0 0
0 Rd

)] [∂Hd
∂qq
∂Hd
∂p̄

]
+
[

0
MdM−1G

]
v′ +

[
0

MdM−1

]
wext, (4.30)

where
Rd = MdM−1R+ MdM−1GKvGTM−TMT

d . (4.31)
Because of scaling due to the change of the momentum, (4.30) is not a standard damping

injection and it is necessary to verify that Rd is always positive definite. In general the
product of two positive definite matrices is not always positive definite.

Proposition 3. The desired dissipation matrix Rd in (4.31) is always positive definite.
Moreover, by setting 

kT =
(
m
md

)2
k̄T

KR = N−1(K̄R − kdN)N−1
(4.32)

it is possible to achieve any desired damping k̄T ∈ R+ along the actuated Cartesian
direction and any rotational damping matrix R3×3 3 K̄R > 0.

Proof. See Appendix A.3.

The change of momentum for the desired target dynamics introduces a scaling also on the
way the external wrench wext influences the evolution of the system. Ideally, the external
force should influence the evolution of the controlled system in the same way it does in
(4.11). If the external wrench can be measured, then it is possible to exploit the control
input for eliminating the scaling.

In order to obtain the ideal behavior, we can see from (4.30) that the input v′ should be
chosen in such a way that:

MdM−1Gv′ + MdM−1wext = wext. (4.33)

Hovewer, because of the underactuation of the quadrotor, it is possible to have only a
partial compensation that can be achieved setting

v′ = G+(MM−1
d (I−MdM−1)wext) + uo, (4.34)

where G+ is the pseudo-inverse of G and the term uo is an extra outer control input, e.g.
for trajectory tracking of the quadrotor. Replacing (4.34) in (4.33) and setting uo = 0 we
obtain that:

MdM−1GG+(MM−1
d (I−MdM−1)wext) + MdM−1wext = w̃ext, (4.35)

where w̃ext is the best compensation that can be achieved.
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Remark 4. By simple computations, it can be seen from (4.34) that the scaling on the
external torques can be perfectly compensated and the approximation remains only on
the compensation of the translational part.

Finally, putting together (4.26), (4.29) and (4.34), we obtain that the control input ui is
given by (see also Fig. 4.1):

ui =ues + udi + v′ = (GTG)−1GT

(
∂H

∂qq
−MM−1

d

∂Hd

∂qq

)
−

−KvGTM−TMT
d

∂Hd

∂p̄
+ G+(MM−1

d (I−MdM−1)wext) + uo,
(4.36)

which leads to the closed-loop system[
q̇q
˙̄p

]
=
[(

0 I
−I 0

)
−
(

0 0
0 Rd

)] [∂Hd
∂qq
∂Hd
∂p̄

]
+
[
0
I

]
w̃ext +

[
0

MdM−1G

]
uo. (4.37)

If we set uo = 0; the desired dynamics in (4.14) as a new quadrotor with a new inertia,
damping and potential structure is achieved. The external input uo can be used for
controlling such a physically modified quadrotor. In other words, the controller in (4.36)
can be used as an inner (low-level) control loop for changing the physical characteristics of
the quadrotor and the input u0 can be exploited for building outer loops controlling this
new system, taking advantage of its new desired physics.

Proposition 4. The controlled system (4.37) is cyclo-passive with respect to the input-
output pair: 〈 [ uo

w̃ext

]
,

GTM−TMT
d
∂Hd
∂p̄

∂Hd
∂p̄

 〉.
Proof. See Appendix A.4.

Remark 5. Even if the the compensation of the external wrench is only partial, the
target dynamics that is achieved is still well behaved from a physical point of view and
no regenerative effects are present. Furthermore if Vd can be chosen to be lower bounded
in (e.g., in a desired range of operation), then the achievable target dynamics is passive.

Remark 6. The IDA-PBC method presented here, where the control input is computed
as in (4.36), aims at transforming the quadrotor into a physically different quadrotor
that reacts as a new desired physical system to external solicitations, rather than
controlling its position or the velocity. In this sense, it can be considered as a low-level
controller developed purely for APhI tasks, which also admits high-level inputs, e.g.
uo, that can be computed for position/velocity or force/torque tracking purposes. In
this case, this high-level input controls the desired (or physically reshaped) quadrotor
dynamics.
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4.2.5 Using IDA-PBC for Turning Quadrotors into 3D Force
Effectors

Here we will briefly show how to use the recently presented IDA-PBC controller for turning
the quadrotors into 3D force effectors. Let us first consdider the linear equation in (2.5) for
the reshaped quadrotor as

mdp̈q = −utR(ηηη)e3 +mdge3︸ ︷︷ ︸
=fne

+fext, (4.38)

where we denoted with fne the sum of the total thrust force and the gravity force, i.e.,
all the forces contributing to the linear motion of the quadrotor except for the external
force fext. If p̈q = 0, i.e., the quadrotor moves at constant (possibly zero) velocity, then
we have that fne = −fext, i.e., fne represents, in this case, the force that the quadrotor is
exerting on the external world. In this section we present a method that allows using the
IDA-PBC framework presented before, in order to regulate fne to a certain desired value.
This property can be used, e.g., to counterbalance an external disturbance like a constant
wind or to press against a wall or an object with a certain given force (see numerical results
in Sec. 4.3.1).
Denote with f∗ = [f ∗x f ∗y f ∗z ]T ∈ R3 the value of the desired fne. Imposing fne = f∗ we

obtain the following nonlinear system of equations

ut

sφsψ + cφcψsθ
cφsθsψ − cψsφ

cθcφ

 =

 −f ∗x
−f ∗y

−f ∗z +mdg

 , (4.39)

with c∗ = cos(∗) and s∗ = sin(∗). After some straightforward algebra we obtain

ut

cφsθ−sφ
cθcφ

 =

−f
∗
xcψ − f ∗y sψ

f ∗xsψ − f ∗y cψ
−f ∗z +mdg

 , (4.40)

which, assuming that also ψ is known and denoting its value with ψss, it can be solved in
the unknown ρ, φ, and θ resulting in

u∗t =
√
f ∗x

2 + f ∗y
2 + (f ∗z −mdg)2 (4.41)

φ∗ = arcsin
(
−f ∗xcψss − f ∗y sψss

u∗t

)
(4.42)

θ∗ = − arcsin
(
f ∗xsψss − f ∗y cψss

u∗t cφ∗

)
. (4.43)

Consider now the rotational dynamics of the reshaped quadrotor. We choose V̄d(q4, q5, q6)
in (4.25) as

V̄d(q) = 1
2η
ηηTe Kpηηηe, (4.44)

where Kp = diag([kφp, kθp, kψp ]) ∈ R3×3 and

ηηηe = ηηη − η̄ηη =

φ− φ̄θ − θ̄
ψ

 , (4.45)
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with φ̄, θ̄ are parameters to be designed in order to obtain φ→ φ∗ and θ → θ∗. By virtue
of (4.44) the rotational dynamics of the reshaped quadrotor can be expressed as

η̈ηη = −kdη̇ηη + Kp(η̄ηη − ηηη) + τ̃ττ ext, (4.46)

where τ̃ττ ext = [τ̃ex τ̃ey τ̃ez ]T ∈ R3 denotes the external torque acting on the reshaped
quadrotor (that, we recall, can be, measured or estimated using the methods presented in
Chapter 3). Assuming that τ̃ττ ext is constant we obtain the following equilibrium at steady
state,

Kp(ηηηss − η̄ηη) = τ̃ττ ext, (4.47)

where ηηηss = [φss θss ψss]T ∈ R3 represent the steady state attitude. It is straightforward to
see that

ψss = τ̃ez
kψp
,

which can be used in (4.42) and (4.43) in order to find the exact values of φ∗ and θ∗ that
are needed to achieve the desired f∗. Given those values of φ∗ and θ∗ we choose φ̄ and θ̄
such that φss = φ∗ and θss = θ∗, i.e.,

φ̄ = φ∗ − τ̃ex
kφp

(4.48)

θ̄ = θ∗ −
τ̃ey
kθp
. (4.49)

In summary, by choosing the thrust as in (4.41) and the desired potential as in (4.44),
with φ̄ and θ̄ given by (4.48) and (4.49), respectively; we can let fne converge to f∗ even in
the presence of a disturbing (but constant) external torque τ̃ττ ext.
This technique can be applied for example to balance an external constant force fext

produced by a wind or any other external agent. To this aim one has to measure or estimate
fext using the sensor or the observer presented in Chapter 3 and then select f∗ = −fext,
which results in a compensation of the external force acting on the quadrotor. Another
possible application of this technique the exertion of a constant force to a wall or to load
for the purpose, e.g., of pushing, lifting, and so on.

4.3 Numerical and Experimental Results
This section is reserved for the numerical and experimental validations of the IDA-PBC for
a quadrotor VTOL, when it is physically interacting with its environment while achieving
a stable flight. We first show the numerical results in Sec. 4.3.1, for reshaping the physics
of the quadrotor under the effect of disturbing forces and torques. After observing its
behavior for different desired physical properties, we use this to perform an interesting
physical interaction task: sliding on a ceiling surface. For this, a rigid tool on the quadrotor
is thought, whose tip is in contact with the environment, while its base is rigidly attached
to the quadrotor. A sketch of this can be seen Fig. 4.4, and its realization in Fig. 3.2.
Such task can be imagined as surface inspection, cleaning or painting. Then we test our
controller when the external forces and torques are provided via the wrench estimator
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Figure 4.2: Free fall for different desired dynamics. The figure on left is the position of the
quadrotor along zW (height) and the one on the right is the thrust applied by
the controller. The small windows show the first 0.08 [s] for both position and
thrust, respectively.

proposed in Sec. 3.3, including the noises of the measurements. Notice that for the numerical
simulations, no high-level control input is used besides the IDA-PBC, except the terms
necessary for the gravity compensation. In this way, the effect of the IDA-PBC framework
on the APhI of a quadrotor is more apparent.

Later in Sec. 4.3.2, we present the experimental results, validating the performance of the
IDA-PBC for a quadrotor interacting with its environment. There the real system is tested
for similar tasks as for the numerical validation, however with a outer-loop position tracking
controller ensuring that the real system does not float around uncontrolled. The reason for
this practical implementation is that, IDA-PBC alone is not a tracking control, but it is
a low-level controller making sure the physical interaction is stable, by also reshaping the
physics of the system. Unlike the numerical simulations, for experimental tests a high-level
tracking controller was required so that the real quadrotor setup can be protected from
dangerous crashes.

4.3.1 Numerical Validation
In this section we present some simulation results to support the theory of the control
method proposed in Sec. 4.2. The parameters for the original system dynamics are chosen
as follows; mass is mq = 1 [kg], the gravity constant is g = 9.81 [m/s2], and the rotational
inertia of the platform is Mqr = diag([0.013, 0.013, 0.022]) in units of [kgm2]. The
dissipation for the rotational dynamics, as presented in (4.9), is set to kd = 1 based on our
experiences Franchi et al. (2012a,b); Lee et al. (2013).

Shaping the Weight

We have assumed the aerodynamic drag as kdrag = 0.5 in every direction. For more detail,
one can check Brandt and Selig (2011). Let us first investigate the behavior of different
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Figure 4.3: Impulse response of the rotational dynamics. The external torque is applied
around xB axis. The small window in orientation is highlighting the change of
φ for different desired inertias. The states and control inputs, which are not
effected by the impulse, remain zero.

desired masses in free fall case, where there are no external forces or high-level control
inputs, i.e., wext = 0,u0 = 0. Recall that wext = [fText τττText]T with fext = [fex fey fez ]T
and τττ ext = [τex τey τez ]T . The desired system parameters are chosen as follows: k̄T = 50,
K̄R = diag([k̄φR, k̄θR, k̄ψR]) with k̄φR = k̄θR = k̄ψR = 5, V̄d = −mdge3 + 1

2ηηη
T
e Kpηηηe where

Kp = diag([kφp, kθp, kψp ]) and kφp = kθp = kψp = 2, and ηηηe = ηηη for keeping the orientation of
the quadrotor always at zero. Fig.4.2 shows the results for three different desired masses;
md = 0.5 [kg], md = 1 [kg] and md = 1.5 [kg], while around all rotations the desired inertia
value is set to N = diag([n, n, n]) ∈ R3×3 for n = 1 [kgm2]. In the figure, the position q3
is shown on the left, and the thrust applied by the controller on the right. The direction of
gravity is shown in the plot. It is seen that under the desired viscosity, which is tuned by
kT , the bigger mass falls faster than the smaller mass. The controller adjusts the quadrotor
in a way that the system behaves as a desired mass.

Shaping the Inertia

Now, let us show how one can change the rotational dynamics of the system by shaping its
desired energy. The rotational dynamics of the quadrotor system is fully actuated, hence
we have full control on rotational properties. For this, we investigate the impulse response
of the rotational dynamics, where the system is in hovering. For hovering, we used the
high-level control input uo = [mdg 0 0 0]T to balance the gravity effect for the desired
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Figure 4.4: The tip of a rigid link driven by a quadrotor is in contact with a surface and
sliding along one direction. The gray point represents the tooltip penetrating
the surface (such as ceiling), which is the proxy and depicted with a black
colored point. Notice that the system this sketch is actually realized as shown
in Fig. 3.2, which is later used for the experiments in Fig. 4.13.

system. The impulse 1 [Nm] around xB is applied for 1 s. The results are presented in
Fig.4.3, where the system behavior with three different desired inertias are compared (for
N = diag([n, n, n]) ∈ R3×3, where n = 0.5 or n = 1.0 or n = 4.0). For all three cases
the desired mass is kept at md = 1 [kg]. There it is clear that the system with smaller
inertia behaves more compliant to the external torques. The change in orientation φ reveals
that the second order system response, where smaller inertia has bigger magnitude and
it requires higher torques to stabilize the system. When we assign a bigger inertia, the
system behavior becomes stiffer and rejects the external torques. System reacts instantly
and stabilizes itself with less change in orientation. The small inertia might come in handy
when for example in safe human-robot-interaction. The big inertia on the other hand
might be useful for tasks where the quadrotor needs to reject disturbances quickly, such as
maintaining stable contact with a flat surface.

Sliding on a Ceiling Surface

Reshaping the physics, especially for the rotational dynamics of an underactuated quadrotor
system might provide huge advantage for physical interaction of such systems. In order
to show this fact, here we simulate a sliding on a surface task, where a tool in shape of
a rigid stick is connected to the Center of Mass (CoM) of the quadrotor system, and its
tip (tooltip) is in contact with a surface. An illustration is shown in Fig.4.4. This can be
interpreted as ceiling painting, cleaning, surface inspection, e.t.c.

Let us consider two different sliding scenarios; first the tooltip is sliding on a flat surface,
and second it is sliding on a rough surface, where there are dents and bulges. The surface
is placed above (considering +zW shows the below) the CoM of the quadrotor. We choose
to slide along the positive xW (See Fig.4.4). For this, quadrotor needs to be tilted with
a certain tilting angle, in this case with θ∗ < 0. A desired attitude can be achieved by
shaping the desired potential in a way that it goes to minimum in a desired configuration.
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Figure 4.5: Stable contact and sliding of tooltip along a flat surface. Note that gravity
vector is aligned with the + zB. Small inertia is more vulnerable to the external
forces, and smaller mass establishes the contact faster. The hybrid contact
modeling is not a problem for passivity based controller in sense of stability.

Consider the desired rotational potential as

V̄d(q) = 1
2η
ηηTe Kpηηηe, (4.50)

where

ηηηe = ηηη − ηηη∗ =

φ− φ
∗

θ − θ∗
ψ − ψ∗

 . (4.51)

The desired attitude ηηη∗ is the equilibrium in orientation where the rotational potential goes
to minimum. Once the desired attitude is achieved, we need to apply a constant thrust to
the system, to maintain the contact with the surface and to win against the friction forces,
so the tooltip can slide along the +xW axis. The external forces acting on the tooltip can
be considered as: the (contact) reaction force from surface along the +zW direction, and
friction force against the direction of the sliding motion on the surface. For modeling the
reaction of the surface, we used proxy model conceptually introduced in Zilles and Salisbury
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(1995), only along the +zW direction. In our case, the position of the tooltip is the real
position, and the height of the contact surface represents the proxy (See Fig.4.4). The
reaction force from the surface is calculated as

f tez = kwall(pz − tz), (4.52)

where kwall is the spring gain depending on the characteristics of the surface, pz is the
proxy (or surface) position, and tz is the tooltip position along the zB axis. For the surface
friction, we used a simple viscous friction model, e.g. from Olsson et al. (1998), such as

f tex = −µq̇1, (4.53)

where µ is the coefficient of friction, depending on the tooltip and surface characteristics,
and q̇1 is the velocity of the tooltip (and quadrotor) along +xW . In our simulation, we
consider a hybrid contact model, where if the tooltip penetrates to the surface, then both
reaction and friction forces are acting, otherwise there are no external forces, i.e.,f text = 0 ∈ R3, if tz > pz

f text = [f tex 0 f tez ]T , if tz ≤ pz.
(4.54)

To calculate the external wrench acting on the CoM of the quadrotor, we use the following
transformation

wext =
[

I 0
[dt]∧R(ηηη)T R(ηηη)T

]
wt
ext, (4.55)

where dt is the distance between CoM of the quadrotor and the tooltip, R(ηηη) is the rotation
matrix as in (2.1), wt

e = [f text
T
τττ text

T ]T ∈ R6 is the external wrench acting on the tooltip. In
our case, τττ text = 0. For the wall characteristics, we assigned kwall = 2000, and µ = 0.1. To
win the friction force and start sliding, it is necessary that the angle between normal of the
surface and the applied force must satisfy

|θ∗| > tan−1(µ). (4.56)

Hence, we choose θ∗ = −0.15 [rad] ' −8.6 [deg]. A constant thrust of 2mdg [N] is applied
using uo to maintain the contact and to slide along xW , as uo = [2mdg 01×3]T . The distance
between tooltip and CoM of the quadrotor is chosen as dt = [0.2 0 − 0.2]T , in units of
meters, for the reason explained in Lee and Ha (2012). For desired rotational potential, we
set kφp = kθp = kψp = 5.5. The desired damping along the thrust direction is set to k̄T = 10
and for the rotational dynamics it is k̄φR = k̄θR = k̄ψR = 50. The proxy position is set to
pz = −0.2 [m]. Fig.4.5 shows the results for different desired mass and inertia values. By
judging the change of tz, and orientation θ, bigger inertia quickly adapts to the disturbances,
while smaller inertia is oscillating, which causes disconnection with the contact surface (blue
plot). It is noticed that a smaller mass (red plot) establishes the contact with the surface
faster than the bigger mass. This shows how the quadrotor can benefit from the proposed
controller, where we shape and dissipate both kinetic and potential energies. Changing
the desired mass creates a difference in orientation at steady state, since the total force
(with surface reaction) along zW creates bigger torque for bigger mass, which is directly
related to the length of the tool. This is an important motivation of choosing a reasonable
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Figure 4.6: Stable contact and sliding along a rough surface, where there are dents and
bulges. Zoomed windows in the tooltip position plot highlight the behavior
of the system when a bulge and a dent are encountered, respectively. Bigger
inertia (red plot) reestablishes the contact with the surface faster, while smaller
inertia (blue and green plots) are more vulnerable to the external forces.

dt value. Note that the maximum penetration of the red plot to the surface is calculated
as 4 [mm], and the final penetration is 0.3 [mm].

Notice the differences in q1 and q̇1 in Fig. 4.5. It is not due to the difference in the desired
inertia, but the desired mass assigned to the quadrotors. The one with lower desired mass
is controlled with smaller uo to scale the gravity effect on it, which causing it to accelerate
less than the others along the xW when the platform is tilted.

As explained before in (4.54), the external forces are modeled discontinuously. It is seen
in the blue plot of Fig. 4.5, the tooltip loses the contact with the surface, yet the controller
stabilizes the system anyway. In fact, an advantage of the passivity based controllers is
that they stabilize (hybrid) systems, where discontinuities may exist.
In the second case, the quadrotor slides on a rough surface, where there are dents and

bulges. For this, we simply change the position of the proxy, pz, and let the quadrotor slide
on this new surface. Different from the previous simulation, we set kφp = kθp = kψp = 10 and
k̄T = 15. The results are shown in Fig. 4.6, where this time the comparison is done for
different inertias only, and the desired mass kept at md = 1 [kg]. The position of proxy is
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Figure 4.7: Gaussian noise added to the state measurements.

presented as black dashed plot, where it is first shifted 3 [cm] outwards, i.e., representing
a bulge, and later 3 [cm] inwards, i.e., representing a dent. Notice that the direction of
the gravity is also given in the figure. As it is expected from the outcome of the previous
simulations, system with smaller inertia has more compliant reaction to the surface changes.
Again, the discontinuity of the external forces does not cause instabilities, thanks to the
passivity based controller. One has to notice that by tuning the parameters such as KP ,
k̄R and k̄T , and setting desired mass and inertia values, it is always possible to change the
physical behavior of the system depending on the desired objective.

Using the External Wrench Estimator in the Loop

In this section we present different simulation results to show the capabilities of the nonlinear
force observer presented in Sec. 3.3 for different case studies, in which IDA-PBC is used for
controlling the physical interaction of the quadrotor system. In order to reproduce realistic
scenarios, we added independent Gaussian noises to the measurements of the quadrotor
state, based on our laboratory experiences (see Fig. 4.7). The first simulation aims at
showing the accuracy of the force observer in an environment, where disturbing forces and
torques are acting on quadrotor CoM. In the second simulation we consider the relevant
case where a rigid tool is attached to quadrotor CoM and the tooltip is sliding on the
surface of a ceiling (same as before and depicted in Fig. 4.4). This case study provides a
highly varying external force profile, which is a non-nominal situation for using the force
observer presented in Section 3.3 (due to the assumption made in (3.8)).
We used the same parameters for the quadrotor as before. In the following results, the

legends QCi represent the quadrotor with the i-th target dynamics assigned using IDA-PBC
(see Sec. 4.2.2 for the controller, and Sec 4.2.5 for its extension). This time, the environment
is modeled with no dissipation, which means the aerial drag acting on the body of the
quadrotor is not considered.
The aim of the first simulation is to show the accuracy of the force estimation, done

by nonlinear force observer proposed in Sec. 3.3. As a case study, we choose an external
force/torque profile, where first a 1 [N] of force applied along +xW ; then along −zW axis;
later 0.5 [Nm] of torque around +xB; and finally all together at the same time. The external
force/torque profile can be seen in the last row of Fig. 4.8. The high level control input uo
is chosen only for scaling the gravity effect, similar to the previous simulations.

Our first goal is to show the performance of the nonlinear force observer for a quadrotor
controlled with IDA-PBC. The first two rows of Fig. 4.8 present the evaluation of quadrotor
position, orientation and necessary control inputs when interacting with the external forces.
The last row of the same figure shows the estimated forces and torques. It can be seen
that force/torque estimation (red plot) is very accurate w.r.t the exact forces (black plot),
considering that the measurements are simulated with their noises.
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Figure 4.8: IDA-PBC controlled quadrotor for aerial physical interaction and force estima-
tion using nonlinear force observer. The external wrench is directly acting on
the center of gravity of the quadrotor. First 1 [N] of external force along +xW
is applied between 5 [s] and 10 [s]. Then 1 [N] of external force along −zW is
applied between 15 [s] and 20 [s]. Later a constant torque of 1 [Nm] is applied
around xB between 25 [s] and 30 [s]. Finally all of these external disturbances
are applied between 35 [s] and 40 [s]. Third column shows the exact external
force and torques (black plots) and their estimations (red plots). The observer
gain for force estimation is set to co = 5, and for torque estimation to co = 0.5.

Secondly, we test the observer in an extreme case where there are rapidly varying external
forces. The chosen case study is a challenging one, where a rigid tool is sliding on a rough
surface. This tool is rigidly attached on a quadrotor, placed above the center of gravity
at a position, as before with the distance of dt = [0.2 0 − 0.2]T [m], so the surface can be
interpreted as a ceiling. Notice that in Fig. 4.6 we had shown the results of a similar case,
but without the use of a wrench observer. We again apply a constant high-level control
input, uo, to the system only for scaling the gravity effects, and choose a desired attitude.
Then we let it fly while using IDA-PBC for achieving a stable contact between this uneven
ceiling surface and the tooltip, and slide along the surface for performing such as ceiling
painting, cleaning or surface inspection tasks. The results are shown in Fig. 4.9, where tz
is the tooltip position along zB as before. QC1 is assigned with smaller desired inertia;
and damping along the thrust direction, compared to QC2. QC2 shows a stiffer behavior
with respect to the changes on the surface compared to QC1, which has more oscillations
and takes more time to reestablish the contact with the surface. These behaviors are
consistent with the previous results given in Fig. 4.9, where the exact knowledge of the
external wrench was used instead of its estimation. The main components of the exact
and estimated wrench are shown in third column of Fig. 4.9. As expected the estimator
cannot precisely track the rapidly varying external wrench. However, the controller shows
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Figure 4.9: Rigid tooltip on a quadrotor interacting with a rough ceiling surface. The blue
plot is presenting the behavior of QC1, and the red plot the behavior of QC2.
Second row shows the estimation results of the nonlinear wrench observer. The
observer gain is set to c = 20 for both forces and torques. In case of rapidly
varying external force profile, the observer gives a less precise estimation, as
expected. However, IDA-PBC controller still stabilizes the interaction, thanks
to its ability of preserving the passivity of the controlled system.

the capability to stabilize the physical interaction even when the real and estimated values
of the contact force present some discrepancies.

Quadrotor as 3D Force Effector

In Sec. 4.2.5 we showed how to use the proposed controller and estimator in a way that
the quadrotor can exert an arbitrary constant 3D force on the environment. Here, we
present the simulation results of a case where quadrotor is exposed to a constant force
(e.g., modeling a constant wind force) which has to be balanced while being subject to
other disturbances from the environment at the same time. This is the case in which the
quadrotor is applying a desired force in order to balance the external force.
In order to validate the theory in simulation, we consider the case, in which a constant

1 [N] force is applied to quadrotor along the +xW axis, continuously. In addition to the
constant force, we apply an impulse of a disturbance force of 1 [N] along the −zW and an
impulse of a disturbance torque of 1 [Nm] around the xB axis. Finally all these disturbances
are applied in the same time. The controller finds a rotational equilibrium, as explained
in Sec. 4.2.5, so that the quadrotor stops accelerating along the 3D axes by balancing
both the external force and torques. The results are presented in Fig. 4.10. Two different
desired dynamics are shown: QC3 is designed with smaller desired inertia and stiffness in
rotational dynamics, compared to QC4, which reacts to external effects faster than QC3.
This generates a less travelled distance along the direction of motion for QC4. As it is seen
in Fig. 4.10, the quadrotor exerts a counterbalancing force so that the components of the
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Figure 4.10: IDA-PBC controlled quadrotor is exerting desired forces and counterbalancing
external disturbances. The external wrench is directly acting on the center
of gravity of the quadrotor. A constant 1 [N] of external force along the xW
axis is applied during the whole simulation for replicating a constant wind
effect. Then 1 [N] of external force along the −zW axis is applied between 5 [s]
and 10 [s]. Later a constant torque of 1 [Nm] is applied around the xB axis
between 15 [s] and 20 [s]. Finally all of these external disturbances are applied
between 25 [s] and 30 [s] of the simulation. Third row shows the exact external
force and torques (black plot); and their estimations (red plot). It can be seen
from the first row that the accelerations in all three axes converge to zero
at the steady state. The sub-figure presented in the last row is showing the
desired force applied by the quadrotor to counterbalance the constant wind
effect. The observer gain for force estimation is set to co = 5, and for torque
estimation to co = 0.5.

accelerations along all translational axes are converging to zero in steady state (sub figures
in first row of Fig. 4.10). Another sub-figure in the third row shows that fne,x rapidly
converges to f ∗x = −fex in order to counterbalance it. Since no dissipation is present in the
environment (no aerial drag is acting on the body of the quadrotor), the system floats with
a constant velocity in each direction.

4.3.2 Experimental Results
In this section we present the experimental results of a quadrotor VTOL interacting with
its environment. The quadrotor setup for the experiments was presented before in Fig. 3.2,
where a Force/Torque (F/T) sensor is placed on board providing the external wrench
information. For the reasons explained in Sec. 3.4, we performed our experiments using
an F/T sensor, instead of a wrench estimator. In the experiments, the flying robot is
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interacting with its environment through a rigid link, which is attached on top of this F/T
sensor, which is rigidly connected to the quadrotor body frame. For more details on how
to use this setup for computing the external wrench wext ∈ R6, see Sec. 3.2. The overall
quadrotor setup together with its sensors, hardware and software is explained in detail in
Sec. 2.3.
The physical interaction of the flying robot is controlled using IDA-PBC, which is

described in Sec. 4.2. Different from the numerical simulations, for the experiments we
also implemented a high-level position tracking control. The reason is that while IDA-PBC
alone can control the physical interaction of the robot by shaping its physical properties, it
does not take the experimental limits into account, e.g. the limits of the room the robot is
flying in. Without a controller which can track a desired position/velocity trajectory; the
quadrotor controlled only with IDA-PBC would float around after an initial contact with
its environment, in a stable but undesirable manner. Nonetheless, this is what IDA-PBC
in Sec. 4.2 is actually developed for; to allow controlling the physical interaction of the
flying robot by shaping its physical properties, while allowing a high-level control input
(e.g. uo of (4.36)) which can be responsible for other purposes, e.g. position tracking (see
also Remark 6).

In the following, we briefly explain this position tracker, which is used together with the
IDA-PBC controller in our experiments.

High-level Controller for Position Tracking

A high-level position tracker is used for steering the quadrotor VTOL to a desired trajectory,
while letting IDA-PBC shape its physical properties. This tracking controller is developed
based on the near-hovering controller, presented as in Lee et al. (2013). From the decoupling
property of the quadrotor, the rotational dynamics in (2.4) can be computed independently
from the translational dynamics given in (2.5). Let us consider a desired position trajectory
of the quadrotor as pdq = [xdq ydq zdq ]T ∈ R3, and assume that fext = 0. Then, following
from Lee et al. (2013), and from the third row of (2.5), the thrust input

uot = − md

cφcθ
(g + z̈dq + kdz(żdq − żq) + kpz(zdq − zq)) (4.57)

ensures the local exponential stability of (zdq − z), as long as cφcθ 6= 0, which is violated
only when the quadrotor configuration is in a singularity that we avoid all the time (see
Remark 2.) The control gains kd∗ ∈ R≥0 and kp∗ ∈ R≥0 are used for removing the velocity
and position errors along the ∗-axes, respectively, where ∗ = {x,y, z}. Then from the first
two rows of (2.5) we have

md

[
ẍq
ÿq

]
= −uot

[
cφcψ sψ
cφsψ −cψ

]
︸ ︷︷ ︸
=:Q(φ,ψ)∈R2×2

[
sθ
sφ

]
, (4.58)

where Q is always invertible as long as cφ 6= 0; which means that the system is not in
singularity (this is in line with Remark 2). Then choosing the following roll and pitch
commands will make (xdq − xq, ydq − yq) locally exponentially stable[

θ̄c = sθd

φ̄c = sφd

]
= −mdQ−1

uot

[
ẍdq + kdx(ẋdq − ẋq) + kpx(xdq − xq)
ÿdq + kdy(ẏdq − ẏq) + kpy(ydq − yq)

]
. (4.59)
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Figure 4.11: Sketch of the control framework used for the experiments. The position tracker
is developed based on the near-hovering controller, sending the desired attitude
equilibrium ηηη∗ and the high-level control input uo to the IDA-PBC controller.

In this step of the computations, let us define some maximum boundaries to both roll and
pitch commands, preventing the system coming close to its singularities. In our experiments,
we choose φmaxc = θmaxc = sin(rl), where rl = 0.52326 [rad]. Then let us implement the
following soft saturation for both roll and pitch commands;

φc = 2φmax
π

arctan
( φ̄c

2φmaxc

)
,

θc = 2θmaxc

π
arctan

( θ̄c
2θmaxc

)
.

(4.60)

Then, the desired roll and pitch angles to steer the system to the desired x and y configu-
rations are

φ∗ = arctan(φc),
θ∗ = arctan(θc).

(4.61)

Now, remember that in (4.50), we showed how one can change the desired attitude
equilibrium ηηη∗ = [φ∗ θ∗ψ∗]T ∈ R3, which shapes the desired potential energy of the system
as in (4.25). Then using a desired rotational potential energy V̄d in form of (4.50), where
for the desired attitude equilibrium φ∗, θ∗ are available from (4.61), and ψ∗ is chosen any
arbitrary number, e.g. ψ∗ = 0, and placing this desired potential energy V̄d in (4.25);
we make sure that the IDA-PBC controller can steer the system to a desired xW − yW
configuration using the control input in (4.36). Moreover, by choosing the high-level control
input as uo = [uot 01×3]T ∈ R4, and implementing it in (4.36), we can let the quadrotor
setup track a trajectory along the zW axis. A sketch of this control scheme is depicted in
Fig. 4.11 for fixing the ideas.

Remark 7. Notice, also from Fig. 4.11, that the high-level control input uo is providing
only the additional thrust input for tracking zdq and its derivatives. Other desired
trajectories along the underactuated directions, i.e. xW and yW , are tracked using solely
the control inputs generated by IDA-PBC, i.e. ui. However to generate this input,
we actively compute a new desired attitude ηηη∗, which is done using the near-hovering
scheme from Lee et al. (2013).
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Shaping the Inertia

As explained in Sec. 4.2, IDA-PBC is a powerful control method, controlling the physical
interaction of a quadrotor VTOL by shaping its physical properties, through passivation.
To test this in real experiments, we first bring the quadrotor to a hovering condition using
the controller presented in the previous section and depicted in Fig. 4.11. Then the flying
system is disturbed with an external interaction on top of its tool tip, as shown in the
top of Fig. 4.12. We repeat this twice; first the IDA-PBC controller is tuned for a smaller
desired inertia N = diag([0.008, 0.008, 0.0274]) ∈ R3×3, and then when it is tuned for a
bigger desired inertia N = diag([0.03, 0.03, 0.0274]) ∈ R3×3, only around the xB and yB
axes. Remember from Fig. 3.2 that the mass of the real system is mq = 1.49 [kg], and its
rotational inertia is Mqr = diag([0.01708, 0.0172, 0.0274]) ∈ R3×3.

The results are given on the bottom of Fig. 4.12. For brevity, we only show the response
of the second order rotational dynamics to the external torque around the yB axis. In the
figure, superscript ∗s stands for the measurements of the small desired inertia case, while
∗b for the bigger desired inertia one. Notice that the external torques for both cases (i.e.
τ sey , τ

b
ey , depicted with black solid and dashed magenta lines, respectively) are the same.

However the pitch orientations (i.e. θs, θb, depicted with blue solid and red dashed lines,
respectively) are different from each other. Due to the position tracker implemented together
with IDA-PBC (see Fig. 4.11), in both cases quadrotor comes back to its equilibrium after
the disturbances. This creates a virtual rotational spring effect, making the system oscillate
around its equilibrium until it reaches to a region of attraction. Notice the difference
between the settling times of the two different cases; when the desired inertia is bigger, it
takes longer for the system to reach its steady state than when the desired inertia is smaller.
This is in line with the fact that for a rotational mass-spring-damper system with constant
spring2, it would take longer for it to come back its equilibrium when the rotational mass
is greater.

Sliding on an Uneven Ceiling Surface

Here we present some preliminary experimental results of the quadrotor+rigid tool setup,
sliding on an uneven ceiling surface. The purpose of the experiments is to show that by
changing the desired inertia of the system using IDA-PBC, we can change the performance
of the aerial physical interaction task, e.g. letting the quadrotor slide on the ceiling surface
with a better contact profile.

The quadrotor+rigid tool setup is controlled using the method depicted in Fig. 4.11,
where the system is steered via joystick commands, which are provided by a human observer.
Although the physical interaction is controlled autonomously, by bringing the human in the
loop we aim to bring some level of security to the system for avoiding an unexpected crash,
and also pave the way for future human in the loop experiments for APhI. The latter one
can be studied more intensively by replacing the joystick controller with a haptic device,
which allows bilateral control of the robot (Franchi et al. (2012b)).

The results of the experiments are given in Fig. 4.13. There, we compare two cases:
quadrotor controlled with a small desired inertia, i.e. N = diag([0.004, 0.004, 0.0274]) ∈
R3×3, and with a big desired inertia, i.e. N = diag([0.014, 0.014, 0.0274]) ∈ R3×3. Notice

2Note that the spring effect is due to the choice of the rotational desired inertia V̄d, damping is due to the
damping injection implemented inside of the IDA-PBC, and the angular mass is the desired inertia N.
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Figure 4.12: – Top: Quadrotor equipped with an F/T sensor (see details of the setup in
Sec. 3.2) is about to be disturbed by an external interaction from the tip point
of the rigid tool, during the hovering condition.
– Bottom: System response (second order rotational dynamics) to the external
disturbances around the yB axis. Two cases are compared: system with
bigger desired inertia (denoted with superscript ∗b) and the one with smaller
desired inertia (denoted with ∗s). IDA-PBC is used to assign the desired
inertial properties, together with a high-level position controller described in
Sec. 4.3.2.

that the desired inertias are assigned only around xB and yB axes, while for the rotations
around zB it is same as the original system. On the top of Fig. 4.13 several snapshots from
the experiments are given, where; (a) the quadrotor+rigid tool is first time in contact
with the ceiling surface, (b) it is sliding on the even part of the ceiling, (c) just before
the dent, (d) right after the dent, (e) just before a bulge which is built smoothly, (f) right
after the bulge3. On the bottom of the figure the results are given, where blue solid curves

3Notice that the experiments are performed in a limited environment, since the artificial ceiling we have
built has a limited size (1.73 [m] in longitudinal). On the other hand, this was not the case for the
simulations (e.g. Fig 4.9), where the quadrotor was able to slide on a surface for hundreds of meters.
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Figure 4.13: – Top: A series of snapshots (from (a) to (f)) from the experiments. The
quadrotor setup as shown in Fig. 3.2 is sliding on a blue-colored uneven ceiling
surface. The tip of the rigid tool is in contact with the ceiling, and its bottom
is rigidly attached to the F/T sensor and the quadrotor body frame. The
overall system is secured with a slack cable connected to a stick, for avoiding
any dangerous crashes.
– Bottom: Experimental results for a quadrotor+rigid tool sliding on an uneven
surface. Results for the system with the smaller desired inertia are depicted
with blue curves, and the one with bigger desired inertia with red curves.
Three important time instants for zq are highlighted with black dashed vertical
lines; the moment before the dent (c), at the end of the dent and before the
bulge (e), and the moment at the end of the bulge (f). Clearly, the system
with bigger desired inertia follows the profile of the ceiling better than the one
with the smaller desired inertia.
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stand for the response of the system with smaller desired inertia, and the red solid curves
for the one with bigger desired inertia. The contact forces acquired from the F/T sensor
along the z-axis are given as the first plot, and below it the zq position of the quadrotor.
Two plots in the second column show the roll (φ) and pitch (θ) values. Notice that the
system with a bigger desired inertia (red) preserves its contact with the ceiling much better
than the one with a smaller desired inertia (blue), despite the uneven profile of the surface.
A smaller desired inertia, in this case N = diag([0.004, 0.004, 0.0274]) ∈ R3×3, causes
more oscillations for the system along the zW axis (zq, up and down) and also around its
rotational axes (see φ, θ). When we implement IDA-PBC with a bigger desired inertia, i.e.
N = diag([0.014, 0.014, 0.0274]) ∈ R3×3, these oscillations are reduced and the contact
with the surface during sliding is much better (see the plot of the contact forces in Fig. 4.13).
This result is in line with the numerical simulations.

Note that even when the system is controlled for a bigger desired inertia, some small
oscillations appear during the contact. This can be further improved by shaping the
dissipation of the system, changing e.g. kT , as explained in Sec. 4.2.4.

4.4 Discussions
Controlling the aerial robots when they are physically interacting with their environment is
not a trivial task. In this chapter we approached this problem from energetic point of view,
and adopted the IDA-PBC method for quadrotor VTOLs. This powerful method allowed
us reshaping the physical properties of a quadrotor, e.g. assigning to it a desired inertia,
potential energy or dissipation; while it ensured the passivity of the controlled system.
We have to note that the IDA-PBC method presented here is a low-level framework,

helpful for achieving a stable APhI of the quadrotors (see Sec. 4.2 and also Remark 6). It
can be used to turn the quadrotors into 3D force effectors, as explained in 4.2.5; however it
is not developed for, e.g. position or force/torque tracking purposes. It elegantly renders
the nonlinear quadrotor dynamics into a stable, desired behavior, especially when the
system is interacting with its environment. How it assigns desired dynamics to a quadrotor
is shown overall in Sec. 4.3, both numerically and experimentally.

Nonetheless, IDA-PBC can be used together with a high-level controller, which enters to
the new controlled system via a new input signal uo, as depicted in Fig. 4.1 and shown
in (4.36). As given in Proposition 4, the controlled system with new desired dynamics will
be also cyclo-passive (or passive with a condition on lower bound of the system energy)
w.r.t. this new input. This high-level new input can be used for position tracking (see
Fig. 4.11), or even for force/torque tracking. We consider the latter one in the scope of our
future studies.

One note is that during the preliminary experiments, our goal was to show that using IDA-
PBC, one can reshape the physical properties of a quadrotor VTOL when it is interacting
with its environment. The results given in both Fig. 4.12 and Fig. 4.13 are clearly showing
that, by shaping the desired inertia of the system we can achieve different interactive
behaviors. This can lead to a better APhI depending on the task, as shown in Fig. 4.13
when the quadrotor sliding on an uneven surface, which is in line with the results of
Fig. 4.9. Sliding task, which can also be interpreted as surface inspection, cleaning or
painting, can further be improved by, e.g. tuning the dissipative parameters of the controller
(Kv of (4.36)), decreasing the desired mass md, or implementing a force/torque tracking
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controller providing a high-level control input to the IDA-PBC controller. This as well is in
the scope of our future studies.
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Chapter 5

Design of a Compliant Actuator for
Aerial Physical Interaction and
Manipulation
The control of the flying robots during physical interaction or manipulation is a challenging
problem, not only in terms of estimation and control, but also in terms of designing new
tools or actuators. For this reason, this chapter is dedicated to the design, identification
and control of a light-weigh elastic-joint arm, to be used on board of a small-size aerial
robot, e.g. the quadrotor in Fig. 2.2. The elastic-joint arms are known with their intrinsic
stability when the output shaft of the arm is physically interacting with the environment.
Here we show how to use this ability for Aerial Physical Interaction (APhI), by controlling
an in-home built arm on the flying robot (quadrotor). Moreover elastic arms are favorable
for explosive movement tasks, e.g. throwing, due to the potential energy stored in the
elastic components. Such manipulation task has never been considered for aerial robots
before and in this chapter we investigate its possibility with experimental results.
This chapter can be considered as a bridge from aerial physical interaction to aerial

manipulation, where we propose a new light-weight elastic joint-arm design, that in theory
is capable of achieving both tasks. It can be seen, that different from Chapter 4, here we
approach to the problem of APhI from the design point of view. We note that the content
of this chapter is published in Yüksel et al. (2015).

5.1 Introduction
The control of flying robots during physical interaction is a challenge in terms of designing
new tools or actuators, as well as developing powerful algorithms to allow the exertion of
forces and torques on the environment, while stabilizing the overall system and protect
the expensive hardware. In Chapter 4 we have presented a control method addressing this
problem.
In parallel, other studies presented useful designs for improving the performance of

physical interaction tasks, by introducing novel tools. In Kondak et al. (2013), a light-
weight industrial arm is attached to a small-size helicopter, under the consortium of ARCAS
(2011-2015). Smaller scale designs are also presented in the literature. In Kim et al. (2013)
a 2D rigid arm for aerial manipulation is introduced. A tool for surface inspection using a
flying robot is developed and presented in Fumagalli et al. (2012b). Besides many different
joints and actuated tools, passive ones are also used for physical interaction, as in Gioioso
et al. (2014). See also Sections 1.2 and 1.3 for a broad literature review.
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In APhI, it is necessary to always guarantee a safe (i.e., non-destabilizing) behavior
of the system during any contact with the environment, that can be either desired or
unforeseen (e.g., the robot moving in an unknown and/or hostile area). Furthermore, it
should be possible to implement explosive motions for useful aerial interaction tasks, like
aerial repairing or fixing. The use of flexible joints has proven in the literature to be
successful for the implementation of interactive tasks, so far for the grounded robotic arms
or humanoid robots. The elasticity of the joints can in fact be exploited for achieving
an intrinsic safe behavior of the system and for amplifying the mechanical performance
of a rigid arm by exploiting the energy stored into the elastic element, as also described
in Braun et al. (2012) and in Braun et al. (2013). In this chapter (and later in the following
in Chapter 6 as well), we explore the possibility of exploiting the benefits of elastic joints
in aerial physical interaction, which was not done before to the best of our knowledge. The
goal of this chapter is to conduct a preliminary work to start filling this gap. For this, we
present a novel design of a light weight flexible-joint arm that can be mounted on a small
size aerial vehicle for achieving an intrinsically safe APhI and that allows to exploiting the
joint elasticity for implementing aerial explosive tasks (e.g., aerial hammering and aerial
throwing). The proposed arm is then mounted on a quadrotor and its benefits for APhI
are experimentally validated.

5.2 Design of an Elastic-Joint Arm for Aerial Robots
Let us describe the light-weight elastic-joint arm, designed in-home, to be used for APhI
together on board of a small size flying robots, e.g. the quadrotor platform shown in Fig. 2.2.
The flexible-joint arm consists of several parts. The rigid parts, with the exception of the
actuators, are CAD modeled and 3D printed. As can be seen in Fig. 5.1, a rigid pulley is
attached to the shaft of the servo motor, which is connected to a second rigid pulley via
two elastic elements (see also Fig. 5.2 for its realization). The first pulley is referred to as
the active pulley and the second one as the passive pulley. The passive pulley is attached
to a rigid link, whose objective is to interact with the environment. The position of the
active pulley is measured by the encoder of the servo motor. The measurements for the
arm motion are collected with a magnetic encoder attached to the passive pulley. The
magnet is placed on a cylindric part attached to the center of the passive pulley, and the
encoder is placed on a fixed surface.
A second linear servo motor can let the active pulley slide along the bottom surface in

order to regulate the distance between the two pulleys. At present however this feature is not
used and the distance has been fixed with a rigid connection. The reason for introducing a
second linear motor in the design is to have room for future improvements, such as changing
the design from an elastic actuator to a variable stiffness actuator by using, e.g., nonlinear
elastic components Ham et al. (2009). Finally, a rigid box covering the mechanism except
the rigid arm is adopted for protection of the hardware components.
The elastic components between two rigid pulleys are chosen as linear springs (see in

Figs. 5.2 and 5.3). The two springs are used as antagonistic pairs, i.e., in case one of the
springs contracts, the other one relaxes, and viceversa. This is a natural way of designing a
flexible arm, similar to biceps and triceps in the human arm; where the muscels cannot
push, but only pull (see also Ham et al. (2009)). The advantage of using antagonistic pairs
is that, they allow the full elastic behavior in both directions of the rotation.
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Rigid Link

Encoder

Passive Pulley
Active Pulley

Servo MotorRigid Connection

Figure 5.1: CAD Model of the flexible-joint arm.

Link Inertia J1 0.0019 [kgm2]
Spring Constant ke 0.3374 [Nm/rad]
Natural Frequency ωn 13.3 [rad/s]
Motor-side Dissipation µm 0.0364 [Ns/rad]
Link-side Dissipation µl 0.0048 [Ns/rad]

Table 5.1: Estimated physical parameters of the flexible-joint arm

Besides the mechanics of the system, the electronics and communication with the arm is
another part of the design. This is explained in Section 5.4 in detail.

5.3 Identification and Control
We have designed the elastic-joint arm in Fig. 5.1 from stretch. This means that the physical
parameters of the flexible arm are mostly unknown. Here we show how to acquire these
parameters that will be later used for controlling the flexible-joint arm motion. Additionally,
we derive the models of the link and of the motor that will be exploited for evaluating the
dynamic behavior of the system during fast motions.

5.3.1 Parametric Identification
The flexible-joint arm consists of the motor-side and the link-side dynamics. Both are of
second order as shown in Ozparpucu and Haddadin (2013). However, if the motor dynamics
is considerably faster than the link dynamics, it is possible to assume that the motor velocity
can be controlled instantaneously, as also shown in Ozparpucu and Haddadin (2013) and
in Haddadin and Krieger (2012). This means that the servo motor behaves as a perfect
velocity source. Under this assumption, the linear dynamics of the flexible-joint arm can
be described as:

J1θ̈1 + µlθ̇1 + keθ1 = µmθ̇m + keθm (5.1)

θm =
∫ t

0
θ̇dmdt+ θ0

m, (5.2)

where θm ∈ R and θ1 ∈ R are motor side and link side orientations, respectively, J1 > 0 is
the inertia of the rigid link, ke > 0 is the linear spring constant, and µm > 0 and µl > 0
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Figure 5.2: The light-weight flexible-joint arm.

θ1 π − θm
Rigid Link

Passive Pulley

Elastic Connection

Active Pulley

Figure 5.3: Schematic figure of the flexible-joint arm with notations used Chapter 5. The
linear motor is grayed out and inactive for the current design. A future
development includes activating this part too, for upgrading the current elastic
actuator design to a variable stiffness actuator one.

represent the dissipations (viscous elements) of the motor side and link side, respectively.
The desired motor velocity is shown with θ̇dm, and θ0

m is the initial motor position.
The validity of the assumption of considering motor as a velocity source depends on the

load attached to the motor. Since we are introducing a novel design, it is in our interest to
see whether the servo motor can be used as velocity source when the elastic and rigid parts
are also attached.
Considering as input the desired motor velocity θ̇dm, and as output the measured motor

velocity θ̇m, the transfer function, in the Laplace domain, is expected to be of the first
order (a servo motor dynamics), namely

Θ̇m(s)
Θ̇d
m(s)

= e−sτd
a

s+ b
, (5.3)

where τd represents the system delay.
In order to validate the model in (5.3) and to estimate the parameters a, b, and τd we

performed some experiments and used the nonlinear least squares method (more details
can be found in Ljung (1986)). In Fig. 5.4 the frequency response of the motor is shown
for different step inputs as desired velocity profile and with different conditions: loaded
(springs and the arm is attached to the motor) and unloaded cases (motor output shaft
is free of any load). The output is the measured motor velocity that is retrieved using
the motor encoder. The different plot colors correspond to the pulse trains of different
frequencies. Solid lines are corresponding to conditions where no load is attached to the
motor. Dashed lines represent the cases when the motor is connected to the arm though
the elastic interconnection. As it can be seen, the frequency response of the system stays
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Figure 5.4: Frequency response of the motor for different step inputs. The input is the
desired motor velocity, and the output is the measured motor velocity. The
dashed lines depicts the conditions ‘with load’ (wL: springs, passive pulley and
the rigid arm are connected to the motor), and the solid lines show the ones
with ‘no load’ (nL: only the active pulley is connected to the motor). Different
colors correspond to pulse trains of different frequencies (T1, T2, T3, and T4).

almost the same in the frequency range of interest, which is around the natural frequency of
the total system (this will be identified in the next step). Hence we can consider the motor
as a velocity source even when it is connected to its load. A good fit for (5.3) considering
different conditions is found for the parameters a = 13.79 and b = 7.175, and τd = 0.2s.
The parameters of the flexible-joint arm dynamics, given in (5.1), have to be estimated

as well. Let us first write the transfer function of the system dynamics for motor position
θm as input and link position θ1 as output. Denoting with ωn and G the natural frequency
and the low-frequency gain of the system, respectively, we obtain:

Θ1(s)
Θm(s) = e−sτdK

s+ µ

s2 + 2ξωn + ω2
n

, (5.4)

where K = GDθ/J1, µ = ke/µm, ωn =
√
ke/J1, and ξ = µl/2

√
keJ1.

The moment of inertia for the rigid link is computed as J1 = 0.0019 [kgm2] from the
CAD model shown in Fig. 5.1. Although the inertia is easy to compute from the geometry
of the system, the dissipative parameters such as the damping and frictions are hard to
retrieve from a simulation. For this reason, we again used nonlinear least squares Ljung
(1986) to identify the system parameters. By choosing motor position θm as input and link
position θ1 as output we computed the frequency response of the system for different step
input profiles. The results are presented in Fig. 5.5. The best fit for (5.4) is

Θ1(s)
Θm(s) = e−0.2s8 s+ 9.2634

s2 + 2.573s+ 197.3 . (5.5)

The physical parameters corresponding to this transfer function are shown in Table 5.1.

69



Chapter 5 Design of a Compliant Actuator for Aerial Physical Interaction and Manipulation

10
−1

10
0

10
1

10
2

10
3

−50

0

50

Frequency Response

Frequency [rad/s]

M
a
g
 [
d
B

]

10
−1

10
0

10
1

10
2

10
3

−200

−100

0

Frequency [rad/s]

P
h
a
s
e
 [
D

e
g
]

 

 

T1

T2

T3

T4

T5

Figure 5.5: Frequency response of the flexible-joint arm system for different step inputs.
The input is the motor position and the output is the measured link position.
Different colors present the trials with different step input profiles in motor
velocities.

In Figs. 5.4 and 5.5 it is clear that the both motor and link can be operated around the
natural frequency of the flexible-joint arm, ωn, when the servo motor is considered as a
perfect velocity source. The natural frequency of the system is especially interesting for
us, since we would like to test the new design during fast movement tasks, as explained in
Section 5.3.2 in detail.

Now, by considering the flexible-joint arm as a second-order LTI system (which is actually
the case considering (5.1) and (5.2)), where the desired velocity is the input, and the motor
position and the link position are the outputs, we have

Θm(s)
Θ̇d
m(s)

= e−sτd
a

s(s+ b) (5.6)

and
Θ1(s)
Θ̇d
m(s)

= e−sτd(Kas+Kµa)
s4 + (2ξωn + b)s3 + (ω2

n + 2ξωnb)s2 + ω2
nbs

, (5.7)

where both (5.6) and (5.7) can be used to evaluate motor and link motions during explosive
movements of the system.

5.3.2 Control of the Flexible-joint Arm
Due to its compliance, a flexible-joint arm is intrinsically safe and an unforeseen interaction
with the environment is absorbed by the arm and it perturbs only slightly the motion of
the aerial vehicle it is mounted on. Another interesting interactive feature of flexible-joint
arms is the possibility of achieving fast, or even explosive motions. Such movements can
be transformed to hammering or throwing tasks using flying robot, which can be useful
especially for construction works in relatively high buildings where a ground robot cannot
reach.
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By explosive movement, we mean the amplification of the link velocity using elastic
components of the flexible-joint arm. A rigid arm, directly connected to the actuator
without any elastic element, will always have the velocity of the motor. However, a flexible-
joint arm can reach higher velocities than what actuator can provide, thanks to its elastic
components.
It is shown in the literature (e.g. in Haddadin and Krieger (2012)) that the elastic

components, e.g., springs, can be used to amplify the velocity of the actuation source.
Let us then use the unconstrained optimal control strategy presented there to maximize
the flexible-joint arm velocity in a specified final time tf . Hence the cost function to be
maximized is

J = θ̇1(tf ). (5.8)

Since we identified the damping factors relatively low (see Table. 5.1), we can neglect
them. Hence, the optimal control policy presented in Ozparpucu and Haddadin (2013)
and in Haddadin and Krieger (2012) for unconstrained undamped mass-spring system is
suitable for our purpose. The optimal controller is then

u∗ =

θ̇maxm , sin(ωn(tf − t)) > 0
θ̇minm , sin(ωn(tf − t)) < 0,

(5.9)

where the optimal control input is u∗ = θ̇∗d. Note that we consider the servo motor as
a perfect velocity source (see (5.2)) which is however constrained, i.e., u∗ ∈ [θ̇minm , θ̇maxm ].
This type of controller is called bang-bang controller. In our case no state constraints are
considered.

5.4 Experimental Results
The flexible-joint arm is a combination of 3D printed rigid parts, elastic components,
actuator, and measurement units (sensors) with their electronics. The 3D printed parts and
elastic elements are introduced previously in detail in Sec. 5.2. In this section we present
the actuator, i.e., the servo motor, the sensors, and its electronics. Moreover, we briefly
recall the flying platform and present the setup for the experiments. Finally we present the
experimental results.

Control of the Aerial Robot

In this part we give an overview of the controller used for quadrotor, to achieve a stable
flight while the flexible-joint arm is operating. In addition, we expect from the controller to
give a good tracking results when a human operator is controlling its trajectory. In real-life
cases, where flying robots are required to be interacting with their environment (such as in
outdoor scenarios) we believe that controlling the flying system with human input is as
important as fully autonomous trajectory control. For this reason, we choose to control the
quadrotor using so called near hovering control, as deeply explained in Lee et al. (2013).
Briefly, the controller is developed for teleoperation tasks using quadrotors, where it

allows operator more focusing on high-level tasks, while low-level ones are hidden from the
operator such as underactuation of the translational dynamics. The goal of the controller is
to make quadrotor follow a smooth trajectory in translational motion, using the inputs given
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L/2

m1

mo

Figure 5.6: Flexible-joint arm is attached to the quadrotor system. Two experimets are
designed; explosive arm movement (on the left) and aerial physical interaction
(on the right). The second one is a task, where flexible-joint arm is sliding
on a sloped surface, while quadrotor is performing a stable flight. The rigid
link mechanism consists of a mass mo = 0.044 [kg] at the tip of the link, in a
distance of L = 0.18 [m] to the link center of mass, where m1 = 0.044 [kg].

by the human operator, while trying to keep hovering configuration, i.e., small pitch and
roll angles, as much as possible. In the experiments, we used this controller for controlling
the translational trajectory of the quadrotor, where the novel flexible-joint arm is placed
on it, as depicted in Fig. 5.6. The main limitation of the design is the weight and size of
the flexible-joint arm, since it is planned to be mounted on a small-scale quadrotor. For
this reason we chose Dynamixel AX-12A servo motor1, which is both velocity and position
controllable. The motor provides velocity, position, load, and temperature measurements.
The communication with servo motor is done using serial communication block of Simulink-
Matlab. The position and velocity measurements of the passive pulley (so the rigid link) are
acquired using 10-bit AEAT-6010 magnetic encoder2. The encoder is fixed to the body of
the actuator, whereas the rotating part (magnet) is directly connected to the passive pulley.
The encoder readings are acquired using serial channel of Arduino-Uno3, and transferred
to another serial communication block in the same simulink file where the servo motor is
controlled.

Experimental Setup

The experiments are conducted on the flying platform, which is a quadrotor UAV (see
Sec. 2.3). The maximum payload of the quadrotor is about 2 [kg], hence we designed the
flexible-joint arm as light as possible (total mass of the flexible-joint arm is 0.36 [kg]). The
maximum reachable rotation angle of the flexible-joint arm is limited to θ1 ∈ [−1, 0.55] [rad].
The experiments are done indoor, and the state estimation of the quadrotor is done as
explained in Sec. 2.3. The total system weight is 1.36 [kg]. The communication with the
on board electronics of the quadrotor and the MoCap is done on an Ubuntu 12.04 machine,
using ROS-fuerte (Quigley et al. (2009)) and Telekyb softwares, which is developed for
controlling the aerial robots (see Grabe et al. (2013)).
The quadrotor is controlled by a human operator, using a standard joypad connected

1http://www.robotis.com/xe/dynamixel_en
2http://www.avagotech.com/docs/AV02-0188EN
3http://arduino.cc/en/Main/arduinoBoardUno
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Figure 5.7: Explosive movement of the flexible arm during flight on the quadrotor. On the
left picture arm swings right, and on the right picture it swings left. Results of
this experiment is given in Fig. 5.8.

to the Ubuntu machine. Besides the operator, another person was holding the security
stick, which is connected to the quadrotor from top. The connection is done with ropes for
security reasons, which have no tension the during flight.

Experiments and Results

We have designed two experiments for showing the effectiveness of the elastic joint-arm
on a quadrotor; fast movement of the arm, and stable aerial physical interaction task (see
Fig. 5.6 for a sketch of these two tasks).

For the first experiment, the quadrotor is actively keeping a hovering condition, and the
optimal controller presented in (5.9) is applied to the flexible arm, by choosing tf = 3 [s].
The motion of the arm is shown in Fig. 5.7, with two snapshots from the real experiment.

The results are shown in Fig. 5.8. The control input as desired motor velocity is shown in
the figure with blue dashed line. The measurements are depicted with black dots, in 10 [Hz]
from both motor and link encoders. Here we also plotted the evolution of the identified
transfer functions in 1 [kHz], which is presented with solid red plots. As seen in the lower
right plot of Fig. 5.8 the maximum link velocity is reached in around tf = 3 [s], which is
almost five times more than the servo motor velocity. Thanks to the storage of elastic
energy due to the flexible joint, the motion of the link is amplified, which provides some
preliminary results on explosive movement tasks using aerial robots. Such tasks can be
imagined as aerial hammering or throwing.
The second experiment is for the aerial physical interaction task using flexible-joint

arm on the quadrotor. A platform with a slopped/uneven surface (blue colored surface
in Fig. 5.10) is designed for this experiment. The goal is to have a stable flight, while
quadrotor equipped with the arm is sliding on the blue surface in a stable manner. For this
experiment, we have set the proportional gain of the quadrotor position controller (from Lee
et al. (2013)) to zero along the xW -axis. The reason is to let the quadrotor drift along the
direction of the motion, while the flexible-joint arm is interacting with the environment
(see Fig. 5.10). The flexible-joint arm is position-controlled in this case, meaning that we
send the desired motor position and velocity values at will. The results are given in Fig. 5.9.
First column of the figure shows the positions of the quadrotor in three Cartesian axes, with
blue solid lines. The gray areas are representing the hovering condition of the quadrotor,
meaning that its desired position is fixed. After the first grayed area, quadrotor starts to
descend and approaches to the blue platform so that the flexible arm touches the surface.
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Figure 5.8: Left: Motor position and velocities. Right: Link position and velocities. Blue
dashed line represents the optimal control input computed using (5.9) for
tf = 3 [m] and ωn = 13.3 [rad/s]. Black dots are the measured motor position
and velocities using embedded servo motor encoder in 10 [Hz]. Red plot are for
the corresponding evolutions of the identified transfer functions.

Later the quadrotor flies along the +xW direction while trying to keep contact with the
uneven surface (see Fig. 5.10). After holding in hovering position in the second grayed area,
it flies back along the −xW direction by keeping the contact. Finally it arrives to initial
position, ascends, and stays in hovering condition as in the beginning. The pitch angles
(rotation around the yB axis) are given as black solid lines in Fig. 5.9. The near-hovering
controller is keeping the system and the interaction stable during the whole flight. The red
plots in the same figure are showing the motor positions (θm), and the link positions (θ1) of
the joint arm. Depending on the direction of the flight, different motor positions are set to
the servo motor. The changes in the link position is clearly seen in Fig. 5.9 (bottom-right),
which is following the profile of the interaction surface. The motor positions, on the other
hand, are fixed unless it is not commanded. Thanks to the flexibility of the joint the arm,
the overall system can safely interact with an unknown environment. Furthermore, since
the elasticity of the joint absorbs the impact with the environment, the motion of the
quadrotor is left almost unperturbed by the unforeseen impact with the environment.
Please note that this setup is further developed by; i) implementing the elastic-arm

control in ROS environment ii) bringing the Leap-Motion hand tracking sensor4 as a new
user interface in the loop. The details of this practical developments are avoided due the
brevity reasons. Nonetheless, in Fig. 5.11 we show a snapshot from an experiment, in which
a leap-motion sensor is used to operate the arm motion for a hammering task, based on
human hand tracking, using ROS-groovy interface.

4https://www.leapmotion.com/
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Figure 5.9: Results of aerial physical interaction with flexible-joint arm. On the left side
three Cartesian coordinates are figured (blue solid lines) where the grayed areas
are representing the hovering case of the quadrotor. Black solid figure on the
right shows the pitch angles, and red dashed plots are measurements of motor
angles (θm) and link angles (θ1) for the flexible arm during the flight. A snapshot
from this experiment is given in Fig. 5.10.

5.5 Discussions

In this chapter we have studied the design of a light-weight elastic joint-arm, for using in
the APhI tasks of the flying robots. By developing such a tool, we approached to APhI
problem from modeling and design point of view. After realizing the arm and identifying its
physical parameters, we showed how it can be controlled, and used on board of an available
quadrotor setup.
The work explained in this chapter is paving the way of using compliant actuators for

APhI and maybe for aerial manipulation as well. Here it is shown that due to their nature
and design, actuators with elastic elements have stabilizing effect during APhI. Morover
they can even be further benefited for performing explosive movement tasks, and such
movements can be turned into to hammering or throwing tasks. Enabling the flying robots
for such tasks can be extremely effective especially for construction works in relatively high
buildings, where a ground robot cannot reach.
Since the overall setup (shown during flight in Fig. 5.10) is a binomial of a flying base

and a manipulating arm, it is actually an aerial manipulator. However in this chapter we
did not consider this aerial manipulator as a full system, namely the control employed for
the experiments is unaware of the dynamical effects of the arm on the quadrotor, and of
course vice versa. Both systems consider these effects as disturbances, and try to cancel
each other.

A future development of the design presented here is activating the linear motor (see the
grayed out part of Fig. 5.3), which changes the distance between the passive and the active
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Figure 5.10: Snapshots from the experiments for aerial physical interaction using elastic-
joint arm. Three figures represent the evolution of the motion along the
xB-axis, as mentioned in Fig. 5.9, where the results are shown. The three axes
of the world frame are depicted with three different colors in the last figure.

Figure 5.11: During the experimental tests of the elastic-joint arm, we have used it with
different user interfaces. In this figure, the communication with the arm using
a hand tracking sensor, a.k.a Leap Motion, is shown. The desired positions
and the velocities of the hand palm is acquired using the Leap Motion sensor,
and sent to the actuator of the arm via ROS interface.

pulleys where the springs are located. In case of the nonlinear elastic components, the
change in the position of this linear motor would vary the stiffness of the elastic actuator
design, turning it a variable stiffness one.

Another improvement is considering the dynamic model of the aerial manipulator, taking
the couplings between the flying base and the manipulating arm into account. In fact, this
is exactly what we do in the following chapter; we study the aerial manipulators as a full
system, consisting of a flying platform and manipulating arm(s), and propose controllers
that are aware of the dynamical coupling between those systems.
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Chapter 6

Control of Aerial Manipulation using
Differential Flatness and Exact
Linearizability

In Chapter 5 we presented a novel flexible-joint arm as a powerful tool for aerial physical
interaction and manipulation. However, the control of the aerial robot equipped with this
arm was independently done, i.e. neither the arm nor the quadrotor was aware of each
others dynamics.

In this chapter we intensively study the system dynamics of different aerial manipulators,
when they consist of a flying platform and one or multiple number of manipulating arms. In
fact, here we show that such systems are differentially flat, and for them there exist an exact
linearizing controller (or Dynamic Feedback Linearizing - DFL- controller). Hence, we first
briefly recall the concept of differential flatness in Sec. 6.1.1. Our first set of objectives, as
defined in Sec. 6.2.1, is to exploit the differential flatness property of some types of aerial
manipulators, which are binomial of a flying platform and a single joint-arm, whose dynamics
are constrained in a plane. To achieve this, we formalized our methodology in Sections 6.2.2
and 6.2.3. Note that Section 6.2 is entirely dedicated to the aerial manipulators with a
single-joint arm, which can be rigidly or elastically actuated. There we show that the
attachment point of the manipulating arm has a tremendous effect on the differential
flatness property of the system, as well as the design of the tracking control problem.
Briefly, when the arm is attached to the CoM of the flying robot, then the end-effector
positions become part of the flat outputs, and this has a practical importance for us. We
validate our theoretical results first numerically in Sec. 6.2.9, where we present advantages
of using rigid or elastic actuation over each other for different aerial manipulation tasks.
Then in Sec. 6.2.10 we present the preliminary experimental results for tracking control of a
quadrotor equipped with an arm that is actuated via a Variable Stiffness Actuator (VSA).
Let us stress again, that the end-effector position of the aerial manipulator is part of

the flat outputs of the overall system, when the arm is attached to the CoM of the flying
platform. This is important because most of the aerial manipulation tasks require the
control of the end-effector positions. In light of this result, in Sec. 6.3 we consider an
aerial manipulator design, where the flying robot is equipped with a generic number of
manipulating arms, each may have any numbers of DoF, with either rigid or compliant
actuators. The system dynamics, their differential flatness property and a proper exact
linearizing controller is explained in Sec. 6.3. Since so far the system motion was constrained
to a plane, its extension to 3D is required for performing practical applications. For this
reason in Sec. 6.4 we investigate control methods developed in 3D, which can benefit from
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Figure 6.1: Conceptual sketch of a PVTOL as a quadrotor on a plane. First figure on the
left is the sketch of a quadrotor, which was depicted before in Fig. 2.1. Second
figure is the quadrotor in xB − zB plane, where the Center of Actuation (CoA)
and the Center of Mass (CoM) of the PVTOL are at the same point, PB. Third
figure is a generic PVTOL we consider in Chapter 6, where the CoA (PG) is
different from the CoM (PC0) of the PVTOL. Note that the pitch torque of the
quadrotor uθ given in (2.3) is equivalent to the PVTOL torque ur.

the differential flatness property of the aerial manipulators discovered in 2D.
We note that the content of this chapter has been partially published in different papers.

Some parts of Sec. 6.1, and Sec. 6.2 are available online in Yüksel and Franchi (2016) and
in Yüksel et al. (2016b); Sec. 6.3 in Yüksel et al. (2016a); and Sec. 6.4 in Tognon et al.
(2017).

6.1 Introduction
In this chapter we study the system properties and control of an aerial manipulator, a
system consisting of a flying robot and one or multiple manipulating arms. A broad
literature review for the existing aerial manipulators is given in Section 1.3. In particular,
here we consider the motion of a quadrotor VTOL in a vertical plane, e.g. xB − zB plane
as depicted in Fig. 6.1. The system in this plane can be called as a Planar Vertical Take-off
and Landing (PVTOL) aerial robot, which is actually a quadrotor VTOL, but its motion is
constrained in a plane.

A PVTOL aerial platform, similar to previous studies (see, e.g., Lupashin and D’Andrea
(2013); Lupashin et al. (2010)), does not only capture the nonlinear features and the
underactuation of a 3D system, but also allows generalizing the obtained results in a later
stage (e.g. see Sec. 6.2.10 and Sec. 6.4). Furthermore, many practical aerial problems are,
fundamentally, 2D problems immersed in a 3D world (as, e.g., the aerial grasping problem
addressed in Thomas et al. (2013)).
We note that this is a long chapter, including various aerial manipulator designs, and

their striking nonlinear system properties. By aerial manipulator, we now mean a PVTOL,
which is equipped with one or multiple manipulating arms. In particular, here we are
going to show how the differential flatness property of such systems changes with; i) the
attachment point of the arm, ii) the actuation type of the arm, iii) and the DoF as well as
the number of the manipulating arms.

Although the control of aerial robots (Mistler et al. (2001), Koo and Sastry (1999)) and
the control of the fixed-base manipulators with: rigid (Siciliano et al. (2009)), elastic (De
Luca and Book (2008)), or mixed (De Luca (1996)) joint types have been studied in the
literature separately, the analysis and control of systems consisting of these two is still
an open (and rapidly growing) topic. Especially, the control of aerial manipulators with
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elastic arms has not been addressed so far and is not yet throughly understood, although
benefiting from elastic components of a ground manipulator has been studied before for
explosive movement tasks, e.g. in Braun et al. (2012). Here, we will try to set some light
to their system analysis by studying their differential flatness property, which can be very
effective in the trajectory planning phase, or their control.

Let us first recall some known facts on the differential flatness and the Dynamic Feedback
Linearization (DFL).

6.1.1 Relative Degree, Exact Linearization and Differential
Flatness

We start with some preliminaries on the relative degree of a system, and its connection to the
differential flatness. To fix the ideas better, first consider the following Single-Input-Single
Output (SISO) nonlinear system;

ẋ = f(x) + g(x)u
y = h(x) + z(x)u, x ∈ Rn, u, y ∈ R,

(6.1)

where x ∈ Rn is the state and u, y ∈ R are the input and the output of the system,
respectively. If z(x ≡ 0) is in the neighborhood of x0, then by differentiating the output
we can write

ẏ = ∂h

∂x
ẋ = Lfh(x) + Lgh(x). (6.2)

Then let us give the following definition,

Definition 4 (Relative degree of SISO Systems-Sepulchre et al. (1997)). The relative
degree of the nonlinear system (6.1) at the origin x = x0 is the integer r, s.t.

(i) LgLkfh(x) ≡ 0, for k = {0, · · · , r − 2} and x in a neighborhood of x = x0;

(ii) LgL(r−1)
f h(x0) 6= 0.

In words, for a nonlinear system, the relative degree of the output w.r.t the input is the
differential order of the output at which the input explicitly appears for the first time.
Now for a Multi-Input-Multi-Output (MIMO) nonlinear system;

ẋ = f(x) + g(x)u
y = h(x) + z(x)u, x ∈ Rn, u,y ∈ Rm (6.3)

assign to each output yi an integer ri which is the number of differentiations of yi needed
for at least one of the inputs to appear first time explicitly, and i = {1, · · · ,m}. Then let
us give the following definition,
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Definition 5 (Relative degree of MIMO Systems-Sepulchre et al. (1997)). The non-
linear system (6.3) has a relative degree {r1, · · · , rm} at the origin x = x0, if

(i) LgjLkfhi(x) ≡ 0, ∀ 1 ≤ i, j ≤ m, ∀ k < ri−1 and ∀x in a neighborhood of x = x0,

(ii)
[
∂y

(ri)
i

∂uj

]
1≤i,j≤m

=


Lg1L

(r1−1)
f h1(x) · · · LgmL

(r1−1)
f h1(x)

... . . . ...
Lg1L

(rm−1)
f h1(x) · · · LgmL

(rm−1)
f hm(x)

 (6.4)

is nonsingular at x = x0.

Notice that the second condition of Definition 5 is a generalization of the second condition
of Definition 4. In these both definitions, the relative degree of the square systems is
considered, i.e. the number of input is equal to the number of outputs. For underactuated
systems, as will be discussed in Section 6.2.2, for computing the relative degree, we will
make sure that the number of the chosen outputs are equal to the number of inputs. Note
that if {r1 = · · · = rm}, then the outputs of the system (6.3) has a uniform relative degree
r1 w.r.t. its outputs. Moreover we call r =

m∑
i=1

ri as the total relative degree of the system
in (6.3), which (later to be shown) has a significant impact for both the differential flatness
and the exact linearization of a nonlinear system. Let us shortly define the differential
flatness;

Definition 6 (Differential Flatness-Fliess et al. (1995); Murray et al. (1995)). The
system in (6.3) is said to be differentially flat, if there exists an output y (called flat
output), such that the states x, ẋ and the control inputs u can be expressed as an
algebraic function of y and a finite number of their derivatives.

We note that this definition is repeated later in Definition 8 for the aerial manipulator
system studied in Sec. 6.2. Furthermore, for the same aerial manipulator we describe
the exact linearization in Definition 7. Although differential flatness is a geometric property
of a nonlinear system and exact linearization is a control approach1, they both imply each
other because of the Fact 1. This means, that the differentially flat outputs of a nonlinear
system is also its exactly linearizing outputs. As elegantly stated in Isidori (2013), when
the exactly linearizing (or flat) outputs are used for constructing a dynamic feedback
linearization (DFL) controller, then the zero dynamics of the system becomes trivial.
Now this in mind, in Definition 7 it is given that for the underactuated systems, two

conditions are required for an output to be a differentially flat output; i) the total relative
degree of the system matches with the the total number of states, ii) there is an invertible
decoupling matrix in form of (6.4). The second condition allows us finding a control in
form of (6.9), which brings the system to a linear controllable form2. The first condition

1See overall Sec. 6.2.2 for an informal description of exact linearizability via dynamic feedback for the
aerial manipulators considered in Section 6.2.

2Then, a linear controller satisfying Hurwitz criteria using pole-zero cancellation can steer the output
dynamics in a stable manner, if the zero dynamics of the system is stable.
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6.2 Aerial Manipulators with Single Joint-Arm

makes sure that there are no unstable zero dynamics (or they are trivial). It is important
to realize that the zero dynamics of the nonlinear system has a fundamental role for the
feasibility of the exact linearization and output regulation (see Sepulchre et al. (1997)). If
it is unstable, i.e. there are states that are not observable from the output of the system,
then this pole-zero cancellation can potentially destabilize the whole system. However,
thanks to the matching condition of the total relative degree (fist condition of Definition 8),
after an exactly linearizing DFL control3, there will be no unobservable states, hence no
unstable zero dynamics (or they become trivial as stated in Isidori (2013)).
In summary, when these two important conditions are met, we can say that the output

y of a nonlinear system is an exactly linearizing output via dynamic feedback, and the
linearized dynamics is exact of the nonlinear one, which can be stabilized using a pole-zero
cancellation method (under the Hurwitz condition). Furthermore, from the Definition 8
and the Fact 1, this means that the system is differentially flat for the output y.
Clearly, the choice of using DFL controller has its own advantages, or disadvantages as

discussed in Sec. 1.4.2. Hence, using it or another controller enjoying the flatness property
of the system (e.g. the one presented in Sec. 6.4.2) depends on the convenience.

In the following, we will use these concepts for addressing the output tracking control of the
aerial manipulators. The considered system is a PVTOL equipped with a robotic arm (see
Fig. 6.2). Note that different from the previous chapters, here we do the following change of
coordinates; i) For the convenience of the further computations, the frame fixed at the CoM
of the quadrotor, FB : {PB,xB,yB, zB} in 3D, will be called as F0 : {PC0 ,x0, z0} on the
xB−zB plane, ii) similarly the world frame on the plane is depicted with FW : {PW,xW , zW},
iii) and the torque around yB, called uθ before, is denoted now by ur (see Fig. 6.1).

6.2 Aerial Manipulators with Single Joint-Arm
In this section we consider a Planar-VTOL (PVTOL) aerial robot equipped with a joint-arm.
This joint arm can be connected to its actuator either rigidly or via some elastic elements
(see Chapter 5 for an example). Here, we address the design and the control problems
of the aerial manipulators (binomial of a PVTOL and a joint arm), and propose four
new nonlinear controllers for their four most important design cases given by the possible
combinations of the joint nature (rigid or elastic) with the kinematics of the platform-arm
combination (generic attachment or CoM attachment), as summarized in Table 6.1.
Before going into the details, let us motivate the work done for this section. We aim at

i) studying both the aerial vehicle and the manipulator together as one system, the aerial
manipulator, ii) extending the preliminary insights shown in Chapter 5 and rigorously
laying the foundations of the topic addressed there, and iii) comparing different designs of
aerial manipulators for different tasks. We reach our goals by achieving the Objectives 1, 2
and 3 in Section 6.2.1. To do so, we rigorously analyze the exact output tracking and
differential flatness properties of different aerial manipulator designs, and propose dynamic
feedback linearization (DFL) control for each of them. A summary of the theoretical results
can be found in Table 6.2.
To the best of our knowledge, such an extensive study for aerial manipulators using

differential flatness and exact linearizability has not been presented before. Furthermore,

3i.e, that the flat (or exactly linearizing) outputs are used in DFL control.
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Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

controlling the motion of a robot composed by an elastic-joint arm attached to a flying
vehicle has not been studied yet, except the work done in Chapter 5. Here, we fill this
gap, by showing how we can independently and dynamically control the orientation of the
elastic-joint arm together with the position of the PVTOL. By analyzing and proposing
several controllers for robots of this novel type we aim at paving the way for the use of
flexible-joint manipulators, which are able to benefit of the compliance advantages, also in
the aerial physical interaction and manipulation field.

We exhaustively study the four different cases of Table 6.1 because each one is interesting
for a different reason. First of all, the cases in which the joint is attached to any point
of the PVTOL (shortly named ‘Case RG’ and ‘Case EG’ later) are interesting for their
generality because they cover any possible real case. We prove that, in this case, the center
of mass of the whole system (VTOL + arm) is a part the flat outputs. On the other hand,
we prove that the end-effector position is not in general a part of the flat outputs, except for
the cases in which the joint is attached to the CoM of the PVTOL, (shortly named ‘Case
RC’ and ‘Case EC’ later). This fact brings strong advantages for the motion planning and
control of the end-effector position because the whole state and the input can be computed
analytically from a sufficiently smooth trajectory of the end-effector and the corresponding
controllers are computationally simpler and do not generate a zero dynamics (see also
Sec. 6.1.1).

The rigid-joint cases (Case RG and Case RC) are found to be more suitable for tasks such
as aerial grasping (see Sec. 6.2.9) or trajectory tracking. The reason is that elastic-joint need
more effort than rigid ones for these tasks, since the motor has to fight against the tendency
of the spring to oscillate at its natural frequency. On the other hand the elastic-joint cases
(Case EG and Case EC) are favorable for tasks in which one has to achieve high-speed
link velocities such as aerial throwing (see Sec. 6.2.9). This is because of the ability of the
elastic components to store potential energy and release it in the form of kinetic energy.
Summarizing, the main contribution of this section is that we systematically provide

i) a set of exact linearizing (i.e., flat) outputs for the all the four cases, ii) the explicit
algebraic map from the flat outputs to the states and the control inputs, iii) a nonlinear
controller for each case with formal proofs, iv) the formalization of an optimal control
problem for aerial manipulators using differential flatness property, v) an extensive set of
realistic numerical tests that shows its practicability with real robots, vi) a comparison
between the rigid-joint and the elastic-joint cases that shows the benefits and drawbacks of
each choice, vii) a numerical study on the robustness of the controller for the coinciding
cases (Case RC and case EC) when the coinciding assumption is not exactly verified4,
viii) preliminary experiments validating our theory for a quadrotor setup equipped with an
arm actuated via a VSA.

In Section 6.2.1 we describe the kinematics of such system, which is sketched in Fig. 6.2.
We first start with the case, in which the arm is rigidly actuated, and can be placed at
any point on the PVTOL body (Sec. 6.2.4). Then in Sec. 6.2.5 we study the same case
when the arm is attached to the CoM of the PVTOL, which enormously increases the
capabilities of the controller. Later we do the same for the case when the arm is compliant,
in Sec. 6.2.6 and Sec. 6.2.7, respectively. See Table 6.1 for the summary of these cases. We
note that the results of these cases are summarized later in Table 6.2. Later in Sec. 6.2.8

4Meaning that the attachment point of the arm and the PVTOL CoM are not coinciding, but the
controllers are not aware of that.
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Figure 6.2: – Left: a sketch of the mobile aerial manipulator, composed by a PVTOL
equipped with a 1-link arm. Notice the offsets between:
i) the center of mass (CoM) of the PVTOL (PC0),
ii) the center of actuation of the PVTOL (PG), and
iii) the attachment point of the link (PM), around which the motor rotates and
an either rigid or elastic joint is placed.
– Right: above, the relative and absolute angles of the rigid bodies. The lengths
of the z axes are made different just for illustration purposes. Below, the
location of the important points around the arm.

we show how to use the powerful flatness property for optimal trajectory planning of the
aerial manipulators. Finally the extensive numerical results are presented in Sec. 6.2.9; and
preliminary experiments in Sec. 6.2.10.

6.2.1 Nomenclature and Objectives
The considered mobile aerial manipulator is composed by a generic model of a PVTOL with
an attached 1-link arm, as depicted in Fig. 6.2 (left). We denote with FW : {PW,xW , zW}
and F0 : {PC0 ,x0, z0}, the world (inertial) frame and the frame attached to the PVTOL,
respectively, where PC0 is the Center of Mass (CoM) of the PVTOL (without the arm).
Since all the motions are in a plane, both the motor and the joint of the arm rotate about
an axis parallel to zW × xW and passing through a point PM. We then define the motor
frame as FM : {PM,xm, zm} that is rigidly attached to the motor output shaft. The joint
can be either rigid (cases considered in Sections 6.2.4 and 6.2.5) or elastic (cases considered
in Sections 6.2.6 and 6.2.7). We define also a link frame F1 : {PC1 ,x1, z1}, where PC1 is
the CoM of the link. Finally we denote with the points PE and PC the end-effector of the
arm and the CoM of the whole system (PVTOL+motor+link), respectively.
Given an angle θ∗ ∈ R between the z-axes of two frames, defined in Fig. 6.2 (right) we

define:

R∗ =
[

cos θ∗ sin θ∗
− sin θ∗ cos θ∗

]
∈ SO(2). (6.5)

Therefore, the orientations of F0 in FW , FM in F0, F1 in F0, and F1 in FM are expressed by
R0(θ0), Rm(θm), R1(θ1), and Re(θe), respectively. The absolute motor angle is θ0m = θ0+θm
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Rigid Joint Elastic Joint
PC0 and PM are generic Case RG, Sec.6.2.4 Case EG, Sec.6.2.6
PC0 and PM are coinciding Case RC, Sec.6.2.5 Case EC, Sec.6.2.7

Table 6.1: Summary of the aerial manipulator categories considered in Section 6.2.

and absolute link angle is θ01 = θ0 + θ1, as depicted in Fig. 6.2 (right). The angle
θe = θ1 − θm = θ01 − θ0m is constantly zero if the joint is rigid and can be nonzero if the
joint is elastic.
The constant positions of PM and PG in F0 are denoted with d0 = [d0x d0z ]T ∈ R2 and

dG = [dGx dGz ]T ∈ R2 respectively. The constant position of PM in F1 is denoted with
−d1 = [−d1x − d1z ]T ∈ R2. Finally, the vector de = [dex dez ]T ∈ R2 denotes the constant
position of the end-effector PE in F1.
The (time-varying) positions of PC, PC0 , PM, PC1 and PE in FW are denoted with

pc = [xc xc]T ∈ R2, p0 = [x0 z0]T ∈ R2, pm = [xm zm]T ∈ R2, p1 = [x1 z1]T ∈ R2, and
pe = [xe ze]T ∈ R2, respectively.
The mass and moment of inertia of the PVTOL, motor, and link are denoted with

m0 ∈ R>0, J0 ∈ R>0; mm ∈ R>0, Jm ∈ R>0; m1 ∈ R>0, J1 ∈ R>0, respectively. As before,
the symbol g ∈ R+ denotes the gravitational constant.
The PVTOL is actuated by means of: i) a total thrust force −utz0 ∈ R2 applied at

PG, where ut is its (signed) intensity and its direction z0 is constant in F0, and ii) a total
torque (moment) ur(z0 × x0) ∈ R2 applied at PG, where ur ∈ R is its (signed) intensity.5
Furthermore, a motor is attached to the PVTOL and applies a torque τ(zm × xm) ∈ R2 at
PM to the joint, where τ ∈ R is its (signed) intensity. The three inputs of the system are
gathered in the vector u = [ut ur τ ]T ∈ R3 and shortly denoted in the following as thrust,
PVTOL torque and motor torque, respectively.

We note that in this chapter, the pitch torque of the quadrotor uθ given in (2.3) is
equivalent to the PVTOL torque ur, due to the choice of the plane as shown in Fig. (6.1).

Let us then consider the following cases: i) PC0 and PM are generic, i.e., there exist an
arbitrary offset d0 6= 0 ∈ R2 between each other; or ii) coinciding, i.e., d0 = 0. Moreover,
for each of the previous cases we consider the case in which the connection between the
PVTOL and 1-link arm is either rigid or elastic. Hence, four Cases are investigated in total,
summarized in Table 6.1.
Clearly, Case RC and Case EC are sub-cases of Case RG and Case EG, respectively.

Nevertheless we shall show that they deserve a special treatment because new properties
appear in those cases that significantly increase the capabilities of the platform. Notice
that in all cases the position of PG can be any, i.e., dG ∈ R2 (while in the literature is
typically assumed PG ≡ PC1 , i.e., dG = 0).
Like for similar mechanical systems, the robot dynamics can be expressed, using the

Lagrange’s equation, as

q̈ = M−1(q)
(
G(q)u− c(q, q̇)− g(q) + fE(q) + fext

)
, (6.6)

5For example, in the case of a planar birotor, PG would be the center of two coplanar propellers, ut the
sum of the forces provided by each propellers and ur their difference times the distance from PG, see,
e.g., Mahony et al. (2012).

84



6.2 Aerial Manipulators with Single Joint-Arm

where q ∈ Rn are the considered generalized coordinates (n = 4 for the rigid-joint cases
whereas n = 5 for the elastic-joint cases), M ∈ Rn×n is the generalized mass and inertia
matrix, G ∈ Rn×3 is the control input matrix, c ∈ Rn stands for the centrifugal/Coriolis
forces, g ∈ Rn represents the gravitational forces, and fE ∈ Rn represents the forces due to
the potential energy stored in the elastic joints (in the rigid-joint cases fE = 0). Finally,
the external forces are denoted with fext ∈ Rn, and represent the force and torques applied
to the system from the external environment. We shall specify the elements of (6.6) for
each Case of Table 6.1 in the following sections.

Notice that in all the four cases the system is underactuated, because only three inputs
are available for a system whose configuration space is either 4- or 5-dimensional.
For the PVTOL aerial manipulator considered in this section, we want to achieve the

following objectives:

Objective 1. (Trajectory generation) formally discover, if it exists, an exact linearizing
(i.e., differentially flat) output and explicit the algebraic map from the flat output to the
state q, q̇ and the input u.

Objective 2. (Control) Find the domain in which the decoupling matrix Ḡ is invertible
(see Sec. 6.2.2) and therefore a dynamic exact feedback linearization control is applicable.

Objective 3. (Rigid–Elastic Comparison) Compare the different cases, especially the elastic
versus the rigid case in order to discover pros and cons of the two architectures.

Note that it is a particularly challenging task to achieve the aforementioned Objectives for
a PVTOL aerial manipulator due to the nonlinearity and underactuation of the system, and
the presence of dynamical couplings between the floating base and the rigid- or elastic-joint
arm.

6.2.2 Review of Exact Output Tracking

Let us briefly and rather informally recap some well known concepts in nonlinear control,
see, e.g., Isidori (1995) for a rigorous introduction to the topic. In the following we refer to
a system in the form of (6.6).
Let be given an output y(q) = [y1 y2 y3]T ∈ R3 that is function of q and has the same

size of u (i.e., three), and let us ask whether it is possible to make y track a desired
trajectory yd(t) whose derivatives are known and bounded, while maintaining the state
(q, q̇) and the input u bounded and with a known evolution that depends only on yd(t)
and its derivatives.
It is evident that finding an output possessing this strong property is very useful in

practice. In fact, this is known as the exact tracking control problem and it is solvable if
and only if y is an exact linearizing output via dynamic feedback for the system (6.6), which
is defined in the following:

85



Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

Definition 7. An output y is an exactly linearizing output via dynamic feedback
for (6.6) if it is possible to find s1, s2, s3 ∈ N≥0 such that if one considers ū =
[u(s1)

1 u
(s2)
2 u

(s3)
3 ]T ∈ R3 and x̄ = [qT q̇T u1 · · ·u(s1−1)

1 u2 · · ·u(s2−1)
2 u3 · · ·u(s3−1)

3 ]T ∈ Rn̄

as the new input and the new state of the system, respectivelya, then the the dynamics
of y1, y2, and y3 can be written as

ȳ =
[
y

(r1)
1 y

(r2)
2 y

(r3)
3

]T
= f̄(x̄)︸ ︷︷ ︸
∈R3

+ Ḡ(x̄)︸ ︷︷ ︸
∈R3×3

ū, (6.7)

where the following conditions are verified

1. the total relative degree r = r1 + r2 + r3 matches with the dimension n̄ of the
augmented state, i.e.,

r = r1 + r2 + r3 = 2n+ s1 + s2 + s3 = n̄ (6.8)

2. the decoupling matrix G(x̄) is invertible for some x̄.
aNotice that u(0)

i = ui and that u(−1)
i means that ui does not belong to x̄.

The name ‘exactly linearizing’ comes from the fact that if y is an exactly linearizing
output, then input transformation

ū = Ḡ−1(uuuv − f̄) (6.9)

brings the system in the fully linear controllable form via dynamic feedback (see Isidori
(1995))

ȳ = uuuv, (6.10)

which is equivalent to system (6.6) thanks to the matching condition on the relative degree
(i.e., thanks to the absence of an internal dynamics).

Furthermore, the transformation (6.9) can also be used in a control scheme as inner
linearizing control loop on top of which any linear pole placement or LQR control strategy
can be employed (see e.g. Ogata (2010)) for the transformed system (6.10). However,
the existence of an exact linearizing output is a general property of the system that is
not necessarily related to the need of controlling it. In fact a system is said to be exactly
input-output linearizable via dynamic feedback, if it admits (at least) one exactly linearizing
output, i.e., it exists a state and input change of coordinates (possibly including a state
extension) which brings it to the simpler equivalent form (6.10).6

A similar concept introduced later in the literature (see, e.g., Fliess et al. (1995); Murray
et al. (1995)) is the one of differentially flat system.

6Note that here the obtained linear system is the same as the original one, i.e., the linearization is
‘exact’, and must not be confused with the linear approximation of a nonlinear system based on Taylor
expansion and truncation at the first order.
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Definition 8. The system (6.6) is differentially flat if it exists an output y =[
y1 y2 y3

]T
(called flat output) such that q, q̇, and u can be expressed as an algebraic

function of y1, y2, y3 and a finite number of their derivatives.

The presence of a flat output allows knowing in advance (algebraically) the nominal state
and input trajectories along which the system will evolve while tracking a desired output
trajectory. Therefore it turns to be very useful in the planning and trajectory generation
phase. Knowing that an output is flat allow also using some flatness-based tracking control
techniques, see, e.g., Martin et al. (2003) and Tognon et al. (2017).
The following important equivalence fact holds (see, e.g., De Luca and Oriolo (2002);

Martin et al. (2003)):

Fact 1. Differential flatness is equivalent to exact input-output linearizability via
dynamic feedback in an open and dense set of the state space and an output is flat if
and only if is exactly linearizing.

Remark 8. Thanks to the Fact 1, and results of e.g. De Luca and Oriolo (2002), the
decoupling matrix Ḡ(x̄) of Definition 7 is invertible in an open and dense set of the
state space, if the chosen outputs of the system are exact linearizing (or differentially
flat).

6.2.3 Methodology
In this section, we describe the main steps of the method that we will shall employ in order
to achieve the aforementioned Objectives 1 and 2.
Regarding Objective 1, in order to understand if an output is flat, one has to find an

appropriate algebraic transformation. However, this is clearly not practical criteria, because
it requires a priori knowledge if the output is flat or not, for a successful trial. On the
other hand, Definition 1 provides a systematic way to assess whether an output is exactly
linearizing or not. Moreover if it is, then one also finds a linearizing controller together
with the differentially flat outputs, using Fact 1. Therefore, we will achieve Objectives 1
and 2 using the following method:
Given an output y:

1. we define the generalized coordinates q starting from y and adding one coordinate
more in the rigid case and two more in the elastic case;

2. we compute M, c, g, and fE in (6.6) which makes possible to write down the exact
dependency of each entry of ÿ from each entry of q, q̇, and u, i.e.,

ÿ1 = f1(q, q̇,u), ÿ2 = f2(q, q̇,u), ÿ3 = f3(q, q̇,u) ; (6.11)

3. using (6.11) and (6.6), we are able to compute the expected dependency of y(j)
i

from each entry of q, q̇, u, u̇, . . . ,u(j−2) for any i = 1 . . . 3, j > 2, without exactly
computing the derivatives,
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Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

4. taking advantage of that we can easily compute, for each choice of s1, s2, s3 what are
the expected relative degrees r1, r2, and r3 in (6.7), by just stopping as soon as one
among u(si), i = 1, . . . , 3 appears for some j in y(j)

i , thus having ri = j,

5. we can then check whether a choice exists for s1, s2, s3 that possibly satisfies (6.8),

6. if this choice exists then we compute explicitly Ḡ(x̄) in (6.7) and we check for
its invertibility in a certain domain of x̄ which implies that the output is exactly
linearizing and, by virtue of Fact 1, also a flat output. by doing so we achieve then
Objective 2.

We note that in Table 6.2 a summary of the result of this methodology applied to the four
cases in exam is provided. The proofs of the results will be given in the next sections.
Once we know that an output y is exactly linearizing we try to derive the algebraic

relation described in Definition 8 which certainly exists, thus achieving Objective 1.
Objective 3 is achieved through the Section 6.2 and mainly in Section 6.2.9 with realistic

numerical tests.

6.2.4 Case RG: Rigid-joint Attached to a Generic Point
In this section we consider the ‘Case RG’ in which PC0 and PM are generic, i.e., d0 ∈ R2 6= 0,
as shown in Fig. 6.2, respectively, and that the arm is attached through a rigid joint (top
left case in Table 6.1). Hence, the motor and the link orientations are the same, i.e.,
θm = θ1. Notice that PG (in Fig. 6.2) can be anywhere, as in any other case considered in
this chapter.
In order to find an exactly linearizing (i.e., flat) output in this case let us choose some

generalized coordinates which show no inertial couplings between translational and rotational
part, i.e., q = [pTc θ0 θ01]T ∈ R4. With respect to these coordinates the generalized inertia
matrix is found, after some algebra, as

M =
[
msI2 ∗
02×2 Mr

]
= MT ∈ R4×4, (6.12)

where Ii is i× i identity matrix, 0i×j is a zero matrix in Ri×j,

Mr =
[

ma ∗
mab(θ0, θ01) mb

]
∈ R2×2,

ma = m0(m1 +mm)
ms

‖d0‖2
2 + J0,

mb = m1(m0 +mm)
ms

‖d1‖2
2 + J1 + Jm,

mab(θ0, θ01) = m0m1

ms

dT0 R1d1,

(6.13)

with ‖d∗‖2
2 = dT∗ d∗, ∗ = {1, 2} and ms = m0 + mm + m1. The centrifugal/Coriolis and

gravitational forces are

c(q, q̇) =


0
0

m0m1
ms

dT0 R̄1d1θ̇
2
01

−m0m1
ms

dT0 R̄1d1θ̇
2
0

 , g =


0

−msg
0
0

 , (6.14)
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where R̄∗ = ∂R∗
∂θ∗

. The input matrix is

G(q) =


− sin θ0 0 0
− cos θ0 0 0

−m1+mm
ms

d0x + dGx 1 −1
−m1
ms

(d1x cos θ1 + d1z sin θ1) 0 1

 , (6.15)

and, finally, thanks to the rigid connection, fE = 04×1.
Replacing M, c, g, G and fE in (6.6) we can derive the explicit dependency of each entry

of q̈, here summarized:

ẍc = f1(θ0, ut), z̈c = f2(θ0, ut)
θ̈0 = f3(θ0, θ01, θ̇0, θ̇01, ut, ur, τ)
θ̈01 = f4(θ0, θ01, θ̇0, θ̇01, ut, ur, τ).

(6.16)

We can observe from (6.16) that ut is the only input appearing in ẍc and z̈c. This
implies that if we choose s1 > 0 and include both xc and zc in the output, it is possible
to let r increase twice as rapidly as n̄ when we increase s1, until an input other than
ut appears in the higher order derivatives of xc or zc (see Definition 7). Following this
intuition, let us consider then s1 = 2 and s2 = s3 = 0. We then obtain the new control
input ū = [üt ur τ ]T ∈ R3, new state x̄ = [qT q̇T ut u̇t]T ∈ R10, and n̄ = 10. Now, let
us consider as output y = [pTc θ01]T = [yT1 y2]T . Following the methodology presented in
Section 6.2.3 we then make clear the expected functional dependences without the need of
explicitly computing the derivatives

ÿ1 = fff 1(θ0, ut),
...y 1 = fff 2(θ0, θ̇0, ut, u̇t) (6.17)

and, substituting θ̈0 with f3 in (6.16), we have
....y 1 = fff 3(θ0, θ01, θ̇0, θ̇01, ut, u̇t, üt, ur, τ), (6.18)

therefore r1 = r2 = 4. Considering also that, from (6.16), r3 = 2, we have that r1 +r2 +r3 =
10 = n̄, which means that the Condition 1 of Definition 7 is satisfied. Therefore it is now
worth investigating about the invertibility of Ḡ(x̄), which is done in the next proposition.

Proposition 5. The vector [pTc θ01]T is an exactly linearizing output via dynamic
feedback for the generic model with rigid-joint arm (Case RG), as long as ut 6= 0. As a
consequence, it is also a flat output.

Proof. See Appendix A.5.

Derivation of the Algebraic Map from the Flat Output

We shall find now how to explicitly write down the algebraic map that relates p̈c,
...p c,

....p c,
θ01, θ̇01, θ̈01 with θ0, θ̇0, and u. Consider the first two equations of (6.16)

msẍc = − sin θ0ut

msz̈c = − cos θ0ut +msg.
(6.19)
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Define the vector w = p̈c− [0 g]T = [wx wz]T ∈ R2, which is a function of p̈c. It is clear that
w = − ut

ms
[sin θ0 cos θ0]T . Therefore θ0 = atan2(−wx,−wz) and ut = ms||w||. Furthermore,

differentiating θ0(wx, wz) we obtain θ̇0(wx, wz, ẇx, ẇz) and θ̈0(wx, wz, ẇx, ẇz, ẅx, ẅz), which
are all functions of the derivatives of pc from the second up to the fourth order. Then we
can write

ut = ms||w||, u̇t = msw1

||w||
, üt = −msẇ1

||w||
− msw

2
1

||w||3
,

...
u t = msẅ1

||w||
− 3msẇ1w1

||w||3
+ 3msw

2
1

||w||5

....
u t = ms

...
w1

||w||
− 4msw1ẅ1 + 3msẇ

2
1

||w||3
+ 9msẇ1w

2
1 + 6msw1ẇ1

||w||5
− 15msw

3
1

||w||7
,

(6.20)

where

||w|| =
√
p̈2
cx + p̈2

cz − 2p̈czg + g2

w1 = ...
p cx p̈cx + ...

p cz(p̈cz − g)
ẇ1 = ....

p cx p̈cx + ...
p 2
cx + ...

p 2
cz + ....

p cz(p̈cz − g)
ẅ1 = p(5)

cx p̈cx + 3....p cx

...
p cx + 3....p cz

...
p cz + p(5)

cz (p̈cz − g)
...
w1 = p(6)

cx p̈cx + 4p(5)
cx

...
p cx + 3....p 2

cx + 3....p 2
cz + 4p(5)

cz

...
p cz + p(6)

cz (p̈cz − g),
where ...

u t and
....
u t are provided for the convenience of the further analyses. Moreover we

can write7

θ0 = atan2(−wx,−wz), wz = p̈cz − g, wx = p̈cx

θ̇0 = ẇxwz − wxẇz
w2
x + w2

z

=
...
p cx(p̈cz − g)− p̈cx

...
p cz

p̈2
cx + (p̈cz − g)2

θ̈0 = ẅxwz − wxẅz
(w2

x + w2
z)
−

2
[
(w2

z − w2
x)ẇxẇz + (ẇ2

x − ẇ2
z)wxwz

]
(w2

x + w2
z)2 ,

(6.21)

where

ẇx = ...
p cx , ẅx = ....

p cx , ẇz = ...
p cz , ẅz = ....

p cz .

Now considering the last equation of the system dynamics, we can retrieve the motor torque
as

τ = τ(θ01, θ̈01, θ0, θ̇0, θ̈0, ut) = mab(θ0, θ01)θ̈0 +mbθ̈01−

− m0m1

ms

dT0 R̄1(θ0, θ01)d1θ̇
2
0 +

(
m1 +mm

ms

d0x − dGx
)
ut (6.22)

and using θ0, θ̇0, θ̈0 from (6.21) and ut from (6.20), we show that τ = τ(ÿ1,
...y 1,

....y 1, y2, ÿ2).
Now, replacing τ from above into the third equation of the system dynamics we have

ur = ur(θ01, θ̇01, θ̈01, θ0, θ̇0, θ̈0, ut) = maθ̈0 +mbθ̈01+

+mab(θ0, θ01)(θ̈0 + θ̈01) + m0m1

ms

dT0 R̄1(θ0, θ01)d1(θ̇2
01 − θ̇2

0)+

+
(
m1 +mm

ms

d0x − dGx + m1

ms

(d1x cos θ1 + d1z sin θ1)
)
ut, (6.23)

7in the range of θ0, in which the derivatives of atan2(−wx,−wz) exist.
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where by substituting θ0, θ̇0, θ̈0 from (6.21) and ut from (6.20), we have
ur = ur(ÿ1,

...y 1,
....y 1, y2, ẏ2, ÿ2).

In summary, we obtained pc = y1, ṗc = ẏ1, p̈c = ÿ1 and θ01 = y2, θ̇01 = ẏ2, θ̈01 = ÿ2
from the definition; ut = ut(ÿ1), u̇t = u̇t(ÿ1,

...y 1), üt = üt(ÿ1,
...y 1,

....y 1) from (6.20); θ0 =
θ0(ÿ1), θ̇0 = θ̇0(ÿ1,

...y 1), θ̈0 = θ̈0(ÿ1,
...y 1,

....y 1) from (6.21); and finally τ = τ(ÿ1,
...y 1,

....y 1, y2, ÿ2)
and ur = ur(ÿ1,

...y 1,
....y 1, y2, ẏ2, ÿ2) as shown above8. Hence we showed the states and the

control inputs of the system as functions of the flat outputs and their finite number of
derivatives.

Remark 9. Although dependencies of θ̈0 and θ̈01 in (6.16) are the same, y = [pTc θ0]T
is not an exactly linearizing output, because in this case it is possible to show that
det(Ḡ) = 0.

Impossibility of Exact Tracking of the End-effector Position

In the most interesting cases for aerial manipulation, one needs to control the end-effector
position pe instead of pc. Here we introduce a negative result that shows how unfortunately
this objective is not feasible for the Case RG.
The expression of pe in function of q is:

pe = f(pc, θ0, θ01)

= pc + m0

ms

R0d0 + R01

(
m0 +mm

ms

d1 + de
)
,

(6.24)

which shows that pe cannot be computed using only the flat output [pTc θ01]T since also θ0
is required in (6.24). Therefore it is impossible to let exactly pe track a desired trajectory
pde(t) using control methods based on the flat output [pTc θ01]T .
On the other hand, since

pe = pm + R01(d1 + de), (6.25)

one can let pe exactly track pde, if [pTm θ01]T ∈ R3 is a flat output as well. In order to
discover if and under which conditions [pTm θ01]T ∈ R3 is a flat output, let us write the
dynamics of the system for the generalized coordinates q = [pTm θ0 θ01]T ∈ R4. With respect
to these coordinates, the generalized inertia matrix becomes

M =

 msI2 ∗ ∗
αααT (θ0) mA ∗
βββT (θ01) 0 mB

 = MT ∈ R4×4, (6.26)

where

mA = m0 ‖d0‖2
2 + J0 mB = m1 ‖d1‖2

2 + J1 + Jm

ααα(θ0) = −m0R̄0d0 ∈ R2 βββ(θ01) = m1R̄01d1 ∈ R2.
(6.27)

8Notice that the high order derivatives of the flat outputs can be computed analytically by taking the
time derivatives of the related components of (6.6).
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The centrifugal/Coriolis and gravitational forces are

c(q, q̇) =


ᾱ1(θ0)θ̇2

0 + β̄1(θ01)θ̇2
01

ᾱ2(θ0)θ̇2
0 + β̄2(θ01)θ̇2

01
0
0

 , g(q) =


0

−msg
g3(θ0)
g4(θ01)

 , (6.28)

with β̄ββ = ∂βββ
∂θ01

= [β̄1 β̄2]T ∈ R2, and

ᾱ1 = m0(d0x cos(θ0) + d0z sin(θ0))
ᾱ2 = m0(d0z cos(θ0)− d0x sin(θ0))
β̄1 = −m1(d1x cos(θ01) + d1z sin(θ01))
β̄2 = −m1(d1z cos(θ01)− d1x sin(θ01))
g3 = −m0g(d0x cos(θ0) + d0z sin(θ0))
g4 = m1g(d1x cos(θ01) + d1z sin(θ01)).

(6.29)

The input matrix is

G(q) =


− sin θ0 0 0
− cos θ0 0 0
−d0x + dGx 1 −1

0 0 1

 , (6.30)

and, as in the previous case, fE = 04×1.
Let us now ask ourselves if y = [pTm θ01]T is an exactly linearizing output via dynamic

feedback (i.e., a flat output). Due to the inertial coupling, ÿ depends from all the control
inputs, therefore the gap between n̄− r = 2 will stay for any choice of s1, s2, and s3, which
shows that ÿ is not exactly linearizing and therefore is not flat.

Corollary 1. The vectors [pTm θ01]T , [pT1 θ01]T and [pTe θ01]T are not an exactly
linearizing output via dynamic feedback for the generic model with rigid-joint arm
(Case RG). As a consequence, they are not flat outputs either.

6.2.5 Case RC: Rigid-joint Attached to the PVTOL CoM
The negative result of Corollary 1 is a consequence of the strong inertial coupling in (6.26).
In this section we show that if we consider a model in which PC0 coincides with PM,
i.e., p0 = pm, then the inertial coupling weakens enough to make [pTm θ01]T an exactly
linearizing (i.e., flat) output for the system in exam9. In order to prove that, let us choose
as generalized coordinates q = [pTm θ0 θ01]T ∈ R4. The dynamic model for these coordinates
are given in Section 6.2.4, from (6.26) to (6.30). Now assume that p0 = pm. Such case is
depicted in Fig. 6.3, where motor and the joint are placed at the CoM of the PVTOL. This
is a special case of the generic model, that we call the coinciding model with rigid joint10

(Case RC in Table 6.1).
9Notice that this inertial coupling disappears as well if the PVTOL mass is small enough, i.e. m0 → 0
(see (6.27)). However this is not a reasonable assumption.

10Notice that a particular case of this one is studied in Thomas et al. (2013), where the three points PC0 ,
PG and PM are assumed to be same. In Sec. 6.2.5 we study the more general case in which PG is not
assumed to be coincident. Moreover in that paper, only the differential flatness was studied, while in
this section we also prove the exact linearizability and provide the linearizing controller.
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dG
g : gravity

PC0
= PM

τ

ur
m0,mm

−utz0

d1

de

m1

Figure 6.3: A sketch of the PVTOL aerial manipulator for the cases in which the attachment
point of the rigid-joint arm is same with the CoM of the PVTOL (PC0 = PM),
i.e., Case RC and Case EC. Notice that the point of application of the thrust is
still any (i.e., dG ∈ R2).

Consider the dynamic model given in Section 6.2.4 with d0 = 02×1 (because of the
coinciding assumption). We obtain the following simplifications in some of previous
expressions:

mA = J0 (6.31)
ααα(θ0) = 02×1 (6.32)
ᾱ1(θ0) = ᾱ2(θ0) = g3(θ0) = 0. (6.33)

Moreover, d0x = 0 in (6.30).
The explicit functional dependency of q̈ then becomes11

ẍm = f1(θ0, θ01, θ̇01, ut, τ), z̈m = f2(θ0, θ01, θ̇01, ut, τ)
θ̈0 = f3(ut, ur, τ), θ̈01 = f4(θ0, θ01, θ̇01, ut, τ),

(6.34)

where we see that now ur does not appear anymore in neither p̈m nor θ̈01, as it was instead
happening in Case RG. Therefore if we choose y = [pTm θ01]T as the output, we obtain
from (6.34)

ÿ = fff 1(θ0, θ01, θ̇01, ut, τ). (6.35)
The fact that the two inputs ut and τ are appearing in the three input channels implies

that if we choose both s1 > 0 and s3 > 0, it is possible to let r increase more rapidly than
n̄ when we increase s1 and s3, until the input ur appears in the higher order derivatives
of y (see Definition 7). Following this intuition, let us consider then s1 = 2, s3 = 2
and s2 = 0. We then obtain as new control inputs ū = [üt ur τ̈ ]T ∈ R3, new state
x̄ = [qT q̇T ut u̇t τ τ̇ ]T ∈ R12, and n̄ = 12.
Considering that θ̈01 is available from f4 of (6.34) we write

...y = fff 2(θ0, θ01, θ̇0, θ̇01, ut, τ, u̇t, τ̇) (6.36)

and, substituting θ̈0 with f3 in (6.34), we have
....y = fff 3(θ0, θ01, θ̇0, θ̇01, ut, u̇t, τ, τ̇ , üt, ur, τ̈). (6.37)

11If one develops the computations, one realizes that θ̈01 does not depend on θ̇01 since the terms depending
on θ̇01 cancel out each other. However this particularity is not necessary to prove the presented result.
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Therefore r1 = r2 = r3 = 4 and thus r = 12 = n̄, which means that the Condition 1 of
Definition 7 is satisfied. Therefore it is now worth to analytically search for the invertibility
domain of Ḡ(x̄), which is stated in the next result.

Proposition 6. The vectors [pTc θ01]T , [pTm θ01]T and [pTe θ01]T are all exactly lin-
earizing output via dynamic feedback for the coinciding model with rigid-joint arm
(Case RC), as long as ut 6= 0. As a consequence, they are also flat outputs.

Proof. See Appendix A.6.

Derivation of the Algebraic Map from the Flat Output

We shall show now the procedure to explicitly write down the algebraic map that relates
p̈m,

...pm,
....p m, θ01, θ̇01, θ̈01,

...
θ 01,

....
θ 01 with θ0, θ̇0, and u. The position of the CoM of overall

system in FW , and its derivatives are given by

pc = pm + m1

ms

R01d1 = pc(y)

[
xc
zc

]
=

 xm + m1
ms

(
d1xc01 + d1zs01

)
zm + m1

ms

(
− d1xs01 + d1zc01

)
 ,

ṗc = ṗm + m1

ms

R̄01d1θ̇01 = pc(y, ẏ)

[
ẋc
żc

]
=

ẋm + m1θ̇01
ms

(
− d1xs01 + d1zc01

)
żm + m1θ̇01

ms

(
− d1xc01 − d1zs01

)
 ,

p̈c = p̈m + m1

ms

(
R̄01d1θ̈01 −R01d1θ̇

2
01

)
= pc(y, ẏ, ÿ)

[
ẍc
z̈c

]
=

ẍm + m1
ms

(
d1x(−c01θ̇

2
01 − s01θ̈01) + d1z(−s01θ̇

2
01 + c01θ̈01)

)
z̈m + m1

ms

(
d1x(s01θ̇

2
01 − c01θ̈01) + d1z(−c01θ̇

2
01 − s01θ̈01)

)
 ,

(6.38)

where s∗ = sin(θ∗) and c∗ = cos(θ∗). The computation of ut and θ0 is exactly as in Case RG
(see (6.20) and (6.21)). Hence substituting (6.38) in (6.20) and in (6.21), we find ut, u̇t, üt
and θ0, θ̇0, θ̈0 as functions of y, · · · , ....y . Furthermore, the motor torque can be retrieved
from the last equation of the system dynamics as

τ = τ(θ01, p̈m, θ̈01) = βββT (θ01)p̈m +mB θ̈01 + g4(θ01). (6.39)

Now, noticing that (from (6.29)) g4(θ01) = −βββ(θ01)g · e2 with e2 = [0 1]T ∈ R2, and · being
the dot-product, and recalling that β̄ββ = ∂βββ

∂θ01
, we can write

τ̇ = βββT
...pm +mB

...
θ 01 + (β̄ββT p̈m − β̄ββg · e2)θ̇01

τ̈ = βββT
....p m +mB

....
θ 01 + 2β̄ββT ...pmθ̇01 + (β̄ββT p̈m − β̄ββg · e2)θ̈01 + (βββg · e2 − βββT p̈m)θ̇2

01,
(6.40)

which means τ̇ = τ̇(y, ẏ, ÿ, ...y), and τ̈ = τ̈(y, ẏ, ÿ, ...y , ....y ).

94



6.2 Aerial Manipulators with Single Joint-Arm

Then, using the third row of the system dynamics, we obtain

ur = ur(θ̈1, ut, τ) = J0θ̈0 + τ − dGxut, (6.41)

where by knowing τ from (6.39), and utilizing θ̈0 from (6.21) and ut from (6.20), with
taking (6.38) into consideration, we have that ur = ur(y, ẏ, ÿ,

...y , ....y ).
In summary, we have obtained pm = pm(y), ṗm = ṗm(ẏ), p̈c = p̈m(ÿ) and θ01 =

θ01(y), θ̇01 = θ̇01(ẏ), θ̈01 = θ̈01(ÿ) from the definition; ut = ut(y, ẏ, ÿ), u̇t = u̇t(y, ẏ, ÿ,
...y),

üt = üt(y, ẏ, ÿ,
...y , ....y ) from (6.20) and θ0 = θ0(y, ẏ, ÿ), θ̇0 = θ̇0(y, ẏ, ÿ, ...y),

θ̈0 = θ̈0(y, ẏ, ÿ,
...y , ....y ) from (6.21) where for both pc is computed from (6.38); and

finally τ = τ(y, ÿ), τ̇ = τ̇(y, ẏ, ÿ, ...y), τ̈ = τ̈(y, ẏ, ÿ, ...y , ....y ) from (6.39)-(6.40), and
ur = ur(y, ẏ, ÿ,

...y , ....y ) from (6.41). Hence we showed how to compute the states and
the control inputs of the system as functions of the flat outputs and their finite number of
derivatives.

6.2.6 Case EG: Elastic-joint Attached to a Generic Point

In this section we consider the model of the PVTOL given in Fig. 6.2, with an elastic joint
between the motor output shaft and the arm link. A sketch of such connection is shown
in Fig. 6.4. This case is referred to as Case EG in Table 6.1. The number of generalized
coordinates for this case is increased by one with respect to the RG case (n = 5) due to the
fact that the output shaft of the motor and the link are not rigidly connected and therefore
two distinct coordinates are needed to describe the system configuration, namely θ0m and
θ01.
In order to keep the translational dynamics decoupled from the rotational one let us

chose as generalized coordinates q = [pTc θ0 θ01 θ0m]T ∈ R5. Notice that, differently from
the rigid-joint cases (Case RG and Case RC), we have θ1 6= θm. In fact θ1 = θm + θe (see
Fig. 6.2 and Fig. 6.4). Whenever θe = θ1 − θm = θ01 − θ0m is nonzero the elastic link is
deflected and stores elastic potential energy.
After some algebra it is possible to compute the matrices and vectors in (6.6) for this

case. The inertia matrix is

M =


msI2 ∗ ∗ ∗
01×2 ma ∗ ∗
01×2 mab(θ0, θ01) mb − Jm ∗
01×2 0 0 Jm

 = MT ∈ R5×5, (6.42)

where mamb and mab are given in (6.13). The centrifugal/Coriolis and gravitational forces
are

c(q, q̇) =


0
0

m0m1
ms

d0
T R̄1d1θ̇

2
01

−m0m1
ms

d0
T R̄1d1θ̇

2
0

0

 , g =


0

−msg
0
0
0

 , (6.43)
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Case EG Case EC

PC0 = PMPC0 6= PM

θ0

θm
θe

θ1

zW
z0

pvtol

motor

link

zm
z1

Figure 6.4: An example of elastic-joint between the motor shaft and the link attached to
PVTOL. The motor is magnified w.r.t. the PVTOL considering both the EG
and the EC cases. The innermost circle is fixed in F0, thus rigidly attached to
the PVTOL. The middle circle is rigidly attached to the motor output shaft,
i.e., fixed in FM . The outermost circle is connected to the middle circle via
some elastic components, and it is rigidly connected to the link, thus fixed in
F1.

the control input matrix G and the elastic forces fE due to the elastic potential energy are

G(q) =


g11 0 0
g21 0 0
g31 1 −1
g41 0 0
0 0 1

 , fE(q) =


0
0
0

fl(θ0m, θ01)
fm(θ0m, θ01)

 , (6.44)

where [g11 g21 g31 g41]T is as the first column of G in (6.15). Notice that fl(θ0m, θ01) is the
elastic force acting on the link side, and fm(θ0m, θ01) is the elastic force acting on the motor
side. These forces can be nonlinear functions of θ0m and θ01. In the linear spring case,
fl(θ0m, θ01) = ke(θ0m − θ01) and fm(θ0m, θ01) = ke(θ01 − θ0m), where ke > 0 is the stiffness
of the elastic element.
Writing down the dependences of q̈ for this case we obtain

ẍc = f1(θ0, ut), z̈c = f2(θ0, ut)
θ̈0 = f3(θ0, θ01, θ0m, θ̇0, θ̇01, ut, ur, τ)
θ̈01 = f4(θ0, θ01, θ0m, θ̇0, θ̇01, ut, ur, τ)
θ̈0m = f6(θ01, θ0m, τ).

(6.45)

As we can see, a part from the introduction of θ0m the dependency on the other coordinates
is the same as the one in (6.16) for Case RG. However, the fact that n = 5 (instead of 4)
makes the solution adopted for Case RG not immediately applicable. In fact if we set, as
in Section 6.2.4, s1 = 2, s2 = s3 = 0 and we check whether Condition 1 of Definition 7
is satisfied for the output [pTc θ01]T we fail, since we obtain n̄ = 2n + s1 = 10 + 2 = 12
(instead of n̄ = 2n + s1 = 8 + 2 = 10) and r = 10 (as in Case RG). Therefore it is not
straightforward to find the exactly linearizing (flat) output for this case. The reason is that
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this time we do not gain enough relative degree to reach the new n̄ = 12. A way to gain
more relative degree would be to let θ̈01 depend on less inputs, since right now is depending
on all the inputs. The reason for this dependency is the strong inertial coupling between θ0
and θ01, see (6.42). Therefore in the following we try whether is possible in some way to
loosen this coupling in order to let less inputs appear in θ̈01.
In order to take a closer look to the rotational coupling let us consider for a moment

only the orientation dynamics:[
θ̈0
θ̈01

]
= B−1

[
g31ut − c3(θ0, θ01, θ̇01) + ur − τ

g41(θ0, θ01)ut + fl(θ0m, θ01)− c4(θ0, θ01, θ̇0)

]

θ̈0m = J−1
m

(
fm(θ0m, θ01) + τ

)
(6.46)

with
B =

[
ma mab

mab mb − Jm

]
,

[
c3
c4

]
=
[
m0m1
ms

d0
T R̄1d1θ̇

2
01

−m0m1
ms

d0
T R̄1d1θ̇

2
0

]
. (6.47)

This orientation dynamics shares some similarities with the model of a grounded planar
robot with mixed rigid/elastic joints. It is as if a ‘virtual ground base’ and the PVTOL are
connected through a rigid joint to which it is applied the torque ur − τ , and the PVTOL
and the link are connected through an elastic joint that is actuated by the motor torque
τ . However the models are not the same because, e.g., of the the presence of the terms
multiplying ut since in our case the platform is flying.

Mixed rigid/elastic-joints arms for grounded manipulators have been studied in De Luca
(1998) where the author showed that it is possible to have input-output decoupling and full
state linearization for such system, even if there are inertial couplings as in matrix B given
in (6.47), based on dynamic state feedback. Shortly, this is done with a linear dynamic
feedback compensator defined for the rigid joint, which let it behave as a fictitious elastic
joint transmission. To the best of our knowledge this kind of method has never been used
for aerial manipulators, whose base are (differently from De Luca (1998)) floating and
underactuated.

First, let us extend the systems with two new states, θr and θ̇r and consider the following
dynamic compensator

ur − τ = kr(θr − θ0)
Jrθ̈r + kr(θr − θ0) = un,

(6.48)

where kr ∈ R>0 and Jr ∈ R>0 are two additional systems parameters, and un is a new
control input that replaces ur. Now, replacing ur − τ in first equation of (6.46) with the
first equation of (6.48), we have[

θ̈0
θ̈01

]
= B−1

[
g31ut + kr(θr − θ0)− c3(θ0, θ01, θ̇01)

g41(θ0, θ01)ut + fl(θ0m, θ01)− c4(θ0, θ01, θ̇0)

]

[
θ̈r
θ̈0m

]
=
[
Jr 0
0 Jm

]−1 [
kr(θ0 − θr) + un
fm(θ0m, θ01) + τ

]
. (6.49)

Putting back in place the translational dynamics and writing down the dependences of q̈
including the new states of the compensator (i.e., considering q = [pTc θ0 θ01 θr θ0m]T ∈ R6)
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we obtain
ẍc = f1(θ0, ut), z̈c = f2(θ0, ut)
θ̈0 = f3(θ0, θ01, θ0m, θr, θ̇0, θ̇01, ut)
θ̈01 = f4(θ0, θ01, θ0m, θr, θ̇0, θ̇01, ut)
θ̈r = f5(θ0, θr, un), θ̈0m = f6(θ01, θ0m, τ).

(6.50)

Notice that with the introduction of the compensator the number of states has become
2n = 12. However, thanks to the compensation applied above, θ̈01 does not directly depend
on ur and τ anymore. Therefore there is hope that if we choose as new input a high order
derivative of ut then the the relative degree will be enough this time to let the output
y = [pTc θ01]T = [yT1 y2]T satisfy Condition 1 of Definition 7.

Let us consider then s1 = 4, s2 = s3 = 0. With this choice we have n̄ = 2n + 4 = 16.
We then obtain as new control inputs12 ū = [....u t un τ ]T ∈ R3 and the new state x̄ =
[qT q̇T ut u̇t üt

...
u t]T ∈ R16. The functional dependency of the derivatives of y1 can be

written as follows

ÿ1 = (f1 f2)T = ξξξ1(θ0, ut),
...y 1 = ξξξ2(θ0, θ̇0, ut, u̇t), (6.51)

and considering that both θ̈0 and θ̈01 are available from (6.50), we can write
....y = ξξξ3(θ0, θ01, θ0m, θr, θ̇0, θ̇01, ut, u̇t, üt)

y(5)
1 = ξξξ4(θ0, θ01, θ0m, θr, θ̇0, θ̇01, θ̇0m, θ̇r, ut, u̇t, üt,

...
u t),

(6.52)

and using θ̈r and θ̈0m from (6.50), we can write

y(6)
1 = ξξξ5(θ0, θ01, θ0m, θr, θ̇0, θ̇01, θ̇0m, θ̇r, ut, u̇t, üt,

...
u ,

....
u t, un, τ),

where we stop because ....
u , un, and τ appear now linearly in y(6)

1 . Therefore we have that
r1 = r2 = 6.
In the same fashion, we can write the derivatives of y2 as

ÿ2 = f4 = µ1(θ0, θ01, θ0m, θr, θ̇0, θ̇01, ut) (6.53)

and, considering that θ̈0 and θ̈01 are available from (6.50)
...
y 2 = µ2(θ0, θ01, θ0m, θr, θ̇0, θ̇01, θ̇0m, θ̇r, ut, u̇t) (6.54)

and using θ̈r and θ̈0m from (6.50), we can write
....
y 2 = µ3(θ0, θ01, θ0m, θr, θ̇0, θ̇01, θ̇0m, θ̇r, ut, u̇t, üt, un, τ).

Therefore r3 = 4 and r1 +r2 +r3 = 16 = n̄, which means that the Condition 1 of Definition 7
is satisfied. Therefore it is now worth to analytically search for the invertibility domain of
Ḡ(x̄), which is done in the next result.

Proposition 7. The vector [pTc θ01]T is an exactly linearizing output via dynamic
feedback for the generic model with an elastic-joint arm (Case EG), as long as ut 6= 0,
kr 6= 0 and ke 6= 0 (if the elasticity is linear). As a consequence, it is also a flat output.

Proof. See Appendix A.7.
12Notice that once τ and un are computed, ur can be calculated using (6.48).
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Derivation of the Algebraic Map from the Flat Output

We shall now show how to explicitly write down the algebraic map that relates p̈c,
...p c,

....p c,
p(5)
c ,p(6)

c , θ01, θ̇01, θ̈01,
...
θ 01,

....
θ 01 with θ0, θ̇0, θ0m, θ̇0m, and u.

Similar to the RG case, it is clear from the system dynamics that we can retrieve ut, u̇t, üt
and θ0, θ̇0, θ̈0 from (6.20) and (6.21), respectively. Furthermore, θ0m can be solved from the
fourth equation of the system dynamics as

θ0m = θ0m(θ01, θ̈01, θ0, θ̇0, θ̈0, ut) = 1
ke

(
mab(θ0, θ01)θ̈0+

+ (mb − Jm)θ̈01 + c4(θ0, θ01, θ̇0) + keθ01 − g41(θ0, θ01)ut
)
, (6.55)

where c4 is the fourth row of c given in (6.43). By introducing θ0 = θ0(ÿ1), θ̇0 =
θ̇0(ÿ1,

...y 1), θ̈0 = θ̈0(ÿ1,
...y 1,

....y 1) from (6.21) and ut from (6.20) we can show that θ0m =
θ0m(ÿ1,

...y 1,
....y 1, y2, ÿ2), and this implies: θ̇0m = θ̇0m(ÿ1,

...y 1,
....y 1,y(5), y2, ẏ2, ÿ2,

...
y 2) and

θ̈0m = θ̈0m(ÿ1,
...y 1,

....y 1,y(5),y(6), y2, ẏ2, ÿ2,
...
y 2,

....
y 2) with

θ̇0m = 1
ke

(
ṁabθ̈0 +mab

...
θ 0 + (mb − Jm)

...
θ 01 + ċ4+

+ keθ̇01 − ġ41ut − g41u̇t

)
θ̈0m = 1

ke

(
m̈abθ̈0 + 2ṁab

...
θ 0 +mab

....
θ 0 + (mb − Jm)

....
θ 01+

+ c̈4 + keθ̈01 − g̈41ut − 2ġ41u̇t − g41üt

)
,

(6.56)

where

ṁab = m0m1

ms

dT0 R̄1d1(θ̇01 − θ̇0)

m̈ab = −m0m1

ms

dT0 R1d1(θ̇01 − θ̇0)2 + m0m1

ms

dT0 R̄1d1(θ̈01 − θ̈0)

ċ4 = −m0m1

ms

dT0
(
−R1(θ̇01 − θ̇0)θ̇2

01 + 2R̄1θ̈01

)
d1

c̈4 = −m0m1

ms

dT0
(
− R̄1(θ̇01 − θ̇0)2θ̇2

01 −R1(θ̈01 − θ̈0)θ̇2
01 − 4R1(θ̇01 − θ̇0)θ̈01 + 2R̄1

...
θ 01

)
d1

ġ41 = −m1

ms

(−d1x sin θ1 + d1z cos θ1)(θ̇01 − θ̇0)

g̈41 = −m1

ms

(
(−d1x cos θ1 − d1z sin θ1)(θ̇01 − θ̇0)2 + (−d1x sin θ1 + d1z cos θ1)(θ̈01 − θ̈0)

)
,

with θ̈0,
...
θ 0,

....
θ 0 and ut, u̇t, üt an be computed from (6.20) and (6.21). The motor torque is

obtained from the fifth equation of the system dynamics, i.e.

τ = Jmθ̈0m + keθ0m − keθ01, (6.57)

where substituting θ0m and θ̈0m using (6.55), we can show that
τ = τ(ÿ1,

...y 1,
....y 1,y(5),y(6), y2, ẏ2, ÿ2,

...
y 2,

....
y 2).
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Finally solving ur from the third equation of the system dynamics, one obtains

ur = ur(θ01, θ̇01, θ̈01, θ0, θ̈0, ut, τ) = maθ̈0 +mab(θ0, θ01)θ̈01+

+ m0m1

ms

d0
T R̄1(θ0, θ01)d1θ̇

2
01 + τ − g31ut, (6.58)

where utilizing θ0, θ̇0, θ̈0 from (6.21), ut from (6.20), and τ from (6.57) we obtain ur =
ur(ÿ1,

...y 1,
....y 1,y(5),y(6), y2, ẏ2, ÿ2,

...
y 2,

....
y 2).

In summary, we have pc = y1, ṗc = ẏ1, p̈c = ÿ1 and θ01 = y2, θ̇01 = ẏ2, θ̈01 = ÿ2
from the definition; ut = ut(ÿ1), u̇t = u̇t(ÿ1,

...y 1), üt = üt(ÿ1,
...y 1,

....y 1) from (6.20); θ0 =
θ0(ÿ1), θ̇0 = θ̇0(ÿ1,

...y 1), θ̈0 = θ̈0(ÿ1,
...y 1,

....y 1) from (6.21); θ0m = θ0m(ÿ1,
...y 1,

....y 1, y2, ÿ2),
θ̇0m = θ̇0m(ÿ1,

...y 1,
....y 1,y(5), y2, ẏ2, ÿ2,

...
y 2), and

θ̈0m = θ̈0m(ÿ1,
...y 1,

....y 1,y(5),y(6), y2, ẏ2, ÿ2,
...
y 2,

....
y 2) using (6.55);

τ = τ(ÿ1,
...y 1,

....y 1,y(5),y(6), y2, ẏ2, ÿ2,
...
y 2,

....
y 2) from (6.57) and finally

ur = ur(ÿ1,
...y 1,

....y 1,y(5),y(6), y2, ẏ2, ÿ2,
...
y 2,

....
y 2) from (6.58). Moreover, one can see that

...
u t = ...

u t(ÿ1,
...y 1,

....y 1,y
(5)
1 ), ....u t = ....

u t(ÿ1,
...y 1,

....y 1,y
(5)
1 ,y(6)

1 ) using (6.20). Hence we showed
the states and the control inputs of the system as functions of the flat outputs and their
finite number of derivatives.

6.2.7 Case EC: Elastic-joint Attached to the PVTOL CoM

Like for the RG case, the EG case is subject to the same negative result presented in
Sec. 6.2.4. Therefore, for the same motivations of the rigid-case (see Secs. 6.2.4 and 6.2.5)
let us consider again the model in which PC0 coincides with PM, i.e., d0 = 02×1, but this
time with elastic-joint instead of a rigid one (see Fig. 6.4). This case is referred to as
Case EC in Table 6.1. In particular we are interested in finding whether, similarly to the
RC case, also in this case the output y = [pTm θ01]T is exactly linearizing (i.e., flat).
Let us then consider as generalized coordinates q = [pTm θ0 θ01 θ0m]T ∈ R5, where, we

remind that pm = p0. In this case the inertia matrix is

M =


msI2 ∗ ∗ ∗
01×2 J0 ∗ ∗

βββT (θ01) 0 mB − Jm ∗
01×2 0 0 Jm

 = MT ∈ R5×5, (6.59)

where remember that βββ and mB were defined in (6.27). The centrifugal/Coriolis and
gravitational forces are

c(q, q̇) =


β̄1(θ01)θ̇2

01
β̄2(θ01)θ̇2

01
0
0
0

 , g(q) =


0

−msg
0

g4(θ01)
0

 , (6.60)

with their components as computed before in (6.29). Notice that the elastic forces fE are
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the same as in (6.44). Finally the control input matrix from generalized forces is

G(q) =


− sin(θ0) 0 0
− cos(θ0) 0 0
dGx 1 −1
0 0 0
0 0 1

 . (6.61)

Replacing M, c, g, G and fE in (6.6) we can derive the explicit dependency of each entry
of q̈, here summarized:13

ẍm = f1(θ0, θ01, θ̇01, θ0m, ut)
z̈m = f2(θ0, θ01, θ̇01, θ0m, ut)
θ̈0 = f3(ut, ur, τ)
θ̈01 = f4(θ0, θ01, θ̇01, θ0m, ut)
θ̈0m = f5(θ0m, θ01, τ).

(6.62)

Let us now consider the output y = [pTm, θ01]T ∈ R3 and try to find s1, s2, and s3 that
satisfy Condition 1 of Definition 7.
If we compare Case RC with Case EC we have that in the former case n = 8 while

n = 10 in the latter, which implies that a higher total relative degree has to be reached in
Case EC to fulfill Condition 1. If we then compare (6.62) to (6.34) we see that the only
input appearing in Case EC for ÿ is ut while in Case RC both ut and τ appear. This is
a good sign since in Case RC we had to choose both s1 = 2 and s2 = 2 thus raising n̄ to
8 + 4 = 12 while in Case EC we probably do not need to add two integrators on the τ
channel because τ it is not appearing already in ÿ.
Let us consider then s1 = 2, and s2 = s3 = 0. With this choice the new input is

ū = [üt ur τ ]T ∈ R3, new state x̄ = [qT q̇T ut u̇t]T ∈ R12, and n̄ = 12.
The functional dependency of the derivatives of y can be written as follows:

ÿ = ξξξ1(θ0, θ01, θ̇01, θ0m, ut). (6.63)

Let us now further derivate the output until the input appears. Using θ̈01 from (6.62) we
can write

...y = ξξξ2(θ0, θ01, θ0m, θ̇0, θ̇01, θ̇0m, ut, u̇t). (6.64)

Using θ̈0 from (6.62) we can write

....y = ξξξ3(θ0, θ01, θ0m, θ̇0, θ̇01, θ̇0m, ut, u̇t, üt, ur, τ), (6.65)

in which the new inputs appear linearly, therefore r1 = r2 = r3 = 4 and thus r = 12 = n̄,
which means that the Condition 1 of Definition 7 is satisfied. Therefore it is now worth
to analytically search for the invertibility domain of Ḡ(x̄), which is given in the next
result.
13Again, also in this case, if one develops the computations can see that θ̈01 does not depend on θ̇01 since

the terms depending on θ̇01 cancel out each other.
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Proposition 8. The vectors [pTc θ01]T , [pTm θ01]T and [pTe θ01]T are all exactly lin-
earizing output via dynamic feedback for the coinciding model with elastic-joint arm
(Case EC), as long as ut 6= 0 and ke 6= 0 (if the elasticity is linear). As a consequence,
they are also flat outputs.

Proof. See Appendix A.8.

Derivation of the Algebraic Map from the Flat Output

We shall show now the procedure to explicitly derive the algebraic map that relates
p̈m,

...pm,
....p m, θ01, θ̇01, θ̈01,

...
θ 01,

....
θ 01 with θ0, θ̇0, θ0m, θ̇0m, and u.

Consider the position in FW of the CoM of the overall system, as in (6.38). By substi-
tuting it in (6.20) and in (6.21), we find ut, u̇t, üt and θ0, θ̇0, θ̈0 as functions of y, · · · , ....y .
Furthermore, from the fourth equation of the system dynamics we get

θ0m = βββT p̈m + (mB − Jm)θ̈01 + g4(θ01) + keθ01

ke
, (6.66)

which is function of solely the flat outputs, i.e., θ0m = θ0m(y, ÿ). Now, recalling that
g4(θ01) = −βββ(θ01)g · e2 with e2 = [0 1]T ∈ R2, we can write

θ̇0m = βββT
...pm + (mB − Jm)

...
θ 01 + (β̄ββT p̈m − β̄ββg · e2 + ke)θ̇01

ke

θ̈0m = βββT
....p m + (mB − Jm)

....
θ 01 + 2β̄ββT ...pmθ̇01

ke
+

+ (β̄ββT p̈m − β̄ββg · e2 + ke)θ̈01 + (βββg · e2 − βββT p̈m)θ̇2
01

ke
, (6.67)

which means θ̇0m = θ̇0m(y, ẏ, ÿ, ...y), and θ̈0m = θ̈0m(y, ẏ, ÿ, ...y , ....y ). Moreover, one can
rewrite the motor torque using the fifth equation of the system dynamics, namely

τ = τ(θ01, θ0m, θ̈0m) = Jmθ̈0m + keθ0m − keθ01, (6.68)

where substituting θ0m from (6.66) and θ̈0m from (6.67), it is τ = τ(y, ẏ, ÿ, ...y , ....y ).
Finally the PVTOL torque is computed from the third equation of the system dynamics

using
ur = ur(θ̈0, ut, τ) = J0θ̈0 + τ − dGxut, (6.69)

where utilizing θ̈0 from (6.21) and ut from (6.20) by also taking (6.38) into consideration,
and τ from (6.68), we can show that ur = ur(y, ẏ, ÿ,

...y , ....y ).
In summary, we obtained pm = pm(y), ṗm = ṗm(ẏ), p̈c = p̈m(ÿ) and θ01 = θ01(y), θ̇01 =

θ̇01(ẏ), θ̈01 = θ̈01(ÿ) from the definition; ut = ut(y, ẏ, ÿ), u̇t = u̇t(y, ẏ, ÿ,
...y), üt =

üt(y, ẏ, ÿ,
...y , ....y ) from (6.20) and θ0 = θ0(y, ẏ, ÿ), θ̇0 = θ̇0(y, ẏ, ÿ, ...y ), θ̈0 = θ̈0(y, ẏ, ÿ, ...y , ....y )

from (6.21) where for both pc is obtained from (6.38); θ0m = θ0m(y, ÿ), θ̇0m = θ̇0m(y, ẏ, ÿ, ...y ),
θ̈0m = θ̈0m(y, ẏ, ÿ, ...y , ....y ) from (6.66)-(6.67); and finally τ = τ(y, ẏ, ÿ, ...y , ....y ) from (6.68)
and ur = ur(y, ẏ, ÿ,

...y , ....y ) from (6.69). Hence we showed how the states and the control
inputs of the system can be written as functions of the flat outputs and a finite number of
their derivatives.
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6.2 Aerial Manipulators with Single Joint-Arm

Modeling Cases Linearizing (Flat) Outputs Relative Degree New States New Input
Case RG: Rigid-Joint Attached to a Generic Point
• PC0 6≡ PM 6≡ PG ȳ = [....p T

c θ̈01]T x̄ = [qT q̇T ut u̇t]T ∈ R10

• q = [pTc θ0 θ01]T ∈ R4 y = [pTc θ01]T ∈ R3 r = 10 n̄ = 10 ū = [üt ur τ ]T ∈ R3

Case RC : Rigid-Joint Attached to the PVTOL CoM
• PC0 ≡ PM 6≡ PG =⇒ p0 = pm also y = [pTm θ01]T ∈ R3 ȳ = [....p T

m

....
θ 01]T x̄ = [qT q̇T ut u̇t τ τ̇ ]T ∈ R12

• q = [pTm θ0 θ01]T ∈ R4 and y = [pTe θ01]T ∈ R3 r = 12 n̄ = 12 ū = [üt ur τ̈ ]T ∈ R3

Case EG: Elastic-Joint Attached to a Generic Point
• PC0 6≡ PM 6≡ PG ȳ = [p(6)

c

T ....
θ 01]T x̄ = [qT q̇T ut u̇t üt

...
u t]T ∈ R16

• q = [pTc θ0 θ01 θr θ0m]T ∈ R6 y = [pTc θ01]T ∈ R3 r = 16 n̄ = 16 ū = [....u t un τ ]T ∈ R3

Case EC : Elastic-Joint Attached to the PVTOL CoM
• PC0 ≡ PM 6≡ PG =⇒ p0 = pm also y = [pTm θ01]T ∈ R3 ȳ = [....p T

m

....
θ 01]T x̄ = [qT q̇T ut u̇t]T ∈ R12

• q = [pTm θ0 θ01, θ0m]T ∈ R5 and y = [pTe θ01]T ∈ R3 r = 12 n̄ = 12 ū = [üt ur τ ]T ∈ R3

Table 6.2: A summarizing table of the structural controllability properties for different
models of PVTOL aerial manipulators equipped with a rigid-joint or an elastic-
joint arm. The first column summarizes the properties of the four different cases,
which are deeply studied in Section 6.2. The remaining columns present the
corresponding facts discovered in the same section. In every case the total number
of states matches with the relative degree, which implies that no destabilizing
internal dynamics will arise when an exact feedback linearization controller is
applied to the system. This also implies the flatness of the corresponding output.

Remark 10. Notice that in Case RC, both ut and τ needed to be delayed twice with
a double integrator, while for Case EC this holds only for only ut, in order to match
the condition on the relative degree and total number of states (r = n̄) . This happens
because the spring in Case EC introduces a second order linear system and hence further
delaying for τ is not needed.

6.2.8 Using Flatness for Optimal Trajectory Planning and
Control

In this section we formalize an optimal control problem for planning the optimal trajectories
of the aerial manipulators which take into account the saturations of the actuators and
the bounds of the system state. In order to generate trajectories that satisfy the system
dynamics, we show here how to use the differential flatness property of the system in the
planning phase. Another advantage of using differential flatness is that one can generate
an initial guess of the trajectory by smoothly interpolating the flat output from its initial
to final value and analytically compute the all states and control inputs of the system
accordingly. In this way, a warm start to the optimal solver can be given, which reduces
the computation time of the optimal trajectory.
Dynamic feasibility of the optimal trajectories is ensured by the smoothness of the flat

output we have. To obtain trajectories that are smooth enough, we use the extension of
the system dynamics given in (6.6).

The control of the end-effector positions for the aerial manipulators is an interesting, as
well as a relevant problem. Hence here, we focus on the tasks performed by the end-effector
of the aerial manipulators. This means, and because of the reasons explained in Sec. 6.2.4,
we will use the models described as Case RC and Case EC. After presenting the dynamic
extensions for Cases RC and EC, we then use them in the formalization of the optimal
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Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

control problem together with their exact tracking controllers as presented in Sections 6.2.5
and Sec.6.2.7, respectively.
In Sec. 6.2.5 and in Sec. 6.2.7 we showed the differentially flat outputs of the systems

described as Case RC and Case EC, respectively. Now, let us use this knowledge to extend
the system dynamics for generating the smooth trajectories.

Dynamic Extension for Case RC

Consider the system model in Section 6.2.5. The system dynamics is summarized in (6.34),
which can be written in the following form

q̈ = f(q, q̇,u) ∈ R4×1. (6.70)

The flat outputs are y = [pTmθ01]T (see Proposition 6) and the implicit functional depen-
dencies of their derivatives are shown in (6.36) and (6.37). Also considering Table 6.2 we
know that x̄ = [qT q̇T ut u̇t τ τ̇ ]T ∈ R12 and ū = [üt ur τ̈ ]T ∈ R3. Hence, we can write

˙̄x =

04 I4 04
04 04 04
04 04 S

 x̄ +

 04×1
f(q, q̇,u)
s(üt, τ̈)

 = f̄(x̄, ū), (6.71)

where f is available from (6.70) and

S =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ∈ R4×4, s =


0
üt
0
τ̈

 ∈ R4.

Later, we will use the extended system dynamics given in (6.71) for the optimization
problem.

Dynamic Extension for Case EC

Consider the system model in Section 6.2.7. The system dynamics is summarized in (6.62),
which can be written in the following form

q̈ = f(q, q̇,u) ∈ R5×1. (6.72)

The flat outputs are y = [pTmθ01]T (see Proposition 8) and the implicit functional depen-
dencies of their derivatives are shown in (6.64) and (6.65). Also considering Table 6.2 we
know that x̄ = [qT q̇T ut u̇t]T ∈ R12 and ū = [üt ur τ ]T ∈ R3. Hence, we can write

˙̄x =

 05 I5 05×2
05 05 05×2

02×5 02×5 S

 x̄ +

 05×1
f(q, q̇,u)

s(üt)

 = f̄(x̄, ū), (6.73)

where f is available from (6.72) and

S =
[
0 1
0 0

]
∈ R2×2, s =

[
0
üt

]
∈ R2.

In the following, we will use the extended system dynamics given in (6.73) for the optimiza-
tion problem.
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6.2 Aerial Manipulators with Single Joint-Arm

Optimal Control Problem

We consider the following optimization problem

minimize
x̄(t),ū(t)

J(x̄(t), ū(t), tL)

subject to, ∀t ∈ [t0, tL]
˙̄x = f̄(x̄(t), ū(t)), x̄(t0) = x̄0

qm ≤ q ≤ qM , um ≤ u ≤ uM
φm ≤ φ ≤ φM

(6.74)

where J : x̄, ū→ R is the cost function14; f̄ is the system dynamics available from (6.71)
for Case RC, and from (6.73) for Case EC; q and u are the system coordinates and the
inputs15; and x̄0 are the initial conditions. Notice that φ here defined as the deflection of the
elastic element (not the roll of the quadrotor as in Chapters 2 and 4), i.e. φ = θe = θ1− θm,
and this condition is added only for Case EC.
Now we have a formal definition of an optimal control problem, which can be used to

generate a trajectory for aerial manipulators described as Case RC and RE.
The dimension and hence the complexity of the system at hand is too high to solve it as

an optimal control problem in an analytical way. A way for approaching the optimal control
problem is to reduce the system complexity, as it is done, e.g., in Lupashin et al. (2010),
where authors used the angular velocity of the system as inputs, instead of force/torque
inputs. This approach is not viable for aerial manipulators where the dynamical effects
cannot be neglected. Therefore, in the following we will consider the full system dynamics
and solve the optimization problem using the direct optimization method, such as the one
presented in Houska et al. (2011).

6.2.9 Numerical Results
In the following, we present the numerical validation of the results found in Section 6.2.
Namely, we show various simulation results for controlling particular designs of aerial
manipulators: a PVTOL equipped with a joint-arm, which can be rigidly actuated or be
compliant. We consider diversified tasks for the aerial manipulator, e.g. composite trajectory
tracking, aerial grasping, link velocity amplification and object throwing.

Realistic Numerical Tests

In this section we show the results of extensive simulative tests aimed at validating, in
non-ideal conditions, the performances of the feedback controllers and optimal trajectory
generators presented in the previous sections. We focus in particular on the algorithms
developed for cases RC (Sec. 6.2.5) and EC (Sec. 6.2.7) because they permit to control
the end-effector pose, which is the typical task in practical applications. We also test the
robustness of those algorithms (shortly denoted as the RC controller and the EC controller
in the following) when applied to the more general RG and EG cases.
14For example, in Sec. 6.2.9 we consider the aerial throwing task in which the cost function is the throwing

distance.
15Notice that both q and u are the part of x̄ in both Case RC and EC. Here by limiting the states and

the control inputs of the robots, we also limit x̄.
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Quantity Symbol Nom. Value/Range Unit
PVTOL mass m0 1.00 [kg]
motor mass mm 0.20 [kg]
link mass m1 0.30 [kg]
rotating motor mass mr 0.05 [kg]
object mass mo 0.5 [kg]
PVTOL inertia J0 0.028 [kgm2]
motor solid inertia Jms 0.0562e-06 [kgm2]
motor inertia Jm 0.4101 [kgm2]
link inertia J1 0.004 [kgm2]
distance vector between PC0 & PM d0 −[8 8]T ↔ [8 8]T [cm]
distance vector between PC1 & PM d1 [0 0.2]T [m]
distance vector between PC1 & PE de [0 0.2]T [m]
distance vector between PC0 & PG dG [0.01 0.05]T [m]
motor shaft radius rr 0.015 [m]
linear spring stiffness ke 3↔ 30 [Nm/rad]
motor gear ratio gr 270:1 -
PVTOL thrust range Tt 0.1↔ 28 [N]
PVTOL torque range Tr −3↔ 3 [Nm]
Motor torque range Tm −5↔ 5 [Nm]
grasping time tg 2.67 [s]
impact duration Ti 0.01 [s]

Table 6.3: Nominal parameters of the simulated systems in Sec. 6.2.9.

Non-idealities Notation Value Unit
deviation in masses δm 2 [% ]
deviation in inertias δi 10 [%]
deviation in d1 δ1 [0 0.01]T [m]
deviation in dG δG [0 0.01]T [m]
deviation in spring constant ke δs 0,5,10 [%]
3-sigma Gaussian noise in pos. 3σp 0.01 [m]
3-sigma Gaussian noise in vel. 3σv 0.02 [m/s]
3-sigma Gaussian noise in θ0 3σ0 0.01 [rad]
3-sigma Gaussian noise in θ̇0 3σd0 0.02 [rad/s]
3-sigma Gaussian noise in θ1, θm, θe 3σ1 0.001 [rad]
3-sigma Gaussian noise in θ̇1, θ̇m, θ̇e 3σd1 0.002 [rad/s]

Table 6.4: Deviations from the nominal parameters and standard deviations of the noise
used in the simulations. The controllers are not aware of the deviations and use
instead the nominal values of Table 6.3.
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6.2 Aerial Manipulators with Single Joint-Arm

The controller actions are computed using noisy measurements and nominal (i.e., wrong)
values of the system parameters. The system dynamics is integrated using the real
parameters values (i.e., nominal + deviations). A summary of the nominal values and the
corresponding deviations, as well as of the noise characteristics, can be found in Tables 6.3
and 6.4. Nominal parameters, deviations, and noise are chosen very close to the values
available on a real small-size aerial system equipped with standard sensors.

The system is simulated using an Ode8-solver at 1 [kHz] in Matlab Simulink. The noisy
positions and velocity measurements are given to the controller at a rate of 30 [Hz], similarly
to what a commercial camera+IMU setup would provide. The rate of the noisy orientations
and the angular velocities is 500 [Hz], a realistic value for IMU attitude estimation and
motor encoder readings.

In the dynamic models, the link attached to PVTOL is considered as a rod, whose inertia
is computed using J1 = m1L

2/12, where L = ||d1 + de||. The motor inertia is computed
as Jm = g2

rJms where gr is its gear reduction ratio, and Jms = mrr
2
r/2 is calculated by

considering motor as a rotating solid cylinder. The stiffness range of the elastic actuator
is chosen similar to the one of QBMove-VSA. The physical limits of all the actuators are
considered as hard thresholds and provided in Tables 6.3 and 6.5.

In the next plots, for nominal values we mean the system behavior in the ideal case, i.e., as
if the controllers were fully aware of the real parameters (nominal + deviation) of the system
dynamics and there was neiter noise nor under-samplings in the measurements. Notice
that this is not the actual case, since there will be always some system or measurement
uncertainties in reality. For this reason, we also consider the actual values, representing
instead the system behavior when the controllers use the nominal parameters, and under-
sampled and noisy measurements.

Pole Placement Strategy

The feedback controllers used in the simulations have been explained in Sec. 6.2.5 and
Sec. 6.2.7, in which we have analytically proven that the flat outputs are (in both cases)
y = [pTm θ01]T (or, equivalently, [pTe θ01]T ). Thanks to that results we can apply a nonlinear
control loop to bring the system in the form (6.10). Then, given any 3-ple of desired
trajectories of class C3, xdm(t), zdm(t), θd01(t) for xm, zm, and θ01, respectively, the following
outer control loop is used

uxm = ....
x d
m +Kx1ex +Kx2ėx +Kx3ëx +Kx4

...
e x

uzm = ....
z d
m +Kz1ez +Kz2ėz +Kz3ëz +Kz4

...
e z

uθ01 =
....
θ
d
01 +Kθ1eθ +Kθ2ėθ +Kθ3ëθ +Kθ4

...
e θ

(6.75)

where uuuv = [uxm uzm uθ01 ]T ∈ R3 as in (6.10), ex = xdm − xm, ez = zdm − zm, eθ = θd01 − θ01,
and Kxi, Kzi, Kθi ∈ R>0, with i = 1 . . . 4, are properly chosen gains. We know that this
control law will exponentially steer the three outputs along the desired trajectory, because
we have analytically proven that the decoupling matrix Ḡ is invertible almost everywhere.

To compensate the errors due to uncertainties, an integral term Ki∗
tf∫
t0
e∗dt is added in the

outer loop of each channel, where ∗ := {x, z, θ} and Ki∗ ∈ R>0.
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Figure 6.5: Test 1: Trajectory tracking control of a PVTOL equipped with a rigid joint-
arm at its CoM (Case RC). A composite trajectory for each flat outputs has
been designed and shown with a black-dashed curve. The PVTOL reaches
up to 4.3 [m/s] in x-axis with very small tracking error. Two simulations are
compared: the ideal case with nominal values, and the non-ideal case with
deviations (biases), under-sampling, and noises. The nominal performances
in the ideal case are depicted with a yellow solid curve and given only for θ0
and the control inputs, since the tracking of the flat outputs is in this case
perfect. The red solid curves show the actual value of the configurations and
inputs in non-ideal case. The purple solid curves depict the noisy, biased, and
undersampled measurements used by the controller.

Remark 11. Notice that, as in any dynamic feedback linearization control, the obtained
control law is a function of only the measured state. In fact, the derivatives of the
output are algebraic function of the state thanks to the system model. Furthermore, the
derivative of the actual inputs are internal variables of the state extension. Therefore
there is no need to perform any numerical derivation to implement such controller but
only to measure the state of the original system, i.e., (q, q̇).
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Figure 6.6: Test 1: Trajectory tracking control of a PVTOL equipped with an elastic joint-
arm at its CoM (Case EC). The desired trajectory is the same of the simulation
in Fig. 6.5 and depicted with black dashed curve. Noises in measurements
and deviations in masses, inertias and lengths are included, and the results for
three different stiffness deviations are compared: δs = 0, δs = 0.15 (5%) and
δs = 0.3 [Nm/rad] (10%). Red color is used for actual values, and its tone gets
lighter while δs gets smaller. Purple solid curves represent noisy measurements
(used by the controller) for δs = 0.3 [Nm/rad]. Yellow solid curves are used
for nominal values in the ideal case. Blue dashed lines represent the physical
torque limits for the PVTOL and the motor.

Test 1: Tracking a given Trajectory

Arm is attached to the PVTOL CoM

Consider the model and the controller presented in Case RC. We compare two simulations:
the ideal (nominal) case where there are no parametric deviations in the dynamic model
and no noise in measurements; and the non-ideal (actual) case where deviations and noises
in Table 6.4 are used. Results are given in Fig. 6.5.
At the beginning of the figures, the initial outputs are different from the desired ones.

Nevertheless, the controller lets the system converge to the desired values after a short
transient phase. In the non-ideal case, the system requires more control effort to keep the
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−utz0

g : gravity
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Figure 6.7: – Left: the joint is not attached exactly at the PVTOL CoM: d0 spans the
values given in Table 6.3.
– Right: a sketch for grasping with PVTOL+arm system.

tracking error small, which, as expected, is never as good as in ideal (nominal) case but
is fully acceptable. All the control inputs remain between their thresholds, as defined in
Table 6.3. Notice that the PVTOL torque is noisier than the PVTOL thrust and the motor
torque. The reason for that is because the control law given in (6.75) is a direct function of
the noisy state measurements, and ur is a direct function of uuuv. On the other hand, ut and
τ are smoother since they are computed after two integrations.

Consider the model and the controller presented in Case EC. The linear spring stiffness
has been chosen ke = 3 [Nm]. Consider all the non-idealities given in Table 6.4. We aim
at comparing the system results for different deviations in ke, namely δs = 0, δs = 0.15,
and δs = 0.3 [Nm/rad] (up to 10 %). Results are given in Fig. 6.6. After a transient phase,
the system converges to the desired trajectory, similar to the rigid case in Fig. 6.5. The
tracking performance degrades nicely for increasing δs, for every configuration presented.
Moreover, the absolute motor orientation θ0m increases as well with δs, which generates
more control effort in torques, as expected.

For small δs the tracking errors are very similar to the rigid case presented in Fig. (6.5).
However for a PVTOL with elastic-joint arm, the control efforts in both the PVTOL and
the motor torques are much higher than for the rigid controller. Also notice that both
PVTOL and motor torques are quite noisy compared to the PVTOL thrust. The reason
for that is because ur and τ are direct functions of the noisy state-dependent uuuv given
in (6.75), while ut is computed after a double integration. Hence we can conclude that the
rigid-joint arm is more suitable for trajectory tracking tasks than elastic-joint arm. This
can be explained with the need for the controller to ‘fight’ against the natural tendency of
the spring to oscillate at his natural frequency.

Arm is not attached to the PVTOL CoM

The following set of tests validates the capabilities of the proposed controller of tracking a
composite trajectory for the desired flat outputs xdm, zdm and θd01 in the non-ideal conditions.
The plots of the results are shown for the rigid case in Fig. 6.8 and for the elastic case in
Fig. 6.9. Notice that in addition to the non-ideal conditions mentioned above, we tested
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Figure 6.8: Test 1: Tracking of a given trajectory of PVTOL+rigid-joint case in presence of
several non-ideal conditions: noise, parameter uncertainty, under-sampling, and
attachment point of the joint different from the CoM (see Tables 6.3 and 6.4).
Several simulations are run: the maximum and minimum values among the
different simulations are plotted with red solid curves, and pink-filled in between.

the two controllers in the case that the arm joint is not perfectly attached to the PVTOL
CoM, i.e., ‖d0‖ is not exactly zero (see Fig. 6.7-Left). When doing so, an unstable behavior
might appear if ‖d0‖ is too large. However as long as ‖d0‖ is kept in a reasonable bound
the behavior remains stable, as illustrated in Hauser et al. (1992).

The main considerations are that: i) the controllers do not need a perfect knowledge of
the model parameters since the performances degrade smoothly and nicely with the increase
of the parameter uncertainty; ii) the controllers work well with the typical noise, sampling
and quantization that are presents in real systems; iii) the control effort in the case of the
elastic-joint arm is larger with respect to the rigid-joint case. This happens because the
controller needs to suppress the tendency of the spring to oscillate at its natural frequency
when steering the system along the desired trajectory.
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Figure 6.9: Test 1: Tracking of a given trajectory of PVTOL+elastic-joint case in presence
of several non-ideal conditions: noise, parameter uncertainty, under-sampling,
and attachment point of the joint different from the CoM (see Tables 6.3
and 6.4). Several simulations are run: the maximum and minimum values
among the different simulations are plotted with red solid curves, and pink-filled
in between.

Control of Joint Arm with Small Elasticity and Friction

Consider a flying robot equipped with a joint-arm. Now assume a case, where there exist
a high-stiffness (small elasticity) and friction between the motor and the link of the arm.
In other words the connection is almost rigid but some elasticity is still present. The
stiffness and the friction for such case can be modeled using, e.g., existing mechanical
engineering techniques as explained in Bathe (1996). Hence, we can use the dynamic model
given in Section 6.2.7 (Case EC), with a high value of ke if the elasticity is linear. For
this model, consider a linear friction as well, which generates on the link side a torque
fld = kf (θ̇0m − θ̇01), and, on the motor side16, fmd = kf (θ̇01 − θ̇0m), where kf ∈ R > 0.
We compare the results for such model using either the rigid or the elastic controller.

16Note that θ̇01 − θ̇0m = θ̇1 − θ̇m = θ̇e is the difference between link and motor velocities, e.g. the signed
time derivative of the elastic deflection θe.
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Figure 6.10: Test 1: Trajectory tracking control of a PVTOL equipped with a joint-arm
(Case EC) with small elasticity (high stiffness). Same trajectory has been
used as before and depicted with black dashed curve. This time, a mass of
me = 0.3 kg is attached to the end-effector. Noises in measurements and
deviations in other parameters are included. Results of the elastic controller
(of Case EC) and the rigid controller (of Case RC) are compared. Yellow
solid curve is for the nominal values of the rigid controller. Red solid curve
is used for actual values of the elastic controller, while pink one is for the
nominal values. Purple solid curve depicts the noisy, biased and undersampled
measurements used by the elastic controller. Blue dashed horizontal lines are
for the physical torque limits of the PVTOL and the motor.

Notice that former one neglects the (high) stiffness and friction, while latter one is only
unaware of the frictions. We set ke = 50 [Nm/rad] which is much more than the maximum
value of the range given in Table 6.3. In addition we set kf = 0.01 [Nms/rad]. Moreover,
we connect a mass me = 0.3 [kg] at the end-effector of the arm, which simulates an aerial
transportation task, and increases the challenge of the tracking task. The results are given
in Fig. 6.10, where for the rigid controller only the ideal case is considered. It is clear
that even in ideal case (with no noises and deviations) and although a truly stiff spring is
chosen, the rigid controller is tracking xm and θ01 worse than the elastic controller (which
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is tested in non-ideal case unlike the rigid one). Furthermore the rigid controller causes a
great effort in the PVTOL and motor torques, which are saturated due to physical motor
limits. This is because rigid controller cannot anticipate the motion of the arm in advance.
Since rigid controller is unaware of the stiffness, we see steady-state oscillations in θ1, θ0m
and θ01. Notice that for much greater ke and kf values, rigid controller works almost as
good as the elastic one.

Test 2: Grasping an Object while Flying

In this test we first describe the scenario of grasping a stationary object using both the
PVTOL+rigid-joint arm and the PVTOL+elastic-joint arm. A sketch depicting such task
is given in the right side of Fig 6.7. The grasped object mass is mo > 0. At time tg
(grasping time instant) the dynamic model of the simulated robot is updated according to
the grasping action and a disturbing impact force is also simulated based on the difference
between the end-effector and the stationary mass velocities. Consider that at time tg
(grasping time instant) mass mo is attached to point PE, which is the end-effector. The
effect of the grasped mass to the system is accurately and dynamically modeled as in the
following:

• t ≥ tg denotes all the times after the object is grasped. It is going to be used as an
indicator of the parametric updates in the following.

• Mass of the arm is updated to m1t≥tg = m1 +mo,

• Distances d2 and de are updated using the formula

d1t≥tg = d1 + dε
det≥tg = de − dε,

where dε = mo
m1t≥tg

de,

• Using parallel axis theorem, link inertia is updated to

J1t≥tg =
m1t≥tg

12 L2 +m1t≥tg ||dε||
2,

where L = ||d1 + de|| as before.

Moreover, due to differences between the end-effector and the stationary mass velocities, an
impact will occur at the moment of grasping. The external force to the system will be then

fext = JT fimp, (6.76)

where
fimp = −mo

ṗe − ṗo
Ti

with end-effector velocity ṗe is computed as

pe = ṗmR̄01(d1 + de)θ̇01,
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Figure 6.11: Test 2: Aerial grasping with a PVTOL+rigid-joint arm. The grasping instant
is shown with a vertical blue dashed line. The nominal values are given with
yellow solid curves. In the case of known grasped mass (k.m.) the actual
values and noisy measurements are presented with red and purple solid curves,
respectively. The pink solid curve shows the values in the case that the grasped
mass is unknown (u.m.).

and stationary object velocity is ṗo = 0. Ti is impact duration and given in Table 6.3. The
Jacobian matrix J is different for rigid-joint arm and elastic-joint arm cases. For former it
is

J =
[
1 0 0 cos(θ01)(d1z + dez)− sin(θ01)(d1x + dex)
0 1 0 − cos(θ01)(d1x + dex)− sin(θ01)(d1z + dez)

]
,

and for latter it is

J =
[
1 0 0 cos(θ01)(d1z + dez)− sin(θ01)(d1x + dex) 0
0 1 0 − cos(θ01)(d1x + dex)− sin(θ01)(d1z + dez) 0

]
.

Hence, by changing the mass, inertia and the distances of the link as explained above, and
applying (6.76) as the external force to the system, we model the aerial grasping scenario.

Grasping with Rigid-joint Arm

Consider the model and the controller presented in Section 6.2.5, i.e., Case RC. The
composite trajectory used in the previous simulations is suitable for an aerial grasping task,
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at which an object with mo = 0.5 [kg] is to be grasped by the end-effector at time instant
tg = 2.67 [s]. At this second, the joint arm is at its maximum orientation from the initial
condition, at a high velocity in +xW direction, and at the beginning of its raising up again
along the −zW axis (+zW is facing down because of the NED frame). Results are given in
Fig. 6.11. Two cases are compared: known (k.m.) vs unknown (u.m.) grasped mass. After
tg, deviations from the desired trajectories are clearly seen for both cases. If the grasped
mass is unknown, such deviation is higher for all the flat outputs. In the nominal case, the
controller is fully aware of the end-effector velocity and mass, hence it generates high peaks
in torques to counterbalance the impact. For the actual cases, controller is aware of the
model with some deviations, hence it produces less reaction to the impacts compared to
the nominal case, which results as worse tracking performance. Of course, the controller
is even less reactive when it does not know about the grasped mass, leading decreasing
tracking performance. However, thanks to the robustness of the controller provided by the
integral terms of its linear part in (6.75), the outputs always nicely converge to the desired
trajectories.

Grasping with Elastic-joint Arm

Consider the model presented in Section 6.2.7, i.e., Case EC. The same desired trajectory
is used as in Fig. 6.11, where an object with mo = 0.5 [kg] has to be grasped by the
end-effector at time instant tg = 2.67[s. Two cases are compared: grasping with low stiffness
spring, ke = 8 [Nm] and with high stiffness spring, ke = 30 [Nm]. The results are given in
Fig. 6.12. For both the low and the high stiffness cases, the tracking performance of the
flat outputs are very close to each other. Moreover it is very similar to the results given in
Fig. 6.11, with a clear difference in the absolute link orientation θ01. However, the control
effort is much more for Case EC than for Case RC (especially notice the high peaks in the
torques for Case EC, which reduces with the increasing stiffness). In fact, for case EC we
could not simulate a stable (and reasonable) aerial grasping task when the PVTOL and
motor torques were subject to hard saturations. We observed that using very high stiffness
joint mitigates this effect and results beneficial for the aerial grasping task.
This is actually a natural result of the system model, since when a elastic-joint arm

is exposed to an impact at the grasping moment, it changes the orientation of the arm
instantaneously, while the actuation reacts to this change after a second order system
dynamics through a spring element. This means, that the controller must generate intensive
amount of torques for counter-balancing this instantaneous changes. However, this might
not be always feasible, since there are hard control limitations in real implementations. On
the other hand, when the grasping is performed by a rigid-joint arm, the impact of the
grasping can be accounted by the actuators immediately. If the necessary control inputs
are within the physical bounds of the actuators (as in Fig. 6.11), the system can perform a
flawless aerial grasping task.

Therefore, one can conclude this simulation set saying that for aerial grasping task and
for tracking a generic trajectory Case RC is more advantageous than Case EC in terms of
control effort.
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Figure 6.12: Test 2: Aerial grasping with a PVTOL+elastic-joint arm. The grasping instant
is shown with a vertical blue dashed line. The nominal values are given with
yellow solid curves. In the case in which a high stiffness elastic element is used,
the actual values and noisy measurements are presented with red and purple
solid curves, respectively. The pink solid curve instead represents the actual
values when a low stiffness elastic element is used. A pink dashed curve is
used only for actual motor values in case of low stiffness in the second plot
on the right column. The horizontal blue dashed lines stand for the physical
limits of the motor and PVTOL torques.

Test 3: High-Speed Swinging: Link velocity amplification

Here we present a case where an elastic-joint arm is more beneficial than a rigid-joint arm
attached to the PVTOL. We consider a scenario where the link is swinging at high velocities,
which preferably can be used for tasks such as hammering on a surface or throwing an
object to far distances. The benefits of amplifying link velocity for ground robots were
shown before in the literature (e.g. in Braun et al. (2012) and in Braun et al. (2013)).
Actually we have partially studied such designs with an aerial robot in Chapter 5, where a
light-weight elastic-joint arm was developed and its link velocity was amplified w.r.t. the
motor velocity, and experimental results on board of a flying quadrotor have been provided.
However, the controller for the flying robot presented there was not considering the system
as a whole but rather as a flying system perturbed by the oscillations of the hanging arm.
In this section, we perform a similar link velocity amplification task, but using the
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Figure 6.13: Test 3: Link velocity amplification for Case EC. The desired trajectory profile
is different from the previous cases, but depicted again with a black-dashed
curve. The yellow solid curve stands for the nominal values, and red solid
curve for actual values. The noisy measurements of the actual values are given
with a purple solid curve. The blue solid curve presents the motor values
(θ0m, θ̇0m), which are shown with the link values (θ01, θ̇01) in the same subplots.
The horizontal blue dashed lines show the physical limits of the PVTOL and
motor torques.

controller presented in Sec. 6.2.7 (Case EC). We choose ke = 8 [Nm/rad] for the simulation.
The psudo-natural frequency of the system is identified by setting gravity for PVTOL to
zero, letting the arm oscillate in free evolution from an initial condition of 60 [deg] and
observing its behavior. We found that for the nominal values, the arm swings with period
of T = 0.255 [s]. We then used this value to generate a desired trajectory for θ01, and set
the desired values for the PVTOL positions at zero. Notice that the desired trajectory for
θ01 is chosen with an increasing amplitude until some point, and it gradually decreases to
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Figure 6.14: Test 3: Oscillating at high link velocity for Case RC. The desired trajectory
profile is as in Fig. 6.13, and depicted with a black-dashed curve. The yellow
solid curve stands for the nominal values, and the red solid curve for the
actual values. The noisy measurements of the actual values are given with a
purple solid curve. The horizontal blue dashed lines show the physical limits
of PVTOL and motor torques.

zero.
The results are reported in Fig. 6.13, showing a good position tracking performance, with

less than 1 [cm] of maximum error. Link and motor velocities are given in third subfigure
of the first column, where the link velocity is amplified of more than five times w.r.t. the
motor velocity. Notice that the PVTOL and the motor torques are saturated in order to
simulate the physical limits, which is the reason of the small tracking errors.

Now, consider the PVOL+rigid-joint arm model, given in Sec. 6.2.5 (Case RC). We asked
robot to perform a similar task for reaching a high link velocity. The results are reported in
Fig. 6.14. In our simulations we realized that a good tracking performance can be achieved
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Quantities Notation Value Unit
min/max limits of xm qm(1)↔ qM(1) -0.5 ↔ 0.5 [m]
min/max limits of zm qm(2)↔ qM(2) -0.5 [m]
min/max limits of θ0 qm(3)↔ qM(3) -45↔ 45 [deg]
min/max limits of θ01 qm(4)↔ qM(4) -45 ↔ 45 [deg]
min/max limits of φ φm ↔ φM -20↔20 [deg]
min. limit of ut, ur, τ um [0.1 − 1.75 − 1.5]T [N]
max. limit of ut, ur, τ uM [28 1.75 1.5]T [N]
desired zm z∗m -1 [m]
initial values Case RC x̄0(1)↔ x̄0(12) [0 − 1 01×6 −msg 01×3]T -
initial values Case EC x̄0(1)↔ x̄0(12) [0 − 1 01×8 −msg 0]T -

Table 6.5: Physical limits used in the aerial throwing tasks (Test:4).

only if the violation of the PVTOL and motor torque limits are allowed, and, in fact, when
unconstrained, they reach very high values (more than 10 times the limits). In this case,
note that there is no amplification of the link velocity w.r.t. the motor velocity; they are
the same and very high velocities are achieved in cost of extreme control efforts. In fact,
in our simulations, saturating the torques to their physical limits for Case RC has always
ended up with an unstable behavior for tracking such high-speed trajectory.
Despite the hard physical limits applied for the Case EC, the requested link velocity

is achieved and much less control effort has been used when compared to Case RC. The
reason for this is the ability of storing energy in the elastic components. This implies that
Case EC (aerial robot with compliant actuator) has more advantages than Case RC (aerial
robot with rigid actuator) for the tasks that require high link speed, which can be used,
e.g., for throwing or hammering.

Test 4: Throwing an Object while Flying

In this test we consider the aerial throwing task, in which an object is thrown from the
end-effector of the aerial manipulator while the robot is flying. Such task is sketched in
Fig. 6.15. Notice that aerial throwing problem is quite different from ground base robots
throwing (see Braun et al. (2013)), because in this case, the base of the robot is flying and
it needs to compensate the dynamical effects while performing such task. A real scenario
of aerial throwing task can be imagined as a situation, where the aerial manipulator is
assigned to deliver a package, e.g. a first aid kit, in an hazardous environment, where the
arrival point of the package is not suitable for the robot.
We define the following cost function

J = −Jd +
tL∫
t0

(Jz + Jτ )dT where

Jd = d2, Jz = (zm − z∗m)2, Jτ = τ 2,

(6.77)

with upper-script (∗) stands for the desired value and d is the thrown distance of the object,
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Figure 6.15: Sketch of aerial throwing task using a PVTOL aerial manipulator. The ballistic
trajectory of the thrown object is shown with a dashed curve, and the distance
taken by the object after leaving the aerial manipulator is shown with df .

computed using the ballistic equation of the flying object, similar to Braun et al. (2013):

d(y, ẏ) = xe(y) + ẋe(y, ẏ)tf (y, ẏ)︸ ︷︷ ︸
df (y,ẏ)

tf (y, ẏ) = 1
g

(
że +

√
ż2
e + 2g(zg − ze)

)
,

(6.78)

where recall that pe = [xe ze]T is the end-effector position and ṗe = [ẋe że]T is its velocity,
where both can be computed using (6.25)17. The height of the ground is zg in the world
frame, which is the altitude at which the object hits the ground. The total flight time
of the thrown object is tf , and the distance taken by the object after leaving the aerial
manipulator is depicted with df . The cost function also includes the term Jz for keeping
the aerial robot around its hovering height, and Jτ for minimizing the actuation costs.
Note that besides the additional saturations on the control inputs, the cost to be

minimized is a direct function of the system’s flat outputs. This means, we can directly plan
for the outputs, which we can also exactly control. This demanding example highlights the
importance of the end-effector positions and their being differentially (and exact linearizing)
outputs of the system18.

Then, by substituting (6.77) in the optimization problem described in (6.74), we compute
the desired trajectories for the aerial manipulators described as Case RC and Case EC,
for achieving aerial throwing task while respecting the system input and state boundaries.
For solving this optimization problem, we used ACADO numerical optimizer presented
in Houska et al. (2011). The parameters for the simulation and the optimization problem
are given in Table 6.5.

The results are given in Fig. 6.16. The optimal trajectories computed using Houska et al.
(2011) are clearly enabling the aerial manipulator to throw the object to a far distance, at
17Notice that the throwing distance d is a sole function of the flat outputs, i.e. end-effector positions and

velocities. This example directly benefits from the differential flatness property of the end-effectors in
the planning phase.

18Unlike controlling the CoM positions of the overall aerial manipulator, e.g. in Acosta et al. (2014),
which are also flat outputs of the system; we directly control the end-effector positions, which are more
practical and reasonable quantities for aerial manipulation tasks.
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Figure 6.16: Test 4: Throwing object with the aerial manipulators in Case RC (left) and
Case EC (right). Throwing is performed at tL = 1 [s].
– Left: Results for Case RC. The first plot on the top shows the trajectory of the
aerial robot and the ballistic trajectory of the thrown object using stroboscopic
effect. The trajectory of the aerial manipulator is separately emphasized in a
zoomed subfigure. The thrown object hits the ground about 188 [cm] away
from the end-effector. The link angular velocity, PVTOL linear velocities
(ẋm, żm) and the control inputs are plotted below.
– Right: Results of Case EC. This time, the motor and the rigid link angular
velocities are plotted together in the first figure of the second row, where
dashed curve depicts the motor velocity and the solid one represents the rigid
link velocity. Notice the link velocity amplification w.r.t. the motor velocity
using the potential energy stored in the elastic-joint arm. The thrown object
hits the ground at about 209 [cm] away from the end-effector.

exactly tL = 1 [s], while keeping the PVTOL at the desired altitude. The results for Case
RC (left of Fig. 6.16) and Case EC (right of Fig. 6.16) show that in both cases, the aerial
robots are accelerating first backwards and then forwards along the xW -axis to reach high
linear velocities (due to the limits on xm, see Table 6.5). However notice that in Case EC,
the aerial manipulator uses the potential energy stored in the elastic-joint for amplifying
the link velocity. At the end, the aerial manipulator in Case EC achieves a higher throwing
distance than the one of Case RC, by performing an explosive movement. This result is
in the line with the high-speed swinging tests via link velocity amplification, presented
previously in Fig. 6.13.

We notice that due to the term Jz in (6.77), the aerial manipulator tries to keep itself
in the hover condition, which ensures that the system performs a stable flight. However
this also limits the system to achieve a better throwing performance. Exploring different
definitions of the cost function for aerial throwing is in the scope of our future studies.
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6.2 Aerial Manipulators with Single Joint-Arm
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yd · · · ȳd
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Figure 6.17: Sketch of the trajectory planners, controllers and considered system dynamics
presented and used in Sec. 6.2.9 (numerical tests). The following color code is
used: upper left yellow block shows the planning/control of Case RG, lower
left light blue block shows the same for Case RC, upper right pink block
shows the same for Case EG and lower right turquoise block shows the same
for Case EC of Section 6.2. Notice that this grid convention matches with
Table 6.1. As the triangle on the left indicates; most upper level is dedicated
to the trajectory planners (blue-dashed box). Here we use either smooth
trajectory planners based on smooth filters, or optimal trajectory planner as
described in Sec. 6.2.8. One lower level (covered with orange-dashed box) is
where we compute the high order dynamics analytically, and implement the
linear controllers as explained in Section 6.2.9 (pole placement). One more
lower level (covered with green-dashed box), is for the controllers based on
Dynamic Feedback Linearization (DFL) presented in Sec. 6.2. Finally the
lowest level (covered with red-dashed box and filled with gray color) represents
the four different system models we summarized in Table 6.1. Notice that each
components of these blocks are properly cited to their corresponding chapters
or equations. Moreover, the dark circles indicates some figures of Sec. 6.2.9,
citing numerical examples of the controllers that are placed next to. We note
that the overall planning and control of these four models require only the
measured system states (q, q̇). Their numerical derivation is not needed, since
we can compute everything else analytically (see also Remark 11).
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Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

6.2.10 Preliminary Experiments
In this section, we describe our experimental setup, and results of some preliminary flight
tests. But before, we note that we tested our controller in a physical simulation considering
the full dynamical 3D model of the system, using the CAD model of the experimental setup
in SimMechanics, which is known to be a realistic physical simulation toolbox provided
by Matlab. The system in 3D consist of a quadrotor equipped with a Variable Stiffness
Actuator (VSA), as detailed in QBMove-VSA. This VSA is also connected to a rigid arm
(see Fig. 6.18). Briefly recall that a VSA is indeed a compliant actuator, which has also
capacity to change the stiffness parameters of its elastic components. In our experiments,
we used VSA with a constant stiffness parameter. It is clear that we have a some type
of an elastic-joint arm, where the arm is not placed at the CoM of PVTOL (d0 6= 0 as
in Case EG, in Sec. 6.2.6). However, the control we applied is based on the assumption,
d0 = 0, as described in Case EC, in Sec. 6.2.7. This resembles the numerical tests shown
in Fig. 6.9, where in this case we implement the controller in a real setup.

We first split the 3D model into two planes, Plane-A and Plane-B as shown in Fig. 6.18a.
All the motion on Plane-A (including that of the absolute link angle) is controlled using
the exact linearizing controller presented in Section 6.2.7 (via thrust, torque around x0 and
torque for the VSA). See the lower-left light blue-colored block of Fig. 6.17 for the principle
of the controller.
The rest of the quadrotor motion (motion in Plane-B and rotation around the vertical

axis z0) is controlled using a near-hovering controller, which is explained in Lee et al. (2013).
This allows us to test the performance of the controller presented in Sec.6.2.7 in a real
experimental scenario. The controllers are tested first with the CAD model of the real
setup in SimMechanics, and then later using the experimental setup.

Preparation of the Qbmove VSA

In our experimental setup we chose to use a variable stiffness actuator, for their wide
range of stiffness preset capabilities. This allows the user choosing between high and
low stiffness values, depending on the task of the robot19. We used Qbmove VSA, an
agonistic/antagonistic servo-VSA, whose specifications are available in QBMove-VSA.
Shortly, it consists of two PD controlled servo motors, which allow to regulate independently
desired stiffness and output-shaft equilibrium, i.e. in our notations ke and θm, respectively.
This VSA provides state measurements at 500 [Hz].

In order for our controller to work with Qbmove VSA, several extra steps need to be
taken. First of all, a parametric identification of the QBmove VSA + rigid arm system
has been performed, in order to retrieve the parameters of the equivalent motor which was
depicted in Fig 6.4. The stiffness (and the damping) parameters of the VSA+arm system
are identified by first assuming it as a simple mass-damper system, and then letting the
arm swing from an initial condition, without any control action (see Yüksel et al. (2015) for
similar a method). Since the VSA features a nonlinear spring, we consider a linear spring
for deflection in the range of ±20 [deg] (this is in line with the range given in Table 6.5).
Inertial parameters of the system are found using the system geometry. All the identified
and computed parameters are available in Table 6.6.
19Recall that we had discussed the differences between rigid an elastic joint arms in Sec. 6.2.9, which led

us to consider the variable stiffness actuators for the future studies.
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Figure 6.18: Evolution from theory to application. a) Conceptual sketch of the model
in 3D. Motion in Plane-A is controlled using the controller presented in
Sec.6.2.7. Motion in Plane-B and the rotation around z0 are controlled using
a near-hovering controller. b) CAD model of the 3D system and a snapshot
from SimMechanics simulation, where the implemented controllers are tested.
Different colors correspond to the different parts of the real system. c) Real
system on flight. On board of the VTOL, from top to bottom, there are
MoCap markers, an Odroid-XU computer, four brushless motor controllers
with their power board, a flight controller (incl. IMU), battery pack, Qbmove
VSA with its connectors, a rigid arm attached to it. Red ropes are used only
for safety reasons, with no tension on them.

Moreover, the control framework we presented requires a torque-controlled motor, while
the Qbmove VSA is not allowing this control modality. For this reason we have implemented
an outer loop controller around the VSA, which translates the desired torque into a desired
position using the estimated parameters and second order system model. This simple
bridge between the proposed controller (in Sec. 6.2.7) and the Qbmove VSA is directly
implemented as a ROS node. The implementation of the outer loop is straight-forward;
using the identified parameters (Table 6.6) we implemented the second order mass-spring-
damper model (similar to (5.1)), and then invert it for the desired motor accelerations.
After integrating it twice, we get both desired motor velocities and the positions to be sent
to the VSA. Note that, since the identified parameters are done for a specific range of the
states, its performance will be always limited. A better way is to use torque controlled
motors, which however in our case were not immediately available.

Quadrotor Setup

The experiments are conducted on a flying robot, which is a quadrotor VTOL (see Fig. 2.2
and Fig, 6.18c). The payload of the VTOL is composed of, from top to bottom, MoCap
markers, an Odroid-XU20 computer running Ubuntu 14.04, four brushless motor controllers
with their power board, flight controller (incl. IMU), a battery pack, a Qbmove VSA
with its connectors, and a rigid arm attached to it (see Fig. 6.18b for the colored items
in this order, and Fig. 6.18c for the real setup). Total weight of the system is almost
1.5 [kg] (including safety ropes that are carried by the VTOL), which corresponds to a total
hovering thrust of about 14.75 [N]. Each propeller of the VTOL used in these experiments
20http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137510300620
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Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

Real Parameters Notation Value Unit
mass of the quadrotor m̃0 1.309 [kg]
mass of the VSA m̃m 0.06 [kg]
mass of the arm m̃1 0.098 [kg]
dis. vec. betw. PC0 & PG d̃G [0.0 0.0081]T [m]
dis. vec. betw. PC1 & PM d̃2 [0 0.0979]T [m]
inertia of the PVTOL J̃0 0.0154 [kgm2]
motor inertia J̃m 0.4101 [kgm2]
link inertia J̃1 0.0011 [kgm2]
spring stiffness k̃e 3.55 [Nm/rad]
spring damping k̃f 0.07 [Nms/rad]

Table 6.6: Measured, computed or identified parameters of the Quadrotor+VSA arm setup.
The variable ∗̃ denotes the quantity ∗ for the experimental setup. Notice that
k̃f is identified but not used in the controller.
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Figure 6.19: First test on controlling the Quadrotor + VSA arm motion along the zW
direction. A step-like trajectory is followed along the zW -axis. Notice that
negative zW is upwards.

can generate lift up to 7 [N], which allows carrying the described payload, and performing
the flight.

Preliminary Experiment of a Quadrotor with a VSA Arm

Let us now present the results of the first experiments of a Quadrotor VTOL equipped with
a Qbmove VSA. Here, we first test the complete system for a trajectory tracking along the
zW axis while keeping its motion along x at zero. Results are given in Fig. 6.19, where the
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Figure 6.20: Preliminary results for trajectory tracking with Quadrotor+VSA arm setup.
The arm attached to the Qbmove VSA is swinging back and forth (see θ01),
while Quadrotor VTOL is tracking a stable trajectory along xW -axis, and a
step-like trajectory along the zW -axis. Oscillations on θ0 are due to the motion
of the arm, against which controller is trying to keep xW position constant.
Notice that negative zW is upwards.

maximum error for both x0 and z0 is around 2 [cm]. In this experiment no desired motion
is induced to the VSA arm.
A second experiment is performed, in which the absolute link orientation is following a

sinusoidal trajectory, while PVTOL CoM is following another trajectory along the zW -axis
and trying to stay at zero of the xW -axis. Results are given in Fig. 6.20, where for both x0
and z0 the maximum errors are around 2 [cm].
Notice that for both experiments, steady-state errors are observed, which are due to

the unmodeled system dynamics. While choosing better control gains would improve
the performance of the tracking, there will always be some tracking errors due to the
assumptions used in the controller, e.g. neglecting the damping parameter of the spring.
Moreover, there is an obvious difference between the point PC0 and PM in the real setup
(see Fig. 6.18a), while in theory we considered them coinciding (see Fig. 6.2).

6.2.11 Discussions
In Section 6.2 we studied specific types of aerial manipulators; a PVTOL equipped with
either rigid or elastic-joint arm. Such designs are clearly interesting because it can be used
for, e.g. aerial grasping, hammering or throwing tasks. In Section 6.2.4 we showed that
the attachment point of the arm matters a lot, when one wants to plan for and control
the tracking of the end-effector positions. This applies for both, when the arm is actuated
rigidly or via some compliant elements. If the arm is attached to the CoM of the PVTOL, i.e.
the design is coinciding, then the end-effector positions become part of the differentially flat
outputs. Although this assumption might not be entirely true for all the aerial manipulators,
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it is a reasonable one from practical point of view (it makes sense to attach a manipulator
to the center of the flying robot). Moreover, even when the attachment point of the arm is
not exactly the CoM of the aerial robot, the controllers developed based on the coinciding
assumption still works well. Hence making coinciding assumption is quite reasonable, and
it allows planning and control directly for the end-effector positions. We will exploit this
more in the following sections.

Then, we have observed that both rigid and elastic designs can be beneficial depending on
the aerial manipulation task, as explained in Sec. 6.2.9. For a composite trajectory tracking
or an aerial grasping task, using rigid-joint arm results better tracking performances and
lower control efforts compared to using an elastic-joint arm. This is because the controller
for the elastic case needs to fight against the natural tendency of the springs to oscillate. On
the other hand, using elastic-joint arm can be very effective when the aerial manipulation
task requires explosive movements, and link velocity amplification (e.g. for aerial hammering
or throwing).

Clearly, there are different aerial manipulation tasks, and using either rigid- or elastic-joint
arm can outcome better or worse results. An obvious trade-off between these two lead us
considering the utilization of Variable Stiffness Actuators (VSA) on board of a flying robot.
For this reason in Sec. 6.2.10 we performed our experiments for a quadrotor equipped
with an arm actuated via a VSA. Furthermore, since the VSA is not torque-controlled,
the performance of the proposed controller is limited with the accuracy of the parameter
identification. For this reason, it is relevant to seek for a controller, which enjoys the
benefits of differential flatness property of the system, and in the same time can be used
for the off-the-shelf position/velocity controlled actuators. We will consider this in the next
sections, especially in Sec. 6.4.2.
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6.3 Protocentric Aerial Manipulators (PAMs) with
Multiple Redundant Arms

In Section 6.2 we presented the differential flatness property of different kinds of aerial
manipulators, when they are equipped with one single-joint arm. Although having 1 DoF
arm simplifies most of the control problems (see also Chapter 5), or allows performing tasks
e.g. aerial grasping or throwing; increasing the number of DoF of the manipulating arm
(or even considering more than one arm) means more dexterity for the aerial manipulator.
Clearly, in such case the dynamic coupling between the flying base and the manipulating
arm(s) will be more apparent, and the controller needs to account for it when a dynamic
aerial manipulation task has to be performed.
Aerial platforms equipped with manipulating arms with more than 1 DoF have been

recenlty a point of interest for the researchers. For example, a passive decomposition
technique was developed for a generic aerial manipulator in Yang and Lee (2014), an
adaptive sliding-mode controller used for a quadrotor equipped with a 2 DoF rigid arm
in Kim et al. (2013), and a pure kinematics controller was implemented for a redundant
aerial manipulator in Muscio et al. (2016). Common practice in the literature was to
develop a controller, considering the CoM dynamics of the aerial manipulator, and then try
to extend this for controlling the end-effector motion.
In this section we study the aerial manipulators, having an aerial robot as the flying

platform, which are equipped with generic number of manipulating arms, each having
generic number of DoFs. Moreover, in our model we consider that any joint of any arm
could be connected to its actuated rigidly or via some elastic components. Here, we consider
the coinciding model of the aerial manipulator, since as also studied in Sec. 6.2.4, in this
case, the end-effector positions of the manipulating arm are part of the differentially flat
outputs, which clearly simplifies the planning and control of useful aerial manipulation
tasks, as discussed in Sec. 6.2.8 and in Sec. 6.2.9. We will call such systems as Protocentric
Aerial Manipulators (PAMs), meaning that all the manipulating arms are attached to the
CoM of the PVTOL.
We note that the study done for this section is published in Yüksel et al. (2016a).
In order to model a generic PAM, we start with the following definitions:

• A PVTOL has m number of manipulating arms (manipulators); an arbitrary arm
can be called as µ-th arm, where µ ∈ {1, 2, 3, · · · ,m}.

• The µ-th arm has nµ Degrees of Freedom (DoF); an arbitrary joint/motor/link can
be called νµ-th joint/motor/link, where νµ ∈ {1, 2, 3, · · · , nµ}.

• The µ-th arm with nµ-DoF has kµ-number of elastic joints; an arbitrary elastic joint
can be called as κµ-th elastic joint, where κµ ∈ {1, 2, 3, · · · , kµ}.

• It is always kµ ≤ nµ.

With this convention, we call, e.g., the mass of the ν-th link of the µ-th manipulator as
mνµ , or the motor inertia of the ν-th link of the µ-th manipulator is called as Jmνµ . This
means that the lowest index corresponds to the index of the joint, and the superscript of
the lowest index corresponds to the index of the manipulator. Figure 6.21 sketches this
numbering convention for the case where m = 3.
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Figure 6.21: Sketch of a protocentric aerial manipulator, i.e., a PVTOL equipped with 3
planar manipulators whose 3 first joints are placed at the VTOL CoM. Each
manipulator has different number of degrees of freedom, namely n1, n2 and n3.
This sketch summarizes the assumptions and definitions given in Sec. 6.3 to
the case where m = 3. On the left up relative and absolute angles of the motor
and the link of the first joint of the first manipulator are depicted, where the
length of the z axes are made different just for illustration purposes.

Moreover, in the modeling phase the following assumptions are made, which are essential
for developing the control algorithm presented in the next sections:
A1. Only the 2D dynamics of a PVTOL aerial vehicle with m different fully actuated

robotic arms is considered.
A2. All the joints are actuated via a motor, and the rotational center of this motor is

the same with the center of the revolute joint that is attached to it.
A3. [Protocentricity] The first joint of each robotic arm is placed at the Center of Mass

(CoM) of the PVTOL, i.e., PC0 = PM11 = PM12 = · · · = PM1m (see also Fig. 6.21).
A4. Each motor is attached to the next link in the chain either rigidly or via some elastic

joint.
As before, we denote with FW : {PW,xW , zW} and F0 : {PC0 ,x0, z0} the world (inertial)

frame and the frame attached to the PVTOL, respectively, where PC0 is the Center of
Mass (CoM) of the PVTOL. Define PMνµ

as the position of the ν-th motor of the µ-th
manipulator in the global frame. Then each joint and motor of the manipulators rotates
about an axis parallel to zW × xW and passing through its corresponding motor point
PMνµ

. Then the motor frame of the ν-th joint of the µ-th manipulator will be defined as
FMνµ

: {PMνµ
,xmνµ , zmνµ}; this is rigidly attached to the motor output shaft. The joint

can be either rigid or elastic, as explained later, therefore for the sake of generality we
consider also the link frame Fνµ : {PCνµ ,xνµ , zνµ}, where PCνµ is the CoM of the ν-th link
of the µ-th manipulator. Finally we denote with the point PEµ the end-effector of the µ-th
arm, and PC the CoM of the whole system (i.e., the VTOL plus all the arms).

Given an angle θ∗ ∈ R between the z-axes of two frames (see Fig. 6.21, top left side) the
usual rotation matrix definition R∗ ∈ SO(2) holds, as in (6.5). Therefore, the orientations
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of, e.g., F0 in FW , and Fνµ in F0 are expressed by the rotation matrices R0, and Rνµ ,
respectively. The absolute angles of the νµ-th motor and link are θ0mνµ = θ0 +∑νµ

iµ=1 θmiµ
and θ0νµ = θ0 + ∑νµ

iµ=1 θiµ , respectively (see Fig. 6.21, top left side). Notice that θeνµ =
θνµ − θmνµ = θ0νµ − θ0mνµ is constantly zero if the νµ joint is rigid and can be any if it is
elastic.
The constant position of PMνµ

and of PM(ν+1)µ in Fνµ are denoted with −dνµ =
[−dνµx − dνµz]T ∈ R2 and with d̃νµ = [d̃νµx d̃νµz]T ∈ R2, respectively. The (time-varying)
positions of PC, PC0 , PCνµ , PMνµ

and PEµ in FW are denoted with pc = [xc zc]T ∈ R2,
p0 = [x0 z0]T ∈ R2, pνµ = [xνµ zνµ ]T ∈ R2, pmνµ = [xmνµ zmνµ ]T ∈ R2, and peµ =
[xeµ zeµ ]T ∈ R2, respectively. The mass and moment of the inertia of the PVTOL
and the νµ-th motor and link are denoted with m0 ∈ R>0, J0 ∈ R>0; mmνµ ∈ R>0,
Jmνµ ∈ R>0; mνµ ∈ R>0, Jνµ ∈ R>0, respectively. The gravitational constant is g ∈ R+.
Also ms = m0 +∑m

µ=1
∑nµ

ν=1(mmνµ +mνµ) is the total mass of the overall system.
The point PG is the center of actuation of the PVTOL (see Fig 6.21). The constant

position of PG in F0 is denoted with dG = [dGx dGz ]T ∈ R2. The PVTOL is actuated by
means of: i) a total thrust force −utz0 ∈ R2 applied at PG, where ut ∈ R is its magnitude,
and ii) a total torque (moment) ur(z0 × x0) ∈ R2 applied also at PG, where ur ∈ R is
the torque intensity. Furthermore, an individual motor for each joint applies a torque
τνµ(zνµ × xνµ) at PMνµ

to the joint, where τνµ ∈ R is its intensity.

6.3.1 Case R: System Dynamics with Only Rigid Joints
Let us first consider the case in which all the joints are rigid, i.e., k = 0. There are
m-number of fully actuated manipulators, and µ-th manipulator has nµ-DoF. The aerial
manipulator has therefore 3+n degrees of Freedom (DoFs) corresponding to the generalized
coordinates q = [qTp qTr ]T ∈ R(3+n), where qp is the PVTOL coordinates, and qr stands for
the arm-side coordinates, which are expressed as

qp = [pT0 θ0]T ∈ R3,

qr = [qTr1 · · · qTrm ]T ∈ Rn, qTrµ = [θ01µ · · · θ0nµ ]T ∈ Rnµ ,

qr = [θ011 · · · θ0n1︸ ︷︷ ︸
qT
r1

θ012 · · · θ0n2︸ ︷︷ ︸
qT
r2

· · · θ01m · · · θ0nm︸ ︷︷ ︸
qT
rm

]T ∈ Rn,

with n = ∑m
i=1 n

i. Then using Lagrange equation and after some straight-forward algebra
we can find the generalized inertia matrix as

M =
[

Mp ∗
Mpr Mr

]
= MT ∈ R(3+n)×(3+n)

Mp = diag([ms ms J0]), Mpr =
[
MT

pr1 . . . MT
prm

]T
(6.79)

Mprµ =


m01µ(θ01µ)T 0

... ...
m0nµ(θ0nµ)T 0

 ∈ Rnµ×3,

where ms is the total mass

ms = m0 +
m∑
j=1

nj∑
i=1

(
mij +mm

ij

)
,
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Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

Mp ∈ R3×3 is the PVTOL side inertia matrix, Mr(qr) ∈ Rn×n is the manipulator side
inertia matrix, and Mpr(qr) ∈ Rn×3 presents the inertial couplings between the PVTOL
and the manipulator arms. We give the detailed computation of the inertia matrix in
available in Appendix. B.1.
The gravitational forces are computed as the following

g =
[
gp
gr

]
∈ R(3+n), gp =

 0
−msg

0

 ∈ R3

gr =
[
gTr1 gTr1 · · · gTrm

]T
∈ Rn,

(6.80)

where for the µ-th manipulator it is

grµ =


−gm01µ(θ01µ) · e2
−gm02µ(θ02µ) · e2

...
−gm0nµ(θ0nµ) · e2

 ∈ Rnµ .

with e2 = [0 1]T . The Coriolis/Centrifugal forces are found as

c =


∑m
j=1

∑nj

i=1 m̄0ij θ̇
2
0ij

0
cr(qr, q̇r)

 ∈ R(3+n)×1, (6.81)

where m̄0iµ = ∂m0iµ
∂θ0iµ

∈ R2×1 and cr(qr, q̇r) ∈ Rn is the arm side Coriolis forces. All the
explicit steps towards computation of the g and c can be found in Appendix B.2.
Finally, the generalized forces are to be

f =


−ut sin(θ0)
−ut cos(θ0)

dGxut + ur −
∑m
j=1 τ1j

T̄

 = Gu ∈ R(n+3),

T̄ =
[
τ̄ττ 1 · · · τ̄ττm

]T
∈ Rn

τ̄ττµ =
[
τ1µ − τ2µ · · · τnµ−1 − τnµ τnµ

]T
∈ Rnµ ,

(6.82)

which leads to the control input matrix in form of

G =

 v(θ0) 000 000
dGx 1 Grp

000 000 Grr

 ∈ R(n+3)×(n+2), (6.83)

where v = −z0 ∈ R2, and all other parts of this matrix as well are explicitly given in
Appendix B.3. The control input vector is

u =
[
ut ur τττ 1T τττ 2T · · · τττm

T
]T
∈ R(n+2), (6.84)

where τττµ = [τ1µ τ2µ · · · τnµ ]T ∈ Rnµ . Then finally the system dynamics can be written in
the following form

Mq̈ + c + g = Gu. (6.85)
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pvtol

motor
linkfirst
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= θ0 + θm
11

θ011 = θ0 + θ11

first

first joint of first manipulator

Figure 6.22: An ideal example of elastic joint between the first motor shaft and the first
link of the first arm on a PVTOL (ν = µ = 1). Actuator is magnified w.r.t.
the PVTOL. The innermost circle, fixed to F0, represents the PVTOL. The
middle circle, fixed to FM11 , represents the actuator (or motor). The outermost
circle is connected to the middle circle via elastic components, and it is rigidly
connected to the link (fixed to F11 .)

Differential Flatness of the Case R

Choose y = [pT0 qTr ]T ∈ R(n+2) as an output of the system in (6.85), which has the same
size as the control input vector.

Proposition 9. y = [pT0 qTr ]T ∈ R(n+2) is a flat output for the protocentric aerial
manipulator with all rigid joints (k = 0). The relative degree of each entry of y is 4,
and the total relative degree is 4n+ 8.

Proof. See Appendix A.9.

Corollary 2. Since ∃fe : p0 = fe(peµ qr), also y = [pTeµ qTr ]T ∈ R2+n is a flat output
of the protocentric aerial manipulator with all rigid joints.

6.3.2 Case E: System Dynamics with Rigid and/or Elastic Joints
Now consider the case k ≥ 1, i.e. when at least one of the joints of the robotic arm is
actuated via an elastic component (see Fig. 6.22). Recall the generalized coordinates we
presented before in the form of q = [qTp qTr ]T . Knowing that the µ-th arm has nµ number
of links and joints, let us rewrite the arm-side coordinates for the µ-th manipulator as
qrµ = [qTrµr qTrµe ]T ∈ Rnµ+kµ , where qrµr ∈ Rnµ is the absolute orientation of the rigid links
(and their actuators if the connection between the link and motor is rigid), and qrµe ∈ Rkµ

is the absolute orientation of the motors that are connected to their rigid links via elastic
components21. Such separation is necessary, since in the case when the motor is elastically
attached to its link, their orientations are different from each other (see Fig. 6.22), while
21Notice that the number of elastic connections increase the total number of the generalized coordinates

by kµ.
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Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

this was not the case when the connection was rigid. Hence the full generalized coordinates
are q = [qTp qTr ]T = [qTp qTrr qTre ]T ∈ R3+n+k, where qrr = [qTr1

r
qTr2

r
· · · qTrmr ] ∈ Rn and

qre = [qTr1
e

qTr2
e
· · · qTrme ] ∈ Rk. Notice that n = ∑m

i=1 n
i and k = ∑m

i=1 k
i. In order to fix the

ideas, an idealized elastic connection is sketched in Fig. 6.22, where the first actuator of
the first manipulator is considered to be elastic.
Now, to generalize our theory, assume that k number of joints are elastic, where k ≤ n.

Let us define a set, N := {N1, N2, · · · , Nm}, where Nµ is another set which containts
all the indices of the µ-th robotic arm joints, namely Nµ := {1, 2, · · · , nµ}. Then define
another set, K := {K1, K2, · · · , Km}, where Kµ is another set that consists of the indices
that are belonging to the elastic joints of the µ-th manipulator. Notice that Kµ ⊂ Nµ,
and Kµ = Kµ ∩Nµ. It is obvious that the set Kµ has kµ number of elements, and with
Kµ{κµ} we denote the κµ-th element of Kµ, where κµ = {1, 2, · · · , kµ}.

Remark 12. For the elements of set Nµ and Kµ, it is always Nµ{νµ + 1} > Nµ{νµ}
and Kµ{κµ + 1} > Kµ{κµ}, where νµ = {1, 2, · · · , nµ} and κµ = {1, 2, · · · , kµ},
respectively.

Now for each arm µ, let us define an orthogonal selection matrix, SNµ ∈ Rnµ×nµ , in the
form of which selects the elements of set Kµ from the set Nµ, and puts them in set Nµ.
Define another selection matrix, SKµ ∈ Rkµ×nµ , which selects the elements of set Kµ from
the set Nµ, and puts them in set Kµ. In other words, the diagonal matrix SNµ ∈ Rnµ×nµ

whose νµ-th diagonal element is equal to 1 if νµ ∈ Kµ and zero otherwise, and the selection
matrix SKµ ∈ Rkµ×nµ obtained from SNµ by removing all the zero row vectors. Let us fix
the idea by giving the following examples:

Example 2. Say that Nµ = {1, 2, 3, 4} and Kµ = {2, 4}. Define a vector, say vµ =
[v1µ v2µ v3µ v4µ ]T ⊂ Nµ. Then the matrix

SNµ =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 = STNµ ∈ Rnµ×nµ

will select the 2-nd and 4-th components of the vector vµ, using v̄µ = SNµv = [0 v2µ 0 v4µ ]T ⊂
Nµ.

Example 3. Similar to the same example as above, let’s say Nµ = {1, 2, 3, 4} and Kµ =
{2, 4}. Define a vector, say vµ = [v1µ v2µ v3µ v4µ ]T ⊂ Nµ. Then the matrix

SKµ =
[
0 1 0 0
0 0 0 1

]
∈ Rkµ×nµ

can be used to select 2-nd and 4-th elements of vµ and put them in order, using v̄µ =
SKµvµ = [v2µ v4µ ]T ⊂ Kµ.

Then define the following block diagonal matrices

SN = diag{SN1 ,SN2 , · · · ,SNm} ∈ Rn×n,

SK = diag{SK1 ,SK2 , · · · ,SKm} ∈ Rk×n.
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Notice that considering the generalized coordinates are given in the beginning of the section,
it is qrµe = [θm0{κµ=1} θm0{κµ=2} · · · θm0{κµ=kµ} ]T ∈ Rkµ , where remember that the subscript
∗{κµ} stands for the indice/number of the elastic joint of the µ-th manipulator. To have a
better understanding of this, let us give the following example.

Example 4. Say, Nµ = {1, 2, 3, 4, 5, 6, 7} and Kµ = {1, 5, 7}. It means that the µ-th
manipulator has 7 DoF and three of the motors are connected to their links via some elastic
elements, which are the first, fifth and the seventh ones. Then we say Kµ{κµ = 3} = 7, is
the third elastically connected motor, which corresponds to the seventh joint/motor of the
µ-th robotic arm. So, we can say e.g. its absolute motor orientation is θm0{κµ=3} = θm07µ .

Let us then first rewrite the generalized inertia matrix as

ME =

Mp ∗ ∗
Mpr MrE ∗

000 000 DK

 = MT ∈ R(3+n+k)×(3+n+k), (6.86)

where the inertial terms of the elastically connected motors are summarized in

DK = diag{DK1 ,DK2 , · · · ,DKm} ∈ Rk×k,

DKµ = diag{Jm{κµ=1} , Jm{κµ=2} , · · · , Jm{κµ=kµ}} ∈ Rk×k.

Similar to Sec. 6.3.1, both Mp and Mpr are identical to the Case R, as given in (6.3.1).
This time we define MrE for the arm side inertia matrix, which is computed as MrE =
Mr − SNDN , with DN = diag{DN1 ,DN2 , · · · ,DNm} ∈ Rn×n, where
DNµ = diag{Jm1µ , Jm2µ , · · · , Jmnµ} ∈ Rnµ×nµ is the matrix containing the inertias of all
motors of the µ-th manipulator. Following the same order as for the Case R, the gravitational
and Coriolis/centrifugal forces are

gE =
[

g
000k×1

]
∈ R(3+n+k), cE =

[
c

000k×1

]
∈ R(3+n+k) (6.87)

where g ∈ R(3+n) is given in (6.80) and c ∈ R(3+n) is given in (6.81). The generalized forces
will be

fE = GEu ∈ R(3+n+k),

GE =
[
G− S̄N

S̄K

]
∈ R(3+n+k)×(n+2),

S̄N =
[
0003×2 0003×n
000n×2 SN ∈ Rn×n

]
∈ R(n+3)×(n+2),

S̄K =
[
000k×2 SK ∈ Rk×n

]
∈ Rk×(n+2),

with G ∈ R(n+3)×(n+2) and u ∈ R(n+2) available from (6.83)–(6.84).
Remember that, if a joint of a rigid link is connected to its motor via some elastic

components, then there will be counteracting torques/forces appearing on both link and
motor side of the dynamics, due to the elastic potential energy stored in the elastic elements.
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Now, consider the ν-th link of the µ-th manipulator and its joint, connected to its motor via
some elastic components. Then we call flνµ (θ0νµ , θm0νµ ) as the link-side, and fmνµ (θ0νµ , θm0νµ )
as the motor-side elastic forces for this joint22. Those forces are identically zero if νµ 6∈ Kµ.
In the case νµ ∈ Kµ they are instead generic functions of θ0νµ , θm0νµ . In the linear spring
case, flνµ (θ0νµ , θm0νµ ) = keνµ (θm0νµ − θ0νµ) and fmνµ (θ0νµ , θm0νµ ) = keνµ (θ0νµ − θm0νµ ) where
keνµ > 0 is the stiffness of the elastic element.

For the generic representation of the elastic forces in the considered system dynamics, let
us first define the vectors flµ(qrµ) ∈ Rnµ and fmµ(qrµ) ∈ Rn for the µ-th manipulator as

flµ =
[
fl1µ (θ01µ , θm01µ ) · · · flnµ (θ0nµ , θm0nµ )

]T
∈ Rnµ ,

fmµ =
[
fm1µ (θ01µ , θm01µ ) · · · fmnµ (θ0nµ , θm0nµ )

]T
∈ Rnµ .

Now notice the fact that if the joint of the i-th link is rigidly connected to its motor, then
both fmνµ (θ0νµ , θm0νµ ) = flνµ (θ0νµ , θm0νµ ) = 0, because in rigid connection there are no
elastic forces defined23. Then we can write

fL(qr) = diag{fl1(qr1), fl2(qr2), · · · , flm(qrm)} ∈ Rn

fM(qr) = diag{fm1(qr1), fm2(qr2), · · · , fmm(qrm)} ∈ Rn,

and then the generalized elastic forces as

fEl =

 0003×1
SN fL(qr)
SKfM(qr)

 ∈ R(3+n+k). (6.88)

Hence the system dynamics is in the form of

MEq̈ + cE + gE = GEu + fEl. (6.89)

Differential Flatness of the Case E

Choose y = [pT0 qTrr ]T ∈ R(n+2) as output, which has the same size as the control input
vector.

Proposition 10. y = [pT0 qTr ]T ∈ R(n+2) is a flat output for the protocentric aerial
manipulator with mixed rigid/elastic joints (1 ≤ k ≤ n). The total relative degree is
4 + 4 max

µ
k̃µ +∑m

µ=1(2 + 2k̃µ)nµ, with k̃µ = max(1, kµ).

Proof. See Appendix A.10.

Corollary 3. Similar to Corollary 2, since ∃fe : p0 = fe(peµ qr), also y = [pTeµ qTr ]T ∈
R2+n is a flat output of the protocentric aerial manipulator with mixed rigid/elastic
joints.

22In this section we do not consider the frictions on the elastic connections.
23In the linear spring case setting kνµ = 0 is equivalent to saying that the elastic forces are zero, but clearly

this cannot be generalized to the nonlinear cases.
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Remark 13. Notice the different relative degree of the dependencies of τνµ given
in (A.58) on the flat outputs for different values of νµ. Assume for instance that both
the (nµ − 1)-th and the nµ-th link are elastic. Then from bottom to top,

• First: from (A.56), we see that τnµ is a function of θ̈m0nµ ; while θm0nµ is a
function of p̈0 and q̈rµ, making τnµ itself a function of ....p 0 and ....q rµ.

• Second: from (A.56), τnµ−1 is a function of θ̈m0(nµ−1). But in (A.57), from
recursion, θm0(nµ−1) is a function of τnµ, making θ̈m0(nµ−1), and thus τnµ−1, a
function of τ̈nµ. Knowing from the fist step above τnµ is a function of ....p 0 and
....q rµ, we find τnµ−1 as a function of p(6)

0 and q(6)
rµ , which are the sixth time

derivatives.

In general, for a fully elastic manipulator, an increase of two relative degrees per link
is to be expected.

Remark 14. We notice that the orientation of the PVTOL, i.e., θ0, is not part of the
flat outputs, conceivably due to the under-actuation of the flying robot. This motivated
us to use the absolute representation of the manipulator joint angles, which makes the
control torques appear recursively in the manipulator dynamics. Notice from the remark
above that while this is not a problem for Case R, for Case E this increases the relative
degrees.

Hence it is worth noting that using a fully actuated aerial robot might be beneficial
if manipulators with compliant actuators are to be used for specific tasks, e.g., safe
physical interaction. This does not apply of course if the robotic arm is rigidly actuated.
Further study on this remark is in the scope of our future studies.

6.3.3 Control for Case R
In this section we present the exact linearizing controller for the system given in (6.85).
We purposely limit our computation to the Case R, since the high relative degree involved
in Case E may cause the controller to be unpractical (see Remark 14).
Now, based on our findings in Proposition 9, we take y = [pT0 qTr ]T ∈ R(n+2) as control

variables, leaving out the PVTOL orientation θ0. We approach the control problem by
studying the system with θ0 removed. We can decompose the inertia matrix M by defining
the following quantities:

M=


M̃p 000 M̃T

pr

000 J0 000

M̃pr 000 Mr

 M̃=

 M̃p M̃T
pr

M̃pr Mr

 ,

where 000 is a zero vector or matrix of proper dimensions, M̃p = diag(ms ms), and M̃pr is
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simply constituted by the first two columns of Mpr. Similarly, for G:

G =

 v 000 000
dGx 1 Grp

000 000 Grr

 G̃ =
[

v 000
000 Grr

]
,

where v = [− sin θ0 − cos θ0]T . This allows us to write:

M̃(y)ÿ + ñ(y, ẏ) = G̃(θ0)ũ, (6.90)

where ñ is n = c + g with the 3rd element removed, and ũ = [ut τττT ]T , where τττ =
[τττ 1T · · · τττmT ]T . Now we can differentiate (6.90), yielding (dependencies omitted):

M̃...y + ˙̃Mÿ + ˙̃n = G̃ ˙̃u + ˙̃vut, (6.91)

where we have evidenced ṽ = [vT 000]T . Differentiating further:

M̃....y + 2 ˙̃M...y + ¨̃Mÿ + ¨̃n = G̃¨̃u + 2 ˙̃vu̇t + ¨̃vut, (6.92)

but:

v̈ =
[
− cos(θ0)θ̈0
sin(θ0)θ̈0

]
+
[
sin(θ0)θ̇2

0
cos(θ0)θ̇2

0

]
= hθ̈0 − v θ̇2

0, (6.93)

where h = [− cos(θ0) sin(θ0)]T . Now, from the 3rd row of the dynamics in (6.85):

θ̈0 = 1
J0

(
dGxut + ur + Grpτττ

)
. (6.94)

Thus, we can substitute (6.94) in (6.93), and (6.93) in the last term of (6.92):

v̈ut = ut
J0

h · (dGxut + ur + Grpτττ)− v utθ̇2
0 = γγγ + ut

J0
h · ur

where we have introduced the new symbol γγγ for compactness. This finally allows us to
write:

M̃....y + 2 ˙̃M...y + ¨̃Mÿ + ¨̃n− 2 ˙̃vu̇t − γ̃γγ = Ḡū,

where:

Ḡ =
[

v ut
J0

h 000
000 000 Grr

]
γ̃γγ =

[
γγγ
000

]
ū =

ütur
τ̈ττ

 .
Matrix Ḡ ∈ R(2+n)×(2+n) is the decoupling matrix and it is clearly invertible, as long as
ut 6= 0, since |Ḡ| = −ut

J0
.

The relative degree of the extended system is r = 4(2 + n) = 8 + 4n, and the total
number of states is n̄ = 2(3 + n) + 2(1 + n) = 8 + 4n = r; thus, no internal dynamics is
left, consistently with the notion that the system is flat. The virtual control input can be
computed as

ū = Ḡ−1
(
M̃....yr + 2 ˙̃M...y + ¨̃Mÿ + ¨̃n− 2 ˙̃vu̇t − γ̃γγ

)
,
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where, for a desired y trajectory denoted as yd
....yr =....yd + K3(...yd −

...y) + K2(ÿd − ÿ)

+ K1(ẏd − ẏ) + K0(yd − y) + K−1

∫ t

0
(yd − y)dt . (6.95)

The Ki‘s are diagonal positive definite matrices, assigned according to the usual linear
pole-placement strategies. Specifically, if Ki,j is the j-th diagonal element of Ki, then each
polynomial

pj(x) = x5 +K3,jx
4 +K2,jx

3 +K1,jx
2 +K0,jx+K−1,j (6.96)

must be Hurwitz, i.e. all its roots must have negative real parts; the introduction of an
integral error term provides some ability to reject disturbances, such as carried loads and
parameter uncertainty (see Sec. 6.3.4 for its implementation). The inverse of Ḡ is easily
obtained:

Ḡ−1 =

 − sin θ0 − cos θ0
−J0
ut

cos θ0
J0
ut

sin θ0
000

000 Grr−1

 (6.97a)

Grr−1=


Grr1−1 000,

. . .
000 G−1

rrm

 Grri
−1=


1 . . . 1

. . . ...
1

∈Rni×ni . (6.97b)

It should be noticed, the algorithm makes apparent use of higher-order derivatives of the
flat outputs, ÿ and ...y , which are difficult or impossible to estimate directly. However, these
can be computed from ũ and ˙̃u, obtained from integration of appropriate components of
the virtual input ū:

ÿ = M̃−1
(
G̃ũ− ñ

)
...y = M̃−1

(
G̃ ˙̃u + ˙̃vut − ˙̃Mÿ− ˙̃n

)
.

6.3.4 Numerical Results
In this section we present simulation results for testing the proposed controller in a realistic
situation in which measurement noises and sampling errors are considered. We consider a
PAM with m = 2, n1 = 4 and n2 = 3. Hence the flat output is
y = [p0 θ011 · · · θ041 θ012 · · · θ032 ]T ∈ R9. System and simulation parameters are summa-
rized in Table 6.7, which we simulated using Matlab/Simulink. While the system dynamics
is simulated at 1 [kHz], the controlled is provided with under-sampled measurements as
given in Table 6.7. Moreover, a ±2% of random parametric uncertainty for mass, inertia
and distance parameters is used. A pick and place task is chosen for the robot, which is
divided in 5 phases: i) the robot follows a desired trajectory, ii) the two arms grasp two
individual point mass objects with unknown mass for the controller (each mass is 0.25 [kg]),
iii) the objects are carried to another location, where they are unloaded, iv) phase (i)
and (ii) are repeated while following a different trajectory, v) phase (iii) is repeated while
following a different trajectory, and then arms return to the initial configuration. The
results are given in Fig. 6.23, where the first row shows the CoM and the end-effector
positions of the aerial manipulator in the world frame. In the second row the absolute
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Figure 6.23: Simulation results of a pick and place task. The effect of the unknown grasped

masses on the end-effector positions is negligible. In the bottom right, the
arrows show the direction of the motion. Red arrows correspond to the
mass–carrying phases. In the last row, the thrust input is given on the top,
separately.

orientations of the manipulating arms are given. Last row is presenting the control inputs
of the system, and the motion of the aerial manipulator with a stroboscopic effect. Notice
the effect of the measurement noises in the control inputs. Despite the uncertainties, the
tracking performance is almost perfect. At the times of grasping there are small errors on
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Parameters Notation Value Unit
PVTOL mass m0 1 [kg]
PVTOL inertia J0 0.015 [kgm2]
dis. vec. betw. PC0 & PG dG [0 0.1]T [m]
partial distance of one link dνµ [0 0.1]T [m]
partial distance of one link d̃νµ [0 0.1]T [m]
mass of one link mνµ 0.2 [kg]
inertia of one link Jνµ 0.0007 [kgm2]
mass of one motor mmνµ 0.05 [kg]
inertia of one motor Jmνµ 0.0003 [kgm2]
parametric deviations δ 2 [%]
3-sigma Gauss. noise in pos. 3σp 0.001 [m]
3-sigma Gauss. noise in vel. 3σv 0.005 [m/s]
3-sigma Gauss. noise in θ0. 3σ0 0.01 [rad]
3-sigma Gauss. noise in θ̇0. 3σd0 0.1 [rad/s]
3-sigma Gauss. noise in qr. 3σr 0.001 [rad]
3-sigma Gauss. noise in q̇r. 3σdr 0.005 [rad/s]
Sampling of lin. pos. and vel. - 100 [Hz]
Sampling of angle and ang. vel. - 500 [Hz]

Table 6.7: Summary of the parameters used in the simulations, whose results were given
in Fig. 6.23. The parameters employed by the controller are all subject to a
random parametric deviation within ±2%.

the tracking of the flat outputs (see especially the absolute joint angles), which are due
to the unknown masses. However these errors goes to zero again thanks to the integral
terms defined in the controller (see Sec. 6.3.3), and their effects on both PVTOL CoM and
end-effector positions are negligible, which is a particularly interesting result, since they
are part of the flat outputs we track (see Proposition 9 and Corollary 2).

6.4 Towards Control in 3D
In Section 6.3 we have studied the modeling and control of the protocentric aerial manipu-
lators (PAMs) in a plane. There, we showed the differential flatness property of that kind
of system, and a dynamic feedback linearization controller using this property.

Clearly, as many of the robotics implementations, aerial manipulation task have typically
to be performed in 3D. So, how can we use what we have found in Section 6.3 for such
scenarios? Luckily, there are plenty of tasks in 3D that are actually 2D, and especially
for aerial manipulators many of them can be imagined as 2D tasks immersed in a 3D
environment (e.g. pick and place, object transportation, etc). This means, although the
differential flatness property of PAMs shown in Sec. 6.3 is considering only the planar
dynamics, its implementation can be extended into 3D.

In this section, we present a decentralized flatness-based controller, which can control the
3D dynamics of a PAM, while in the same time can track its differentially flat outputs.
The decentralized part of the controller is developed for a generic aerial manipulator, which
requires some feed-forward quantities, preferably aware of the complex, coupled, nonlinear
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system dynamics in advance. We provide these terms analytically by using the differential
flatness property of the PAMs. Different from a Dynamic Feedback Linearization (DFL)
controller (e.g. the one in Sec. 6.3.3), this controller does not perform an exact linearization
of the nonlinear system. As also discussed in Section 1.4.2, DFL cancels all the nonlinearities,
including the useful ones. Using a flatness-based controller as described in this section, we
avoid this cancellation. Furthermore, as most of the sophisticated controllers which are
aware of the system dynamics, DFL requires torque-controlled motors, and in the case of
aerial manipulation small-size light-weight arms with torque controlled actuators are either
not available at a low price or not reliable enough in the torque control modality24. The
controller presented here performs best when the actuators of the manipulating arms are
torque-controlled, but it can easily be modified for controlling the off-the-shelf servo motors.
In fact, this is exactly what we do for the experiments described in Sec. 6.4.3.

In the following, Sec. 6.4.1 presents the dynamics of a generic aerial manipulator in 3D,
using a notation based on the one presented in Sec. 6.3. Then first, a PD-based decen-
tralized controller is presented in Sec. 6.4.2, for controlling the motion of a generic aerial
manipulator. We are particularly interested in the protocentric designs, i.e. the first joints
of each manipulating arm is assumed to be attached to the CoM of the VTOL (see also
Assumption 3). Such design removes the concerns put in Remarks 15 and 16. Furthermore,
we consider the case when motion of the manipulating arms are constrained on a plane,
and all joints are rigidly actuated (due to the concerns raised in Remark 14 we do not
consider any elastic actuation here). This allows us using the differential flatness property
discovered in Sec. 6.3.1, and implement it in 3D together with the decentralized controller.
This is explained in the second part of Sec. 6.4.2. Finally, in Sec. 6.4.3 we present the
experimental validation of the results found in Sec. 6.3, using the controller described in
this part of the thesis.
We note that this part of the thesis is published online in Tognon et al. (2017).

6.4.1 PAM in 3D
Consider a generic aerial manipulator, consisting of a multi-rotor aerial platform (a Vertical
Take-off and Landing vehicle, VTOL for short) equipped with m robotic arms. Different
from Section 6.3, the system is in 3D, but the manipulating arms are moving on a plane. A
particular example of the generic aerial manipulator model is shown in Fig. 6.24. This is
clearly the extension of the system studied in Sec. 6.3 to 3D, by keeping the arm movements
on the xW − zW plane, which is particularly interesting because of the reasons explained in
Sec. 6.4. For now, let us consider a generic aerial manipulator, i.e. the motion of the arms
is not necessarily constrained to a plane.
Let us then denote with FW : {PW,xW ,yW , zW} and F0 : {P0,x0,y0, z0} the world

(inertial) frame, and the frame attached to the VTOL in 3D, respectively, where P0 is the
CoM of the VTOL. The world frame is as always chosen according to the common North-
East-Down (NED) convention, and the orientation of F0 in FW is described by the rotation
matrix R0 = [x0 y0 z0] ∈ SO(3), same as in (2.1). It is parametrized by the roll-pitch-yaw
angles ηηη = [φ0 θ0 ψ0]T ∈ R3, this time a subscript ∗0 is appearing for denoting the flying
base orientations.
24In Sec 6.2.10 we needed to perform some parametric identifications and use an inverse linear model of

the motor for turning a servo motor into a torque-controlled one. Note that identification was done for
a certain parametric range of the actuator, which limits the performance of such inversion.
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Figure 6.24: Sketch of a PAM with two manipulating arms (m = 2) in 3D. Notice that in
the 3D model of the PAM (the one on the left down), the axis of rotation for
each individual joint of each arm is parallel to y0. Hence its projection on
xW − zW plane looks like the one in the grayed area (right up). Notice the
possibility that the geometric center of base actuation, PG, and the CoM of
the flying base, P0 are not coinciding in the same point.

The joint configurations of the manipulating arms are described by the vector θθθµ =
[θ1µ · · · θnµ ]T ∈ Rnµ , which contains the relative orientations of the joints (notice that
this vector is different from qr described in Sec. 6.3, which contains the absolute joint
orientations). The total number of links of the generic aerial manipulator is again n =∑m
µ=1 n

µ. A possible set of generalized coordinates of the whole platform is

q = [pT0 ηηηT θθθT ]T ∈ R6+n, (6.98)
where p0 = [x0 y0 z0]T ∈ R3 is the position of P0 expressed in FW and θθθ = [θθθT1 · · · θθθTm]T ∈
Rn.
We can collectively refer to all joint torques as τττ = [τττT1 · · · τττTm]T ∈ Rn. Recall that

the flying base (VTOL) is actuated by the thrust ut, which is a scalar force value acting
perpendicularly to the platform (in the direction of −z0), and by the torque ur ∈ R3.
Also remember that with PG we denote the center of actuation of the PVTOL, whose
constant position in F0 is denoted with dG = [dGx dGy dGz ]T ∈ R3. The thrust vector
f0 = −utz0 ∈ R3 and the base torque ur are applied at and around PG, respectively. The
overall control input of the whole generic aerial manipulator is

u = [ut uTr τττT ]T ∈ R4+n. (6.99)
The system can be modeled dynamically using the classical Lagrangian notation

M(q)q̈ + c(q, q̇) + g = G(ηηη)u, (6.100)
where M is the inertia matrix, c is the vector of Coriolis and centrifugal forces, g is the
vector of gravity forces, and G is the input matrix

G(ηηη) =
[
−R0e3 0

0 I3+n

]
∈ R(6+n)×(4+n), (6.101)

143



Chapter 6 Control of Aerial Manipulation using Differential Flatness and Exact Linearizability

where Ik is the k× k identity matrix, e3 is the third column of I3, and 0 is the zero matrix,
of appropriate dimension.

Since the control input has less elements (4 + n) than the configuration variables (6 + n),
the system is underactuated.
Further, the inertia matrix has the following structure

M(q) =
[
msI3 Mpr

MT
pr Mr

]
∈ R(6+n)×(6+n), (6.102)

where ms is the total mass of the system.

Remark 15. Because of the underactuation, commonly in multi-rotor platforms the
position p0 and the yaw ψ0 are controlled, while the roll φ0 and the pitch θ0 are used
as virtual inputs or they are left uncontrolled. In the case of aerial manipulation, the
position of the end-effectors does not only depend on p0, ψ0 and θθθ, but also on φ0 and
θ0. Consequently, it is not possible to plan exclusively for p0, ψ0 and θθθ if the position
of the end-effectors is to be controlled.

Remark 16. The inertia matrix M exhibits dynamic couplings between all elements
of the state. This considerably complicates the control problem.

6.4.2 Decentralized Flatness-Based Control
In this section we first present a decentralized controller for a generic aerial manipulator in
3D. By decentralization, we mean that the controller does not consider the dynamic coupling
of the complex system, explicitly. However, it does take the system dynamics implicitly into
account, by using some feed-forward terms. Moreover, it uses feed-back terms for steering
the system to a desired behavior while providing some robustness to the closed-loop system.
Then we consider a particular design of the aerial manipulators, namely protocentric

aerial manipulators (PAMs), with all its joints are rigidly actuated and the joint motion is
constrained on a plane. A sketch of such system is given in Fig. 6.24. Since from Sec. 6.3
we are aware of the differential flatness property of such systems, we us it for computing
the feed-forward terms of the decentralized controller, which makes it aware of the complex
system dynamics in advance.

Decentralized Controller

Now, say yd(t) stands for the desired output of the system given in (6.100), and our
objective is to track this output. If the desired output trajectory is consistent with the
underactuation, it is in theory possible to find some corresponding desired states and inputs
as

qd(t) = [pd0
T
ηηηd

T
θθθd

T ]T , ud = [udt udr
T
τττ d

T ]T ,

q̇d(t) = [ṗd0
T
η̇ηηd

T
θ̇θθ
dT ]T ,

(6.103)
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where we assume that these desired values are given; hence we will call them feed-forward
terms. Notice that these terms can be computed as the nominal states and the inputs
using the differential flatness property of the aerial manipulator (as shown in Sec. 6.3). In
fact, doing so, we will be using the knowledge of the system dynamics in a decentralized
controller.
Now, let us first address the control of the aerial platform, in this case a VTOL. We

develop a hierarchical approach based on the separation of the translational and rotational
dynamics, which eventually tracks the position pd0. Firstly let us define the controlled
thrust vector as:

f0 = fd0 + f?0 = fd0 + KP
p0(pd0 − p0) + KD

p0(ṗd0 − ṗ0), (6.104)

where KP
p0 ,K

D
p0 ∈ R3×3

≥0 . Notice that f0 is computed as a combination of the feed-forward
terms (·d), and the feedback term (·?) proportional to the state error of the system with
respect to the nominal one. From the controlled thrust vector we can retrieve the commanded
thrust as

ut = −(R0e3)T f0, (6.105)
and the commanded attitude as

zc0 = f0/ ‖f0‖ , yc0 = zc0 × e1,

xc0 = yc0 × zc0, Rc
0 = [xc0 yc0 zc0].

(6.106)

This closes the outer-loop control. The controlled attitude is then passed to the inner-loop
control as the desired attitude, to compute the controller torque as:

[eR0 ]∧ = 1/2(Rc
0
TR0 −RT

0 Rc
0)

eω0 = ωd
0 − ω0

ur = udr + u?r = udr + KP
R0eR0 + KD

R0eω0 ,

(6.107)

where, [∗]∧ represents the skew operation, ω0 ∈ R3 and ωd
0 ∈ R3 are the current and the

desired angular velocities of the VTOL body in body-fixed frame25, and KP
R0 ,K

D
R0 ∈ R3×3

≥0 .
Now, let us give the control of the generic νµ-th joint, in order to track the relative

desired angle. For a torque-controlled motor, we design the control law based on a PD
strategy as

τνµ =τ dνµ+τ ?νµ =τ dνµ+kPνµ(θdνµ−θνµ)+kDνµ(θ̇dνµ−θ̇νµ), (6.108)

where kPνµ , kDνµ ∈ R≥0. This controller ensures the best performances. Nonetheless, for
kinematically controlled motors, it is possible to adapt the controller for achieving good
results. For instance, for a velocity-controlled motor, the commanded velocity can be given
as

θ̇νµ = θ̇dνµ + kPνµ(θdνµ − θνµ). (6.109)
See also Sec. 6.4.3 for its implementation.

In summary, the VTOL thrust, ut, is computed in (6.105); its torque is given in (6.107);
and the control input of the individual motors of the manipulators, τνµ in (6.108) which
25Notice that ω0 can be easily computed using ηηη and η̇ηη. This also applies to ωd

0 using ηηηd and η̇ηηd available
from (6.103).
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Figure 6.25: Control of the PAM depicted in Fig. 6.24, using the decentralized controller
explained in Sec. 6.4.2 and its differential flatness property found before in
Sec. 6.3.1.

collectively builds the torque input τττ . Hence, we have all the control inputs u of the
system in (6.100). A simple variant, as in (6.109), allows the use of this controller for
kinematically-controlled motors. A schematic representation of the controller is shown in
Fig. 6.25. Now let us show how to use the differential flatness of a specific type of aerial
manipulator for computing the feed-forward terms of this controller.

Using Differential Flatness of PAMs

For the decentralized controller presented above to track a desired output properly, an
algorithm computing all the nominal states and inputs (feed-forward terms) is required. We
can do this by using the differential flatness property of the PAMs, as found in Sec. 6.3 of
this thesis. There, a PAM (with any number of manipulator arms, each having any number
of DoFs, with rigid or compliant transmission) is characterized by all manipulator arms
being attached to the CoM of the flying base. In Sec. 6.3, we studied the properties of such
systems in the 2D vertical plane, and we found that they are differentially flat w.r.t. a set
of flat outputs given by the CoM position of the flying base and the absolute rotations
of the manipulator links. The choice of the absolute joint angles as system coordinates,
together with the protocentric design, overcomes both difficulties highlighted in Remarks 15
and 16. In particular, also the position of the end-effector and the absolute rotations of the
manipulator links are flat outputs, which makes such platforms of particular interest.

Now, consider a PAM in 3D, where the motion of all manipulators are constrained to a
plane, i.e. y0 = 0 and yT0 zW = yT0 xW = 0. A sketch of such design is depicted in Fig. 6.24,
where each joint of all manipulators rotate around an axis parallel to x0 × z0. Now, notice
the similarity between the projection of the considered PAM on the xW − zW plane, and
the system discussed in Sec. 6.3; they are the same for the case when all joints are rigid.
Given the above, the generalized coordinates of a PAM in 2D can be re-written as

q2 =
[
pT0xz θ0 qTr

]T
∈ R3+n, (6.110)

where this time p0xz = [x0 z0]T ∈ R2 is the position of the CoM of the flying base in
the xW − zW plane, θ0 is the pitch as before, and qr = [qTr1 · · · qTrm ]T ∈ Rn is the
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vector combining the absolute orientations of each joint of every arm as, with qTrµ =
[θ01µ · · · θ0nµ ]T ∈ Rnµ written for the µ-th manipulating arm, as before. Remember from
Sec. 6.3 that θ0νµ is the absolute orientation of the ν-th joint of the µ-th arm, and that
θ0kµ = θ0 +∑k

ν=1 θνµ . Let us re-write the set of inputs as

u2 = [ut ur τττT ]T ∈ R2+n. (6.111)

Notice that the PAM in 2D is also underactuated, as the one in 3D. Finally, we define this
time peµxz as the position of the µ-th end-effector in the considered plane.
We can now turn the Proposition 9 and Corollary 2 into the following fact:

Fact 2. y = [pT0xz qTr ]T ∈ R(n+2) is a flat output of a PAM modeled in 2D. Hence,
clearly, ye = [pTeµxz qTr ]T ∈ R(n+2) is a flat output, for any µ.

This means we can control the motion of a PAM as shown in Fig. 6.24 in the xW −zW plane,
by combining the decentralized controller presented in above and the flatness property
proven in Sec. 6.3. By setting the desired motions of all the other DoFs to zero, we can
control the overall system in 3D, pawing the way for the experimental validation of the
results presented in Sec. 6.3.

This requires the computation of the nominal states and the control inputs of the PAM
in the xW − zW plane, as functions of y, ẏ, ÿ, ...y , ....y . Considering Fact 2, the nominal states
and the control inputs are to be computed as sole functions of the flat ouputs are θ0, θ̇0
(flying base pitch and its time derivatives), and ut, ur, τνµ .

The thrust, and pitch with its derivatives can be computed using the translational
dynamics of the CoM position of the PAM given in (A.51). Remember there, we defined
the vector

w = w(y, ẏ, ÿ) = p̈c − [0 g]T = [wx wz]T ∈ R2, (6.112)

which is direct function of only the flat outputs. Notice that w = − ut
ms

[sin(θ0) cos(θ0)]T .
Hence,

θ0 = θ0(p̈c) = atan2(−wx,−wz), θ̇0 = θ̇0(p̈c,
...p c) = wzẇx − wxẇz

w2
x + w2

z

θ̈0 = θ̈0(p̈c,
...p c,

....p c) = ẅxwz − wxẅz
w2
x + w2

z

− 2[(w2
z − w2

x)ẇxẇz + (ẇ2
x − ẇ2

z)wxwz]
(w2

x + w2
z)2

ut = ut(p̈c) = ms||w|| .

(6.113)

Therefore, we need to compute the time derivatives of pc from second up to the fourth
order, as sole functions of the flat outputs. This is done in Tognon et al. (2017) and for
brevity we do not report them here. Then, by placing those terms in (6.113) appropriately,
one can compute the nominal values of θ0(y, ẏ, ÿ), θ̇0(y, ẏ, ÿ,

...y), and ut(y, ẏ, ÿ) as sole
functions of the flat outputs and their derivatives up to the fourth order.

The nominal torque of the νµ-th motor is computed as in (A.53), which brings it in the
form of τνµ = τνµ(y, ẏ, ÿ). The PVTOL torque is computed in (A.54) with θ̈0 is available
from (6.113), which means it can be represented as ur = ur(y, ẏ, ÿ,

...y , ....y ).
Finally, we have showed how to use the flat outputs y given in Fact 2 and their derivatives

up to the fourth order, for computing the nominal values of θ0, θ̇0, ut, ur, τττ . It is clear
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Flat outputs From Fact 2, y = [pT0xz qTr ]T ∈ R2+n. Since ∃fe : p0xz = fe(peµxz qr), it is also ye = [pTeµxz qTr ]T ∈ R2+n.

Nominal States Considering (6.110); p0xz , ṗ0xz , qr and q̇r are direct functions of y and ẏ. This leaves θ0 and θ̇0 to be computed.

From (6.113), θ0 = θ0(p̈c). It is shown in Tognon et al. (2017): p̈c = p̈c(p̈0xz , p̈mνµ , p̈νµ), p̈mνµ = p̈mνµ (y, ẏ, ÿ),

p̈νµ = p̈νµ(y, ẏ, ÿ) =⇒ p̈c = p̈c(y, ẏ, ÿ). Then θ0 = θ0(y, ẏ, ÿ).

From (6.113), θ̇0 = θ̇0(p̈c,
...p c). It is shown in Tognon et al. (2017): ...p c = ...p c(

...p0xz ,
...pmνµ

,
...pνµ), ...pmνµ

= ...pmνµ
(y, ẏ, ÿ, ...y),

...pνµ = ...pνµ(y, ẏ, ÿ, ...y) =⇒ ...p c = ...p c(y, ẏ, ÿ, ÿ). Then θ̇0 = θ̇0(y, ẏ, ÿ, ...y).

Nominal Inputs Considering (6.113) and p̈c from the above; first ut = ut(p̈c) =⇒ ut = ut(y, ẏ, ÿ).

From (A.53), ∃fτ : τνµ = τνµ+1 + fτ (p̈0xz ,qr, q̇r, q̈r) =⇒ τνµ = τνµ(y, ẏ, ÿ) where τνµ+1 = 0 for νµ = nµ.

From (A.54), ur = J0θ̈0 +∑m
j=1 τ1j − dGxut. Above it is show that ut = ut(y, ẏ, ÿ), τ1µ = τ1µ(y, ẏ, ÿ),

and from (6.113) it is θ̈0 = θ̈0(y, ẏ, ÿ, ...y , ....y ). Then, ur = ur(y, ẏ, ÿ,
...y , ....y ).

Table 6.8: A summarizing table of the differential flatness of PAMs in 2D when all the joints
are rigid. Different outputs of the system are given on the top. The nominal
states and inputs as implicit functions of the flat outputs and their derivatives
up to the fourth order are provided. Remember that for the νµ-th element of
the system; pνµ and pmνµ are the (time varying) individual link and motor CoM
positions presented in FW , respectively.

that all the other states are actually the flat outputs themselves. This implies that,
∃h : b = h(y, ẏ, ÿ, ...y , ....y ), where b = [qT2 q̇T2 uT2 ]T is a vector combining all the states
and inputs of the PAM in 2D. Finally, the relative joint angles can be easily obtained as
θ1µ = θ01µ − θ0 and θνµ = θ0νµ − θ0(ν−1)µ for ν > 1, which constructs the vector θθθ. The
computations of the nominal states and the inputs is summarized in Table 6.8 for the
convenience of the reader.
Now, for tracking a desired yd(t), where y is as in Fact 2, using the differential flatness

property in 2D, but together with the controller developed in 3D, we can say

Rd
0 =

 cθd0 0 sθd0 ,0 1 0
−sθd0 0 cθd0

 (6.114)

fd0 = −udtRd
0e3, ωd

0 = θ̇d0e2, (6.115)
udr = udre2, yd0 ≡ 0 (6.116)

will impose the necessary constraints. Notice that θd0, θ̇d0, udt are computed as in (6.113) and
udr as in (A.54) for yd. Clearly, τ dνµ will be computed in the same way using (A.53). Then
we can use these values as the feed-forward terms of the controller as shown in Fig. 6.25.

Notice that the flatness of ye in Fact. 2 is quite obvious, thanks to the protocentric design
and the absolute joint coordinates. Let us give the following remark:

Remark 17. The flat outputs of a PAM are:

• y = [pT0xz qTr ]T ∈ R(2+n) from Sec. 6.3,

• ye = [pTeµxz qTr ]T ∈ R(2+n) for any µ, since ∃fe : p0xz = fe(peµxz qr).
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Physical param. VTOL 1st-Link 2nd-Link

Mass [kg] 1.3 0.145 0.123

Rot. inertia [kgm2] 0.03 1.2 · 10−3 0.9 · 10−3

Length [m] 0.4 (diam.) 0.29 0.25

Controller KP
p0 KD

p0 KP
R0 KD

R0 kP1 kP2

Gain 12I3 7I3 3I3 0.3I3 1.8 1.6

Trajectory Parameters
axp0 a1

qr a2
qr ωt

[m] [deg] [deg] [deg/s]

(a) 0 30 60 2π/3

(b) 0.5 -40 -70 2π/3

(c) 0.5 40 70 2π/3

Table 6.9: Starting from the top: physical parameters of the real system; controller gains;
and the parameters of the three trajectories. Length and the inertia are the
one on the 2D vertical plane need to compute nominal state and inputs by the
flatness. We note that since both motors of the arm are rigidly placed on the
quadrotor body, we compute their weights as part of the VTOL.

6.4.3 Experimental Results
In this section we show the results of some preliminary experiments for validating the
controller proposed in Sec. 6.4.2. Furthermore, we analyze its performances by comparing
it with other standard control techniques. there we show that the controller developed
based on the differential flatness property of the PAMs (see Sec. 6.3) outperforms the other
standard techniques for tracking various trajectories.
We note that the experiments described here are performed at LAAS-CNRS, Toulouse,

France, by Marco Tognon.
Let us first describe briefly the testbed used for the experiments (see Fig. 6.26). The

aerial manipulator consists of a quadrotor VTOL and a 2 DoF manipulating arm. The
quadrotor VTOL is identical to the one presented in Sec. 2.3.1 and depicted in Fig. 2.2.
The arm is developed in home, but its design and construction is not part of this thesis.
However let us briefly describe it here. The arm structure is based on carbon fiber bars
and printed plastic parts, whose design was inspired by the work in Cano et al. (2013).
A big difference of this design is that the actuators of both joints are placed at the base
of the arm, rigidly attached to the VTOL. The first joint is connected to its actuator26

(a dynamixel MX-64 motor) directly, while the second one is connected to its motor (a
dynamixel MX-28) via a metal-reinforced plastic belt (with very low elasticity).

A detailed description of the setup is given in Fig. 6.26. Such design allows us to have a
26http://en.robotis.com/index/
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light-weight arm reducing the mass of each joint and in particular their inertia. This in turn
allows to use a relative small quadrotor (diameter 0.4 [m], maximum thrust per propeller of
about 5.26 [N] with respect to the ones normally used in the literature for arms of similar
length, as, e.g., in Jimenez-Cano et al. (2013). Since the motors are rigidly attached to the
aerial vehicle, their mass can be seen as part of the total VTOL mass. For the physical
parameters of the system, please refer to Tab. 6.9. Since the motors cannot be controlled
in torque but at best in velocity (as almost all the affordable motors suitable for aerial
manipulation) to control the arm we use (6.109), except for a slight modification needed to
cope with the fact that the second link is not directly attached to its motor.
The control law presented in Sec. 6.4.2, implemented in Matlab–Simulink, runs on a

desktop PC sending the commanded propeller velocities at 500 [Hz] and the commanded
arm motor velocities at 250 [Hz] through a serial communication. The gains used for the
controller are given in Tab. 6.9. The control loop is then closed based on the measurements
of: i) position, attitude, linear and angular velocities of the quadrotor at 1 [KHz] using the
hardware and software explained in Section 2.3; ii) the position and velocity of the arm
motors provided by their internal absolute encoders at 250 [Hz]. In order to read the motor
values corresponding to zero joint angles, a calibration procedure is implemented once,
using the Mo-Cap markers on the manipulator arm (see Fig. 6.26).
We tested the proposed controller with a parametric and multi-DoF sinusoidal-like

trajectory, i.e.:

yd =

pd0xz
qdr

 =
[
axp0 0 a1

qr a2
qr

]T
sin(ωtt) (6.117)

for three different sets of parameters corresponding to three qualitatively different task
trajectories:
(a) the arm is oscillating and quadrotor is fixed,
(b) the arm and quadrotor are oscillating with opposite phases,
(c) the arm and quadrotor are oscillating with the same phase.
These task trajectories are understandable from Fig. 6.27, and the parameters of the
trajectories are given in Tab. 6.9.
For each of the three task trajectory, we compared the performance of the proposed

controller using three different types of feedforward methods:
1) minimal compensation: on the quadrotor side only the total mass is compensated, i.e.,

udt = −msgeT3 R0e3. In this way the VTOL and the arm virtually are considered as two
independent systems (even if in practice they are not).

2) static compensation: only the static effects due to the gravity are compensated, i.e., the
nominal state and the inputs are computed considering all the derivatives of the desired
trajectory are equal to zero, i.e., yd(l) = 0 for l = 1, . . . , 4, (yd 6= 0). This method is
often used for the control of the aerial manipulators, for so called quasi-static operations
in order to partially compensate the effects of the manipulator on the aerial vehicle.

3) dynamic compensation: this corresponds to our proposed method where we exploit
the flatness of the system. We compute the nominal states and inputs as functions of
the desired trajectory to be tracked, and provide them to the controller as explain in
Sec. 6.4.2.
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Figure 6.26: Experimental setup of the aerial manipulator. A quadrotor VTOL is equipped
with a 2 DoF manipulating arm. The quadrotor setup is the one presented in
Section 2.3.1, and the manipulating arm is built in home, as part of a project
outside of this thesis.

The performances of these three methods are shown in Figs. 6.28, 6.29 and 6.30, using
red, green and blue curves, respectively. In particular the plots show the evolution of the
position of the VTOL CoM and the end-effector27 in the first two rows, the remaining
configuration variables in 3D (third and fourth row), and the inputs on the vertical plane,
as well as the nominal relative quantities (with a dashed black line). Note that superscript
∗i in the labels showing the number of the method tested, which should not be mixed with
the notation of number of manipulating arms, ν, introduced in Sec. 6.3 (it was placed as
the superscript of the lowest subscript as in ∗νµ).

Looking at the tracking of the desired VTOL CoM and end-effector position one can see
that the minimal compensation (method 1) shows good tracking performances (similar to
the one with our method) only for trajectory (b). On the other hand, for trajectories (a)
and (c) the tracking error is considerably larger than the one with dynamic compensation.
For the static compensation (method 2), the tracking performances result to be good

(similar to the one with our proposed method 3) only for trajectory (a). Indeed, since
trajectory (a) is the less dynamic one (quadrotor not moving), the static compensation
is enough to obtain good performances. However, for more dynamical trajectories as (b)
and (c) the performances rapidly get worse.
On the contrary, our proposed method 3 shows good tracking performances for all the

types of trajectories validating the fact the dynamic compensation based on the flatness is
a good control strategy for both static and dynamic trajectories. Moreover, thanks to the

27Notice that for this particular case; i.e a PAM with m = 1, n = 2 and all joints are rigidly attached, the
joint angles or the position of the end-effector is equivalent since they are both flat outputs.
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t = 1.8s

t = 2.55s

t = 3.3s

t = 1.8s

t = 2.55s

t = 3.3s

t = 1.8s

t = 2.55s

t = 3.3s

(a) (b) (c)

Figure 6.27: Nine moments from the experiments using method 3 (dynamic compensation).
From the left to the right column the configurations of the trajectories (a),
(b) and (c) are shown, respectively. From the top to the bottom row the
configurations at the start (top), intermediate (middle) and end (bottom)
moments of half period of each the trajectory are shown, respectively.

feedback terms, the controller is robust enough to the non perfect protocentricity of the
real system. Indeed in the testbed used during the experiments, along the z0-axis of F0
there is a non zero offset of about 6 [cm] between the position of CoM of the VTOL and
the first joint. Nevertheless the controller is able to keep the tracking error small even for
dynamic trajectories.

In addition to the good results obtained with our method (explained in Sec. 6.4.2) (the
decentralized flatness-based controller presented in Sec. 6.4.2), it is also very interesting to
notice that for trajectory (b), the method 1 based on the minimal compensation is better
than the method 2 based on the static compensation in terms of tracking error. This brings
us two interesting results.
The first is due to the the fact that for some dynamic trajectories it is more suitable

to just compensate the effect of the total mass rather than try to compensate the static
configuration only. This error in the compensation leads to undesired effects and in turn to
a large tracking error, as seen in Fig. 6.29.
The second interesting aspect is that for some particular dynamic trajectories, as for

trajectory (b), the arm could help the aerial vehicle to move toward the desired direction,
implying the need of smaller compensations and in turn of smaller control efforts. Indeed,
looking at Fig. 6.27.b one could notice the similarity between: i) the motion of the robotic
arm and the one of the legs of a person sitting on a swing when trying to enhance the
angular motion of the swing; ii) the thrust force and the tension along the cables attached
to the swing to win the gravity and the centrifugal terms. This is why for trajectory (b) the
minimal compensation shows similar results to the one obtained with our method. Based on
this consideration we believe that the studies on optimal trajectory generation become even
more fundamental to achieve aerial manipulation tasks exploiting the dynamic properties

152



6.4 Towards Control in 3D

(such as the flatness) of the systems.

6.4.4 Discussions
In summary, we have presented in Sec. 6.3 a control method for certain type of aerial ma-
nipulators, namely PAMs, and discovered their differential flatness property. An important
fact is that, when the manipulating arms are attached to the CoM of the flying platform,
their end-effectors become part of the differentially flat outputs. In other words, instead
of looking for a different output of the system, we assume a certain dynamic model and
for that model showed the useful outputs. This allowed us developing high-performance
tracking controllers, e.g. DFL controller. Noticing few disadvantages of DFL as explained
in Sec. 1.4.2, as many other dynamics-aware controller it also requires torque-controlled
actuators. This can be a problem, since most of the actuators available for the aerial
manipulation are not torque-controlled. However, the decentralized flatness-based controller
proposed in Sec. 6.4.2 can overcome this issue.

An important fact is that, the number of total relative degree of the aerial manipulator
system increases quadratically, with the number of elastic joints (see Proposition 10).
Clearly, this means that if the aerial manipulator has high number of compliant actuators,
only much smoother and slower trajectories can be tracked using a differential flatness
based controller. As also noted in Remark 14, this is because the robotic arm configuration
is represented using the absolute joint angles. The reason for that was the underactaion
of the aerial platform. This might imply that if the flying platform is fully actuated, this
drawbacks of having elastic actuator might disappear.
We have put the differential flatness property of PAMs (when all joints are rigid) in

test, both numerically (in Sec. 6.3.4) and experimentally (in Sec. 6.4.3). Especially in the
experiments, we show how well our (decentralized differential-based) controller performs
w.r.t. the other conventional controllers. This is because it is aware of the complex nonlinear
system dynamics, and this awareness is induced to the controller thanks to the differential
flatness property of the PAMs.

In overall Chapter 6, we showed the differential flatness property of the aerial manipulators,
when their motion is constrained on a plane. Of course, the results presented here are
reasonably implementable in 3D (e.g. in Sec. 6.4.1), since many aerial manipulation tasks
are 2D, but immersed in 3D. However, showing the differential flatness of the end-effector
positions of the 3D system is not yet done, as well as its proper control. This is in the
scope of our future works.
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Figure 6.28: Experimental results for trajectory (a) (see Fig. 6.27.a for the snapshots from
the experiment). In all plots, the flat outputs and the nominal states/inputs are
depicted with black dashed lines (and stars). First two rows show the CoM and
end-effector positions in xW −zW plane, and they are highlighted together with
the quadrotor orientation ηηη. Again in all plots, red, green and blue curves stands
for the results of the controller with minimal compensaton, static compensation,
and dynamic compensation, respectively. While the first controller perform
worse for tracking of the all outputs, third one (proposed controller) is always
performing good especially when tracking the end-effector positions.
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Figure 6.29: Experimental results for trajectory (b) (see Fig. 6.27.b for the snapshots from
the experiment). Same color and line code is used as in Fig. 6.28, and the
order of plots are the same. The proposed controller (blue) achieves always a
better tracking performance. An interesting result is that for such a dynamic
tracking task, the controller with the static compensation (green) performs
worse than the one with minimum compensation (red).
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Figure 6.30: Experimental results for trajectory (c) (see Fig. 6.27.c for the snapshots from
the experiment). Same color and line code is used as in Fig. 6.28, and the
order of plots are the same. The proposed controller (blue) again outperforms
the other methods. Note that here and in Figs. 6.28 and 6.29 superscript ∗i
in the labels showing the number of the method tested, which should not be
mixed with the notation of number of manipulating arms, ν, introduced in
Sec. 6.3 (it was placed as the superscript of the lowest subscript as in ∗νµ).
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Chapter 7

Conclusions
In this thesis, we studied the design, modeling and control for the APhI and aerial
manipulation. For both to be performed, an appropriate aerial platform (or flying robot)
had to be chosen. Our choice was a quadrotor, because of the reasons explained in
Section 1.1.2. Note that a detailed literature research is provided for aerial robots (in
Sec. 1.1), VTOLs (in Sec. 1.1.1), APhI (in Sec. 1.2), and aerial manipulation (in Sec. 1.3).
The aerial platform, a quadrotor VTOL, is described in detail (from its mathematical

model to its realization) in Chapter 2. This chapter does not only introduce the flying robot
carefully, but also exposes all its electronics, sensors with their hardware and software, in
detail.
For achieving a proper APhI, we had to find a way to acquire the external wrench

information. In Chapter 3, two methods are presented; one is the (indirect) estimation
and the other one is the (direct) measurement of the external wrenches. Each method
outperforms another one for different reasons, but at the end, we chose to use a light-weight
cheap F/T sensor onbard of the quadrotor. Briefly, the estimation of the wrenches is a
cheap method in terms of weight, computational power (most of the time) and money. On
the other hand an F/T sensor provides precise and reliable measurements (sometimes used
even as ground truths), however it brings additional weight to the flying robot. As it is
explained in Sec. 3.2 we utilized a low cost, light weight F/T sensor and compared its result
with a model-based external wrench estimator presented in Sec. 3.3. Based on the results,
we decided to use the F/T sensor for the upcoming APhI tasks. We believe that, when
especially the APhI task requires high precision and/or it is performed outdoor, usage of
the F/T sensors would be even more essential.
In the light of our observations from Chapter 3, we showed how to perform APhI in

Chapter 4 with a quadrotor and an F/T sensor on board of it. The most important
contribution of this chapter is the improved version of the Interconnection and Damping
Assignment-Passivity Based Controller (IDA-PBC) method for the quadrotors. Briefly,
IDA-PBC allows controlling an APhI task for the quadrotors, by reshaping its physical
properties. Moreover, it renders the controlled system to a passive one (or cyclo-passive in
our case), ensuring the stability of the interaction. This method is considered as a low-level
controller, responsible for controlling the APhI, but not tracking of e.g. position or velocity
trajectories (see also Remark 6). However, it accepts high-level inputs, which can be sent
by an outer control loop developed for, e.g. force/torque tracking. In simulations (Sec. 4.3),
we tested the IDA-PBC controller for different interaction tasks, e.g. sliding on an uneven
surface. Later in the experiments (Sec. 4.3.2) we realized this sliding task using IDA-PBC
together with a position tracker.
Later, we approached to the problem of APhI and aerial manipulation from the design
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point of view, and in Chapter 5 we presented a new light-weight elastic joint arm design to
be used on board of the miniature flying robots. After producing it in-house and identifying
its physical parameters, we used it on-board of a quadrotor VTOL for two different tasks;
link velocity amplification and stable physical interaction. The former task is achieved
thanks to the elastic components of the arm, and by oscillating it at its natural frequency.
This simple but explosive movement task can be achieved only thanks to the elastic potential
energy stored in the springs, and be interpreted as hammering or throwing. Then the latter
task is achieved due to the intrinsic safe behavior of the compliant elements, absorbing the
impacts from the environment and blocking them before they are transmitted to the flying
robot. What it was missing in this chapter, was that the controller for both quadrotor and
the elastic arm were not aware of each other’s dynamics, so both were considering each other
as disturbances. However for performing a meaningful and dynamic aerial manipulation
task, the controller needs to account for the dynamic couplings between these two systems.
This leads us to the following chapter.

In Chapter 6 we studied the control of the aerial manipulators when they are equipped
with manipulating arms driven by rigid or compliant actuators. In this chapter we considered
aerial robots with various manipulation types; with single joint-arm or multiple manipulating
arms, with one or generic number of DoF, with rigid or elastic actuation, and when the
arm is attached to any point of the flying robot or specifically to its CoM. All these
choices effect the controllability of the system. We showed the differentially flat (and so
the exactly linearizing) outputs of all these systems, and how to use them for the control of
the aerial manipulator. Particularly, we noticed that the usage of rigid or elastic actuation
dramatically effects the task capability of the aerial manipulator. In example, for simple
trajectory tracking and aerial grasping tasks, rigid actuators are more preferable. On
the other hand, when an explosive dynamic motion is required, e.g. aerial hammering or
throwing, then the elastically actuated joints perform better. Furthermore, placing the
manipulating arms at the CoM of the flying platform has a striking effect; it makes the
end-effector positions as part of the differential flat outputs. This is especially interesting,
because it allows us generating dynamic trajectories directly for the end-effector positions
and develop advanced controllers for them. A common approach in the literature was
to control the CoM position of the overall system (which is always a flat output of the
system). However, this is not a practical implementation, since CoM of the overall system is
a time-varying position w.r.t. the body of the flying robot where all the sensors are usually
placed. Also, controlling the CoM positions is impractical, because typically in useful tasks
one wants to control the end-effector positions. Another approach was trying to control the
end-effector position directly, but then one has to deal with the internal dynamics, and this
is not an easy and solved problem. In short words again, if one designs the platform in
a smart way (we call it PAM), which is also not cumbersome at all, but it rather makes
sense, then the end-effector position becomes also an additional flat output (together with
the CoM position of the overall aerial manipulator) and this simplifies dramatically the
control problem because, among other things, the internal dynamics disappears. So rather
than finding another output, we have found a mechanical design condition for which the
output that we want to control is always nicely controllable. In this chapter we presented
both numerical and experimental results, highlighting the importance of the theoretical
contributions.
The work done in this thesis can be extended in many directions:
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• IDA-PBC method (Chapter 4) can be improved by studying its robustness, proposing
new high-level controllers (e.g. wrench tracking), and tuning its parameters better
(maybe in an adaptive manner) for achieving more precise interaction tasks.

• Control of the Variable Stiffness Actuator (VSA) on a quadrotor (see Sec. 6.2.10)
clearly can be improved, by actively controlling the variable stiffness as well. Being
able to change the stiffness of the VSA, in real time, would increase the range of
aerial manipulation tasks that can be performed by one robot. A demanding scenario
could be a case, where the aerial robot is grasping an object with a high-stiff arm,
and later throwing it away (or if the grasped object is a hammer than using it for
hammering) by amplifying the velocity of the low-stiff arm. We are already working
in this direction.

• Controlling the end-effector positions of an aerial manipulator directly in 3D is
another step forward. So far, we have controlled them in 3D, but the dynamic
motions are constrained on a plane. Performing dynamic aerial manipulation tasks in
3D, and differential flatness analysis for the end-effectors of the aerial manipulators is
something we are currently working on as well.

• With the increasing number of elastic actuation, the relative degree of the flat outputs
increases w.r.t. the system inputs. This is due to the underactuation of the flying
platform. Hence, aerial manipulators with fully actuated flying base deserve to be
studied when they are equipped with compliant manipulating arms.

• Last, but not least, more emphasis on planning in the Cartesian space of the end-
effectors are needed, considering the recently discovered differential flatness property
of the PAMs. In fact, this can be further improved for the scenarios, where multiple
aerial manipulators are performing the manipulation task.
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Appendix A

Technical Proofs

A.1 Proof of Proposition 1
We will prove that the estimation error defined in (3.9) will asymptotically vanish by
showing that the error dynamics (3.11) is asymptotically stable. Let

V (eo,qq) = eTo B(qq)eo (A.1)

be a positive definite candidate Lyapunov function. Considering (3.11) and (3.15), we can
write:

dV (eo,qq)
dt

= 2eTo Bėo + eTo Ḃeo = −2eTo BLeo + eTo Ḃeo = −2coeTo eo + eTo Ḃeo. (A.2)

The first component of the right hand side of (A.2) is negative definite for co ∈ R+. The
second component has an indefinite sign. Nevertheless, since B(qq) = BT (qq), Ḃ(qq, q̇q) is
symmetric and, therefore, its eigenvalues are real. From (3.6) we can compute:

Ḃ(qq, q̇q) =

03 03

03
WṀqr(ηηη, η̇ηη)

 . (A.3)

Considering that WMqr(ηηη) = T(ηηη)TMqrT(ηηη) ∈ R3×3 as in Sec. 2.1 with T(ηηη) as in (2.2), it
is possible to write

WṀqr(ηηη, η̇ηη) = ΦΦΦ(ηηη)φ̇+ ΘΘΘ(ηηη)θ̇, (A.4)
where

ΦΦΦ =


0 0 0

0 Φ22 Φ23

0 Φ32 Φ33

 , ΘΘΘ =


0 0 Θ13

0 Θ22 Θ23

Θ31 Θ32 Θ33

 (A.5)

with
Φ22 = 2Jzzcφsφ

Φ23 = Φ32 = cθ(−Jzzc2
φ + Jyycφcθ + Jzzs

2
φ)

Φ33 = 2c2
θcφsφ(Jyy − Jzz)

Θ13 = Θ31 = −Jxxcθ
Θ22 = −2Jyycθsθ

Θ23 = Θ32 = (Jzzcφ − 2Jyycθ)sφsθ
Θ33 = (Jxx − Jzzc2

φ − Jyys2
φ)sθ,

(A.6)
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where s∗ = sin(∗), c∗ = cos(∗). Since |φ̇| < φ̃ and |θ̇| < θ̃, from (A.6) it is easy to find two
finite numbers α, β ∈ R such that α < Ḃij < β, i, j ∈ {1, . . . , 6}, where Ḃij is the ij-th
element of Ḃ. Thus, as shown in Zhan (2006), it is always possible to find a finite upper
bound λB for all the possible eigenvalues of Ḃ(qq, q̇q):

max
qq ,q̇q

λM
{
Ḃ(qq, q̇q)

}
≤ λB <∞ (A.7)

where λM
{
Ḃ(qq, q̇q)

}
is the maximum eigenvalue of Ḃ(qq, q̇q). Thus, we have that

eTo Ḃeo ≤ λBeTo eo. (A.8)

It is therefore possible to choose a co > λB
2 which implies V̇ is negative definite and that,

therefore, eo(t)→ 0 which proves the statement.

Remark A.1.1. We note that the finite upper bound in (A.7) is found for some fixed
(qq, q̇q). On the other hand, Ḃ in (A.3) is a time-varying matrix, i.e. it is actually
Ḃ(q, q̇, t) with t for the time, meaning that the eigenvalues of Ḃ are changing in time.
Finding a maximum for the eigenvalues of this matrix over the time might not be
feasible; this maximum might not exist.
We see two possible ways for addressing this problem:

• By establishing an upper bound for the eigenvalues of Ḃ independent of time. In
this way, the choice of a constant co > λB

2 will ensure eo(t)→ 0. In the scope of
a future work, this would be done by considering the components of Ḃ more in
detail and analyzing the stability of the time-varying (non-autonomous) systems
under the light of Theorem 4.8 of Khalil (2001).

• Or, by computing the upper bound λB(t) for every time step, and making sure
that it is always co(t) > λB(t)

2 , by actively computing co over the time instead of
using a preset one.

A.2 Proof of Proposition 2
Consider the energy function defined in (4.12). Using (4.11) we obtain:

Ḣ =
[
∂TH
∂qq

∂TH
∂p

] q̇q
ṗ


= −∂

TH

∂p
R∂H
∂p

+ ∂TH

∂p
Gui + ∂TH

∂p
wext. (A.9)

Considering that R ≥ 0 we obtain that

Ḣ ≤ ∂TH

∂p
Gui + ∂TH

∂p
wext, (A.10)

which proofs the statement after considering Def. 2, and Remark 1.
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A.3 Proof of Proposition 3

Corollary A.2.1. Notice that the considered outputs of the system in (4.11) are relative
degree one with respect to its inputs. Moreover with the inequality in (A.10) we show
that the system is weakly minimum phase (equilibrium of the zero dynamics is stable,
i.e. for the unforced system it is Ḣ ≤ 0). Then considering Def. 3 and Remark 1, we
can say that the system in (4.11) is cyclo-passive w.r.t. the input-output pair given in
Prop. 2.

A.3 Proof of Proposition 3
After straight-forward algebra, the desired dissipation matrix in (4.31) can be written in
the following form

Rd =


(
md
m

)2
kTgT1 g1 0

0 kdN + NKRN

 ∈ R4×4. (A.11)

The first matrix on the diagonal is trivially positive definite. The second matrix on the
diagonal is positive definite because it is the sum of two positive definite matrices. In
fact, kd ∈ R+ and therefore kdN > 0. Furthermore, since N and KR are positive definite,
NKRN is positive definite1. This concludes that Rd ≥ 0.

The structure of the desired dissipation matrix in (A.11) is influenced both by the under-
actuation of the quadrotor and by the change of momentum. Because of the underactuation,
the damping in the Cartesian space is influenced only by the parameter kT and, therefore,
it is not possible to set arbitrary damping factors along the three Cartesian directions. On
the other hand, it is possible to achieve any desired damping for the rotational dynamics
by properly tuning the matrix KR. The damping force is an external force and, because of
the change of momentum in the target dynamics, the desired inertia affects the achievable
damping. Nevertheless, setting (4.32) we have

Rd =

k̄T ||g1||2 0

0 K̄R

 ∈ R4×4, (A.12)

where || ∗ || stands for 2-norm of ∗. Hence, it is possible to achieve any desired damping
k̄T ∈ R+ along the actuated Cartesian direction and any rotational damping matrix
R3×3 3 K̄R > 0.

A.4 Proof of Proposition 4
Consider the energy function defined in (4.16). Using (4.37) we obtain:

Ḣd =
[
∂THd
∂qq

∂THd
∂p̄

] q̇q
˙̄p


= −∂

THd

∂p̄
Rd

∂Hd

∂p̄
+ ∂THd

∂p̄
MdM−1Guo + ∂THd

∂p̄
w̃ext (A.13)

1∀z ∈ R3×1 6= 0 we have Nz = z′ 6= 0 and zT (NKRN)z = zTNTKRNz = z′TKRz′ > 0.
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Considering that Rd ≥ 0 from Proposition 3 we obtain that

Ḣd ≤
∂THd

∂p̄
MdM−1Guo + ∂THd

∂p̄
w̃ext (A.14)

which proofs the statement after considering Def. 2, and Remark 1.

Corollary A.4.1. Notice that the considered outputs of the system in (4.37) are relative
degree one with respect to its inputs. Moreover with the inequality in (A.14) we show
that the system is weakly minimum phase (equilibrium of the zero dynamics is stable,
i.e. for the unforced system it is Ḣd ≤ 0). Then considering Def. 3 and Remark 1, we
can say that the system in (4.37) is cyclo-passive w.r.t. the input-output pair given in
Prop. 4.

A.5 Proof of Proposition 5
Let us divide first the generalized coordinates into two parts; q = [pTc qTr ]T ∈ R4, where
qr = [θ0 θ01]T ∈ R2. Then,

msp̈c = vut +

 0

msg

 , v =

− sin θ0

− cos θ0

 ∈ R2. (A.15)

Differentiating twice with respect to time we obtain
ms

....p c = v̈ut + 2v̇u̇t + vüt, v̇ = v̄θ̇0

v̈ = v̄θ̈0 − vθ̇2
0, v̄ = ∂v

∂θ0
=

− cos θ0

sin θ0

 . (A.16)

Now let us write the rotational dynamics of the system

q̈r =

 θ̈0

θ̈01

 = W

 −c3(θ0, θ01, θ̇01) + g31ut + ur + τ

−c4(θ0, θ01, θ̇0) + g41(θ0, θ01)ut + τ

 , (A.17)

where c3 and c4 are the 3-rd and 4-th elements of c in (6.14), and g31 and g41 are the 3-rd
and 4-th elements of the first row of G in (6.15). Moreover, W = M−1

r , where Mr is given
in (6.13).
Now, use θ̈0 from the first column of (A.17) in (A.16) and θ̈01 from the last column of

(A.17); and stack them together as....p c

θ̈01

 = h(qr, q̇r, ut, u̇t) + Ḡū, (A.18)

where 
v
ms

v̄
ms
W11ut

v̄
ms

(W12 −W11)ut

0 W12 W22 −W11


︸ ︷︷ ︸

Ḡ


üt

ur

τ


︸ ︷︷ ︸

ū

. (A.19)
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A.6 Proof of Proposition 6

The matrix Ḡ is the new input matrix, with Wij being the ij-th component of W. After
some algebra we can express the determinant of Ḡ as

|Ḡ| = −ut(W11W22 −W 2
12)

m2
s

= −ut|W|
m2
s

= − ut
m2
s|Mr|

, (A.20)

meaning that Ḡ is invertible2 as long as ut 6= 0. Furthermore it must hold |Mr| 6= 0 for Ḡ
to be well-defined.
Let us re-write the components of Mr in the following form

ma = mαdTαdα + J0

mb = mβdTβdβ + J1 + Jm

mab = mγdTαdβ,
(A.21)

with dα = R̄0d0 and dβ = R̄1d1, and mα = m0(m1+mm)
ms

, mβ = m1(m0+mm)
ms

and mγ = m0m1
ms

.
Then we can write

|Mr| = mamb −m2
ab

= mpos +mαmβ(dTαdα)(dTβdβ)−m2
γ(dTαdβ)(dTαdβ),

(A.22)

where3 mpos = mα(J1 + Jm)dTαdα +mβJ0dTβdβ + J0(J1 + Jm) > 0. Notice that it is always
mαmβ > m2

γ. Moreover, (dTαdα)(dTβdβ) − (dTαdβ)(dTαdβ) = (dα1dβ2 − dα2dβ1)2 > 0 and it
is always (dTαdα)(dTβdβ) ≥ 0, where dαi and dβi are the i-th components of dα and dβ,
respectively. Hence it is always |Mr| > 0. This proofs that [pTc θ01]T is exact linearizing
output for Case RG. From Fact 1 it is differentially flat output as well.

A.6 Proof of Proposition 6
For [pTc θ01]T this descends from Proposition 5 since Case RC is a special case of Case RG.
Concerning [pTe θ01]T , this descends from (6.25) and from the flatness of [pTm θ01]T , which
we shall prove in the following.

First let us write the system dynamics in the following form

q̈ = W


vut − β̄ββθ̇2

01 +
 0
msg


dGxut + ur − τ

τ

−
 0
g4(θ01)



 , (A.23)

where β̄ββ = ∂βββ
θ01

= [β̄1 β̄2]T ∈ R2, βββ as in (6.27), g4 as in (6.29) and v is in (A.15). In this
case we decompose the inverse of the inertia matrix as

W = M−1 =
[

W11 WT
21

W21 W22

]
,W21 =

 01×2

W̃21 ∈ R1×2

 , (A.24)

2Notice that all masses and inertias are positive.
3Recall that dTαdα = ||d0||22 ≥ 0 and dTβdβ = ||d1||22 ≥ 0, as also stated in (6.13). Notice that even in case
of d0 = d1 = 0, it is still mpos > 0 and |Mr| > 0, implying that Ḡ is invertible.
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where W11 ∈ R2×2 and W22 = diag([W221 ,W222 ]) ∈ R2×2. Then, we can write

p̈m = W11vut + W̃T
21τ −W11β̄ββθ̇

2
01 + W11

 0

msg

− W̃T
21g4(θ01). (A.25)

Moreover from the third equation of (A.23) it is
θ̈1 = W221ur +W221(dGxut − τ) (A.26)

and from the fourth one it is

θ̈01 = W̃21vut +W222τ − W̃21β̄ββθ̇
2
01 + W̃21

 0

msg

−W222g4(θ01). (A.27)

Differentiating (A.25) and (A.27) twice w.r.t. time, and utilizing θ̈0 from (A.26), we get....p m
....
θ 01

 = h(qr, q̇r, ut, τ, u̇t, τ̇) + Ḡū, (A.28)

where qr is defined as in Appendix A.5 and

Ḡū =


W11v W11v̄W221ut W̃T

21

W̃21v W̃21v̄W221ut W222


︸ ︷︷ ︸

Ḡ


üt

ur

τ̈


︸ ︷︷ ︸

ū

, (A.29)

where v̄ is as in (A.16), and Ḡ is the new input matrix, whose determinant can easily be
computed, after some algebra, as

|Ḡ| = − ut

J0ms

(
(J1 + Jm)ms +m1(m0 +mm) ‖d1‖2

2

) , (A.30)

which is always invertible as long as ut 6= 0. This proofs that y = [pTm θ01]T is exact
linearizing output for Case RC. From Fact 1 it is differentially flat output as well.

A.7 Proof of Proposition 7
Let us re-formalize the system dynamics given in (6.50) (assuming linear spring case) as

msp̈c = vut +

 0

msg

 , v =

− sin(θ0)

− cos(θ0)

 ∈ R2 (A.31a)

 θ̈0

θ̈01

 = W

 g31ut + kr(θr − θ0)− c3(θ0, θ01, θ̇01)

g41(θ0, θ01)ut + ke(θ0m − θ01)− c4(θ0, θ01, θ̇0)

 (A.31b)

 θ̈r
θ̈0m

 =

Jr 0

0 Jm


−1  kr(θ0 − θr) + un

ke(θ01 − θ0m) + τ

 , (A.31c)
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A.7 Proof of Proposition 7

where this time qr = [θ0 θ01 θr θ0m]T ∈ R4 and W = B−1 with B as in (6.47). In the
following, by Wij, we denote the ij-th component of W = WT ∈ R2×2.
Then differentiating (A.31a) four times w.r.t. the time, we get

msp(6)
c = v....u t + v̄ut

....
θ 0 + h1(qr, q̇r, ut, u̇t, üt,

...
u t). (A.32)

The quantity
....
θ 0 can be analytically expressed by differentiating twice θ̈0, whose analytical

expression is available from the first equation of (A.31b), substituting: θ̈01 from the second
equation of (A.31b), θ̈r, and θ̈0m from (A.31c). In this way we obtain

....
θ 0 = W11kr

Jr
un + W12ke

Jm
τ + h2(qr, q̇r, ut, u̇t, üt) (A.33)

and utilizing it in (A.32), we have

p(6)
c = v

ms

....
u t + v̄ut

W11kr
msJr

un + v̄ut
W12ke
msJm

τ + hA(qr, q̇r, ut, u̇t, üt,
...
u t), (A.34)

where hA = h1 + v̄uth2 ∈ R2×1 and v̄ is as in (A.16).
Similarly, we express analytically

....
θ 01 by differentiating twice θ̈01 and substituting θ̈r

and θ̈0m using (A.31), thus getting
....
θ 01 = W12kr

Jr
un + W22ke

Jm
τ + hb(qr, q̇r, ut, u̇t, üt). (A.35)

Then, using (A.34) and (A.35) we can writep(6)
c

....
θ 01

 = h(qr, q̇r, ut, u̇t, üt,
....
u t) + Ḡū, (A.36)

where h = [hA hb]T ∈ R3×1 and

Ḡū =


v
ms

utv̄W11kr
msJr

utv̄W12ke
msJm

0 W12kr
Jr

W22ke
Jm


︸ ︷︷ ︸

Ḡ


....
u t

un

τ


︸ ︷︷ ︸

ū

, (A.37)

where Ḡ is the sought input matrix (remember that ur can be computed using (6.48)).
The determinant of Ḡ is

|Ḡ| = −utkrke(W11W22 −W 2
12)

JmJrm2
s

= −utkrke|W|
JmJrm2

s

= − utkrke
JmJrm2

s|B|
. (A.38)

By construction it is always JmJrm2
s > 0. In order to show that the determinant is well

defined we now show that it is also |B| 6= 0. In fact we have:

|B| = mamb −m2
ab −maJm

= mpos2 +mαmβ(dTαdα)(dTβdβ)−m2
γ(dTαdβ)(dTαdβ),

(A.39)
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wherempos2 = mαJ1dTαdα+mβJ0dTβdβ+J1J2 > 0. Moreover, (dTαdα)(dTβdβ)−(dTαdβ)(dTαdβ) =
(dα1dβ2 − dα2dβ1)2 > 0 and it is always (dTαdα)(dTβdβ) ≥ 0, where dαi and dβi are the i-th
components of dα and dβ, respectively (see also Appendix A.5 for similar results). Hence
we have that |B| > 0.

Since the denominator in (A.38) is always positive the matrix Ḡ is invertible as long as
ut 6= 0, kr 6= 0, Jr 6= 0 and ke 6= 0 (if the elasticity is linear). This proofs that [pTc θ01]T is
exact linearizing output for Case EG. From Fact 1 it is differentially flat output as well.

A.8 Proof of Proposition 8
For [pTc θ01]T this descends from Proposition 7 since Case EC is a special case of Case EG.
Concerning [pTe θ01]T , it is enough to prove the flatness of [pTm θ01]T and apply (6.25). In
the following we then prove only the flatness of [pTm θ01]T .
First, notice that the inertia matrix cannot be decoupled as nicely as in Case EG.

However, we can re-concatenate the generalized coordinates in the form of; q̃ = Sq =
[pTm θ01 θ0 θ0m]T ∈ R5, where S is an orthogonal selection matrix in form of

S =



1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1


= ST ∈ R5×5. (A.40)

The new inertia matrix becomes M̃ = STMS, where

M̃ =


M̃11 03×2

02×3 M̃22

 , M̃11 =

 msI2 βββ

βββT mB − Jm

 ∈ R3×3

M̃22 =

 J1 0

0 Jm

 ∈ R2×2;

(A.41)

the Coriolis/centrifugal forces become c̃ = Sc, where c is available from (6.60); the
gravitational forces become g̃ = Sg, where g is available from (6.60); the elastic forces
become f̃E = SfE, where fE is available from (6.44); and the input matrix becomes G̃ = SG,
where G is available from (6.61).

Then, we obtain

¨̃q = W



vut
0

+

 02×1

ke(θ0m − θ01)

−
β̄ββθ̇2

01

0

+


0
msg

−g4(θ01)

dGxut + ur − τ
τ

+

 0
ke(θ01 − θ0m)




, (A.42)
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where v is as in (A.31a). Notice that W = M̃−1, where

W =
W11 ∈ R3×3 03×2

02×3 W22 ∈ R2×2

 ,W11 =
 W111 ∈ R2×2 WT

1121

W1121 ∈ R1×2 W112 ∈ R

 ∈ R3×3, (A.43)

and W22 = diag([W221 ,W222 ]) ∈ R2×2. Now notice that p̈m is available from the first two
equations, θ̈01 from the third, θ̈0 from fourth, and θ̈0m from the last equation of (A.42). By
differentiating p̈m twice w.r.t. time, and utilizing θ̈0 and θ̈0m from (A.42) we obtain

....p m = W111vüt + W111v̄W221utur −W111v̄W221utτ+
+ WT

1121W222keτ + h1(q̃r, ˙̃qr, ut, u̇t), (A.44)

where v̄ is as in (A.16), and q̃r = Sqr, with qr = [θ0 θ01 θ0m]T ∈ R3. Furthermore, by
differentiating θ̈01 twice w.r.t. time, and utilizing θ̈0 and θ̈0m from (A.42) we get
....
θ 01 = W1121vüt + W1121v̄W221utur −W1121v̄W221utτ+

+W112W222keτ + h2(q̃r, ˙̃qr, ut, u̇t). (A.45)

Then using (A.44) and (A.45) we can write....p m
....
θ 01

 = h(qr, q̇r, ut, u̇t) + Ḡū, (A.46)

where h = [hT1 h2]T ∈ R3×1 and

Ḡū =


W111v W111v̄W221ut Ḡ13

W1121v W1121v̄W221ut Ḡ23


︸ ︷︷ ︸

Ḡ∈R3×3


üt

ur

τ

 ,
︸ ︷︷ ︸

ū

(A.47)

where

Ḡ13 = WT
1121W222ke −W111v̄W221ut

Ḡ23 = W112W222ke −W1121v̄W221ut
(A.48)

and Ḡ is the new input matrix, whose determinant is

|Ḡ| = − utke

J0Jmms

(
J1ms +m1(m0 +mm) ‖d1‖2

2

) , (A.49)

which is always invertible as long as ut 6= 0 and ke 6= 0 (if the elasticity is linear). This
proofs that [pTm θ01]T is exact linearizing output for Case EC. From Fact 1 it is a flat output
as well.
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A.9 Proof of Proposition 9
Consider the CoM position of the overall system

pc = 1
ms

m0p0 +
m∑
j=1

( nj∑
i=1

(mijpij +mm
ij

pm
ij

)
). (A.50)

Considering the computations given in Appendix B.1, the implicit dependency of pc can be
given as pc = pc(p0,qr) = pc(y). Notice also the fact that

p̈c =

− sin(θ0)

− cos(θ0)

ut +

 0

msg

 . (A.51)

Defining the vector w = w(y, ẏ, ÿ) = p̈c − [0 g]T = [wx wz]T ∈ R2, which is a function of
flat outputs. It is clear that w = − ut

ms
[sin(θ0) cos(θ0)]T . Therefore θ0 = atan2(−wx,−wz)

and ut = ms||w||. Furthermore, differentiating θ0(wx, wz) we obtain θ̇0(wx, wz, ẇx, ẇz) and
θ̈0(wx, wz, ẇx, ẇz, ẅx, ẅz), which are all functions of the derivatives of pc from the second
up to the fourth order.
Now considering the rotational dynamics of the last link of each manipulator, we can

retrieve the nµ-th motor torque as

τnµ =mT
0nµ(θ0nµ)p̈0 +

nµ−1∑
l=1

mlnµ(θ0lµ , θ0nµ)θ̈0lµ+

+ Jnµ θ̈0nµ + crnµ (qrµ , q̇rµ) + grnµ (θ0nµ),
(A.52)

where crnµ and grµn are the nµ-th elements of vectors cr and gr, which are corresponding
to the Coriolis and gravitational forces acting on the center of the n-th link of the µ-th
manipulator, respectively (See Appendix B.2 for the details). Hence, τnµ can be represented
solely as a function of the flat outputs y and of its time derivatives ẏ, ÿ.

Starting from the last joint, we can recursively compute all the joint torques of the µ-th
arm as functions of the flat outputs up to their final derivative. This means we can write
the control torque of the ν-th joint of the µ-th manipulator in form of τνµ = τνµ(y, ẏ, ÿ),
and νµ = {1, 2, · · · , nµ}, using

τνµ = τνµ+1 + mT
0νµ(θ0νµ)p̈0 + crνµ (qrµ , q̇rµ) + Jνµ θ̈0νµ+

+ grνµ (θ0νµ) +
nµ∑

l=1,l 6=νµ
mlνµ(θ0lµ , θ0νµ)θ̈0lµ , (A.53)

where it is clear that for νµ = nµ, τνµ+1 = 0, because the (nµ + 1)-th motor does not exist.
In this way, one can compute all the input torques of all the manipulators, until the very
first ones, as functions of sole flat outputs and their finite numbers of derivatives. Hence,
τ1µ will also be the sole function of the flat outputs as well. Then we can utilize τ1µ in the
third equation of the system dynamics to compute ur:

ur = J0θ̈0 +
m∑
j=1

τ1j − dGxut. (A.54)

Notice that θ0 and ut have been computed above as functions of the flat output and a finite
number of its derivatives only. Hence this holds for ur too. Since θ̈0 is a function of ....y ,
then so is ur, implying the relative degree of the system is four times the dimension of y,
i.e. r = 4(2 + n) = 8 + 4n. This concludes the proof.
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A.10 Proof of Proposition 10
The proof is analogous to that of Prop. 9. Knowing the fact that the CoM position of the over-
all system, given in (A.50) and its dynamics as in (A.51) are sole functions of the flat outputs
and derivatives, we can write again θ0 = atan2(−wx,−wz) and ut = ms||w||. Furthermore,
differentiating θ0(wx, wz) we obtain θ̇0(wx, wz, ẇx, ẇz) and θ̈0(wx, wz, ẇx, ẇz, ẅx, ẅz), which
are all functions of the derivatives of pc from the second up to the fourth order.

Assume that all elastic joints are linear. Consider the µ-th manipulator, and let’s focus
on the torque input of its last joint, i.e., τnµ . If this last joint is rigid, then its expression is
identical to (A.52), while θm0nµ is clearly undefined. If instead this last, i.e., nµ-th joint
is elastic, then we first need to compute θm0nµ . This can be written from its link-side
dynamics as

θm0nµ = θ0nµ + 1
kenµ

mT
0nµ(θ0nµ)p̈0 + grnµ + crnµ (qrµ , q̇rµ)+

+
nµ−1∑
l=1

mlnµ(θ0lµ , θ0nµ)θ̈0lµ + (Jnµ − Jmnµ )θ̈0nµ

. (A.55)

Notice the similarity between this and (A.52). Hence, θm0nµ is represented as a function of
flat outputs and derivatives. Then, τnµ is available from the last equation of the system
dynamics of the µ-th manipulator:

τnµ = Jnµ θ̈m0nµ + kenµθm0nµ − kenµθ0nµ , (A.56)

where θm0nµ and its derivatives are available from (A.55). Hence, we see that τnµ can always
be represented as a function of flat outputs and derivatives, together with θ0nµ even when
the nµ-th joint (last joint of the µ-th manipulator) is elastic.

Now, let’s focus on the generic link number νµ < nµ, again for the µ-th manipulator for
now. We can proceed recursively from top to bottom, assuming we have already computed
τνµ+1. If the νµ-th link is rigid, then its expression is identical to (A.53) and θm0νµ is not
defined. If it is elastic, we first need to compute θm0νµ . This can be done with:

θm0νµ = θ0νµ + 1
keνµ

τνµ+1 + mT
0νµ(θ0νµ)p̈0 +

nµ∑
l=1,l 6=νµ

mlνµ(θ0lµ , θ0νµ)θ̈0lµ +

+ (Jνµ − Jmνµ )θ̈0νµ + grνµ (θ0νµ) + crνµ (q̇rµ ,qrµ)
. (A.57)

Again, notice the similarity with (A.53). We observe that (A.57) can also be employed
for νµ = nµ, simply setting the non-existing τnµ+1 equal to zero. Then, τνµ can be easily
computed from

τνµ = Jνµ θ̈m0νµ + keνµθm0νµ − keνµθ0νµ , (A.58)
which can be directly employed also for νµ = nµ.

Until this point, we showed that all control torques of the µ-th robotic arm, regardless of
their connection type (rigid or elastic), can be represented as sole functions of flat outputs
and their derivatives. This means that the equations above are valid for the each robotic
arm. Now, finally from the third equation of the system dynamics we retrieve
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ur = J0θ̈0 +
m∑
j=1

τ1j − dGxut, (A.59)

in which τ1µ is utilized from either (A.53) or (A.58), depending on the type of the actuation.
Moreover θ̈0 and ut are available from previous computations. Hence, PVTOL torque is
also represented using only the flat outputs.
From Remark 13, it is possible to compute the relative degree of the overall system.

Recalling that kµ is the number of elastic joints in link µ, and defining k̃µ = max(1, kµ),
then

r = 4 + 4 max
µ

k̃µ +
m∑
µ=1

(2 + 2k̃µ)nµ (A.60)

where it can be seen a quadratic dependence on the number of elastic joints. The term
max
µ

k̃µ returns the value k̃µ for the manipulator arm with the highest number of elastic
joint. For a better understanding, let us give the following examples:

Example A.10.1. Protocentric Aerial Manipulator (PAM) with m number of manipulator
arms, each having only rigid actuators. Notice that this actually corresponds to Case R.
Since there are no compliant actuators, k = kµ = max

µ
k̃µ = 0, and so k̃µ = 1. Then (A.60)

becomes r = 4 + 4 + 4n = 8 + 4n, which is a perfect match to Appendix. A.9.

Example A.10.2. PAM with m number of manipulator arms, each having some rigid
actuators and each having only one compliant actuator. This means that kµ = 1. Then
k̃µ = 1, and it means r = 4 + 4 + 4n = 8 + 4n. This means that if each manipulator has
only one elastic joint, then the total relative degree is the same with the case if all joints
were rigid (this result is in line with that of Yüksel et al. (2016b)).

Example A.10.3. PAM with 2 number of manipulator arms with mixed rigid-/elastic-
joints. Let’s say for the first arm it is n1 = 5, k1 = 4 and for the second one it is
n2 = 7, k2 = 3. This is a highly complicated PAM, with two arms in total 12 actuators and
links, and 7 compliant joints. Then we see that max

µ
k̃µ = 4. Hence the total relative degree

of the system is r = 4 + 4 ∗ 4 + (2 + 2 ∗ 4) ∗ 5 + (2 + 2 ∗ 3) ∗ 7 = 126.
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Technical Computations

B.1 Computation of the Inertia Matrix for (6.3.1)
Let us start with the positions and the orientations of the elements of the robotic system,
which consist of a PVTOL equipped with m fully actuated manipulators; the µ-th manipula-
tor has nµ DoF. Then the absolute orientation of the νµ-th joint will be θ0νµ = θ0 +∑νµ

i=1 θiµ .
For example, the absolute orientation of the second link of the third manipulator will
be θ023 = θ0 + θ13 + θ23 . Moreover, the rotation matrix corresponding to θ0νµ will be
R(θ0νµ) = R0(θ0)∏νµ

i=1 Riµ(θiµ). Then we can write the following distance vectors

pG = p0 + R0dG
pnµ = p0 + R01µd̄1µ + · · ·+ R0(nµ−1)d̄(nµ−1) + R0nµdnµ

= p0 +
nµ−1∑
i=1

R0iµd̄iµ︸ ︷︷ ︸
:=0, if nµ=1

+R0nµdnµ

peµ = p0 +
nµ∑
i=1

R0iµd̄iµ ,

where d̄i = di + d̃i, i = {1, 2, ..., nµ}, and for the motors,

pmnµ = p0 + R01µd̄1µ + R02µd̄2µ + · · ·+ R0(nµ−1)d̄(nµ−1)

= p0 +
nµ−1∑
i=1

R0iµd̄iµ︸ ︷︷ ︸
:=0, if nµ=1

.

Notice that this is due to the Assumption A2. The following gives the translational velocities
for the νµ-the link and motor, and the end-effector:

ṗνµ = ṗ0 +
νµ−1∑
i=1

R̄0iµd̄iµ θ̇0iµ︸ ︷︷ ︸
:=0, if νµ=1

+R̄0νµdνµ θ̇0νµ

ṗmνµ = ṗ0 +
νµ−1∑
i=1

R̄0iµd̄iµ θ̇0iµ︸ ︷︷ ︸
:=0, if νµ=1

ṗeµ = ṗ0 +
nµ∑
i=1

R̄0iµd̄iµ θ̇0iµ ,
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where from the definition νµ = {1, 2, · · · , i, · · · , nµ}, and R̄∗ = ∂R∗
∂θ∗

.
Now we can write the energy of the system. We start by considering rigid manipulators.

The kinetic energy is
K = 1

2m0ṗT0 ṗ0 + 1
2J0θ̇

2
0︸ ︷︷ ︸

pvtolbase

+ Km︸︷︷︸
manipulators

, (B.1)

where

Km =
m∑
j=1

1
2

nj∑
i=1

(
mij ṗTij ṗij +mm

ij
ṗTm

ij
ṗm

ij
+ (Jij + Jm

ij
)θ̇2

0ij

).
The potential energy is

V = −gm0p0.e2 − g
m∑
j=1

 nj∑
i=1

[
mijpij +mm

ij
pm

ij

].e2, (B.2)

where e2 = [0 1]T . Let us now write the well known Lagrange equation
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= f = Gu, (B.3)

where L = K − V , computed above. It is clear that using K = 1
2 q̇TM(q)q̇ we can find the

inertia matrix as

M =

Mp ∗

Mpr Mr

 = MT ∈ R(3+n)×(3+n), (B.4)

where

Mp =


ms ∗ ∗

0 ms ∗

0 0 J0

 = MT
p ∈ R3×3

is the pvtol-side inertia matrix; the sum ms of all masses is given by

ms = m0 +
m∑
j=1

( nj∑
i=1

mij +mm
ij

)
.

The arm-side inertia matrix is

Mr =



Mr1 ∗ · · · ∗

0 Mr2 · · · ∗
... ... . . . ...

0 0 · · · Mrm


= MT

r ∈ Rn×n,

where for the µ-th manipulator it is

Mrµ =



J1µ ∗ · · · ∗

m12µ(θ01µ , θ02µ) J2µ · · · ∗
... ... . . . ∗

m1nµ(θ01µ , θ0nµ) m2nµ(θ02µ , θ0nµ) · · · Jnµ


= MT

rµ ∈ Rnµ×nµ .
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For the ν-th joint of the µ-th manipulator it is

Jνµ = Jνµ + Jmνµ +mνµααα
T
νµααανµ +

nµ∑
i=νµ+1

(mi +mmi)ᾱααTνµᾱαανµ︸ ︷︷ ︸
:=0, if ν=nµ

, νµ = {1, ..., nµ},

and for the coupling between the ν-th and ξ-th joints of the µ-th manipulator it is

mνξµ(θ0νµ , θ0ξµ) = mξµᾱαα
T
νµαααξµ +

nµ∑
i=ξµ+1

(mi +mmi)ᾱααTνµᾱααξµ︸ ︷︷ ︸
:=0, if ξµ=nµ

,

νµ = {1, ..., nµ − 1},
ξµ = {1, ..., nµ}, νµ < ξµ

ααανµ(θ0νµ) = R̄(θ0νµ)dνµ
ᾱαανµ(θ0νµ) = R̄(θ0νµ)d̄νµ .

Notice that Jνµ is state independent. The coupling term between the PVTOL and the arm
side inertia is given with the following,

Mpr =
[
MT

pr1 MT
pr2 · · · MT

prm

]T
∈ Rn×3,

where for the µ-th manipulator it is

Mprµ =



mT
01µ(θ01µ) 0

mT
02µ(θ02µ) 0

mT
03µ(θ03µ) 0

... ...
mT

0nµ(θ0nµ) 0


∈ Rnµ×3.

For the ν-th joint of the µ-th manipulator:

m0νµ(θ0νµ) = mνµααανµ +
nµ∑

i=νµ+1
(mi +mmi)ᾱαανµ︸ ︷︷ ︸

:=0, if νµ=nµ

∈ R2×1.

This completes the computation of the generalized inertia matrix.

B.2 Computation of the Gravity and Coriolis Forces
for (6.80) and (6.81)

Following Appendix B.1, since L = K − V , we can write

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Mq̈ + Ṁq̇ − ∂L

∂q︸ ︷︷ ︸
c+g

= Mq̈ + Ṁq̇ − ∂K

∂q︸ ︷︷ ︸
c

+ ∂V

∂q︸︷︷︸
g

= f .
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Hence from the fact that g = ∂V
∂q and using (B.2) we can find the gravitational forces as

presented in (6.80).
The Coriolis/centrifugal forces are shown above as

c = Ṁq̇ − ∂K

∂q
. (B.5)

For the first term of the right side of the equality, we have the following

Ṁ =

 Ṁp ∗

Ṁpr Ṁr

 = ṀT ∈ R(3+n)×(3+n),

Ṁpr =



Ṁpr1

Ṁpr2

...

Ṁprm


∈ Rn×3,

where

Ṁp = 03, Ṁprµ =



ṁ01µ(θ01µ)T 0

ṁ02µ(θ02µ)T 0

ṁ03µ(θ03µ)T 0
... ...

ṁ0nµ(θ0nµ)T 0


∈ Rnµ×3,

and

Ṁr =



Ṁr1 ∗ · · · ∗

0 Ṁr2 · · · ∗
... ... . . . ...

0 0 · · · Ṁrm


= ṀT

r ∈ Rn×n,

where

Ṁrµ =



0 ∗ · · · ∗

ṁ12µ(θ01µ , θ02µ) 0 · · · ∗
... ... . . . ∗

ṁ1nµ(θ01µ , θ0nµ) ṁ2nµ(θ02µ , θ0nµ) · · · 0


= ṀT

rµ ∈ Rnµ×nµ .

(B.6)

For the second term of the equality in (B.5), we put the kinetic energy in the following
form

K = 1
2 q̇TMq̇ = K0 +K1 +K2, (B.7)
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where

K0 = 1
2msṗT0 ṗ0 + 1

2J0θ̇
2
0 +

m∑
j=1

1
2

nj∑
i=1

Jij θ̇2
0ij

K1 =
m∑
j=1

ṗT0
nj∑
i=1

m0ij θ̇0ij

K2 =
m∑
j=1

nj−1∑
l=1

( nj∑
i=l+1

mlij θ̇0lj θ̇0ij

)
.

(B.8)

Now remember that ∂K
∂q = ∂K0

∂q + ∂K1
∂q + ∂K2

∂q . It is clear that ∂K0
∂q = 0(n+3)×1. Moreover

notice the following equality

∂K1

∂q
=



0

0

0

ṗT0 ṁ011

...

ṗT0 ṁ0n1

......

ṗT0 ṁ01m

...

ṗT0 ṁ0nm



=

 Ṁp

Ṁpr

 q̇p. (B.9)

Recalling that

Ṁq̇ =

 Ṁp

Ṁpr

 q̇p +

ṀT
pr

Ṁr

 q̇r, (B.10)

we have

c = Ṁq̇ − ∂K

∂q

=

ṀT
pr

Ṁr

 q̇r −
∂K2

∂q
=


∑m
j=1

∑nj

i=1 m̄0ij θ̇
2
0ij

0

cr(qr, q̇r)

 ∈ R(3+n)×1,

(B.11)
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where m̄0ij = ∂m0ij
∂θ0ij

∈ R2×1; noticing that ∂R̄∗
∂θ∗

= −R∗ :

m̄0νµ(θ0νµ) = mνµα̃αανµ +
nµ∑

i=νµ+1
(mi +mmi)¯̄ααανµ︸ ︷︷ ︸

:=0, if νµ=nµ

∈ R2×1,

νµ = {1, ..., nµ}
α̃αανµ(θ0νµ) = −R(θ0νµ)dνµ
¯̄ααανµ(θ0νµ) = −R(θ0νµ)d̄νµ ,

and cr(qr, q̇r) ∈ Rn is the arm side Coriolis forces in the form of

cr(qr, q̇r) = [cTr1(qr1 q̇r1) · · · , cTrm(qrm q̇rm)]T ∈ Rn.

Now, from (B.8) we can write K2 = ∑m
j=1K2j and for the µ-th manipulator it is K2µ =

1
2 q̇TrµBrµq̇rµ , where

Brµ = Mrµ − diag{J1µ , J2µ , · · · , Jnµ}

=



0 ∗ · · · ∗

m12µ(θ01µ , θ02µ) 0 · · · ∗
... ... . . . ∗

m1nµ(θ01µ , θ0nµ) m2nµ(θ02µ , θ0nµ) · · · 0


= BT

rµ ∈ Rnµ×nµ .

Then we can write for the µ-th component of cr

crµ(qrµ , q̇rµ) = Ṁrµq̇rµ −
∂K2µ

∂qrµ

= Ṁrµq̇rµ −
1
2

∂
(
q̇TrµBrµq̇rµ

)
∂qrµ

,

(B.12)

where Ṁrµ is available from (B.6). Then we computed the followings

Ṁrµq̇rµ =



0 +∑nµ

i=2 ṁ1iµ θ̇0iµ

ṁ12µ θ̇01µ +∑nµ

i=3 ṁ2iµ θ̇0iµ

ṁ13µ θ̇01µ + ṁ23µ θ̇02µ +∑nµ

i=4 ṁ3iµ θ̇0iµ

...∑nµ−1
i=1 ṁinµ θ̇0iµ + 0


, (B.13)
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and

∂K2µ

∂qrµ
=



0 +∑nµ

i=2
1m̄1iµ θ̇0iµ θ̇01µ(

2m̄12µ θ̇01µ +∑nµ

i=3
2m̄2iµ θ̇0iµ

)
θ̇02µ(

3m̄13µ θ̇01µ + 3m̄23µ θ̇02µ +∑nµ

i=4
3m̄3iµ θ̇0iµ

)
θ̇03µ

...∑nµ−1
i=1

nµm̄inµ θ̇0iµ θ̇0nµ + 0


, (B.14)

where km̄kl = ∂mkl(θ0k,θ0l)
∂θ0k

(note that here k = νµ and l = ξµ), and

km̄kl(θ0k, θ0l) = ml
¯̄αααTkαααl +

n∑
i=l+1

(mi +mmi)¯̄αααTk ᾱααl︸ ︷︷ ︸
:=0, if l=n

if k < l

km̄kl(θ0k, θ0l) = mkᾱαα
T
l α̃ααk +

n∑
i=k+1

(mi +mmi)ᾱααTl ¯̄αααk︸ ︷︷ ︸
:=0, if k=n

if k > l

αααk(θ0k) = R̄(θ0k)dk
α̃ααk(θ0k) = −R(θ0k)dk
ᾱααk(θ0k) = R̄(θ0k)d̄k
¯̄αααk(θ0k) = −R(θ0k)d̄k,

(B.15)

with R̄∗ = ∂R∗
∂θ∗

and we have used ∂R̄∗
∂θ∗

= −R∗. Now utilizing (B.13) and (B.14) in (B.12),
one can write the ν-th element of crµ as

crνµ =
νµ−1∑
i=1

(
ṁiνµ − νµm̄iνµ θ̇0νµ

)
θ̇0i +

n∑
i=νµ+1

(
ṁνµi − νµm̄νµiθ̇0νµ

)
θ̇0i,

which is equivalent to

crνµ =
∑

i=1...nν , i6=νµ

(
ṁiνµ − νµm̄iνµ θ̇0νµ

)
θ̇0i

=
∑

i=1...nµ, i6=νµ

im̄iνµ θ̇
2
0i.

(B.16)

This actually means that, due to the A.3 in Section 6.3, there are no Coriolis forces
appearing from the motion of one arm to another. Moreover, since we choose the absolute
orientations as the generalized coordinates, crνµ contains only the centrifugal terms.
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B.3 Computation of the Control Input Matrix
for (6.83)

Following Appendix B.2, the generalized body-fixed forces are written in the form of f = Gu,
where the corresponding control input matrix is

G =

Gp 02×n

Gd Gr

 ∈ R(n+3)×(n+2),Gp =

− sin(θ0) 0

− cos(θ0) 0



Gd =

 dGx 1

0n×1 0n×1

 ∈ R(n+1)×2,Gr =

Grp

Grr

 ∈ R(n+1)×n,

where
Grp =

[
−1 01×(n1−1) · · · −1 01×(nm−1)

]
∈ R1×n,

Grr =


Grr1 · · · ∗
... . . . ...

0 · · · Grrm

 ∈ Rn×n,

Grrµ =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · 1 −1

0 0 0 · · · 0 1


∈ Rnµ×nµ .
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Appendix C

Nonlinear Systems, Stability and
Control
This chapter is dedicated to clarify some frequently used concepts of nonlinear systems,
their stability, stabilizability and control. Specifically, we hope that this chapter helps
to fix the ideas on the nonlinear control theory we used within this thesis (especially
passivity-based control), and make a bridge to the existing literature. We stress the fact
that everything presented in this chapter already exists in the literature. It is our desire
to remind the connection from the stability of the nonlinear system to the benefits of
using passivity-based controllers.
For this part of the thesis, we greatly benefited from Sepulchre et al. (1997), Isidori

(1995) and Khalil (2001); and the graduate level course in Nonlinear Control taught by Prof.
Dr.-Ing Frank Allgöwer, Dr.-Ing. Rainer Blind and M.Sc. Jan Maximilian Montenbruck in
the summer semester of 2015 at the Institute for Systems Theory and Automatic Control
in the University of Stuttgart1.

Our plan, in the following, is to briefly give the important concepts of nonlinear systems
theory in sense of stability and control, and pinpoint their locations in the aforementioned
books properly (e.g. in the following, Definition XXX in [pYYY] means the Definition
XXX in page YYY.). It is in fact a repetition of most of the Definitions, Theorems, and
Lemmas especially of Khalil (2001) but in a connected and hopefully simplified way. We
would like to note that the information given in this section extends the limits of this thesis,
yet it superficially presents the some important concepts by avoiding further details. We
hope that this section brings convenience to the reader, as it does to the author for partially
organizing and summarizing the vast knowledge available in the literature.
Note that for preserving the similarity with the literature; no boldfaced characters are

used for vectors and matrices as it was for the rest of the thesis.

1http://www.ist.uni-stuttgart.de/index.en.html

181

http://www.ist.uni-stuttgart.de/index.en.html


Appendix C Nonlinear Systems, Stability and Control

C.1 Known Concepts for the Nonlinear Systems
Stability

In this Section we aim to give the basic stability concepts of the nonlinear systems. Let us
first give the following nonlinear system equations

ẋ = f(x), y = h(x), x(0) = x0 (C.1)
ẋ = f(t, x), f(t, 0) = 0, x(0) = x0 (C.2)
ẋ = f(x, u), y = h(x, u), x(0) = x0 (C.3)
ẋ = f(x) + g(x)u, y = h(x, u), x(0) = x0 (C.4)
ẋ = f(t, x, u), y = h(t, x, u), x(0) = x0 (C.5)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. The
first equation is known as a autonomous or time invariant system; the second one is a
nonautonomous (time varying) system, where the origin is an equilibrium point because
f(t, 0) = 0,∀t ≥ 0; the third one is a forced time invariant system; and the fourth one is a
control-affine system. The last system is a forced nonautonomous system.

For systems with No Input

Let us give a definition of the stability of an autonomous system:

Definition C.1.1 (Stability-Definition 4.1 in [p112] of Khalil (2001)). The origin, x(0)
of (C.1) is an equilibrium point, and it is

(i) stable, if ∀ε > 0, ∃δ(ε) > 0 s.t. ||x(0)|| < δ ⇐⇒ ||x(t)|| < ε,∀t ≥ 0.

(ii) unstable if not stable.

(iii) asymptotically stable if stable and ||x(0)|| < δ ⇒ lim
t→∞

= 0.

Notice that the stability of a non-autonomous system in form of (C.2) is available in
Definition 4.4 in [p149] of Khalil (2001), where δ might depend not only on ε but also t0.
For brevity, in the following and in the general of the thesis by stability of a system we
mean its stability in its equilibrium.
Now, notice the following theorem for Lyapunov stability:
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Theorem C.1.1 (Lyapunov Stability-Theorem 4.1 in [p114] of Khalil (2001)). Let
x = 0 be an equilibrium point for (C.1) and D ⊂ Rn be a domain containing x = 0.
Let V : D → R be a continuously differentiable function. s.t. V (0) = 0 and V (x) >
0 ∈ D \ {0}. Then x = 0 is

(i) stable, if V̇ ≤ 0 ∈ D.

(ii) asymptotically stable, if stable and V̇ < 0 ∈ D \ {0}.

(iii) globally asymptotically stable, if it is asymptotically stable and V (x) is
radially unbounded, i.e. ||x|| → ∞ ⇒ V (x)→∞. Also see Theorem 4.2 in p124
of Khalil (2001).

(iv) exponential stable, if ||x(t)|| ≤ k||x(0)||e−λk,∀t ≥ 0, k ≥ 1, λ > 0,
∀||x(0)|| < c, c > 0. Also notice that exponential stability implies asymptotic
stability.

Notice the similarities between Def. C.1.1 and Theorem C.1.1; the former defines the
stability of a nonlinear system by introducing a bound on its state using some gains, and
the latter does the same for an energetic function of the system. Different stability concepts
connect to each other, since all introduce some kind of a gain condition for rendering the
nonlinear system to a well-behaving one. In the following we will discuss this a bit more,
but a general comparison between different stability concepts are given in Section C.2.

Let us note that the Lyapunov stability for linear systems is explained in Theorems 4.6
in [p136] and 4.7 in [p139] of Khalil (2001). The Lyapunov theorem for stability given in
Theorem C.1.1 can be extended to global exponential stability using Theorem
4.10 in [p154] of Khalil (2001). Furthermore, the stability properties of a system can tell
us great deal about the existence of a Lyapunov candidate. These converse theorems help
to seek for a proper Lyapunov function for the further steps. For example, the converse
theorem for global exponential stability is given in Theorem 4.14 in [p163] of Khalil (2001).
Also for global asymptotic stability using converse theorem is shown in Theorems
4.16 and 4.17 in [p167] of Khalil (2001).

While the above definitions and theorems of stability are for the autonomous systems, for
non-autonomous systems a way to redefine the concepts of stability or asymptotic stability
is needed, so that they hold uniformly in the initial time t0. For this, comparison functions
will be used.
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Definition C.1.2 (Comparison Functions-Definitions 4.2 and 4.3 in [p144] of Khalil
(2001)). Let K, K∞ and KL be special classes. Then a continuous function α(r) : R→ R
has the following properties;

• α(r) ∈ K, if ∂α(r)
∂r

> 0 (it is strictly increasing),

• α(r) ∈ K∞, if α(r) ∈ K and lim
r→∞

α(r) =∞.

Moreover, a continuous function β(s, r) is said to belong class KL, i.e. β(s, r) ∈ KL,
if

• ∂β(r,s)
∂r

> 0, ∂β(r,s)
∂s

< 0 and

• lim
s→∞

β(r, s) = 0

Notice the similarity between V , V̇ of Theorem C.1.1 and α, β of Def. C.1.2, respectively.
Further properties of K, K∞ and KL can be found in Lemmas
4.2 and 4.3 in [p145] of Khalil (2001). For the stability definitions using comparison func-
tions, we refer the reader to the Lemma 4.5 in [p150] of Khalil (2001). The uniform
stability using comparison functions for non-autonomous systems is given in Lemma
4.5 in [p150] of Khalil (2001), where also uniform asymptotic stability, and global uni-
form asymptotic stability conditions are shown. Furthermore using comparison func-
tions together with Lyapunov theorem, the uniform asymptotic stability, and global
uniform asymptotic stability are proven in Theorems 4.8 in [p151] of Khalil (2001) and
4.9 in [p252] of Khalil (2001), respectively.

For systems with Inputs

So far, we have talked about the stability of systems with no inputs (e.g. (C.1) and (C.2)),
where the only degree of freedom given to us for achieving the stability was observing the
characteristics of the system, f(x), and varying the initial condition of the system, x0.
When the nonlinear-system has inputs, e.g. (C.3), (C.4), this brings another freedom for
achieving the stability. In the presence of a bounded input (with no output considered),
we will talk about Input-to-State Stability (ISS). When an output is also involved, then
Input-to-Output (I/O) Stability will be in our focus.

The definition of ISS is given as Definition 4.7 in [p175] of Khalil (2001), where the
sufficient condition for ISS is given in Theorem 4.19 in [p176] of Khalil (2001). Also from
the Lemma 4.6 in [p176] of Khalil (2001), we can say that ISS implies the existence of a
Lyapunov function, and vice versa.
A non-linear system with inputs make us think, how this control input can be used for

stabilization of a system, which brings the following question: under which condition a
system is stabilizable? The stabilizability of a system is discussed using Control Lyapunov
Function (CLF) in the following:
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Theorem C.1.2 (Control Lyapunov Function (CLF)-Theorem 9.4.1 in [p449] of Isidori
(1995)). Consider the system in (C.4) (with no output considered), and f and g are
smooth vector fields and f(0) = 0. Then, ∃ almost smooth u = α(x), which globally
asymptotically stabilizes the equilibrium x = 0 of (C.4) ⇐⇒ ∃V (x) > 0 which is
proper smooth and

(i) LgV (x) = 0 implies LfV (x) < 0,∀x 6= 0,

(ii) ∀ε > 0,∃γ > 0, s.t. if x0 6= 0 satisfies ||x|| < γ, then there is some u with |u| < ε
s.t. LfV (x) + LgV (x)u < 0.

Then V is called Control Lyapunov Function (CLF).

where LfV (x) = ∂V (x)
∂x

f(x) and LgV (x) = ∂V (x)
∂x

g(x). Notice that CLF is actually a
Lyapunov function for closed-loop systems. The first condition means that if LgV (x) = 0,
then the control input u cannot be used to stabilize the system, because it has no influence.
This implies that the unforced system dynamics should be stable by itself, which is exactly
what LfV (x) < 0,∀x 6= 0 means. The second condition implies that, if LgV 6= 0, then
u can be used to dominate the term on the left-side of the inequality for stabilizing the
system, using a small u in price of a small x (small control property).

For systems with Inputs and Outputs

Let us now consider the non-linear systems not only with inputs u but also the outputs
y. One way to realize this is to have an input-output model of the system with no state
equation representing the system’s internal structure. In this thesis we are more interested
in those which are together with their state-space models. Without giving the details,
with Lp-stability, it is possible to investigate how an output y ∈ Lp behaves with an input
u ∈ Lp, without knowing the state-space model of the system. Motivating cases could be
the systems where modeling is hard or almost impossible (biology or social sciences). There,
Lp refers to a space, where p stands for the type of p-norm used to define that space. The
Lp stability is explained in the Definition 5.1 in [p197] of Khalil (2001), using a comparison
function α ∈ K as the gain of the control input. Notice that if this gain is a nonnegative
constant, then it is called finite-gain Lp stability. For systems with a state-space model, Lp
stability and finite-gain Lp stability are given in Theorem 5.1 in [p202] of Khalil (2001).
In case of p = 2, the L2 stability has a special sense in the system analysis, since it is

natural to work with square integrable signals, e.g. finite energy. For the systems with
state-space model, Theorem 5.5 in [p211] of Khalil (2001) shows the L2 stability condition.
Input-Output (I/O) stability connects itself to the concept of passivity through L2 stability,
as shown in Lemma 6.5 in [p242] of Khalil (2001). Passivity is a special case of dissipativity
(see Def. 1 and Willems (1972)), which implies that the increase of the system energy can
only be done by external means (see Def. 2). This energy preserving/bounding property
is strongly related to the well-behaveness of the system output, as discussed in Chapter 4
of this thesis. Chapter 6 of Khalil (2001) is another reference for the readers interested
in passivity. In this thesis we benefited from the concept of passivity in Chapter 4, for a
quadrotor aerial robot when it is physically interacting with its environment. Especially
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using IDA-PBC, there we showed how to assign a desired physical property to such system
and achieve aerial physical interaction using a passivity-based controller.

Summary

Notice that stability is in some sense describing the well-behaveness of a system, with a
relation between what we are varying in this system and what we observe. In fact, stability
implies a gain condition between what we are varying and what we are observing. If a
gain exist, then we say that the system is well-behaved. Hence with stability, we talk about
existence of a gain. For Lyapunov stability, we vary the initial condition x0 and observe
the state ||x||. For ISS, we do the same by also varying the control input u. When there
is a possibility of finding such a gain by imposing a desired control input, we think of
stabilizability of a system, as in CLF. For the systems with inputs and outputs, we talk
about the well-behaveness of the system from u to y. Already by thinking of stability as
the well-behaveness of a system under the condition of existence of a gain (as an element of
K or KL class depending on the gain), we can see that different stability concepts are not
so much of different from each other. To further strengthen the relationship between the
concepts given above, we introduce the following section.

As mentioned in Sec.1.4.2, more methods with stabilizing properties exist in the literature,
e.g. Sliding Mode Control (see Chapter 14 of Khalil (2001)) and Back-stepping/-forwarding
Control (see Sepulchre et al. (1997) and Krstic et al. (1995)), which we did not study within
this thesis.

C.2 Connections Between Different Stability
Concepts

In Section C.1 we briefly reported the different stability concepts of different non-linear
systems. While stability implies existence of a gain for the well-behaveness of a system,
different conditions apply for different system models, e.g. systems with no inputs, with
inputs, and with inputs and outputs.
In this section, as a supplement to Sec. C.1, we will try to report the relationships

between different stability concepts. Notice that the information given here, as in Sec. C.1,
extends the limits of this thesis, and our goal is to keep it as brief as possible.

Definition C.2.1. A system is said to be ∅G.E.S, if for u = 0 its equilibrium is globally
exponential stable (G.E.S). Same notation applies for exponential stable (E.S), asymp-
totic stable (A.S) and globally asymptotic stable (G.A.S).

Exponential Stability and Hurwitz

Using the Corollary 4.3 in [p166] of Khalil (2001), we say that the origin, x0 = x(0), as the
equilibrium of (C.1) is exponentially stable ⇐⇒ A = [∂f

∂x
](x0) is Hurwitz.

Exponential Stability and ISS

From the Lemma 4.6 in [p176] of Khalil (2001), the system f(t, x, u) is ISS if:
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(i) f(t, x, u) is continuously differentiable and globally Lipschitz in (x, u), uniformly in t,

(ii) and the system is ∅G.E.S, i.e. the unforced system f(t, x, 0) has a globally exponen-
tially stable equilibrium at the origin x = 0.

For the conditions on ∅G.E.S, see the Theorem 4.10 in [p154] of Khalil (2001) and Theorem
4.14 in [p162] of Khalil (2001).

Asymptotic Stability and ISS

From the Theorem 4.19 in [p176] of Khalil (2001), the system ẋ = f(t, x, u) is ISS if:

(i) f(t, x, u) is ∅G.A.S, i.e. the unforced system f(t, x, 0) is globally asymptotic stable at
the equilibrium x = 0.

(ii) and ∂V
∂x
f(x, u) ≤ −W (x), ∀||x|| ≥ ρ(||u||) > 0 with ρ ∈ K, W > 0.

For understanding ∅G.A.S, one can see the Theorems
4.16 and 4.17 in [p167] of Khalil (2001). Notice also the Lemma 4.7 in [p180] of Khalil (2001),
that a cascade connection of one globally uniformly asymptotic stable system (G.U.A.S)
and one ISS system is also G.U.A.S.

Exponential Stability and Lp Stability

From the Theorem 5.1 in [p202] of Khalil (2001); if the system in (C.5) is ∅G.E.S (recall
Theorem 4.14 in [p162] of Khalil (2001)), then it is finite-gain Lp stable with the following
conditions on f and h:

||f(t, x, u)− f(t, x, 0)||p ≤L||u||p
||h(t, x, u)||p ≤η1||x1||p + η2||u||p

with L, η1, η2 ∈ R≥0, and || ∗ ||p indicating the p-norm of ∗. If the system is ∅E.S, then it
is small-signal finite-gain Lp stable.

Uniform Asymptotic Stability and L∞ Stability

From the Theorem 5.2 in [p206] of Khalil (2001); if the system in (C.5) is ∅G.U.A.S (recall
Theorem 4.9 in [p152] of Khalil (2001)), then it is also small-signal L∞ stable, if f and h
satisfy:

||f(t, x, u)− f(t, x, 0)|| ≤α1||u||
||h(t, x, u)|| ≤α2||x1||+ α3||u||+ η

where αi ∈ K and η ∈ R≥0. Also see Corollary 5.3 in [p208] of Khalil (2001).

ISS and L∞ Stability

The Theorem 5.3 in [p215] of Khalil (2001) clears that; if the system in (C.5) is ISS, then
it is also L∞ stable if h satisfies: ||h(t, x, u)|| ≤ α1(||x||) + α2(||u||) + η for α1, α2 ∈ K and
η ∈ R≥0.
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Dissipativity and CLF

Consider the system in (C.3). Say H(x) is a proper storage function, and ρ(u, y) is a
supply rate as in Def. 1 and Def. 2. If ∀x 6= 0,∃u ∈ Rm, s.t. LfH(x) = OH(x).f(x, u) ≤
ρ(u, h(x)) < 0, then H(x) is CLF.

Dissipativity and ISS

The system in (C.3) is ISS, if and only if when it is dissipative w.r.t. the supply rate
sρ(t) = −α1(||x||) + α2(||u||) with α1, α2 ∈ K.

Asymptotic Stability and L2 Stability

Without the details, we refer the reader to Lemmas 5.1 and 5.2 in [p215] of Khalil (2001).

Lp Stability of the Feedback Interconnected Systems

Considering two feedback interconnected systems, as in Fig. 5.1 in [p218] of Khalil (2001),
and each being finite-gain Lp stable. Then from the Theorem 5.6 in [p218] of Khalil (2001),
the feedback connection is also finite-gain Lp stable if γ1γ2 < 1, where γ1 and γ2 are
the non-negative gains of the system input as shown in Def. 5.1 in [p197] of Khalil (2001),
for first and the second system respectively.

Passivity and Feedback Interconnection

As stated in Theorem 6.1 in [p247] of Khalil (2001), the feedback interconnection of two
passive systems is passive. For the feedback connection of the dissipative systems and their
stability, see Theorem 2.30 in [p50] of Sepulchre et al. (1997).

Passivity and L2 Stability

Following the Lemma 6.4 in [p242] of Khalil (2001), if the output of (C.3) is strictly passive
with uTy ≥ V̇ + δyTy, for V is the Lyapunov candidate and δ > 0, then it is finite-gain L2
stable and its L2 gain is γ ≤ 1/δ.

Passivity and Lyapunov Stability

If the system in (C.3) is passive with a storage function H(x) > 0, then its origin ẋ = f(x, 0)
is stable (see Lemma 6.6 in [p242] of Khalil (2001)).

Passivity and Asymptotic Stability

Let us first make the following definition:

Definition C.2.2. A system in form of (C.3) is Zero State Detectable (ZSD) for u = 0
(unforced system) if no solution of this system can stay identically outside of S ⊂ Rn,
where S is the largest positively invariant set contained in {x ∈ Rn : h(x, 0) = 0)}.
This makes the origin of the system x = 0 asymptotic stable conditionally to S. If
S = {0}, then the system is Zero State Observable (ZSO).
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From the Lemma 6.7 in [p243] of Khalil (2001), the origin of the system in (C.3) is ∅A.S if,

• strictly passive, or

• output strictly passive (see Def. 6.1 in [p231] of Khalil (2001)) and Zero State Ob-
servable (ZSO) (see Def. C.2.2).

If the storage function is radially unbounded, then it is ∅G.A.S.

Passivity and Asymptotic Stability via Output Feedback: Damping Injection

From the Theorem 14.4 in [p604] of Khalil (2001), if the system in (C.3) is

(i) passive with a radially unbounded positive definite storage function and

(ii) ZSO (see Def. C.2.2),

then the origin x = 0 can be rendered G.A.S by the output feedback u = −ξ(y), with ξ(.)
is locally Lipschitz, ξ(0) = 0, and yT ξ(y) > 0,∀y 6= 0.

Concluding Remark

In Appendix C, we tried to summarize important nonlinear system theory tools available
in the literature for the stability, stabilizability and stabilization of the nonlinear systems.
We also informally remind the fact that those concepts are not entirely different from each
other, in fact, they mean most of the time the same thing with some variances. However
let us note, that the knowledge summarized here can be conceptualize as a tiny little snow
flake, standing on top of a great iceberg. What author knows is way less than what author
seems to know, and this is way less than what is to know. There is more to understand for
the author, and much more to start discovering. See Fig. C.1 for a sketch of what we are
talking about.

Hence, we recommend further readings for better understanding of the subject, e.g. Byrnes
and Isidori (1991), Isidori (2013) and of course Isidori (1995) and Khalil (2001).
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What author knows

What author seems to know

What is to know

What is more to discover

(unimaginable sizes)

(magnified)

Figure C.1: A comparative sketch illustrating what author knows about the subject studied
in Appendix C, and its similarity to a snow flake on top of an iceberg. Snow
flake is magnified for the convenience of the reader. From snow flake to the
dark colored part is depicting the knowledge author wishes to gather over the
years. Dark colored part illustrates the great sizes of volumes, which are yet in
shadows and to be discovered.
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