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“Theory is when we know everything but nothing works. Praxis is when everything works

but we do not know why. We always end up by combining theory with praxis: nothing

works and we do not know why.”

Albert Einstein
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Theory and Applications of Consensus Protocols for Distributed

Estimation Algorithms

by Antonio Petitti

The research presented in this thesis has been focused on the development of distributed

estimation algorithms for sensor and robotic networks. In particular, two algorithms are

described. They capitalize on consensus theory to achieve a total distribution of the

estimation with a low computational burden and a high tolerance to faults. The first

algorithm is the Distributed Kalman filtering via Node Selection (DKNS). It is based on

the max-consensus protocol and performs the distributed estimation of a measurement

of interest by a network of fixed or mobile sensors. An application of the DKNS on

distributed target tracking is shown and its performance is evaluated. The second algo-

rithm is aimed at solving the problem of the estimation of the inertial parameters of an

unknown payload manipulated by a team of Unmanned Ground Vehicles. The algorithm

is grounded on kinematic and dynamic arguments, nonlinear observers, and average con-

sensus protocols, and is able to work properly even in presence of noisy measurements.

In order to apply the DKNS algorithm in real contexts, in the final part of the thesis, a

theoretical analysis of the asynchronous max-consensus is presented. This is motivated

by the little that has been done on the max-consensus protocol, which is at the base of

many distributed decision-making system and, in particular, of the DKNS algorithm.

Specifically, based on the theory of asynchronous algorithms, the convergence proper-

ties of the max-consensus protocol with asynchronous updates and bounded time delays

have been analyzed. The main result is that the strongly connectedness of the directed

communication network is a sufficient condition for the convergence of the asynchronous

max-consensus protocol in finite time. Implementation issues are also taken into account

with the definition of a distributed detection mechanism of the protocol convergence.
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Chapter 1

Introduction

Distributed estimation is one of the hottest research topics in robotics and sensor net-

works. The goal of distributed estimation is the agreement of a pool of sensing agents

on one or more quantities of interest. Agents are distributed in space, and can be fixed

or mobile, such as a fixed sensor network, or a network of mobile robots carrying sensors

on board, respectively. The motivation of such an interest resides in the wide range of

applications, such as search and rescue [1], environmental monitoring [2], cooperative

transportation [3] and so on. Information coming from sensing agents can be centrally

collected and processed, or processed onboard the network nodes, with a limited com-

munication activity, usually with a limited subset of neighboring nodes. In the former

case, centralized strategies are defined, whereas in the latter we refer to distributed ones.

Decentralized strategies, which are the subject of this thesis, constitute viable and ef-

fective solutions to the problem. The advantages of distributed solutions are usually a

low computational and communication burden, a good scalability, and a great tolerance

to faults, due to the absence of a single point of failure. On the other hand, centralized

strategies are easier to implement and usually give solutions that are closer to the op-

timal one than those provided by distributed strategies. Distributed strategies can be

designed from scratch, as inherently distributed, or by designing a distributed version of

a centralized algorithm. In both cases, the design of a distributed estimation algorithm

usually requires the definition of suitable agreement procedures, able to lead all the

nodes towards the production of a common estimate without the support of centraliz-

ing units, and possibly with limited communication and computation burdens. To this

aim, consensus algorithms [4] [5] have been widely adopted. Remarkable applications of

consensus algorithms have been successfully realized in different contexts, such as task

coordination [6] [7] [8], task assignment [9], formation control [10], flocking [11] [12],

rendez-vous [13], and, of course, distributed estimation [14] [15].

1



Chapter 1. Introduction 2

This thesis focuses on the design of distributed estimation algorithms for sensor and

robotic networks. Specifically, a distributed Kalman filter and a distributed algorithm

for the estimation of inertial parameters of an unknown load will be presented. The

common feature of these strategies is the use of consensus protocols as effective means

towards the distribution of the estimation algorithm. The thesis is organized as follows.

In Chapter 2, we first introduce some notation. Then, we review some basic results in

graph theory and consensus protocols.

In Chapter 3, the Distributed Kalman filtering via Node Selection (DKNS) is introduced.

DKNS is an iterative algorithm, where each iteration consists of two phases, namely

estimation and node selection. In the estimation phase, each network node performs an

estimate of the current state of the dynamical process under observation by means of a

local Kalman filter. In the node selection phase, a max-consensus protocol is run on an

accuracy index, called perception confidence value. In this way, each network node will

converge in finite time to the most accurate estimate performed over the whole network at

a given time. The main contribution of this chapter is the definition of a fully distributed

Kalman filtering strategy. As we will demonstrate in Chapter 3, such a strategy is

particularly effective in networks composed by sensors with limited communication and

sensing ranges, where only a fraction of them can sense the state of the process under

observation at a given time. Moreover, a certain degree of heterogeneity of the sensors is

assumed, by considering sensors with different sensing ranges. This assumption implies

that the measurement reliability changes along the space. The proposed strategy is

applied toward the solution of a distributed target tracking problem.

Chapter 4 presents a distributed algorithm for the estimation of the inertial parameters

of an unknown load through manipulation by a network of Unmanned Ground Vehicles.

The proposed algorithm requires that each robot is able to control the force applied to

the load and to measure the velocity of the contact point. The aim of the algorithm

is to estimate the inertial parameters of the load, such as the mass and the moment of

inertia. This will, in turn, allow the design of effective distributed and adaptive control

strategies, relying on the estimate of the load parameters. To the best of our knowledge,

the proposed approach is the first to be totally distributed. Moreover, the defined

framework is realistic and can be easily implemented, since it relies on the availability of

measurements that are easily available and not extremely noisy. Finally, we elucidate the

effect of measurement noise on the quality of estimates, providing a convenient bound

on their accuracy.



Chapter 1. Introduction 3

Many distributed estimation approaches relies on the hypothesis that information ex-

changes in agreement protocols are performed synchronously. This assumption is obvi-

ously not very realistic. Thus, the effect of asynchronous communication on the agree-

ment performance is a topic that deserve accurate investigations. While asynchronous

average consensus protocols have been widely investigated, this has not been the case

with max-consensus ones. In this context, Chapter 5 presents the study of the conver-

gence properties of the max-consensus protocol in presence of asynchronous updates and

bounded communication delays. The contribution of Chapter 5 is threefold. First, the

convergence of the asynchronous max-consensus protocol in finite time is proved, under

the hypotheses of partial asynchronism and strongly connectedness of the underlying

directed communication network. Second, under additional mild assumptions, an upper

bound on the convergence time is derived. Third, a distributed strategy for the detection

of the convergence of the protocol is presented as a valuable tool for the implementation

of the protocol in real applications. To the best of our knowledge, this is the first work

dealing with the analysis of the max-consensus protocol in presence of time delays and

asynchronous updates.

Finally, in Chapter 6 we draw our conclusions.

Chapter 3, 4, and 5 follow the same structure. At first, a brief section introduces the

related work toward the definition of the problem statement. Then, our research is

presented. Finally, a numerical results section is presented, followed by our conclusions.



Chapter 2

Background Notions

In this chapter we first introduce some notation. Then, we recall some basic concepts of

graph theory and we review some notions on discrete-time consensus protocols. Concepts

that, instead, are specific to single chapters will be presented at the beginning of those

chapters.

2.1 Notations

Throughout the thesis, we denote with N, N0, Q, R, and R+ the sets of positive integers,

non-negative integers, rational numbers, real numbers, and non-negative real numbers,

respectively. Capital bold letters refer to matrices, while small bold letters refer to

vectors. The operator | · | stands for set cardinality and the operator ⊗ stands for the

Kronecker product.

2.2 Graph Theory

This thesis deals with estimation algorithms for sensor and robotic networks. The com-

munication structure of a network is usually represented by a graph. A graph G is a pair

(I, E), where I
△
= {1, . . . , n} is a finite nonempty set of n nodes and E ⊆ I × I is a set

of ordered pairs of nodes, called edges. The existence of an edge (j, i) ∈ E denotes that

node i can obtain information from node j, but not necessarily vice versa. Self edges

(i, i) ∈ E are allowed. If the pairs of nodes are ordered the graph is said directed (also

known as a digraph). In this case, for the edge (j, i), j is called parent node and i is called

child node. On the other hand, if node i and j can always obtain information from each

other, that is, pairs of nodes are unordered, and therefore the existence of link (j, i) ∈ E

4
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implies that of link (i, j) ∈ E , the graph is said undirected. Given a node i ∈ I, the set

of neighbors of node i is defined by Ni = {j ∈ I : (j, i) ∈ E}. Each link (j, i) ∈ E of a

graph can be associated to a weight, wij ∈ R, a quantity which may contain information

connected to the link itself, such as for example communication cost, delay time in the

propagation of information, etc. If the weights are the same for every link in the graph,

then the graph is called a non-weighted one. Otherwise, the graph is a weighted one.

The connection scheme of a graph can be described in different ways. The adjacency

matrix A = [aij ] ∈ Rn×n of a graph with n nodes is defined as

aij =

{
wij if (j, i) ∈ E

0 otherwise.
(2.1)

If the weights are not relevant, or the graph is not weighted, then wij is set equal to 1

for all (j, i) ∈ E . In the case of undirected graphs the adjacency matrix is symmetrical.

This obviously does not occur in the case of directed graphs. A direct path between

two nodes j and i is a sequence of edges in a direct graph between two nodes, of the

form (j, j1),(j1, j2), . . ., (jN−1, jN ), (jN , i). An undirected path in an undirected graph

is defined analogously. The number of edges in a direct path is called distance between

two nodes along the given path. The direct path of shortest distance between two nodes

is called shortest path and the related distance along the path is called shortest path

length. The greatest shortest path length between any pair of nodes in a graph G is called

diameter of the graph and is indicated with D. A directed graph is strongly connected

if there exists a direct path from every node to every other node. An undirected graph

is connected if there exists an undirected path between every pair of distinct nodes.

2.3 Consensus Protocols

This thesis presents two different distributed estimation algorithms that capitalize on

consensus protocols to achieve a total distribution of the estimation. In order to intro-

duce a generic consensus protocol, we consider a set of n dynamical systems with state

variable xi ∈ R, which are the nodes of a network described by a graph G = (I, E),

whose dynamics can be represented, in discrete time, as

xi(k + 1) = f(xi(k), ui(k)), k ∈ N0, i ∈ I. (2.2)

Let Φ : Rn → R be a function of n variables x1, . . . , xn. The Φ-consensus problem over a

network consists of computing Φ(x(0)), where x ∈ Rn, x = [x1 . . . xn]
T , in a distributed

way, by applying suitable control inputs ui that only depend on the values of the state
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of node i and on that of its neighbors. We define a protocol as

ui = f∗i (xj1 , . . . , xjmi
), (2.3)

with j1, . . . , jmi
∈ {i} ∪ Ni, and we say that protocol (2.3) solves the Φ–consensus

problem if and only if the state of each system converges asymptotically, or in finite time,

to the value Φ(x(0)). Cases of broad applications in distributed estimation problems

correspond to the choices of

Φ(x) =
1

n

n∑

i=1

xi, (2.4)

Φ(x) = max
i∈I

xi, (2.5)

Φ(x) = min
i∈I

xi, (2.6)

called average consensus, max-consensus, and min-consensus, respectively. Consensus

algorithms present the following convergence properties [5] [6]:

Lemma 2.1. Given a connected network G, an initial state x(0), and assuming that

each node of G applies the following protocol,

xi(k + 1) = xi(k) + ̺
∑

j∈Ni

(xj(k)− xi(k)) , (2.7)

where 0 < ̺ < 1/(maxi
∑
aij), then all the nodes of the graph asymptotically reach a

common steady state, x̄ = 1
n

n∑

i=1

xi(0), i.e.

lim
k→∞

‖xi(k)− x̄‖ = 0, ∀i ∈ I. (2.8)

Lemma 2.2. Given a connected network G, an initial state x(0), and assuming that

each node of G applies the following protocol,

xi(k + 1) = max
j∈Ni∪i

xj(k), (2.9)

then, all the nodes of the graph reach in finite time a common steady state, x̄ =

max {x1(0), . . . , xn(0)}. Specifically, it can be proved that

xi(k) = max {x1(0), . . . , xn(0)} , ∀k ≥ D, ∀i ∈ I. (2.10)

Note that Lemma 2.2 can be easily recast for min-consensus by substituting the operator

max with the operator min. For a formal proof of the previous statements the reader

is referred to [6] and to [16]. Consensus protocols can be dealt with also in continuous

time [5].



Chapter 3

Distributed Estimation in

Limited Sensing Frameworks

In this chapter, we propose a strategy for distributed Kalman filtering over sensor net-

works, based on node selection rather than sensor fusion. The presented approach is

particularly suitable when sensors with limited sensing capability are considered. In

this case, strategies based on sensor fusion may exhibit poor performance, as several

unreliable measurements may be included in the fusion process. On the other hand,

our approach implements a distributed strategy able to select only the node with the

most accurate estimate and propagate it through the whole network in finite time. The

algorithm is based on the definition of a metric of the estimate accuracy, and on the

application of an agreement protocol based on max-consensus. We prove the conver-

gence, in finite time, of all the local estimates to the most accurate one at each discrete

iteration. Moreover, we prove the equivalence with a centralized Kalman filter with

multiple measurements, evolving according to a state-dependent switching dynamics.

An application of the algorithm to distributed target tracking over a network of hetero-

geneous range-bearing sensors is shown. Simulation results and a comparison with two

distributed Kalman filtering strategies based on sensor fusion confirm the suitability of

the approach. Moreover, an experimental validation of the algorithm, in an ambient

assisted living framework, is also shown.

The content of this chapter is grounded on a book chapter [17], a journal paper [18],

and conference papers [19] [20] [21].

7
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3.1 Distributed Kalman Filters

In the last decades, sensor networks have received significant attention by many re-

searchers in different fields of engineering, such as robotics, control theory, and image

processing [22]. As a general principle, sensor networks perform estimates of the state

of dynamical processes through computation and communication among the network

nodes. Recent technological innovations have made possible to deploy a large number

of inexpensive and low-power sensors to cover wide areas [23], making a wide range

of applications possible and affordable, such as habitat monitoring, animal tracking,

environment observation, forecasting, surveillance, and domotics.

The communication scheme of a sensor network determines whether the estimation al-

gorithm is centralized, distributed or hierarchical. Centralized algorithms make use of a

fusion center, able to receive data from each node and to compute a global estimate of

the system state [24] [25]. The presence of a single fusion center simplifies the process

of computing a unique and optimized estimate. On the other hand, this may lead to

high data transfer rates and to lack of scalability, energy efficiency, and fault tolerance,

because of the presence of a single point of failure. These limitations can be overcome

through distributed approaches [26]. Steps towards the realization of effective distributed

approaches have been made at first by considering all-to-all communication schemes over

the sensor network, which yield the elimination of the fusion center, yet they may intro-

duce a heavy communication overhead [27]. Approaches based on hierarchical or hybrid

architectures adopt local connection schemes, by making use of local fusion centers that

only communicate with subsets of nodes [28] [29]. The transition to fully distributed

estimation algorithms requires the definition of suitable agreement protocols, able to

lead all the nodes towards the production of a common estimate without the support of

centralizing units, possibly with limited communication and computation burdens. To

this aim, consensus algorithms have been widely adopted [4] [5].

The transition from centralized to distributed algorithms has touched nearly all the

techniques of estimation over networks, including the well-known Kalman filter [30] [31].

The Centralized Kalman Filter with multiple measurements (CKF) is, in fact, a cen-

tralized estimation strategy that can be implemented over sensor networks [32]. Much

effort has been devoted to the implementation of distributed estimation schemes based

on Kalman filtering, such as the Kalman-Consensus Filter (KCF) [33], or the Diffusion

Kalman Filter (DKF) [34]. Both algorithms adopt the formalism of the information

filter, which simply recasts the Kalman filter equations in terms of the information state

vector and matrix [35]. However, these approaches do not guarantee the convergence of

all the individual estimates to a common value. Moreover, they require a further phase

of sensor fusion, even though this is performed on a subset of the network nodes, with
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the aim of containing the communication and computational burden. It is well-known

that special care must be taken in sensor fusion, when sensors with limited sensing capa-

bility are considered, as the phenomenon of catastrophic fusion may occur [32]. Limited

sensing capability is a realistic scenario in applications, such as, for example, indoor

surveillance and target tracking. In these applications, in fact, sensors have usually a

limited sensing range and, at a given time instant, it may happen that the majority of

sensors does not even possess a measurement. In such a scenario one can easily figure out

the effect of involving unreliable sensors in the fusion operation. Thus, particular opera-

tional conditions, such as those of limited sensing capability, call for a different strategy

in the computation of a unique estimate from the network data. In this perspective,

we propose node selection as a valuable strategy to deal with those cases in which sen-

sor fusion exhibits poor performance due to the potential presence of several corrupted

measurements in the sensor fusion set [36]. This means that only some network nodes

are selected as the owners of the best estimate that will be in turn propagated to all the

network nodes.

In this chapter, we introduce a fully distributed approach to the realization of an al-

gorithm for Distributed Kalman filtering via Node Selection (DKNS) for heterogeneous

sensor networks, where nodes have limited sensing capability. Considering heteroge-

neous nodes has important consequences in the algorithm design, since the accuracy

of the measurements performed by each sensor may change over space and time, thus

involving different uncertainties on estimates to be accounted for during the agreement

process over the network.

Beyond being fully distributed, another valuable property of DKNS is that it guarantees

that at each iteration, every network node owns the same estimate of the process state.

Node selection is achieved using a strategy based on the max-consensus protocol [16],

performed on a measurement accuracy metric called perception confidence value, strictly

related to the Fisher information [37] [38].

The chapter is organized as follows. Section 3.2 describes in full detail the algorithm.

In Section 3.3, the performance of the proposed algorithm is assessed via numerical

simulations and real-world experiments on a distributed target tracking application.

Finally, our conclusions are drawn.

3.2 Distributed Kalman filtering via Node Selection

In this section, we present the Distributed Kalman filtering via Node Selection algorithm

and assess its performance in limited sensing scenarios. We start by presenting the
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problem setup.

We consider a sensor network modeled by an undirected graph G = {I, E}, where I
△
=

{1, . . . , n} is the node set, and E ⊆ I × I is the set of edges (links), which represent

point-to-point communication channels. The neighbor set of node i ∈ I is defined as

Ni = {j ∈ I | (j, i) ∈ E}. Each network node i ∈ I is a sensor able to estimate the state

x(k) ∈ Rm of a time-discrete process with time index k ∈ N0, through a Kalman filter,

and to exchange information only with its one-hop neighbors. In accordance with the

classic Kalman filter theory, we assume that the process state x(k) evolves according to

a linear model, as

x(k) = A(k)x(k − 1) + υ(k), (3.1)

where A(k) is the state matrix and υ(k) is the process noise, which is assumed to be

drawn from a zero mean multivariate normal distribution with covariance matrix Q(k),

that is, υ(k) ∼ N(0,Q(k)).

Moreover, we assume that measurements ζi(k) of the state x(k) are performed by the

generic i-th node as:

ζi(k) = Hi(k)x(k) + νi(k), (3.2)

where Hi(k) is the measurement output matrix of the i-th node and νi(k) is the cor-

responding observation noise, which is assumed to be zero mean Gaussian white, with

covariance matrix Ri(k), that is, νi(k) ∼ N(0,Ri(k)). The noise vectors at each time

step are assumed to be mutually independent.

The generic node i ∈ I is represented by the tuple:

〈x̂i(k), Xi(k), γi(k), xi(k)〉. (3.3)

In (3.3), x̂i(k) is the local state estimate produced by the sensor i at time k. To model the

limited sensing capability of each sensor, the sensing set Xi(k) ⊂ Rm is defined, whereby

node i is able to perform a measurement of the state x(k) if and only if x(k) ∈ Xi(k).

Heterogeneity of sensors is assumed, by defining individual sensing sets. We define the set

of the sensing nodes Σ(k)
△
= {i ∈ I |x(k) ∈ Xi(k)}. The set difference Λ(k) = I \ Σ(k)

is defined as the set of predicting nodes. The quantity γi(k) is dubbed as perception

confidence value and quantifies the estimate accuracy of node i. To work effectively,

the perception confidence value must have the property of being larger as long as the

estimate is more accurate. More formally, considering two state estimates x̂i(k) and

x̂j(k), where i and j ∈ I

E[||x̂i(k)− x(k)||2] < E[||x̂j(k)− x(k)||2] ⇒ γi(k) > γj(k) (3.4)
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Algorithm 1 Estimation phase for node i at iteration k

Input: xi(k − 1), Pi(k − 1)
Output: γi(k), x̂i(k), Ψi(k)

1: x̂−
i (k) = A(k)xi(k − 1)

2: P−
i (k) = A(k)Pi(k − 1)AT (k) +Q(k)

3: if i ∈ Σ(k) then
4: [Pi(k)]

−1 = [P−
i (k)]

−1 +HT
i (k)R

−1
i (k)Hi(k)

5: x̂i(k) = Pi(k){[P
−
i (k)]

−1x̂−
i (k) +HT

i (k)R
−1
i (k)ζi(k)}

6: Ψi(k) = Pi(k)
7: else

8: x̂i(k) = x̂−
i (k)

9: Ψi(k) = P−
i (k)

10: end if

11: γi(k) = 1/Trace [Ψi(k)]

must hold (where E[·] indicates statistical expectation). Finally, xi(k) is the value of

the state estimate obtained after the procedure of node selection.

Each iteration of DKNS consists of two phases: estimation and node selection. In the

former phase, each node performs an individual estimate through a local Kalman filter.

In the latter one, all the nodes agree on the best available estimate in a distributed

fashion. We now describe the two phases in detail at iteration k, therefore assuming

that each node owns the information of the tuple (3.3) at iteration k − 1.

3.2.1 Phase 1: Estimation Phase

The estimation phase is schematized in Algorithm 1. Each node locally runs a Kalman

filter. Specifically, the local Kalman filter starts, at each iteration, from a given state

estimate xi(k − 1) and covariance matrix Pi(k − 1), which are the best ones available

over the network, obtained and propagated during iteration k− 1. If node i is a sensing

node, at iteration k, i.e., i ∈ Σ(k), a full Kalman filter iteration is run (lines 1–2 and

4–6 of Algorithm 1). On the contrary, in the case of a predicting node, i.e., i ∈ Λ(k),

only the prediction part of the Kalman filter is run (lines 1–2 and 8–9). Then, each node

ends the estimation phase by computing the perception confidence value γi(k) as:

γi(k)
△
=





1
Trace[Pi(k)]

if i ∈ Σ(k)

1
Trace[P−

i (k)]
if i ∈ Λ(k)

, (3.5)

if node i is a sensing one, the perception confidence value γi(k) is computed on the

basis of the a posteriori error covariance matrix, otherwise, the operation refers to the

a priori error covariance matrix. It is well-known that minimizing the trace of the

error covariance matrix is equivalent to minimize the expected value of the square of
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the magnitude of the error vector [39]. Thus, γi(k) grows with the accuracy of the

estimation performed by node i at time k, and its definition as in Eq. (3.5) satisfies the

requirements stated earlier in Eq. (3.4).

At the end of Phase 1, each node i stores the perception confidence value γi(k), the

local state estimate x̂i(k), and the local error covariance matrix Ψi(k) (output line of

Algorithm 1).

3.2.2 Phase 2: Node Selection Phase

The node selection phase is run to select the node with the highest perception confidence

value and to propagate its estimate and the corresponding error covariance matrix over

the network in finite time. Node selection is achieved in a totally distributed fashion

and its working principle is described by Algorithm 2. The core of the algorithm is a

max-consensus protocol [16], described in lines 4–11 of Algorithm 2. At this stage, a new

discrete-time index k̄ is defined, making the max-consensus protocol run on a different

sampling time (typically, shorter than the one associated with the time-discrete index

k, which is the actual sampling time of DKNS).

Algorithm 2 works as follows: node i initially sets its internal variables to values obtained

from Phase 1 (line 1–3 of Algorithm 2), i.e., the perception confidence value (by ini-

tializing ςi(0)), the state estimate (by initializing χi(0)), and the covariance matrix (by

initializing Πi(0)). Then, a protocol based on max-consensus lets the nodes’ variables

ςi(·) to converge to the maximum of all perception confidence values over the network

(line 7). Correspondingly, line 8 selects the node that performed the estimate of the

process state with the best accuracy (by storing the index of the selected node in µi),

and lines 9–10 select the corresponding best estimate and error covariance matrix. It

can be proved that a max-consensus protocol converges in a number of iterations equal

to the communication graph diameter [40]. Thus, the node selection loop (lines 4–11)

is run for exactly D steps, where D is the diameter of the graph G, after which the

convergence of all the node variables is guaranteed1. At the convergence of the node

selection loop, after D time steps, µi(D) will take the index of the node which performed

the best estimate (line 8), χi(D), and Πi(D) will take the corresponding estimate and

covariance estimate matrices, respectively (lines 9–10). At the end of Phase 2, an agree-

ment both on the best estimate of the process state and on its corresponding a posteriori

covariance matrix is achieved. Each node will store these values in its variables xi(k)

and Pi(k) (lines 12–13), respectively. These two variables will be provided to Phase 1

1Convergence issues will be dealt with in detail later in this section
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Algorithm 2 Node Selection phase for node i at iteration k

Input: γi(k), x̂i(k), Ψi(k)
Output: xi(k), Pi(k)

1: ςi(0) = γi(k)
2: χi(0) = x̂i(k)
3: Πi(0) = Ψi(k)
4: for k̄ = 1 to D do

5: Send(ςi(k̄ − 1),χi(k̄ − 1),Πi(k̄ − 1))
6: Receive(ςj(k̄ − 1),χj(k̄ − 1),Πj(k̄ − 1)), ∀j ∈ Ni

7: ςi(k̄) = maxj∈Ni∪i {ςj(k̄ − 1)}
8: µi(k̄) = argmaxj∈Ni∪i {ςj(k̄ − 1)}
9: χi(k̄) = χµi(k̄ − 1)

10: Πi(k̄) = Πµi(k̄ − 1)
11: end for

12: xi(k) = χi(D)
13: Pi(k) = Πi(D)

of the next iteration (k+ 1). This will let the Kalman filter of each node start from the

best available estimate, and therefore to improve its individual prediction performance.

Remark 3.1. Line 7 of Algorithm 2 requires a tie-break rule in the case that the maximum

value for ςj(k̄ − 1), j ∈ Ni, is allocated in more than one of the neighboring nodes. The

tie-break rule must guarantee convergence and has to be performed in a distributed way.

Examples of tie-break rules are: choosing an index at random among those corresponding

to the maximum, or performing, on lines 9 and 10, an average of χµi and Πµi along the

involved indices µi, rather than a variable assignment.

Remark 3.2. We observe that either sensing or predicting nodes can be selected as those

possessing the best estimate of the process state. In the case of heterogeneous sensor

networks, in fact, it is possible that a predicting node that makes a prediction starting

from a very accurate past measurement performs better than a sensing node which is

directly measuring with poor accuracy.

3.2.3 Convergence Properties

The DKNS algorithm makes each node converge in finite time to the estimate of the pro-

cess state owned by the node with the highest perception confidence value. This is made

possible thanks to the convergence property of the max-consensus protocol [16], which

are here briefly recalled before providing our main result on the DKNS convergence.

Theorem 3.3. Consider a network of n dynamical systems, connected over an undi-

rected graph G = {I, E}. Each dynamical system has a state variable φi(k̄) ∈ R, i ∈ I,
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k̄ ∈ N0. The discrete-time max-consensus protocol is defined as

φi(k̄ + 1) = max
j∈Ni

⋃
i
φj(k̄). (3.6)

Assume that each node of the network G runs the protocol in Eq.(3.6). If G is connected,

then

φi(k̄) = φj(k̄)

= max (φ1(0), · · · , φn(0)) ∀i, j ∈ I, ∀k̄ ≥ D,

where D is the graph diameter.

Proof. The proof is provided in Theorem 4.1 of [16].

The following theorem proves the convergence of the DKNS.

Theorem 3.4. Given a network of n nodes modeled as an undirected connected graph

G = {I, E}, and assuming that each node runs the DKNS algorithm; then, at the end of

each discrete iteration k ∈ N0, the following holds: xi(k) = xj(k) = xj⋆(k)(k) ∀ i, j ∈ I,

and j⋆(k) = argmax
j∈I

γj(k).

Proof. The proof comes from the analysis of the steps of Algorithm 2. We observe that

line 7 in Algorithm 2 is the update rule of the discrete-time max-consensus protocol over

the perception confidence values of each node of the network (assigned to variables ςi(k̄)

in Algorithm 2). Theorem 3.3 proves that this protocol converges to the maximum of

the initial states in a finite number of steps, upper bounded by the graph diameter D,

if and only if G is connected. Therefore, in D steps, it is guaranteed that

ςi(D) = ςj(D) = max
l∈I

ςl(0) = max
l∈I

γl(k), ∀ i, j ∈ I.

Correspondingly, in D steps, the assignment in line 8 allows each node to store the

index of the node where the maximum of the perception confidence values is located,

i.e., µi(D) = j⋆(k) = argmax
l∈I

γl(k). Thus, χi(D) = χj⋆(k) and Πi(D) = Πj⋆(k), ∀i ∈ I.

Finally, the assignment in line 12 concludes the proof of the theorem.

Remark 3.5. A single iteration of DKNS consists of two cascaded phases, therefore its

duration is the sum of the durations of the two phases. The estimation phase consists

of a sequence of variable assignments, therefore it terminates in finite time, indicated as

te. Taking into account the result of Theorem 3.4, the convergence of the node selection

phase is guaranteed if the node selection loop (lines 4–11 in Algorithm 2) is run for at
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least D steps. We observe that, even though the knowledge of a global quantity such as

the network diameter is required, this quantity can be easily computed in a distributed

way before the algorithm starts [41]. Real time applications of DKNS require that

the node selection phase is completed before a new instance of the estimation phase

is started. Thus, defining ε the sampling time associated to the single iteration of the

DKNS algorithm (related to discrete-time index k), and τ the sampling time associated

to one iteration of the node selection loop (i.e., associated to the discrete-time index k̄)

in Algorithm 2, the inequality te+Dτ < ε, must hold. We also remark that the diameter

of the graph D is related to the number of nodes n and to the graph topology. Thus,

the network structure will concur to impose constraints to the choice of the sampling

time ε.

3.2.4 Analysis of the Node Selection Mechanism

In a CKF with multiple measurements [32], a fusion center collects the measurements

ζi(k), the measurement output matrices Hi(k), and the observation covariance matrices

Ri(k), from all nodes i, i = 1, . . . , n. Then, a Kalman filter is run at the fusion center

level [42]. In distributed approaches, no centralization of the information is admitted.

Hence, each node can communicate with a limited set of neighbors. Distributed Kalman

filters have been proposed in literature to overcome the limitations of centralized ap-

proaches; yet retaining some aspects of hierarchical organization [34] [33]. Distributed

versions of CKF needs to locally approximate the covariance matrix.

[P(k)]−1 = [P−(k)]−1 +

n∑

j=1

HT
j (k)R

−1
j (k)Hj(k) (3.7)

at the node level 2. It is straightforward to note that in CKF all the sensors contribute

to the update of the a posteriori covariance matrix. On the other hand, in distributed

approaches each node approximates locally the summation in Eq. (3.7). For example,

this is done through a local summation within the neighborhood of each node, as

[Pi(k)]
−1 = [P−

i (k)]
−1 +

∑

j∈Ni

HT
j (k)R

−1
j (k)Hj(k), (3.8)

where [Pi(k)]
−1 is the local estimate of the centralized a posteriori inverse covariance

matrix (3.7) carried out by node i, and Ni is the set of the direct neighbors of node i.

Theorem 3.6. Given a network of n nodes modelled as an undirected connected graph

G = {I, E}, and assuming that each node has limited sensing capability, that is, the

2The update of the covariance matrix is written by using the well-known information form of the
Kalman filter [42].
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measurement set is given by ζj(k) = Hj(k)x(k) + νj(k), with j ∈ Σ(k); then, running

DKNS is equivalent to run a Centralized Kalman Filter with multiple measurements and

state-dependent switching dynamics, whose evolution is dictated by:

x̂−(k) = A(k)x̂(k − 1), (3.9)

P−(k) = A(k)P(k − 1)AT (k) +Q(k), (3.10)

[P(k)]−1 = [P−(k)]−1 + 1Xj⋆(k)
(x(k))[HT

j⋆(k)(k)R
−1
j⋆(k)(k)Hj⋆(k)(k)], (3.11)

x̂(k) = P(k){[P−(k)]−1x̂−(k) + 1Xj⋆(k)
(x(k))[HT

j⋆(k)(k)R
−1
j⋆(k)(k)ζj⋆(k)(k)]}; (3.12)

where j⋆(k) = argmax
j∈I

γj(k),

γj(k)
△
=





1
Trace[Pj(k)]

if x(k) ∈ Xj(k)

1
Trace[P−

j
(k)]

if x(k) 6∈ Xj(k)
,

P−
j (k), Pj(k) are, respectively, the a priori and a posteriori error covariance matrices

associated to the measurement ζj(k), j ∈ Σ(k), and 1Xi(k)(·) is the indicator function of

the set Xi(k), 1Xi(k) : R
m → {0, 1}, defined as

1Xi(k)(x(k))
△
=

{
1 if x(k) ∈ Xi(k)

0 if x(k) 6∈ Xi(k)
.

Proof. The proof comes from the analysis of the steps of Algorithms 1 and 2. Let us

focus on iteration k. Thanks to Theorem 3.4, we already proved that, at the start of

Algorithm 1, all the nodes in the network own the state estimate and the covariance

matrix of the node selected at the end of iteration k−1 of Algorithm 2, that is, xi(k−1) =

x̂j⋆(k−1)(k − 1), Pi(k − 1) = Pj⋆(k−1)(k − 1), ∀i ∈ I. Lines 1 and 2 of Algorithm 1 are

common to all the network nodes, thus all the a priori state estimations and a priori

error covariance matrices are identical, for any node i ∈ I, and are given by

{
x̂−
i (k) = A(k)xi(k − 1)

P−
i (k) = A(k)Pi(k − 1)AT (k) +Q(k)

, ∀i ∈ I. (3.13)

The computation of the a posteriori differs, on the other hand, between sensing and

predicting nodes. Namely, for sensing nodes,

{
[Pi(k)]

−1 = [P−
i (k)]

−1 +HT
i (k)R

−1
i (k)Hi(k)

x̂i(k) = Pi(k){[P
−
i (k)]

−1x̂−
i (k) +HT

i (k)R
−1
i (k)ζi(k)}

, ∀i ∈ Σ(k),
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is computed, while, the following holds for predicting nodes

{
Pi(k) = P−

i (k)

x̂i(k) = x̂−
i (k)

, ∀i ∈ Λ(k).

Each node possesses its own perception confidence value, so that, γi(k), ∀i ∈ I, is

available to Algorithm 2. Theorem 3.4 proves that, in finite time, all the nodes store

in xi(k) and in Pi(k), in finite time, the state estimation and its corresponding error

covariance matrix of a specific node, that is, node j⋆(k) = argmax
j∈I

γj(k). It can be easily

verified that, if j⋆(k) is a sensing node, that is, x(k) ∈ Xj⋆(k),





[Pi(k)]
−1 = [P−

i (k)]
−1 + [HT

j⋆(k)(k)R
−1
j⋆(k)(k)Hj⋆(k)(k)]

xi(k) = Pi(k){[P
−
i (k)]

−1x−
i (k) +HT

j⋆(k)(k)R
−1
j⋆(k)(k)ζj⋆(k)(k)}

, ∀i ∈ I, (3.14)

is obtained. On the other hand, if j⋆(k) is a predicting node, that is, x(k) 6∈ Xj⋆(k),

{
Pi(k) = P−

i (k)

xi(k) = x̂−
i (k)

, ∀i ∈ I, (3.15)

holds. Noting that Eqs. (3.13)—(3.15) hold for all i ∈ I, so that they can be made

node-independent by dropping index i, that Eqs. (3.14)–(3.15) are mutually exclusive at

any given time instant k, and that they can be unified thanks to the indicator function

1Xj⋆(k)
(x(k)), the theorem is proved.

3.3 Application of the Distributed Kalman filtering via

Node Selection

In this section, we apply the DKNS to the distributed tracking of a maneuvering target

performed by a network of heterogeneous sensors with limited sensing capability. To this

aim, we specialize to the case of interest some of the equations concerning the sensing

process. As it will be shown in the chapter, different sensing ranges characterize the

heterogeneity of the sensor network. Due to the limited sensing capability, only a subset

of nodes can sense the target during a given time interval, and some uncovered areas of

the space may even exist. The aim of distributed target tracking is to estimate and track

the target state in the environment in discrete-time, by using a distributed algorithm

involving message-passing between one-hop nodes of a sensor network. We analyze

the DKNS performance in the distributed target tracking scenario through numerical

simulations and experimental trials.
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3.3.1 Simulation Assessment

First, we formulate the details of the distributed tracking problem for the simulation

setup, providing suitable models for the environment, the target, and the sensor nodes.

We evaluate numerically the performance of the proposed approach, and we make a

comparison between DKNS applied to target tracking, the Centralized Kalman Filter

with multiple measurements (CKF), and two more target tracking algorithms based on

distributed Kalman filtering [34] [33].

3.3.1.1 Environment, Target, and Network Model

The network and the target lay on a two-dimensional environment E
△
= [−L/2, L/2] ×

[−L/2, L/2] ⊂ R2, L > 0, that is a square field with side length L. An earth-fixed

Cartesian coordinate system {W} = O − xy is used to locate points in E. The target

describes a trajectory ξ(s) ∈ E where ξ(s) are the Cartesian coordinates of the target

position at the continuous time s ∈ R+. The estimates of the target state are carried

out in discrete-time, so that a sampling ξ(k) = [ξx(k) ξy(k)]T ∈ E, k ∈ N0, is performed

by the network nodes. The discrete-time index k is associated to a constant sampling

time ε. Moreover, we denote with the vector v(k) = [vx(k) vy(k)]T ∈ R2 the target

velocity at the discrete-time k. Finally, the state vector to be estimated is defined as

x(k) = [ξx(k) vx(k) ξy(k) vy(k)]T .

A network of n sensors is deployed in the environment E, so that each sensor is located at

the position pi = [pxi p
y
i ]
T ∈ E. Sensors are connected through an undirected communi-

cation graph G = {I, E}, with node set I = {1, . . . , n}. The edge set E is determined by

a communication radius, rc, identical for each node, so that E = {(i, j) | ||pi−pj || ≤ rc}.

This is also known as a rc-disk communication graph [43]. Moreover, we assume that

the graph G is connected and has diameter D. Finally, the limited sensing capability of

each sensor is expressed via a suitable sensing radius, rsi . A sensor can perform a direct

measurement of the target state if and only if the target is located within its sensing

range, so that the sensing set Xi of the generic node i is given by

Xi =
{
x ∈ R4 | ||ξ − pi|| ≤ rsi ,∀v

}
, ∀i ∈ I. (3.16)

Please note that the sensing radius, and consequently its related sensing set, are consid-

ered constant in time for ease of presentation. Nevertheless, as proved in Section 3.2,

the approach can be extended to time-varying quantities. Figure 3.1 shows an abstract

representation of the sensor network in the case of four nodes.
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Figure 3.1: Abstract representation of the distributed
target tracking scenario.

3.3.1.2 Sensor Network Node Model

For the simulation campaign, we consider range-bearing sensors with limited sensing

capability. Range-bearing sensors are able to perform direct measurements of the target

distance, di(k), and bearing, ϑi(k), with respect to a sensor-fixed reference coordinate

system. We assume that each sensor node is aware of its position pi and orientation

ϑW ,i, with respect to the earth-fixed coordinate frame, so that it is able to provide

an estimate of the target position with respect to the latter frame through a simple

coordinate transformation.

Range-bearing measurements are affected by noise, which we assume to be white Gaus-

sian with zero mean and covariance matrix Si(k). Assuming ηi(k) = [di(k) ϑi(k)]
T , the

related covariance matrix is given by [42]:

Si(k) = E[ηi(k)ηi(k)
T ] =

[
σ2di(k) 0

0 d2i (k)σ
2
ϑi
(k)

]
.

In range-bearing measurements, the noise grows with the distance of the target from

the sensor. Therefore, to consider a realistic sensor model, a non constant variance is

used. In [44], it is shown that for range-bearing sensors the variance has an almost

constant trend at small distance, whereas it increases exponentially when approaching

the maximum measurable value. We refer to the experimental data reported in [44], and

select the interpolation functions

σ2di(k) = kd

(
1 + ekr[(di(k)−rsi )/rsi ]

)
, di(k) ≤ rsi , (3.17)

and

σ2ϑi(k) = kϑ
di(k)

rsi
, di(k) ≤ rsi , kϑ > 0, (3.18)
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Figure 3.2: Trend of the standard deviation of the mea-
surement noise σdi

, for a generic node i, versus the dis-
tance from the target, as modeled by Eq. (3.17). The
values on the abscissa are normalized with respect to
the value of the sensing range (rsi ).

whose trends are suitable to fit the provided experimental data. It is clear that the

values of σdi(k) and σϑi(k) are not defined for di(k) > rsi . Figure 3.2 shows the trend

of σdi(k), as expressed in Eq. (3.17).

According to the range-bearing model [42], we assume that a sensing node (i.e., i ∈ Σ(k))

is able to compute the position of the target with respect to the earth-fixed Cartesian

coordinate frame, as

ζi(k) = [pxi + di(k) cos(ϑW ,i + ϑi(k)), p
y
i + di(k) sin(ϑW ,i + ϑi(k))]

T . (3.19)

Keeping in mind that each node runs a local Kalman filter, and assuming that sensing

nodes cannot measure directly the target velocity, we formalize the observation equa-

tion (3.19) as

ζi(k) = Hx(k) + νi(k), (3.20)

where H is the measurement output matrix, defined as:

H =

[
1 0 0 0

0 0 1 0

]
,

and νi(k) ∈ R2 is the measurement noise, for which each component is assumed to be

white Gaussian with zero mean and covariance matrix Ri(k), which is approximated

by [42] (for higher readability, we drop the time dependence only in the following ex-

pression)

Ri(k) ≃

[
σ2di sin

2(ϑi) + d2i σ
2
ϑi
cos(ϑi) cdϑ sin(ϑi) cos(ϑi)

cdϑ sin(ϑi) cos(ϑi) σ2di cos
2(ϑi) + d2i σ

2
ϑi
sin(ϑi)

]
,
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where cdϑ(k) = σ2di(k) − d2i (k)σ
2
ϑi
(k). The approximation arises from the assumption

that σdi(k) ≪ di(k) and σϑi(k) ≪ 1.

The dynamical model of the target motion, embedded in each node’s Kalman filter, is

defined as:

x(k) = Ax(k − 1) + υ(k), (3.21)

where

A = I2 ⊗

[
1 ε

0 1

]
,

ε is the time step, ⊗ is the Kronecker product of matrices, and υ(k) ∈ R4,

υ(k) = [υξx(k) υvx(k) υξx(k) υvy(k)]
T ,

is a noise term that is white Gaussian with zero mean and covariance matrix Q, i.e.,

υ(k) ∼ N(0,Q). Here, we assume

υξx(k) =
ε
2υvx(k), υξy(k) =

ε
2υvy(k), (3.22)

to take into account the influence of the maneuvering target on the positional coordi-

nates [42]. Thus, matrix Q, is given by

Q =




ε2

4 σ
2
υvx

ε
2σ

2
υvx

0 0
ε
2σ

2
υvx

σ2υvx 0 0

0 0 ε2

4 σ
2
υvy

ε
2σ

2
υvy

0 0 ε
2σ

2
υvy

σ2υvy



, (3.23)

where σ2υvx and σ2υvy are the variances of the stochastic processes υvx(k) and υvy(k),

respectively.

3.3.1.3 Tracking Setup

The performance of the DKNS algorithm is analyzed by running a campaign of Monte

Carlo simulations by means of the Multi Agent Simulation Framework [45]. Each set of

experiments consists of the tracking of 100 repeated random target trajectories. With

the aim of comparing our approach with KCF and DKF [34] [33], we simulate a sensor

network tracking the position of a maneuvering target moving inside a square field E

with side length L = 90 and with a communication radius set as rc = 3 L
⌈√n⌉+1

+ 2. The

nodes are placed at random positions in the environment, yet preserving connectedness

of the network. In order to evaluate more in depth the performance of the DKNS, we

define the percentage sensing coverage ratio ρ, that is the ratio between the sensing area
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covered by all nodes, and the total area of the field E,

ρ =
area(

⋃n
i=1Xi)

area(E)
· 100 , (3.24)

where area(E) = L2, is the area of the environment, and, with a little abuse of notation,

area(∪ni=1Xi) is the area of the union of all Xi sensing sets. Given the random distribution

of the positions of the sensor nodes in the environment, we achieve a desired coverage

ratio ρ by setting at first the sensing radius rsi , for each node i ∈ I, to a suitable value rρ,

computed to guarantee the coverage ratio ρ. A suitable algorithm to find rρ is adopted,

which takes into account the existence of overlapping sensing areas. Then, heterogeneity

in the sensor network is achieved by adding to the sensing radii rsi , for each node i ∈ I,

a Gaussian noise with zero mean and standard deviation σρ = 0.03rρ. The initial guess

of the estimated target state is xi(0) = 0, ∀i ∈ I. Moreover, the standard deviation συvx

and συvy of the process noise covariance matrix of the Kalman filter in Eq. (3.23), are

chosen as συvx = συvy = 3, ∀i ∈ I. The standard deviations related to the range-bearing

sensing process, σdi(k) and σϑi(k), are modeled by Eqs. (3.17-3.18), setting kd = 1.056,

kr = 10.07 and kϑ = 0.1, in order to fit the experimental dataset in [44]. Finally, again

for comparison purposes we set P(0) = 10σ20I4, where σ0 = 5.

Among the several aspects regarding performance assessment in target tracking applica-

tions [22], in this work we will focus on tracking accuracy, by evaluating the mean square

error between estimated and actual target trajectory. As a metric for target tracking

accuracy, the following mean square error (in norm) is computed:

α =
1

kf

kf∑

k=1

‖H xi(k)− ξ(k)‖2 (3.25)

where kf is the duration (in time samples) of the target trajectory, ξ(k) is the actual

target position at discrete-time k, H xi(k) is any of the global target position estimates

xi(k) at time k. We remind that, as proved in Theorem 3.4, the global target position

estimates are identical for each network node. Obviously, the ideal condition of perfect

tracking is α = 0, and the tracking accuracy is better as long as α is smaller.

Furthermore, we define a third index, ϕ, which is the average percentage of sensing

nodes during a single run. It is defined as

ϕ =
1

kf

kf∑

k=1

|Σ(k)|

n
· 100 , (3.26)

where | · | is the set cardinality operator.
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Figure 3.3: DKNS simulations of a random generated target trajectory for a network
of n = 20 heterogeneous nodes. The target comes from the bottom right corner of
the environment, and the filled circle indicates its last position. (A) A simulation of
the target tracking with ρ = 45%. (B) The tracking of the same target trajectory
with ρ = 78%. In the latter case, due to the increasing coverage ratio ρ, the tracking
accuracy α is higher than in the former.

20 40 60 80 100

0

100

200

300
n=10

n=25

n=50

n=100

(a)

20 40 60 80 100

0

1

2

3
n=10

n=25

n=50

n=100

(b)

Figure 3.4: Performance evaluation of DKNS algorithm. Values of α (A) and ϕ (B)
as function of the coverage ratio ρ for networks with n = 10, n = 25, n = 50, and
n = 100 nodes. Each point is computed by averaging 100 random trajectories.
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3.3.1.4 DKNS Performance Evaluation

Two single experiments of the aforementioned simulation campaign are illustrated in

Figure 3.3. In particular, the same trajectory is estimated via the DKNS algorithm by a

network of n = 20 nodes, under two different coverage ratio conditions, and the estimated

trajectory performed by the sensor network is plotted against the one of the target. It is

important to note that, keeping constant the number of sensor nodes n, the performance

improves as long as the coverage ratio ρ increases. As an example, in Figure 3.3(a),

a tracking accuracy α = 42.81 is obtained with a coverage ratio ρ = 45%, while in

Figure 3.3(b) a tracking accuracy α = 2.47 is obtained with a coverage percentage of

ρ = 78%.

It can be noted from Figure 3.3, that when the target is not sensed by any node, the

estimate is performed only through the linear model defined in Eq. (3.9). Then, when

the target comes back into the sensing set of any sensor, the estimate is performed by

exploiting the whole Kalman filter, thus improving the corresponding estimate.

An extensive evaluation of the performance of DKNS, made on the entire simulation

campaign, is illustrated in Figure 3.4. In Figure 3.4(a), the tracking accuracy α is

plotted versus the coverage ratio ρ, for different values of the number of nodes n. As

can be noted, the tracking accuracy improves as long as the coverage ratio ρ increases.

Furthermore, it can be observed that the performance tends to be independent from the

number of nodes when the coverage ratio ρ grows (in Figure 3.4(a), the performance is

practically independent from the number of sensors for ρ > 60%). It can also be noted

that the same tracking accuracy α can be obtained for different pairs of the number

of nodes n and of the coverage ratio ρ. For example, the performance index α = 100

is achieved with (n = 10, ρ = 33.82%), (n = 25, ρ = 27.52%), (n = 50, ρ = 30.73%),

(n = 100, ρ = 24.12%). From the simulation results, it is evident that to guarantee a

desired accuracy, the number of network nodes and the coverage ratio are of fundamental

importance. Nevertheless, one can make up for a small number of sensor nodes via the

setting of a suitable coverage ratio, obtained both an effective spatial deployment, and

by setting large enough sensing radii. The last consideration can help in overcoming,

in real-time applications, the growth of the convergence time of the max-consensus

algorithm, which increases with the diameter D of the network, that can be influenced

by the number of nodes n (See Section 3.2.2).

Figure 3.4(b) illustrates the average number (in percentage) of sensing nodes ϕ during

a run of the algorithm, versus the coverage ratio ρ, for different values of the number of

nodes n.
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Figure 3.5: Comparison between DKNS and three other tracking algorithms: CKF,
KCF, and DKF. Values of α as function of the coverage ratio ρ for networks with
n = 10 (A), n = 15 (B), n = 25 (C), and n = 50 nodes (D). Each point is computed by
averaging 100 random trajectories.

3.3.1.5 Comparison with other Target Tracking Algorithms based on Dis-

tributed Kalman Filtering

In this section, we compare the performance of the DKNS algorithm with a centralized

and two distributed target tracking approaches based on Kalman filtering. The first

algorithm is the Centralized Kalman filter with multiple measurements (CKF) [32],

which is known to be optimal in the sense of the minimization of the error variance, thus

exhibiting the best performance. The second algorithm is the Kalman Consensus Filter

(KCF) with message passing (Algorithm 3 in [33]), and the third one is the Diffusion

Kalman Filter (DKF), presented by [34].

The comparison is performed through 100 repeated random trajectories for different

values of the coverage ratio ρ, and of the number of sensor nodes, n. More specifically,

the average value of α over the 100 test trajectories has been computed for each value

of ρ, and compared with the corresponding performance parameter obtained through

the CKF, KCF, and DKF algorithms, run on the same test trajectories. Figure 3.5
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Figure 3.6: (a) Values of ϕ as function of the coverage ratio ρ for networks with
n = 10, 15, 25, 50 nodes. (b) Values of α as function of the index ϕ for a network of
n = 15 nodes.

shows that the DKNS algorithm generally outperforms KCF and DKF and, for a given

value of the coverage ratio ρ, the gap in performance generally increases as long as the

number of network nodes increases. Nevertheless, the gap in performance decreases as

long as the coverage ratio ρ increases. It is also important to note that DKNS closely

approaches the optimal performance of the CKF, as long as the number of network

nodes increases. The explanation of this behavior resides in the trend of the average

percentage of sensing nodes ϕ, illustrated in Figure 3.6(a). In fact, keeping constant

the coverage ratio ρ, and increasing the number of network nodes, yields a decrease of

the average number of sensing nodes ϕ. Hence, it can be noted that the lower is ϕ,

the better is the approximation of the centralized tracking exhibited by DKNS. This is

well explained by considering that the one-term approximation of Eq. (3.7), expressed in

Eq. (3.11), is better as long as the number of sensing nodes is smaller. This statement is

supported by the numerical results illustrated in Figure 3.6(b), where it can be observed

that the performance of DKNS is quite independent from the value of ϕ, which is not the

case when KCF and DKF are considered. Moreover, it is evident that the application of

DKNS is not the best option in any case: in fact, when the average number of sensing

nodes ϕ grows, KCF and DKF tend to perform better than DKNS. In our simulations,

this happens for ϕ > 20% for DKF, and for ϕ > 57% for KCF.

3.3.2 Experimental Evaluation

In this section, we test the DKNS for target tracking purposes in a real world implemen-

tation. The tracking setup is part of the Distributed Ambient Assisted Living (DAAL)

framework developed at ISSIA-CNR [17]. The DAAL system is a heterogeneous sensor

network for distributed monitoring of people in an indoor environment. It is composed
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Figure 3.7: Structure of a Fixed Agent: ROS and NO-ROS environments with dis-
tributed and local modules.

by a network of fixed cameras and mobile robots, i.e., fixed and mobile agents3. Integra-

tion among the various agents is performed via a distributed control architecture which

uses a wireless network as a communication channel. The people tracking capability

of the DAAL is implemented using the DKNS algorithm. Before analyzing the DKNS

performance in a real-world scenario, we briefly introduce the components of the DAAL

system.

3.3.2.1 DAAL fixed agent

The fixed agent’s functionalities run on a workstation linked to the camera by a cabled

connection. The schematic representation of the interconnections among the components

of a fixed agent module is shown in Fig. 3.7. For each camera several threads integrated

in the Robot Operating System (ROS) 4 framework are implemented.

The local ROS nodes constitute the perception part of the agent. Each agent is con-

nected with a camera and the image flow is captured by the ROS driver, then the per-

ception pipeline is implemented, including modules such as [21]: (a) Motion Detection,

the binary shape of moving objects (e.g., people) is extracted; (b) Shadow Removal, the

shadow pixels need to be removed, as they alter the real shape of objects and decrease

the precision of their localization; (c) Object Tracking, the detected moving objects, after

shadow removal, are tracked over time. Statistical (tracked object life time) and spa-

tial information are extracted for each of them; (d) 3D Moving Object Localization, the

intersection of the central axis of the rectangular bounding box containing the moving

region with its lower side provides the estimate of object position on the ground plane.

3Hereinafter, in this section, the network nodes will be called agents in order to avoid ambiguities in
referring to ROS nodes.

4http://www.ros.org
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Figure 3.8: The measurement error model for one of the cameras: f(x) = a ebx. The
error is limited when the sensor-target distance is under 7-8 m, and, above that, the
error increases. This suggests that the camera should be deployed ensuring a maximum
distance to the object under 7-8 m

The corresponding 3D position is evaluated using a pre-calibrated homographic matrix

between the image plane and the 3D ground plane. On the other hand, the distributed

NO-ROS nodes are enabled to perform three different functions: to control the agent op-

erations (Agent Supervisor), to manage the communication (Communication Manager),

and to execute distributed algorithms, such as the DKNS.

As explained in previous sections, the DKNS requires a model of the measurement

error of each sensor composing the network. To this aim, the measurement error of the

cameras has been characterized empirically noting that it depends on the distance of

the target relative to the sensor. We characterize the error model by fitting a series of

measurement errors obtained by the comparison of the position measured by the camera

and the real position of the target (the real position of the target is retrieved by means

of a theodolite). Figure 3.8 shows the model fitted as an exponential function for one of

the cameras:

f(x) = a ebx, (3.27)

where a = 0.009269 ± 0.0074 and b = 0.3258 ± 0.0696 are the value of the coefficients

(with 95% confidence bounds) defining the actual function f(x).

3.3.2.2 DAAL mobile agent

The mobile agents, i.e. mobile robots, are equipped with sensory devices to interact

with the environment. Every mobile agent is able to localize itself in the environment

and to safely navigate avoiding static and dynamic obstacles. It is also able to identify

and track the position of a target in the environment.

A schematic representation of a mobile agent is shown in Fig. 3.9. ROS has been adopted

for sensor acquisition and processing, and for the navigation control of the mobile robot.

The navigation functionalities are provided through the Navigation Stack, a standard
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Figure 3.9: Structure of a Mobile Agent: ROS and NO-ROS environments with
distributed and local modules.

ROS metapackage 5. The Navigation Stack is directly connected with the robot sensors

and motor drivers (robot drivers) and it enables the robot to navigate in a known

environment avoiding obstacles. Moreover, the navigation stack was integrated with a

novel motion controller, which takes into account motion constraints given by the people

tracking and following tasks. The mobile agents are equipped with an RGB-D sensor,

namely the Microsoft Kinect camera, to detect people in the environment. The Kinect

sensor produces a 3D data representation, which allows the positions of a group of people

in the environment and their movements to be detected. In the OpenNI Tracker, people

are identified in the scene captured by the Kinect camera onboard the robot, and then

a single person of interest is selected (e.g., the person closest to the robot). Then,

a tracking algorithm keeps track of the position of that person (People Tracker) and

a control algorithm (Motion Control) allows the robot to move, avoiding obstacles in

the environment, toward the person in order to improve the tracking performance. We

model the measurement error of the Kinect sensor according to [46].

The distributed NO-ROS nodes, as for the fixed agent, provide the control of the whole

agent (Agent Supervisor), the management of the communication (Communication Man-

ager), and the execution of the DKNS distributed target tracking algorithm, which, in

this case, uses the position of the person extracted form the ROS–based perception

modules.

5http://wiki.ros.org/navigation
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Figure 3.10: Map of one corridor of the office with overlaid the position of three static
cameras (red circles) and one mobile Node (green triangle).

3.3.2.3 Target tracking experimental tests

We test the DKNS performance during the DAAL system validation which has been

conducted in an ambient assisted living scenario.

The environment setup used for the experimentation of the system is shown in Fig. 3.10.

The picture shows the map of a corridor of the ISSIA-CNR building, as it is built by

the gmapping node, available as a ROS tool, using the laser data acquired by a mobile

robot during a complete exploration of the environment. In this experimentation, three

fixed cameras and one mobile robot have been employed. The positions of the fixed

cameras (C1, C2, C3) and of the mobile robot (R1) are overlaid on the map. The mobile

agent is able to localize itself in the environment and, using its on-board sensors, it is

able to carry out surveillance tasks, such as people detection and tracking. Cameras are

calibrated, therefore events detected in the image plane can be located in the real world

and their positions can be communicated to the mobile agent. The mobile robot can

explore areas that are unobservable by the fixed cameras and improve the accuracy in

detecting events by reaching proper positions in the environment.

The fixed agents are three wireless IP cameras (C1, C2, C3) with different spatial res-

olution, located in different points of the environment (see map in Fig. 3.10). C2 and

C3 are Axis IP color cameras with a 640×480 pixel resolution and an acquisition frame

rate of 10 frames per second. C1 is a Mpixel Axis IP color camera with 1280×1024 pixel

resolution and full frame acquisition rate of 8 frames per second (see Fig. 3.11, on the

right). A calibration step to estimate intrinsic and extrinsic parameters was performed

for each camera using the Matlab Calibration Toolbox6, so that camera coordinates can

be mapped to the global world reference frame provided by the map built by the mobile

robot.

6The toolbox is available on
http://www.vision.caltech.edu/bouguetj/calib doc/index.html



Chapter 3. Distributed Estimation in Limited Sensing Frameworks 31

Figure 3.11: The agents of the network. On the left, the mobile agent PeopleBot.
The robot is equipped with a laser range-finder SICK LMS200 and a Kinect. On the
right, two different AXIS cameras: on the top, a Mpixel Axis IP color camera with
1280×1024. On the bottom, an Axis IP color cameras with a 640×480 pixel camera.

The mobile agent (denoted as R1 in Fig. 3.10) consists of a PeopleBot mobile robot

platform equipped with a laser range-finder, a Kinect, and an on-board laptop (see

Fig. 3.11, on the left). The SICK laser is connected with the embedded robot control

unit. The Kinect camera and the PeopleBot control unit are connected with the laptop,

via a USB cable and a crossover cable, respectively. The laser range-finder is used

to build a map of the environment and to localize the vehicle. The Kinect, whose

field of view is 58 degrees horizontal, 45 degrees vertical, 70 degrees diagonal, and the

operational range is between 0.8 meters (2.6 ft) and 3.5 meters (11 ft) [47], is used for

both navigation (e.g., obstacle avoidance) and high-level tasks such as people detection

and tracking.

The target to be tracked is a person moving in the environment. In the experimentation,

the target follows different trajectories in the environment. It is interesting to visually

quantify the tracking error, to this aim, in Figs. 3.12–3.13 we show two examples of

those trajectories. Specifically, in Fig. 3.12(a) and Fig. 3.13(a), the target trajectory

is denoted by a red line, while the target positions, as estimated by the network, are

denoted by different markers. In Fig. 3.12(b) and Fig. 3.13(b) the target trajectory (red
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Case α [m] σ2α [m2]

Trajectory 1 (Fig. 3.12) 1.15 0.86
Trajectory 2 (Fig. 3.13) 0.75 0.16

Table 3.1: Values of α and σ2
α in the tracking of a person moving in the laboratory

by means of a network of 4 agents, 3 fixed and 1 mobile.
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Figure 3.12: Trajectory 1. The measurement of the position of the target carried out
by each of the sensor of the network (A) and the DKNS trajectory recovered on line
and in distributed fashion by the network (B).

line) is compared with the trajectory (blue dots) as estimated by the DKNS algorithm.

It should be noted that the estimated target position is the same for any agent of the

network, since after convergence of the consensus step of the DKNS algorithm all the

network agents share the same information about the target location. Furthermore, it

should be noted how the Kalman filtering gives a prediction of the position of the target

also when no sensor is measuring the target position.

In order to quantify the tracking performance, we suppose that the target is moving with

a constant velocity and we calculate the mean square error, i.e., the value of the index

α, as done for the simulated case, together with its variance σ2α. Results are collected

in Table 3.1, showing a mean square error of 1.15 m and 0.75 m, for Trajectory 1 and

Trajectory 2, respectively. Figure 3.14 shows two frames, acquired from the Kinect

camera on the robot during the tracking of the Trajectory 1 depicted in Fig. 3.12.

3.4 Conclusions

In this chapter, we have addressed the problem of distributed Kalman filtering over het-

erogeneous sensor networks, by introducing a novel approach, called Distributed Kalman

filtering via Node Selection (DKNS). This is proved to be equivalent to a centralized

Kalman filter with multiple measurements, which evolves according to a state-dependent
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Figure 3.13: Trajectory 2. The measurement of the position of the target carried out
by each of the sensor of the network (A) and the DKNS trajectory recovered on line
and in distributed fashion by the network (B).

Figure 3.14: Two different instants of the tracking of Trajectory 1, acquired from the
Kinect sensor.

switching dynamics, able to select and propagate the best estimate of the process state

through the sensor network in finite time. The optimality of the estimate accuracy is

assessed through the definition of a metric, called perception confidence value, which is

strictly related to the Fisher information.

DKNS is particularly suitable in case of sensor networks with limited sensing capability,

that is, in those cases in which only a few sensors in the network can actually perform

a direct measurement of the process state. In these cases, in fact, fusing information

may often lead to poor results, whereas node selection may constitute a better option.

Conversely, when many reliable measurements are available, information fusion may

result in better performance than node selection.

We have applied the algorithm to the discrete-time tracking of a maneuvering target,

performed by a network of heterogeneous range-bearing sensors with limited sensing

capability, achieving very satisfactory results. From the simulation campaign, the per-

formance comparison with existing algorithms based on sensor fusion reflects what men-

tioned above in general terms, that is, DKNS is a viable and more effective option as

long as limitations on the sensing capability are present. Finally, experimental tests
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obtained using real sensors in a laboratory environment have shown the feasibility of

the proposed algorithm in distributed target tracking scenarios.



Chapter 4

Distributed Estimation of Inertial

Parameters for Cooperative

Manipulation Tasks

In this chapter, we propose a distributed strategy for the estimation of the kinematic

and inertial parameters of an unknown body manipulated by a team of mobile robots.

This constitutes the first fundamental step toward the definition of advanced distributed

control algorithms for multi-robot manipulation tasks. We assume that each robot can

measure its own velocity, as well as the contact forces exerted during the body manipula-

tion, but neither accelerations nor positions of the point of contacts between each robot

and the manipulated body are directly accessible. Through kinematics and dynamics

arguments, the relative positions of the contact points are estimated in a distributed

fashion, also defining an observability condition. Then, the inertial parameters of the

body (i.e., mass, relative position of the center of mass and moment of inertia) are esti-

mated using distributed estimation filters and a nonlinear observer in cooperation with

suitable control actions that ensure the observability of the parameters. The convergence

of the algorithm is proved through Lyapunov stability arguments. Finally, we provide

numerical simulations, including also the study of the effect of measurement noise on

the performance of the proposed approach, which corroborate our theoretical analysis.

The content of this chapter is grounded on two conference papers [48] [49].

35
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4.1 Cooperative Manipulation

Cooperative manipulation by teams of mobile robots has been one of the hot research

topics in the last decades. Many applications have been developed, especially in the

fields of search and rescue [1], disaster recovering [2], cooperative transportation [3],

and service robotics [50]. The objective of cooperative manipulation is to control the

trajectory of a manipulated load toward a desired one with a given accuracy. At the same

time, the forces exerted by the robot’s end effectors should be maintained as close as

possible to given reference values. The dynamics of each manipulator is usually described

according to well-known dynamical models [51] [52], while the so called Augmented

Object Model [53] is used to describe coupled dynamics of the object and the robotic

system. It is important to stress that this model is based on the knowledge of the

mass and the inertia of the object. Similarly, almost all of the work presented in this

section is based on the assumption of the knowledge of the inertial parameters of the

manipulated object, although this assumption is not always verified. In [54], a master-

slave scheme is used for the manipulation of a single object. In order to lead the slave

robots to follow the master, two different strategies are presented. The common feature

to both strategies is that the object and the master manipulator are modeled as a

unique rigid body. In the first strategy, both master and slaves use a position feedback.

On the other hand, in the second strategy only the master is controlled in position,

while slaves use a force-feedback control. In order to apply such control strategies, the

masses of manipulators and objects must be known. Furthermore, the relative positions

between the manipulators are assumed to be known. In [55], an impedance control of

the manipulated object is presented. However, this strategy is based on a centralized

estimation of the forces applied to the object. This is based on the knowledge of the

grasp matrix [56], that is computed on the basis of the distance of the contact points

relative to the center of mass of the object. Also in this case, it is assumed that the

inertial parameters of the manipulated object are known. Furthermore, a distributed

impedance control scheme is presented in [57], that is to say, each manipulator follows

an impedance control approach where there is only an input which is the reference

trajectory of the contact point. The input is derived from the desired object motion

assuming the knowledge of the grasp geometry. In [3], a formation-based cooperative

manipulation control is presented. The strategy is based on the knowledge of the grasp

geometry and of the inertial parameters of the object. The problem is formulated as

an optimal control problem which combines the classical quadratic cost function with

a relaxed formation (rigidity) constraint in terms of an additional biquadratic penalty

term. This relaxed rigidity constraint is justified by the use of an impedance control, by

which minor deviations from the rigidity constraint result in tolerable object stress.
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Path planning for cooperative manipulation is dealt with in [58], where a global path

planner responsible for obstacle avoidance, and a local planner, used for manipulation

tasks, are utilized. Virtual leader-follower-based control schemes are presented in [59].

Aerial applications have also been widely treated, interacting with the payload via cables

or other tools [60] [61] [62]. Passivity theory and a decomposition technique are leveraged

in [63] to design a control framework for cooperative planar manipulation without taking

into account the payload model. In [64], the dynamical model of a non-holonomic

wheeled robot team is joined with that of the payload, but its inertial parameters are

supposed to be known, as well as the positions of the contact points between the robots

and the object.

As seen so far, the knowledge of the inertial parameters is a prerequisite in order to be

able to perform cooperative manipulation algorithms. Moreover, the design of on-line

estimation techniques of inertial parameters of unknown loads makes collective manip-

ulation tasks more effective and is beneficial in terms of reduction of the control effort.

The benefits provided are at least twofold: first, effective control techniques for manipu-

lation, like force control and pose estimation [65] [66], can be applied in order to achieve

better performance with a reduced control effort. Second, manipulation of loads with

time-varying characteristics can be achieved. For example, in transport application it is

not rare that the payload is increased by an external cause, or that part of the load is

lost during the transportation. An effective, real-time estimate of the inertial parameters

would allow to implement adaptive control techniques, as well as event-driven control

algorithms. We observe that, in order to benefit from the advantages of decentralized

cooperative manipulation schemes, inertial parameter estimation must be designed and

implemented in a totally distributed fashion [67].

Not much work has been done in the past concerning distributed estimation of inertial

parameters. Moreover, the main limitations of the existing research reside in the cen-

tralization of the approaches, and in the use of acceleration and absolute positioning

measurements. Notably, a strategy for the estimation of the inertial parameters of a

graspless planar object is presented in [65], where robot fingers push the object and

velocities, acceleration, and exchanged forces are measured and used to estimate the

inertial parameters. However, it is to take into account that relying on acceleration

measurements can amplify the effects of noise. An other example of estimation algo-

rithm for inertial parameters is presented in [66], where an off-line centralized strategy

for rigid loads attached to a single manipulator based on a total least-square approach is

given. Clearly, such a strategy is far from being able to be used in contexts of cooperative

manipulation in which distributed and real-time solutions are usually preferable.
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The research presented in this chapter seeks to overcome the limitations of the exist-

ing approaches, by defining, to the best of our knowledge, the first totally distributed

strategy for the estimation of the inertial parameters of an unknown load manipulated

by a pool of Unmanned Ground Vehicles (UGVs). The proposed approach relies on

the application of contact forces to points whose neither accelerations nor relative (and,

consequently, absolute) positions are measured, and makes use of velocity measurements

only. This chapter is grounded on the preliminary results presented in [48] [49], where

a solution for the same estimation problem is given for noiseless [48], and noisy [49]

measurements, respectively. The proposed strategy is grounded on geometrical and dy-

namical analysis, and leverages the theory of nonlinear observers to estimate the relative

positions of the contact points, which are in turn used to derive the inertial parameters

of the unknown payloads.

The chapter is structured as follows. In Section 4.2, we formalize the problem of the

distributed estimation of the inertial parameters of an unknown load manipulated by

a team of UGVs. In Section 4.3, we introduce the distributed estimation procedure in

the noiseless case, while the noisy case is analyzed in Section 4.4. Simulation results are

reported in Section 4.5, while our conclusions are drawn in Section 4.6.

4.2 Problem Statement

We consider a load modeled as a planar rigid body B, whose center of mass is denoted

with C. The load is manipulated by a group of n ∈ N UGVs, where each UGV can

exert a force fi on a contact point Ci of B, where i = 1, . . . , n. We assume that the

number n is constant and known to all robots1. Consider a planar reference inertial

frame {W} = O − xy and denote with pC ∈ R2 the position of C in {W}, with pCi
the

position of Ci in {W} and with fi the force applied by the i-th robot at Ci and expressed

in {W}. Refer to Figure 4.1 for a graphical representation of the problem setting. We

also assume that friction on the load is negligible with respect to the forces exerted by

robots2.

1This assumption, that is the only source of centralized information needed, can be easily relaxed by
implementing one of the several algorithms for the distributed estimation of a graph size [68] before the
estimation algorithm starts.

2This can be ensured, e.g., by endowing the load with suitable wheels.
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Figure 4.1: Set of n UGVs (six of them are shown) performing a transportation task.
Each robot is able to exert a given force on the object by means of a planar manipulator.
The objective of the network is the distributed estimation of the inertial parameters of
the manipulated load.

Thus, the dynamical model of load B is that of a rigid body subject to n forces f1, . . . , fn,

p̈C =
1

m

n∑

i=1

fi (4.1)

ω̇ =
1

J

n∑

i=1

(pCi
− pC)

⊥T fi, (4.2)

where m ∈ R+ is the mass of B, ω ∈ R is its angular velocity, J ∈ R+ is its moment of

inertia, and the operator (·)⊥ is the linear operator that, given a generic vector ǫ ∈ R2,

ǫ = (ǫx ǫy)T , provides the perpendicular vector

ǫ⊥ = Ωǫ =

(
0 −1

1 0

)

︸ ︷︷ ︸
=Ω

(
ǫx

ǫy

)
=

(
−ǫy

ǫx

)
. (4.3)

We assume that robot i can control the exerted force fi and can perform noisy measure-

ments ˜̇pCi
∈ R2 of the velocity ṗCi

of the contact point Ci,

˜̇pCi
= ṗCi

+ νi, (4.4)

where, νi ∈ R2, νi ∼ N(0,Σi) is a white gaussian noise vector with zero mean and

covariance matrix Σi ∈ R2×2. Note that we do not assume that the robot can measure
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the position of the contact point, nor its acceleration3. Furthermore, we assume that

the robot i cannot set the speed of the contact point at will.

The communication network modeled by an undirected graph G = (I, E), where I =

{1, . . . , n}, is the node set, representing the robot set, E ⊂ I × I is the edge set,

representing unordered pairs of nodes through which one-hop communication channels

are established. The set Ni = {j ∈ I : (i, j) ∈ E} represents the (communication)

neighborhood of robot i. We also assume that the communication graph is connected,

and that the link set E does not change in time.

Problem 4.1 (Inertial Parameters’ Distributed Estimation). Given a network of n robots

moving on a plane and manipulating a load B, with the characteristics described in

Section4.2, design a distributed strategy such that each robot i is able to estimate

1. the mass m of B,

2. the moment of inertia J of B, and

3. the Grasp Matrix, which is function of the relative positions of the contact points

with respect to the center of mass, that is, pCi
− pC ∈ R2. We observe that this

quantity varies in time.

Each robot i can only

1. locally measure the velocity ˜̇pCi
of the contact point Ci;

2. locally control the applied force fi acting on Ci;

3. communicate with its one-hop neighbors, contained in the set Ni.

To focus on the effect of measurement noise on the performance of the estimation algo-

rithm, we assume that control inputs and communications are not affected by noise.

4.3 Ideal Case: Noiseless Velocity Measurements

In this section, we analyze the ideal case where no measurement noise is present, that

is to say, we assume that Σi = 0, for all i ∈ I. This assumption simplifies the problem

and enables the study of the algorithm convergence. The noiseless assumption will be

relaxed in the following section, to deal with a more realistic framework.

3Measuring absolute positions would require additional sensing systems such as GPSs. Measuring
accelerations, on the other hand, is typically prone to noise. Velocity measurements can be instead
reliably performed resorting to sensor systems usually present onboard, such as, odometry, optical flow,
etc..
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Figure 4.2: Block diagram showing the sequence of estimators applied to solve Prob-
lem 4.1.

4.3.1 Estimation Algorithm

Define pG = 1
n

∑n
i=1 pCi

as the geometric center of all the contact points and also define

the relative positions zij = pCi
− pCj

, zi = pCi
− pG, and zC = pG − pC . Note that

pCi
− pC = zi + zC .

We first recall a simple fact that will turn useful later in our study.

Fact 4.1. Denote with z1 and z2 the relative positions of two pairs of points of B

expressed in {W}. Then, consider two time instants t′ and t′′. The following relation,

based on the rigid-body constraint, provides a straightforward way to compute z2(t
′′)

from z1(t
′), z2(t′), and z1(t

′′):

z2(t
′′) = Γ(z1(t

′), z2(t
′), z1(t

′′)) = (4.5)

=

(
z2(t

′)T z1(t′)
)
z1(t

′′) +
(
z2(t

′)T z⊥1 (t
′)
)
z⊥1 (t

′′)

‖z1(t′)‖
.

The proposed distributed estimation algorithm follows a multi-step approach, whose

main parts are thoroughly described in the following of this section. Before going into

the details, we sketch all the steps in chronological order (refer to Fig. 4.2 for a block

diagram representation of the interconnections among steps).

The algorithm starts at time t = t0. Four time instants t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4

are identified, which define when some crucial quantities become available due to the

convergence of some of the estimation steps. After t4, the algorithm has identified the two

constant parameters m and J and will be able to observe the time-varying parameters

pCi
− pC .

Step 1: zij(t) becomes available after t1. Each robot i employs the velocity measure-

ment ṗCi
and the velocities of its neighbors ṗCj

, with j ∈ Ni, to obtain, in a distributed

fashion, an estimate of the relative positions zij(t), j ∈ Ni. This estimation process

needs a short convergence time to retrieve the distance ‖zij(t)‖ between contact points.
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Therefore, zij(t) will be available for any time t ≥ t1, where t1 ≥ t0. This step is detailed

in Sec. 4.3.2;

Step 2: zi(t) becomes available after t1. For any time t ≥ t1, each robot i uses the

relative position measurements zij(t) to compute, using the algorithm in [69], the vector

zi(t);

Step 3: ω(t) becomes available after t1. For any time t ≥ t1, robot i uses the following

formula to compute, locally, the angular velocity of B

ω(t) =
żTijz

⊥
ij(t)

‖zij‖2
, (4.6)

where j can be any possible neighbor in Ni;

Step 4: J becomes known after t2. For all t ∈ (t1, t2) each robot i applies a force fi(t) =

z⊥i (t) (available thanks to Step 2) and observes ω(t) (available thanks to (4.42)). This

allows robot i to reach, at t = t2, an estimate of the constant parameter J . Therefore,

for any t ≥ t2, J is known by all the robots. This step is detailed in Sec. 4.3.3.1.

Step 5: pCi
− pC becomes available after t3. For any t ∈ (t2, t3) each robot i applies

an arbitrary nonzero force fi(t) and measures ω(t). Using the nonlinear observer detailed

in Sec. 4.4.3.2 together with the estimate of J computed in Step 4, each robot is able

to obtain an estimate that eventually converges to the time-varying vector zC . For any

t ≥ t3, each robot is then able to compute the sought vector pCi
− pC using

pCi
(t)− pC(t) = zi(t) + zC(t) = (4.7)

= zi(t) + Γ(zC(t3), zij(t3), zij(t)),

where Γ is defined in (4.5) and j is any neighbor in Ni.

Step 6: ṗC(t) becomes available after t3. For any t ≥ t3, the velocity of the center of

mass is computed locally by each robot i using

ṗC(t) = ṗCi
(t)− ω(t)(pCi

(t)− pC(t))
⊥, (4.8)

where all the quantities in the right hand side of (4.8) are known at any t ≥ t3 thanks

to all the previous steps.

Step 7: m becomes known after t4. For all t ∈ (t3, t4) each robot i applies an arbitrary

nonzero force fi(t) and measures ṗC(t) thanks to (4.8). This allows each robot i to reach,

at t = t4, an estimate of the mass of the object m, as detailed in Sec. 4.4.3.3. Therefore,

at any t ≥ t4 the mass m is known by all robots.
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For any t ≥ t4, the constant parameters m and J are known by every robot (Steps 7

and 4). Furthermore, each robot i can instantaneously compute pCi
(t)−pC(t) (Step 3).

Therefore, Problem 4.1 is solved.

In the following sections we detail the algorithms used in Steps 1, 4, 3, and 7.

4.3.2 Distributed Estimation of Relative Positions of the Contact Points

In this section, we propose an algorithm to compute the relative positions zij , for each

j ∈ Ni, only resorting to local sensing and 1-hop communication.

The fact that Ci and Cj belong to the same rigid body constrains their inter-distance

to be constant over time, i.e.,

zTijzij = const. (4.9)

Taking the time derivative of both sides of (4.9), we obtain a constraint on the difference

between the velocities of Ci and Cj , which has to be perpendicular to zij , i.e.,

żTijzij = 0. (4.10)

Noting that ‖żij‖ > 0 and ‖zij‖ > 0, constraint (4.10) can be rewritten as

zij

‖zij‖
= sign(ω)

ż⊥ij
‖ż⊥ij‖

i.e., zij = sign(ω)‖zij‖ yij , (4.11)

where we compactly recast
ż⊥ij

‖ż⊥ij‖
as yij to emphasize that quantity yij is available to

robot i resorting to sensing and one-hop communication. Thus, the constant distance

‖zij‖ between two generic contact points represents the only unknown toward the com-

putation of the time-varying vector zij , except for sign(ω).

Differentiating both sides of (4.11), we obtain

żij = sign(ω)‖zij‖ ẏij, (4.12)

which cannot be directly used to compute ‖zij‖, since only żij and yij are measured,

but ẏij is not.

Therefore, we apply the technique described in Appendix A, that uses the first-order

low-pass version, żfij and y
f
ij, of the measured quantities żij and yij , respectively. We

observe that the sign of (4.46) depends on sign(ω). Therefore, in order to estimate
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a positive quantity, we use the squared norm of the filtered quantities. Thus, we can

summarize the previous derivations in the following result:

Proposition 4.1 (Relative position estimation from velocity measures). For each (i, j) ∈

E, if ‖zij‖ > 0 and ‖żij‖ > 0, then zij can be computed using only the velocities of Ci

and Cj by means of the following estimator

zij =

√√√√√
‖żfij‖

2

k2f

∥∥∥yij − y
f
ij

∥∥∥
2yij (4.13)

where (·)f is a first-order low-pass filter and kf is its gain.

Finally, we obtain sign(ω) as sign

[(
ż
f
ij

)T
(yij − y

f
ij)

]
.

4.3.3 Estimation of Inertial Parameters

In this section, we describe in detail the estimation algorithms for the constant quantities

J and m, and a nonlinear observer for zC , which can be used in (4.7) to have an estimate

of the sought parameter pCi
− pC .

Since pCi
− pC = zi + zC , we can rewrite (4.2) as

ω̇ =
1

J

n∑

i=1

z⊥i
T
fi +

1

J
z⊥C

T
n∑

i=1

fi. (4.14)

Each vector zi for i = 1, . . . , n can be computed in a distributed way by the i-th robot

resorting to the distributed algorithm presented in [69], which can be applied since the

communication graph is connected by assumption.

4.3.3.1 Estimation of the Moment of Inertia J

If each robot i applies the force

fi = z⊥i , ∀i = 1 . . . n,∀t ≥ 0 (4.15)
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at each time t, then the second summation in (4.14) vanishes

n∑

i=1

fi =
n∑

i=1

z⊥i =
n∑

i=1

(pCi
− pG)

⊥ = Ω

n∑

i=1

(pCi
− pG)

= Ω

(
n∑

i=1

pCi
−

n∑

i=1

pG

)
= Ω (npG − npG) = 0

and (4.14) simplifies to

ω̇ =
1

J

n∑

i=1

z⊥i
T
z⊥i =

1

J

n∑

i=1

‖zi‖
2. (4.16)

Hence, we can use the following distributed algorithm in order to compute J :

1. Distributively compute the value w =
∑n

i=1 ‖zi‖
2 using an average consensus

algorithm [6], i.e., each robot sets a local state variable φi|t=t0 = ‖zi‖
2 and then

applies the local update rule

φ̇i =
∑

j∈Ni

(φj − φi), (4.17)

which, since the communication graph is connected by assumption, leads φi to be

asymptotically equal to w/n. Thus, after a consensus is reached, each robot can

compute w = nφi;

2. Each robot applies a constant force fi = z⊥i ;

3. Locally estimate J by using the filtering approach described in the Appendix A,

substituting u with w, y with ω, which is known locally thanks to (4.42), and θ

with 1
J .

Remark 4.2. It is not important that each robot starts to apply the force inputs given

by (4.15) at exactly the same time, so no exact time synchronization is needed. This

is because we can assume that there will always exist a time when all the robot have

eventually applied the input force,

Remark 4.3. When applying the constant force inputs two possible cases can occur. The

first case is that the body moves of pure rotation, that is, the center of mass does not

move. This is, in any case, adequate to our purposes. The second case is that the body

moves with constant angular acceleration. In this case, it is clear that the control inputs

can be safely applied only for a limited time, after which the movement of the body must

be stopped, e.g., with a pure damping force based on a velocity feedback. However,

should the time be not enough for estimation purposes, the process can be repeated

several times after each stop, to ensure the acquisition of the necessary measurements.
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4.3.3.2 Observer for the Center-of-Mass Relative Position zC

Assume that each robot applies an arbitrary force fi(t) 6= 0 ∀i = 1, . . . , n,∀t ≥ 0, which

can be rewritten as

fi(t) =
1

n

n∑

i=1

fi(t) + ∆fi(t) = fmean(t) + ∆fi(t). (4.18)

Then, Eq. (4.2) becomes

ω̇ =
1

J

(
n∑

i=1

z⊥i
T

)
fmean(t) +

n

J
z⊥C

T
fmean(t)+

1

J

n∑

i=1

z⊥i
T
∆fi +

1

J
z⊥C

T
n∑

i=1

∆fi = (4.19)

n

J
z⊥C

T
fmean(t) +

1

J

n∑

i=1

z⊥i
T
∆fi,

where we used the facts that
∑n

i=1 z
⊥
i
T
= 0 and

∑n
i=1∆fi = 0. Thus, Eq. (4.19) can be

written as

ω̇ = z⊥C
T
f̌ + η, (4.20)

where we let f̌ =
n

J
fmean and η = 1

J

∑n
i=1 z

⊥
i
T
∆fi.

By means of standard dynamic consensus algorithms [70], it is possible to reach an

agreement on f̌ . To this purpose, each robot i needs to exchange only the local quantity

fi(t) with its neighbors. This implies that robot i can locally compute ∆fi = fi − f̌ . By

exchanging the local quantity z⊥i
T
∆fi with its neighbors and applying again the dynamic

consensus algorithm, also η can be locally computed in a distributed way. Therefore, in

the following we can safely assume that both f̌ and η are locally known to each robot.

Since zC is a vector of constant modulus rigidly attached to the object we have

ż⊥C = −zCω. (4.21)

Combining Eqs. (4.20) and (4.21), we obtain the following autonomous nonlinear system





ẋ1 = −x2x3

ẋ2 = x1x3

ẋ3 = x1f̌y − x2f̌x + η

y = x3,

(4.22)
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where we let zxC = x1, z
y
C = x2, ω = x3, and f̌ = (f̌x f̌y)

T . The system output is

assumed as y = x3 = ω, since the angular velocity is locally estimated by each robot

using Eq. (4.6). Therefore, the estimation of zC is equivalent to the observation of the

state of nonlinear system (4.22) with output y = x3 = ω, and where f̌y, f̌x, and η are

known inputs.

The problem of estimating zC can be dealt with as a nonlinear observability problem,

as follows:

Problem 4.2. Estimating the quantity zC in a distributed way is equivalent to observe

the state of the autonomous nonlinear system (4.22) with output y = x3 = ω, and where

f̄y, f̄x, and η are known inputs.

Before designing a suitable nonlinear observer, the observability of system (4.22) is

studied.

Proposition 4.4. If x3 6≡ 0 and
[
f̌x(t) f̌y(t)

]T
6≡ 0, then system (4.22) is locally

observable in the sense of [71].

Proof. The observability matrix [71] [72] is

O =




0 0 1

f̌y −f̌x 0

−f̌xx3 −f̌yx3 −f̌xx1 − f̌yx2


 (4.23)

whose determinant is det (O) = −x3(f̌
2
x + f̌2y ). The system (4.22) is locally observable

in the sense of [71] iff O is invertible, from which the thesis follows.

Thus, matrix zC is observable from local velocity measurements if and only if the angular

velocity of the object and the average vector of the applied forces are not identically

zero. The nonlinear observer is designed as follows.

Since observability depends on the angular velocity ω = x3, it is important to analyze

the behavior of the trajectories of (4.22). In particular, trajectories for which the an-

gular velocity is constantly zero or asymptotically converges to zero would lead to an

unobservable system. On the other hand, trajectories for which the angular velocity

grows unbounded are practically unfeasible.4

For the particular case in which each robot applies the same force fi(t) = f(t), ∀i, we

have the following interesting result. It is possible to show that, apart from a set of

4One cannot, in this case, stop the motion and restart as we suggested in Remark 4.3, since we
are estimating a time-varying quantity and therefore we cannot restart the process each time with an
improved initial estimate.
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cases of zero measure, the trajectories of (4.22) yield angular velocities that are suitable

both regarding the observability issue, and the practical feasibility.

Proposition 4.5. The following facts hold for system (4.22) when fi(t) = f(t), ∀i:

1. the origin is a stable equilibrium point;

2. the angular velocity x3 is bounded, and in particular:

|x3| ≤
√
x23(0) + 4f̌y‖zC‖ (4.24)

3. ∃T ≥ 0 such that x3(t) = 0 ∀t ≥ T if and only if the initial angular velocity x3(0)

is such that:

x23(0) = 2f̌y(x2(0)± ‖zC‖). (4.25)

Proof. We observe that if fi(t) = f(t), then η = 0, ∀i, holds in (4.22). To prove the

stability of the origin, we consider the following candidate Lyapunov function:

V =
1

2
(x21 + x22) +

1

2
(x23 − 2f̌yx2)

2. (4.26)

It is easy to verify that V ≥ 0 and that V = 0 only in the origin. Computing V̇ we

obtain

V̇ = x1ẋ1 + x2ẋ2 + (x23 − 2f̌yx2)(2x3ẋ3 − 2f̌yẋ2) =

= 0 + (x23 − 2f̌yx2) · 0 = 0, (4.27)

which implies stability.

To prove the second statement we first note that, from (4.27), the following quantity is

an invariant along the trajectories:

x23 − 2f̌yx2 = const = x23(0)− 2f̌yx2(0). (4.28)

Therefore,

x23 = x23(0) + 2f̌y(x2 − x2(0)) ≤ x23(0) + 4f̌y‖zC‖, (4.29)

which proves (4.24).

We now prove the last statement. If x3(t) = 0, ∀t ≥ T, then x3(T ) = 0 and ẋ3(T ) = 0.

Observing (4.22), it can be verified that the vanishing of the first derivative of x3 ensures



Chapter 4. Distributed Estimation of Inertial Parameters for Cooperative
Manipulation Tasks 49

the vanishing of all its higher order derivatives. Vice versa also holds, i.e., x3(T ) = 0 and

ẋ3(T ) = 0 imply x3(t) = 0 ∀t ≥ T . In order to prove the statement, it is then enough to

show what are the initial conditions such that x3 and its first derivative vanish at t = T .

Considering (4.28) at time T , we have

x23(T )︸ ︷︷ ︸
=0

−2f̌yx2(T ) = x23(0)− 2f̌yx2(0), (4.30)

which implies

x2(T ) =
2f̌yx2(0)− x23(0)

2f̌y
. (4.31)

Moreover, it is easy to verify that another invariant quantity of system (4.22) is

x21 + x22 = const = x21(0) + x22(0). (4.32)

Plugging (4.31) in (4.32) at time T we obtain

x21(T ) +
(2f̌yx2(0) − x23(0))

2

4f̌2y
= x21(0) + x22(0). (4.33)

In order to have ẋ3(T ) = 0, x1(T ) = 0 must hold (see (4.22)), therefore Eq. (4.33)

becomes

(
2f̌yx2(0) − x23(0)

)2
= 4f̌2y

(
x21(0) + x22(0)

)
, (4.34)

which can be rewritten as

x43(0)− 4f̌yx2(0)x
2
3(0)− 4f̌2yx

2
1(0) = 0, (4.35)

that can be solved for the unknown x23(0), thus resulting in condition (4.25).

Proposition 4.5 guarantees that the angular velocity x3 does not vanish, and therefore

the system remains observable for all time, except for at most four initial condition

points, which represent a zero measure set that has probability zero to happen in real-

world robotics applications. Moreover, the proposition shows that the angular velocity

x3 and its derivatives remain bounded and gives an upper bound that can be decreased

by acting on the input. This last feature is very important for the real applicability of

this method, although the application of the same force for each robot is required.

Thus, verified that vector zC is observable, as stated in Proposition 4.4, the nonlinear

observer is designed as follows.
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Theorem 4.6. Consider the following dynamical system

˙̂x1 = −x̂2x3 + f̌y(x3 − x̂3)

˙̂x2 = x̂1x3 − f̌x(x3 − x̂3)

˙̂x3 = x̂1f̌y − x̂2f̌x + ke(x3 − x̂3) + η,

(4.36)

where ke > 0. System (4.36) is an asymptotic observer for system (4.22), i.e., defining

x̂ = (x̂1 x̂2 x̂3)
T and x = (x1 x2 x3)

T , x̂ → x asymptotically.

Proof. Define the error vector as e = (e1 e2 e3)
T = ((x1 − x̂1) (x2 − x̂2) (x3 − x̂3))

T ,

the error dynamics is given by the following nonlinear system:

ė =




0 −x3 −f̌y

x3 0 f̌x

f̌y −f̌x −ke


 e. (4.37)

Define the following candidate Lyapunov function

V (e) =
1

2

(
e21 + e22 + e23

)
, (4.38)

whose time derivative along the system trajectories is

V̇ (e) =e1(−e2x3 − f̌ye3)+

e2(x3e1 + f̌xe3) + e3(f̌ye1 − f̌xe2 − kee3)

=− e1e2x3 − e1f̌ye3 + e2x3e1+

e2f̌xe3 + e3f̌ye1 − e3f̌xe2 − kee
2
3

=− kee
2
3,

(4.39)

which is negative semidefinite. To assess stability, we consider the set V =
{
e s.t. V̇ (e) = 0

}
=

{e s.t. e3 = 0} and we study its largest invariant set M ⊂ V. Given a generic vector

ě = (ě1 ě2 0)T ∈ V, by means of (4.37), it is easy to verify that the first and second time

derivatives of e3 along a trajectory containing ě are given by

de3
dt

∣∣∣∣
ě

= f̌yě1 − f̌xě2
d2e3
dt2

∣∣∣∣
ě

=
de1
dt

∣∣∣∣
ě

= −x3(f̌yě2 + f̌xě1). (4.40)

Therefore, if x3 is not vanishing, then the largest invariant set M consists of the only

equilibrium point (0 0 0)T . Thus, the thesis holds due to the Krasovskii–LaSalle invari-

ance principle [73].
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We remark that observer (4.36) can be implemented in a distributed fashion by resorting

only to local information.

The estimation error of the proposed observer vanishes asymptotically in the ideal case

of absence of noise. In the next section we will analyze the more realistic noise prone

case.

4.3.3.3 Estimation of the Mass m

After having estimated J and observed zC , the quantity piC is known by each robot i

using (4.7), and therefore each robot can estimate ṗC using (4.8). Thus, if each robot

applies a nonzero force vector as in Sec. 4.4.3.2 and assuming that fmean(t), defined in

Eq. (4.18), is not zero, then (4.1) becomes

p̈C =
n

m
fmean, (4.41)

i.e., a linear system with measured output ṗC .

Thus, an approach similar to the one used to estimate J , relying on the technique recalled

in the Appendix A, can be applied again to estimate m. We omit here the details for

brevity. We observe that this solution is again distributed, since each robot needs only

to receive the velocity ṗCj
from its neighbors.

4.4 Noisy Velocity Measurements Case

It is well-known that the presence of noisy measurements can alter the outcome of

estimation and identification strategies, if not adequately treated [74]. In this section,

we elucidate the effect of noise on the quality of estimates, providing a convenient bound

on their accuracy.

4.4.1 Estimation Algorithm

The algorithm presented in Section 4.3 is reviewed here considering the presence of noise

in the measurements, i.e., Σi 6= 0, for all i. The noise prone version of the algorithm

consists of 4 steps that lead the estimates performed by each robot to converge to the

real value of the inertial parameters. Each of the 4 steps, described in the following,

converges in a finite time interval. We indicate with t0 the starting time of the algorithm

and with tk, k = 1, . . . , 4, the end time of each step. We remark that the estimation
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steps are sequentially executed, i.e., no information obtained at any step has to be fed

back to previous steps at any time.

Step 1: an estimation of ‖̂zij‖ becomes known after t1. Each robot i applies an

arbitrary force fi(t) to the body and uses the noisy measurements ˜̇pCi
and ˜̇pCj

, with

j ∈ Ni, to estimate ‖̂zij‖ in a distributed way. This is achieved through a least square

estimation that rapidly converges, at time t1, to the inter-distances between contact

points, as detailed in Sec. 4.4.2.

Step 2: an estimation of Ĵ becomes known after t2. For t ≥ t1, four concurrent tasks

are executed to produce an estimate Ĵ of the moment of inertia J . This implies the

existence of a delay between the execution of the tasks. However, we reckon that this

delay is negligible for application purposes and, in the following, we assume that all

the information is instantaneously available. The first task is the estimation, by each

robot, of the vectors ẑij(t), of the sign of the angular velocity ̂sign(ω), on the basis

of the noisy measurement ˜̇pCi
and ˜̇pCj

, with j ∈ Ni, and of the inter-distances ‖̂zij‖

obtained in the previous step. This task is detailed in Sec. 4.4.2. In the second task,

each robot computes the estimate ẑi(t) of zi(t), using the position estimates ẑij(t) and

the algorithm in [69]. On the basis of the estimates ẑi(t), each robot applies a force

fi(t) = ẑ⊥i (t) during the time interval t1 ≤ t ≤ t2. As a consequence, the body moves

in t1 ≤ t ≤ t2 and each robot can compute an estimate of the angular velocity of B,

ω̂(t). To this aim, each robot i performs a local estimation of ω, which is a time varying

quantity, as

ω̂i(t) = ̂sign(ω)
‖˜̇zij‖

‖̂zij‖
, (4.42)

where j is any neighbor in Ni and update their local estimates ω̂i using a dynamic

consensus algorithm [70] to converge to a common estimate ω̂ all over the network.

Based on the estimate ω̂, each robot performs an estimate of the moment of inertia J ,

indicated as Ĵi, as detailed in Sec. 4.4.3.1. Then, an average consensus algorithm is used

also in this case to reach an agreement on a common value for Ĵ [6].

Step 3: an estimation of ̂pCi
− pC becomes known after t3. Each robot applies an

arbitrary nonzero force fi(t) and estimates ω̂(t), similarly to Step 2. Then, each robot

can compute ẑC , relying on the estimate of Ĵ (available thanks to Step 2) and using the

nonlinear observer detailed in Sec. 4.4.3.2. After the convergence time of the observer,

t3, the unknown vector pCi
− pC can be estimated using the following formula:

̂(pCi
(t)− pC(t)) = ẑi(t) + ẑC(t) = (4.43)

= ẑi(t) + Γ(ẑC(t3), ẑij(t3), ẑij(t)),
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where Γ is defined in (4.5) and j ∈ Ni.

Step 4: an estimation of m̂ becomes available after t4. Each robot i estimates ˆ̇pC(t),

by applying any nonzero force fi(t), ∀i, and estimates ˆ̇pC(t) as

ˆ̇pC(t) = ˜̇pCi
(t)− ω̂(t) ̂(pCi

(t)− pC(t))
⊥
. (4.44)

We observe that all the quantities in the right hand side of (4.44) are computed in the

previous steps and are locally available after t ≥ t3. Based on the estimate ˆ̇pC , each

robot performs an estimate of the mass m, indicated as m̂i, as detailed in Sec. 4.4.3.3.

An average consensus algorithm is then used to converge to a common estimate of the

mass m̂, which, for t ≥ t4, will be known by all robots.

4.4.2 Estimation of the Relative Positions of the Contact Points

In this section, we present a procedure for recovering the relative positions between the

contact points in a distributed way, i.e., using only local information dealing with noisy

velocity measurements. Based on (4.11), robot i is able to recover an estimate of vector

zij as

ẑij = λ̂ijỹij , (4.45)

where λ̂ij is an estimate of λij = ‖zij‖ and ỹij =
(˜̇pCi

−˜̇pCj
)⊥

‖˜̇pCi
−˜̇pCj

‖ is the noisy measurement

of yij . In the following, we propose two strategies to estimate ‖zij‖, i.e., the distance

between the contact points Ci and Cj, ∀(i, j) ∈ E .

4.4.2.1 First Strategy

The first method to estimate the distance between two contact points is based on (4.11).

It is clear that the distance cannot be estimated if ω ≡ 0, ∀t, since this implies żij ≡ 0.

Thus, considering any time interval in which ω 6= 0 we differentiate with respect to time

both sides of (4.11), and obtain

żij = sign(ω)λij ẏij . (4.46)

This method requires the knowledge of the quantity ẏij , which is not directly measur-

able. To overcome this limitation, we apply a first-order low-pass filter to both sides

of Eq. (4.46), denoting with ż
f
ij and ẏ

f
ij the filtered versions of żij and ẏij , respectively

(refer to the Appendix A for a detailed explanation). Taking the squared norm of both
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sides after filtering, we obtain

‖żfij‖
2 = λ2ij k

2
f‖yij − y

f
ij‖

2, (4.47)

where kf is the gain of the low pass filter. Given the noisy measurements ỹij and ˜̇zij , the
estimates λ̂2ij of λ

2
ij are obtained by solving the following linear least squares problem:




‖˜̇zfij(t1)‖2
...

‖˜̇zfij(tq)‖2


 = λ̂2ij




k2f‖ỹij(t1)− ỹ
f
ij(t1)‖

2

...

k2f‖ỹij(tq)− ỹ
f
ij(tq)‖

2


 , (4.48)

where t1 . . . tq are the q > 0 acquisition times of the noisy measurements.

Furthermore, an estimate of sign(ω) at time t is given by

̂sign(ω) = sign

[(
˜̇zfij(t)

)T (
ỹij(t)− ỹ

f
ij(t)

)]
.

4.4.2.2 Second Strategy

Alternatively, Eq. (4.11) can be casted as

‖ż⊥ij‖zij = sign(ω) ż⊥ij‖zij‖. (4.49)

Differentiating with respect to time both sides of (4.49) (for ω 6= 0), we obtain

d‖ż⊥ij‖

dt
zij + ‖ż⊥ij‖żij = sign(ω) z̈⊥ij‖zij‖. (4.50)

Multiplying both sides of (4.50) by ‖ż⊥ij‖, we obtain

d‖ż⊥ij‖

dt
‖ż⊥ij‖zij + ‖ż⊥ij‖

2 ˙zij = sign(ω) z̈⊥ij‖ż
⊥
ij‖‖zij‖. (4.51)

Finally, since ‖ż⊥ij‖zij = ż⊥ij‖zij‖, we have

(
d‖ż⊥ij‖

dt
ż⊥ij − z̈⊥ij‖ż

⊥
ij‖

)
‖zij‖ = −sign(ω) ‖ż⊥ij‖

2żij . (4.52)

Computing the time derivatives
d‖ż⊥ij‖
dt and z̈ij using techniques for the differentiation

of noisy signals [75] [76], and taking the squared norm of both sides, Eq. (4.52) can be

solved for ‖zij‖. Since we rely on noisy measurements, we estimate λ̂2ij = ‖̂zij‖
2
by
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solving the following linear least squares problem:




∥∥∥∥∥
d
˜‖ż⊥

ij
‖

dt
(t1)˜̇z

⊥

ij(t1)− ˜̈
z

⊥

ij(t1)‖˜̇z
⊥

ij(t1)‖

∥∥∥∥∥

2

...∥∥∥∥∥
d
˜‖ż⊥

ij
‖

dt
(tq)˜̇z

⊥

ij(tq)− ˜̈
z

⊥

ij(tq)‖˜̇z
⊥

ij(tq)‖

∥∥∥∥∥

2



λ̂2ij =




∥∥∥‖˜̇z
⊥

ij(t1)‖
2 ˜̇
zij(t1)

∥∥∥
2

...∥∥∥‖˜̇z
⊥

ij(tq)‖
2 ˜̇
zij(tq)

∥∥∥
2


 (4.53)

Furthermore, an estimate of sign(ω) at time t is given by

̂sign(ω) = sign


−


d‖̃ż

⊥
ij‖

dt
(t)˜̇z⊥ij(t)− ˜̈z

⊥
ij(t)‖˜̇z

⊥
ij(t)‖



T (

‖˜̇z⊥ij(t)‖2 ˜̇zij(t)
)

 .

4.4.2.3 Discussion on the Two Strategies

An advantage of the first strategy is that the estimation is executed without relying on

any derivative of the measurements. On the other hand, a drawback is that the unit

vector computed from the velocity measurements, i.e., ỹij , can be excessively noisy when

ω is close to zero. This drawback is unavoidable, since ω = 0 implies unobservability in

the absence of noise terms. In the real (noisy) case, ω close to zero results in ‘practical’

unobservability of the inter-distances. A way to avoid this intrinsic drawback is to let

the object rotate sufficiently fast during the estimation of the inter-distances.

The second method, which uses (4.52), overcomes the issue related to possible discon-

tinuities in the unit vector yij. However, this method assumes the knowledge of the

time derivatives of the measured signals, thus, it implies the use of techniques for the

differentiation of noisy signals [75] [76].

4.4.3 Estimation of the Inertial Parameters

In this section, we describe three algorithms for estimating: (i) the moment of inertia

J , (ii) the time-varying vector zC , i.e., the position of the center of mass C relative to

the geometric center pG, and (iii) the mass m.

4.4.3.1 Estimation of the Moment of Inertia J

We consider the network applying the forces defined in (4.15). We note that the quantity

w =
∑n

i=1 ‖zi‖
2 in Eq. (4.16) is constant over time. Thus, the application of such forces

produces a constant angular acceleration, which makes the distributed identification of

J easier. In fact, let us consider the following distributed algorithm:
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1. Before applying any force, each robots distributively computes the constant value

w =
∑n

i=1 ‖ẑi‖
2. This can be done in a distributed way by means of a standard

average consensus algorithm [6];

2. Each robot applies a constant force fi = ẑ⊥i . This can be executed relying only on

local information;

3. Thanks to the local estimate of ω, each robot computes a local estimate Ĵi of J

using the approach presented in the Appendix A;

4. When the local estimates converges, the robots run a further consensus phase,

thus reaching an agreement on a global estimate Ĵ . This is done to average out

the uncertainty in the estimates Ĵi caused by the noise in ω and zi.

Similarly to the noiseless case, we note that no perfect time synchronization is needed

for the starting time of the application of forces fi, since each robot will eventually apply

the prescribed force fi = ẑ⊥i .

It may happen that the forces required for the estimation can be safely applied to the

object only for a limited time interval to satisfy the practical requirement of keeping the

angular velocity of the body bounded. In this case, the movement can be easily stopped

every once in a while using a pure damping force based on a local velocity feedback.

However, should the time be not enough for estimation purposes, the process can be

repeated several times after each stop, to ensure the acquisition of the measurements

necessary to identify J .

4.4.3.2 Observer for the Relative Position zC of the CoM

As explained in Sec. 4.4.3.2, the estimation error of the proposed observer vanishes

asymptotically in the ideal case of absence of noise. Actually, each robot sets the force

f̌a =
n

Ĵ
fmean as input for the local observer, which is affected by noise, due to the presence

of Ĵ . Furthermore, the observer relies on the noisy estimate ω̂, computed using (4.42).

Due to its asymptotic stability, we expect that in presence of noise the estimation error

will remain bounded around the actual value of the parameter. In Sec. 4.5, we will

numerically characterize the bound of the estimation error with respect to noise terms.
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Figure 4.3: The simulated payload is an eight-sides polygon, obtained by a rectangular
plate of sides 2m×4m, where a smaller rectangular of 0.5m×2.5m size has been cut
off from the longer side. The n = 4 contact points, C1, C2, C3, C4, the position of the
center of mass, C, and the position of geometric centroid, G, are illustrated.

4.4.3.3 Estimation of the Mass

Assume, as in Sec. 4.4.3.3, that each robot applies a force fi(t) and that fmean(t), defined

in Eq. (4.18), is not zero. Thus, Eq. (4.1) becomes

p̈C =
n

m
fmean. (4.54)

We remind that each robot can distributively compute fmean. Furthermore, at this point,

each robot is able to estimate the velocity of the center of mass as

ˆ̇pC(t) = ˜̇pCi
(t) + ω̂(t) (ẑi(t) + ẑC(t))

⊥ . (4.55)

Therefore, similarly to Ĵi, each robot can locally compute an estimate m̂i using the

approach detailed in Appendix A. Finally, the robots agree on a global estimation m̂

using an average consensus algorithm that is able to average out the noise of each local

mass estimator.

4.5 Numerical Simulations

In this section we validate our approach through numerical simulations. A network of

n = 4 robots manipulates a C-shaped unknown planar object B, see Fig. 4.3. The object

has a uniformly distributed mass, m = 5kg, and its inertia moment is J = 8.6891 kgm2 .

The robot’s communication network is a line topology, i.e., E = {(1, 2), (2, 3), (3, 4)}.

First, in Section 4.5.1 the ideal case with no noise is considered, then in Section 4.5.2

the noisy case is analyzed.

4.5.1 Ideal Case with no Noise

If there is no noise in the measurements, the algorithm explained in Section 4.3 enables

the estimation of the exact values of the inertial parameters of the manipulated body,
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as we will show in the following. At the beginning, each robot estimates the relative
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Figure 4.4: Estimated coordinates of the displacements between the contact points
(continuous lines) vs actual coordinates of the displacements (dashed lines) for (A)
pC1

−pC2
(B) pC2

−pC1
(C) pC2

− pC3
(D) pC3

−pC2
(E) pC3

− pC4
(F) pC4

− pC3
.

positions of its neighbors by setting a random force fi. The results of such estimates

are reported in Figs. 4.8(A)–4.8(F). Then, the moment of inertia estimation step is

executed, where each robot i sets the input force as fi = z⊥i . The initial guess of J is

set to 1 kgm2. The evolution of the estimate Ĵ is illustrated in Fig. 4.5(A). After that,

all the information required for the observation of the vector zC are available. Since we

are only estimating the inertial parameters (thus, the trajectory followed by the body

is not important at this stage), the input force is simply set as fi = f = (0 fy), for all

i ∈ I. The convergence of the observer to zC is illustrated in Fig. 4.6(A), where the

value fy = J/n is used by each robot so that f̌y = 1. Figures 4.6(B) and 4.6(C) show

the trend of the error e and of the Lyapunov function used in the proof of the observer

V (e), respectively. Both converge quickly to zero, as predicted by our theory. At this

point, each robot is able to measure the velocity of the center of mass, ṗC , in order to

estimate the mass m. Its initial guess is set at m̂ = 1kg. Convergence of the estimated

parameter is illustrated in Fig. 4.5(B).
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Figure 4.5: Estimation of the inertia moment J (A) and of the mass m (B) of the
unknown payload B made by the 4 robots.

4.5.2 Simulations with Measurements’ Noise and Accuracy Bounds

Definition

We assume that each robot is able to measure the velocity of the contact point, and that

the measurement is affected by a Gaussian noise with zero mean and covariance matrix

Σi = σ2I, with σ = 0.2 m/s, and where I ∈ R2×2 is the identity matrix.

First of all, we formalize the accuracy bound of least square estimations. Suppose to

perform a least squares estimation using τ observations (υt, ψt), t = 1, . . . , τ , of the

model ψ = θυ, where θ ∈ R, ψ ∈ Rp, and υ ∈ Rp. The least-squares estimate hat theta

of the parameter vector theta is obtained as θ̂ = (ΥTΥ)−1ΥTΨ, where Υ = [υT1 . . . υ
T
τ ]
T

and Ψ = [ψT1 . . . ψ
T
τ ]
T , with Υ,Ψ ∈ Rτ×p. The standard deviation σθ̂ of the estimates θ̂

is given by

σθ̂ = σψ
τ

τ
∑T

t=1 υ
2
t − (

∑T
t=1 υt)

2
, (4.56)

where σψ is the standard deviation of the observations ψ [77]. Thus, the uncertainty of

the estimation of the constant parameters ‖zij‖, m, and J has the form of Eq. (4.56).

The algorithm starts with the estimation of the relative distance between the neighbors

in which each robot sets an arbitrary force. We observe that the estimation must stop

when the measured noisy signals ˜̇zij have a level such that the signal-to-noise ratio is

too low to perform an estimate. In this case, the estimation stops when ‖˜̇zij‖ ≤ 1 m/s

(the measured ˜̇z12, ˜̇z23, and ˜̇z34 are illustrated in Fig. 4.7). In Fig. 4.8, the estimation

of the distances using the two proposed strategies (explained in Sec. 4.4.2.1 and 4.4.2.2,

respectively) is illustrated. Subsequently, the next step is executed toward the local

estimation of the moment of inertia Ĵi. The estimation process starts as soon as robot

i has locally collected a sufficient number of samples, and yields the local estimates

Ĵ1 = 8.7053 ± 0.0035 kg m2, Ĵ2 = 8.7208 ± 0.0035 kg m2, Ĵ3 = 8.7320 ± 0.0032 kg m2,
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Figure 4.6: Observation of the center-of-mass position: (A) Cartesian coordinates of
the displacement zC = pG − pC and of the angular velocity ω (dashed lines) versus
their real values (continuos lines), (B) estimation errors, and (C) plot of the Lyapunov
function V (e).

and Ĵ4 = 8.7151± 0.0035 kg m2. Each robot checks the convergence of the least squares

estimation evaluating the variance of the estimator [77]. Then, the local estimates Ĵi

are exchanged over the network and an average consensus is run to agree on the same

estimate, notably, Ĵ = 8.7183± 0.0004 kg m2. The result of such estimation is reported

in Fig. 4.9. The estimate of the moment of inertia Ĵ and the observation of ω̂(t), known

thanks to previous step, are used for the observation of zC . Also in this case, since we

are only estimating the inertial parameters (thus, the trajectory followed by the body is

not important at this stage), each robot applies the same constant force fi = f , for all
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Figure 4.7: The measured velocity differences (A) ˜̇z12, (B) ˜̇z23, and (C) ˜̇z34.

i = 1, . . . , 4 in this step. In Fig. 4.10, the observations ẑC and ωobs are illustrated. We

now characterize numerically the uncertainty of the nonlinear observer in estimating zC ,

by running 1000 independent trials for different values of the variance of the noise on the

angular rate, σ2ω̂. For each trial, a sinusoidal signal with random amplitude, frequency,

and phase is used for the components of the force applied by each robot. In Fig. 4.12,

the average, computed on the 1000 trials, of the standard deviation of the estimation

error for the coordinates of zC is reported. We observe that the trend is almost constant

and independent from the value of σω̂. Therefore, its mean value can be considered as

a good approximation of the standard deviation, i.e., σzxC = 0.075 m and σzy
C
= 0.033

m. Once the observer converges, the estimation of ˆ̇pC and m̂ can be executed. The

estimation of the mass, illustrated in Fig. 4.11, is carried out using the estimation of

the angular rate computed by the observer, ωobs. First, each robot estimates locally,

respectively, m̂1 = 4.8367 ± 0.0451 kg, m̂2 = 4.8491 ± 0.0455 kg, m̂3 = 4.8824 ± 0.0453

kg, and m̂4 = 4.8384 ± 0.0447 kg and then, after the average consensus, the network

agrees on the value m̂ = 4.8517 ± 0.0113 kg.
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Figure 4.8: Estimation of the relative distance between neighbors in the network
using two strategies: (A) λ̂12 using the first strategy (B) λ̂12 using the second strategy

(C) λ̂23 using the first strategy (D) λ̂23 using the second strategy (E) λ̂34 using the first

strategy (F) λ̂34 using the second strategy.

4.6 Conclusion

In this chapter, we have presented an effective distributed strategy for the estimation

of inertial parameters of an unknown body manipulated by a team of networked mobile

robots. The estimation is performed through a series of steps, that eventually yields a

complete estimation in finite time. All the assumptions made are realistic. In particular,

we do not assume that the robots’ velocity can be controlled, yet applied forces have

to be measured and controlled. Moreover, only the velocity of contact points should be

measured, whereas their positions and accelerations are not needed. First, we addresses

the ideal case with no noise in the measurements, then we focused on the influence of the
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Figure 4.9: Estimation of the moment of inertia of B. (A) Least Squares estimation
of J : the estimate converges as soon as the number of samples is sufficient. (B) After
the convergence of the estimator, the network runs an average consensus in order to
reach an agreement on Ĵ .
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Figure 4.10: The observation of the vector zC and of the angular rate ω: dashed lines
refer to observed values, while continuos lines refer to real values. For the angular rate,
the measure ω̂ (continuos light blue line) in input to the observer is also plotted.

measurement noise on the estimate by defining suitable solutions and confidence intervals

for the estimated quantities. The proposed strategies involve low computational burden,

simulation results are very satisfactory and confirm the effectiveness of our approach.
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Figure 4.11: Estimation of the mass of B. (A) Least squares estimation of m: the
estimate converges as soon as the number of samples is sufficient. (B) After the con-
vergence of the estimator, the network runs an average consensus in order to reach an
agreement on m̂.
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Chapter 5

Asynchronous Max-Consensus

Protocol with Time Delays

This chapter deals with the analysis of the convergence properties of the max-consensus

protocol with asynchronous updates and bounded time delays on directed static net-

works. The work is motivated by real-world applications in distributed decision-making

systems, for which max-consensus is an effective paradigm. The main result presented in

this chapter is that the strongly connectedness of the directed communication network

is a sufficient condition for the convergence of the asynchronous max-consensus protocol

in finite time. Implementation issues are also taken into account, by complementing the

theoretical analysis with the definition of a mechanism to detect the convergence of the

protocol in a distributed fashion.

The content of this chapter is grounded on a journal paper and conference papers [20] [78]

[79].

5.1 An Introduction to Asynchronous Consensus Proto-

cols

Time synchronization is an important requirement for the correct design and imple-

mentation of consensus protocols. Much work in the literature assumes that consensus

protocols work in synchronous frameworks, that is, all the clocks of the network’s nodes

are synchronized in frequency and phase. Obviously, this scenario is very often far from

reality, where at least drifts and offsets in nodes’ clock operations are present, up to cases

involving networks of heterogeneous nodes and unreliable communication channels. In

these and many other cases, asynchronism is an explicit issue to cope with. Due to strict

65



Chapter 5. Asynchronous Max-Consensus Protocol with Time Delays 66

constraints on bandwidth and energy consumption, typically present in distributed sys-

tems applications, the adoption of suitable time synchronization strategies may not be a

feasible solution [80] [81]. Thus, convergence properties of consensus protocols should be

revisited in presence of asynchronous updates and delays. The convergence properties of

the average consensus protocol in presence of time delays have been extensively studied

in [82] [83]. On the other hand, despite of its wide range of application, only little work

has been devoted to the analysis of the max-consensus protocol beyond its synchronous

implementation. In particular, convergence has been studied for synchronous switching

topologies [84] and for probabilistic asynchronous frameworks [85], respectively.

This chapter deals with the definition of an asynchronous discrete-time max-consensus

protocol and the study of its convergence properties. The concept of asynchronism

considered in this chapter encompasses several situations, from misalignments among

nodes’ clocks, to the presence of bounded time delays. Here, we assume that the delays

in the updates of the state variables of the network nodes cannot be arbitrarily long

(specifically, we adopt the partial asynchronism assumption [86]), and that the network

is described by a strongly connected, directed graph. These assumptions are mild,

and usually verified when dealing with real asynchronous message-passing systems. The

convergence analysis is performed establishing an equivalence between the asynchronous

protocol, running on a static network, and a suitable synchronous protocol running on

a switching network with the same node set. Notably, the synchronous protocol can

be modeled as a particular case of the asynchronous one. The convergence analysis is

carried out relying on the analytic synchronization formalism [87] and on convergence

results for synchronous settings [88]. It is worth to observe that the results presented

in this chapter for the max-consensus protocol can be used to solve also min-consensus

problems. In fact, a min-consensus protocol can be always rewritten as a max-consensus

one by multiplying the nodes’ state values by −1.

The chapter is organized as follows. Section 5.2 provides the necessary background.

Then, a motivating example that emphasizes the problems related to the ineffective ap-

plication of the synchronous max-consensus protocol in an asynchronous framework is

given in Section 5.3. The asynchronous max-consensus problem, together with its equiv-

alent synchronous model, is defined in Section 5.4. Section 5.5 presents the convergence

analysis of the asynchronous, discrete-time max-consensus protocol. Convergence prop-

erties are studied relying on a global knowledge of the network. However, convergence

cannot be detected at the node level without introducing additional information. This

issue is crucial to implement the protocol in applications. Thus, we also define a strat-

egy for the distributed detection of convergence. The performance of the asynchronous

protocol is assessed in Section 5.6 through numerical simulations. Finally, conclusions

and suggestions for future work are given in Section 5.7.
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5.2 Problem Statement

In this section, we recall some background on networks of asynchronous systems and we

review some useful results on the theory of synchronous max-consensus protocols.

5.2.1 Node and Network Model

We consider a network of n > 1 discrete-time dynamical systems, with index set

I = {1, . . . , n}, operating in an asynchronous communication framework. By means

of asynchronism, we encompass different realistic scenarios: (i) synchronous systems

with non uniform communication delays that make the delivery of relevant information

asynchronous; (ii) networks of nodes with different and/or not synchronized clock pe-

riods; (iii) a combination of the previous cases. Nodes’ clocks are not required to own

a constant update period, making the presented framework suitable to describe also

event-driven systems. We denote with t
[i]
k , k ∈ N0, the k-th update time for the i-th

node, marked by its local clock. Update times for the generic node i ∈ I are collected

in a suitable set, denoted T [i] = {t
[i]
0 , t

[i]
1 , t

[i]
2 , . . . , t

[i]
k , . . . }. Time t

[i]
0 is the i-th node’s

starting time, and no assumptions are made on the synchronization of starting times

across the network. Thus, the state evolution of each node must be referred to its local

discrete time base. Consequently, a partial order among the update times of all the

network nodes cannot be set without referring to an external, common time base. The

information state of node i at time t
[i]
k is indicated with xi(t

[i]
k ) ∈ R. For the sake of

simplicity, we consider the information state as a real value in order to ensure the proper

definition of the max operator. However, more complex types of information states can

be considered, provided that a proper ordering criterion is adopted.

Communication among network nodes is modeled through a static directed graph G =

(I, E) (hereinafter digraph), where the node set I represents the set of dynamical sys-

tems, and the communication channels are modeled by the link set E ⊆ I×I. Assuming

that the communication structure is represented by a digraph implies that, if an ordered

pair (j, i) belongs to E , then node i is able to receive information by node j, yet not

necessary vice versa. The set of one-hop neighboring nodes from which node i can re-

ceive information is defined as Ni = {j ∈ I|(j, i) ∈ E}. Here, we assume the existence

of self-loops, that is, (i, i) ∈ E , ∀i ∈ I. In the following assumption, we formalize the

presence of bounded communication delays.

Assumption 5.1 (Bounded communication delays). Let us define θijkq ∈ R+ the time at

which the information produced by node j ∈ Ni at some update time t
[j]
q , q ∈ N0, is

delivered to node i (here, θijkq is measured with reference to t
[i]
0 ). It is assumed that,

for each node i ∈ I, and for each delivery time θijkq , j ∈ Ni, q ∈ N0, the constraint



Chapter 5. Asynchronous Max-Consensus Protocol with Time Delays 68

0 ≤ dijq ≤ ď, ď ∈ R+, holds, where d
ij
q is the delivery delay, i.e., the time interval elapsed

between t
[j]
q and θijkq .

Assumption 5.2 (Strong connectivity). The digraph G is assumed to be strongly con-

nected, that is, there always exists a directed path between any two nodes of the di-

graph [40].

A path in the network is an ordered sequence of links connecting two arbitrary nodes.

The length of a path is the number of links in the path. In a strongly connected digraph,

the longest of the shortest paths connecting any two nodes is the graph diameter, and

is indicated with D [40].

The adjacency matrix A = [aij ] of the digraph G describes its connection scheme and is

defined as

aij =

{
1 if (j, i) ∈ E

0 otherwise
. (5.1)

As previously stated, due to the existence of self-loops, we assume that aii = 1, ∀i ∈ I.

A digraph G is called static if the edge set E is time-invariant. On the other hand, a

dynamic digraph Gk = (I, Ek), where k is a discrete-time index, is a digraph with a time-

varying edge set. Dynamic digraphs are useful to model communication structures that

change over time and can be consistently described by time-varying adjacency matrices.

A set of dynamic digraphs G1, ...,Gr , r ∈ N, is jointly strongly connected if the union

digraph U =
⋃r
p=1 Gp, with vertex and edge set defined as U = (I,

⋃r
p=1 Ep), is strongly

connected.

5.2.2 The Synchronous Max-Consensus Protocol

Consider a set of n > 1 networked discrete-time dynamical systems with synchronized

update times, i.e., t
[i]
k = tk, ∀i ∈ I, k ∈ N0, which communicate over a digraph with

no delays (i.e., dijq = 0, ∀(j, i) ∈ E , q ∈ N0). The state variable of each system is

indicated with x̆i ∈ R, i ∈ I (hereinafter, variables with the superimposed symbol ·̆

refer to synchronous protocols). The synchronous max-consensus protocol P̆ is defined

as

x̆i(tk+1) = max
j∈Ni

{x̆j(tk)}, i ∈ I. (5.2)

Theorem 5.1 (Convergence of the synchronous max-consensus protocol). Consider a

network of n > 1 dynamical systems, connected through a static digraph G = (I, E)

with diameter D. Suppose that each node runs the synchronous max-consensus protocol
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expressed by Eq. (5.2). If G is strongly connected, then for k ≥ D

x̆i(tk) = x̆j(tk)

= max
(
x̆1(t0), · · · , x̆

[n](t0)
)

∀i, j ∈ I

holds.

Proof. The proof of Theorem 5.1 is reported in [16].

5.3 A Motivating Example

In this section, we provide an illustrative example that highlights the issues related to

the ineffective application of the synchronous max-consensus protocol to asynchronous

settings. The selected example concerns the application of a decentralized solution to

the well-known task assignment problem, for which the execution of the max-consensus

protocol is required [89]. The assignment algorithm described in the following is de-

signed for networks of nodes that operate synchronously. Hence, its correct execution is

guaranteed only in synchronous networks. In this example, we will show that the same

algorithm may not work properly in asynchronous settings.

5.3.1 Synchronous Decentralized Task Assignment

Consider a network of n > 1 nodes, with index set I = {1, . . . , n}, as described in

Section 5.2.1, where a single task has to be assigned to only one of the n nodes in a dis-

tributed fashion, according to some optimality criterion. Each node i ∈ I autonomously

sets a static non-negative reward (or bid) xi ∈ R+ related to the execution of the task.

Setting the reward is also called bidding. The goal consists of performing the task as-

signment in a distributed fashion, so that only node i⋆ that bid the maximum reward

xi⋆ is granted access to the task execution (i.e., a conflict free assignment).

A common strategy to the distributed solution of this task assignment problem is based

on the max-consensus protocol [90].

In a synchronous setting, each node i ∈ I starts the algorithm, placing a bid xi for

the task. Then, each node shares its bid with its neighbors Ni in order to converge,

through the application of the max-consensus protocol, towards a feasible assignment.

The adopted updating rule is expressed in Eq. (5.2) where, in this case, the state infor-

mation is represented by the node’s reward. As stated in Theorem 5.1, the number of

updates required to converge to a feasible assignment is D, where D is the diameter of
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Figure 5.1: A motivating example: the communication topology of a network of three
nodes, with diameter D = 2.

Figure 5.2: A motivating example: the time line of each node. Ticks indicate a max-
consensus update for node i. An arrow indicates directed communication; a dashed
arrow indicates a communication which is not effective for the receiver node. Beside
each update, the current state of the corresponding node (maximum bid) is indicated.

the communication digraph G. Supposing that each node is aware of the network diam-

eter, the upper bound D can be used locally by each node as the termination condition

for the execution of the protocol, that is to say, each node is aware that the convergence

is achieved if it runs the protocol for exactly D updates. As said before, the crucial

issue is that the max-consensus protocol requires the network nodes’ operations to be

synchronized. If this condition does not hold, the network nodes may process outdated

bids and the consensus protocol may produce invalid assignments. To highlight this

issue, in the following we analyze in detail the operations executed in this motivating

example, in which a synchronous protocol is applied despite the fact that the underlying

framework is actually asynchronous.

5.3.2 Decentralized Task Assignment: an Asynchronous Case

Consider a network of n = 3 nodes, connected in a line topology (see Fig. 5.1), where

a single task has to be assigned in a distributed fashion to the node that sets the

highest reward. We assume that the network diameter, that is D = 2 in this example,

is known by all nodes. The generic node i runs the max-consensus protocol at each

time instant t
[i]
k , k = 1, 2, of its local time base, assuming to work in a synchronous

setting. Now, we show that the presence of time misalignments and bounded delays

leads to a wrong assignment. With reference to Fig. 5.2, we assume that the nodes’ bids

on the task are produced at times t
[i]
0 , i = 1, 2, 3, and are respectively: x1(t

[1]
0 ) = 15,

x2(t
[2]
0 ) = 8, x3(t

[3]
0 ) = 2. This implies that the task should be assigned to node 1,

which is the one providing the maximum bid. Then, each node starts to execute the

max-consensus protocol. Node 3 computes the maximum of its received bids, x3(t
[3]
1 ) =
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max{x3(t
[3]
0 )}, and communicates its information state x3(t

[3]
1 ) to node 2 at first. We

note that, to ensure the proper functionality of the algorithm, an assignment µ[i] =

argmax
i∈I

{xi}, must be suitably updated at each node i updating time, together with

the corresponding state. For the sake of clarity, this assignment is not reported in the

example description. Node 2 receives the information state from node 3, updates it as

x2(t
[2]
1 ) = max{x2(t

[2]
0 ), x3(t

[3]
1 )} = 8, and sends it to both nodes 1 and 3. Node 3 updates

for the second and last time its state as x3(t
[3]
2 ) = max{x3(t

[3]
1 ), x2(t

[2]
1 )}. Therefore, node

3 loses the assignment of the task and considers node 2 as the winner (x3(t
[3]
2 ) = 8), since

node 3 has not received the state of node 1, due to time misalignment. Similar to node 3,

node 1 receives the information state x2(t
[2]
1 ) from node 2 and, consequently, its updated

state is x1(t
[1]
1 ) = max{x1(t

[1]
0 ), x2(t

[2]
1 )} = 15, which is sent to node 2. Node 2, which

has instead received all the state values in its second update, reaches the correct value

x2(t
[2]
2 ) = 15 (thus, it considers node 1 as winner). Finally, node 1, after having received

the most recent information state x2(t
[2]
2 ) from node 2, correctly assigns the task to itself

(x1(t
[1]
2 ) = 15). As a result, at the end of the execution of the max-consensus protocol,

the task is assigned with conflict. This implies that, due to the asynchronous setting,

not all the nodes are aware of the correct assignment.

Further in the chapter (specifically, in Sec. 5.6), we will show how this issue can be

sorted out by applying the asynchronous max-consensus protocol, proposed hereinafter,

to the same example.

5.4 Asynchronous Max-Consensus: Synchronous Equiva-

lent Model

In this section, we introduce the asynchronous max-consensus protocol and describe the

analytic synchronization procedure adopted to define an equivalent synchronous model

of the asynchronous system, useful for subsequent analysis.

5.4.1 Asynchronous Max-Consensus

Suppose that node i ∈ I updates its information state at each of its local update times

t
[i]
k ∈ T [i], k ∈ N, on the basis of the value of its state variable at the previous update

time, and on the most recent values of the state variables received from the neighboring

nodes. We assume that delays are detectable (e.g., through a sequence number) and, in

the following, we suppose that the most-recent-data strategy can be adopted [91].
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The asynchronous max-consensus protocol P on the digraph G is defined by the following

local state update rule, executed by each node i ∈ I at local update times in T [i]:

xi(t
[i]
k+1) = max

j∈Ni

{xj(θ
ij
kq
)}, i = 1, . . . , n, kq ∈ N0. (5.3)

As stated in Assumption 5.1, variable θijkq ∈ R+ indicates the time instant at which the

most recent state value produced by the neighboring node j ∈ Ni at time t
[j]
q ∈ T [j],

q ∈ N0, is available to node i before time t
[i]
k+1 ∈ T [i]. Thus, t

[i]
0 ≤ θijkq < t

[i]
k+1 holds

∀j ∈ Ni and for a given t
[j]
q . The informative value conveyed by xj(θ

ij
kq
) is the same

produced by node j at time t
[j]
q , i.e., xj(θ

ij
kq
) = xj(t

[j]
q ) (we remark that θijkq is measured

with reference to t
[i]
0 ). To improve readability, the dependence of θijkq on the index q of

the time instant t
[j]
q ∈ T [j] is omitted hereinafter.

The asynchronous system under exam is defined by the triple

S = 〈G,P,T 〉, (5.4)

where G is the static digraph representing the communication structure, P is the asyn-

chronous max-consensus protocol defined in Eq. (5.3), and T is the unordered set of all

the update times of all the nodes in the network, obtained as T =
⋃n
i=1 T

[i].

Problem 5.1 (Asynchronous max-consensus problem). Given system S defined in triple

(5.4), max-consensus is achieved in finite time if, under the execution of protocol P in

(5.3), ∀i ∈ I, there exists a βi ∈ N s.t. ∀k ≥ βi, k ∈ N, xi(t
[i]
k ) = maxj∈I{xj(t

[j]
0 )} holds.

In the following, the convergence properties of the asynchronous max-consensus proto-

col described by (5.3) are studied. A sufficient condition for convergence is given, as

well as an upper bound on the convergence time, under mild hypotheses. Results are

derived through the use of the analytic synchronization method [87], by establishing the

equivalence between the asynchronous protocol P performed on the static digraph G and

an equivalent synchronous protocol executed on a suitably defined switching topology.

Through this technique, we prove that the strongly connectedness of the communication

digraph G is a sufficient condition for the convergence of the asynchronous max-consensus

protocol.

5.4.2 Virtual Time Base

As stated before, due to the very general assumptions made in this study, it is not

possible to order the set of nodes’ update times without referring them to an external,

common time base. On the other hand, the definition of such a time base is needed for

analysis purposes. A global ordering of the time instants in the set T =
⋃n
i=1 T

[i] is
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Figure 5.3: Update times for three different nodes with variable update times, con-
nected as in Fig. 5.1 (the label e.o. means external observer). The time instant θ120 at
which the most recent state value of node 2 is received by node 1, the delivery delay

d121 i.e., the time interval elapsed between t
[2]
1 and θ120 , and the constant clock cO of the

virtual time base are shown.

achievable assuming the point of view of a hypothetical external observer of the network.

Let us denote with T S the sorted version of the set T . Following the ideas underlying the

analytic synchronization method [86] [87], the definition of T S allows for the appropriate

formalization of a common discrete time base as

Υ = {τh|τh = h · cO, h ∈ N0, τh ∈ R+}, (5.5)

where cO is a constant clock period selected as the biggest time interval contained,

an integer number of times, in every time interval occurring between two consecutive

update times in the sorted set T S (see Fig. 5.3). In the following, we will refer to Υ

as the virtual time base, since it is not actually possessed by any node, yet it is only

used for analysis purposes. Thus, a correspondence between any of the update times

of the state of the nodes and a specific virtual time instant can be set. Note that this

correspondence is not a bijection, that is, each element of T S corresponds to an element

of Υ, whereas the opposite may not be true, i.e., |T S| ≤ |Υ| holds. We formalize this

relation by means of the following function:

f : T S → Υ. (5.6)

The expression f(t
[i]
k ) = τki , k ∈ N0, means that given t

[i]
k ∈ T [i], with T [i] ⊆ T S and

i ∈ I, τki ∈ Υ represents its corresponding virtual update time. Hereinafter, notation

τki ∈ T [i] denotes that there exists a virtual time instant τki ∈ Υ and a time instant

t
[i]
k ∈ T [i], such that τki = f(t

[i]
k ).
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5.4.3 Equivalent Synchronous Model

In this section, we show that system S, which operates with the asynchronous update

rules of protocol P in (5.3) over a static digraph G = (I, E), is equivalent to a system S̆

where a synchronous protocol P̆ is run on a switching digraph Ğh = (I, Eh), h ∈ N0, and

h indexes the virtual time base instants τh ∈ Υ. Similarly to the virtual time base, also

the switching structure can only be revealed by observing system S from an external,

global point of view. In particular, the node sets of G and Ğh coincide for all h ∈ N0,

whereas the time-varying edge sets of digraphs Ğh refer to the effective data exchange

flows, possibly unidirectional, occurring between pairs of nodes during the virtual time

windows (τh−1, τh], h ∈ N. In particular, given node i ∈ I, a directed edge from a node

j ∈ Ni to node i is switched on at τh if and only if τh = τki , with τki ∈ T [i]. Since

we assume that every node can access its own state, this yields (i, i) ∈ Eh, ∀τh ∈ Υ.

Thus, the digraph Ğh, evolving along the virtual time base Υ, can be described by a

time-varying adjacency matrix Ăh ∈ {0, 1}n×n, whose generic element ăijh ∈ {0, 1} is

defined as

ăijh =





aij if τh = τki , j ∈ Ni\{i}

1 i = j

0 otherwise

. (5.7)

We define the time-varying set of neighbors of node i at time τh ∈ Υ, h ∈ N0, as

N̆i(h) = {j ∈ I|ăijh = 1}, (5.8)

where N̆i(h) ⊆ Ni, ∀h ∈ N0, holds.

Let us consider the following synchronous max-consensus protocol P̆ , running over the

switching digraph Ğh:





x̆i(τh+1) = max
j∈N̆ [i]

{x̆j(τh)} ∀τh ∈ T [i] (i)

x̆i(τh+1) = x̆[i](τh) ∀τh /∈ T [i] (ii)
. (5.9)

According to protocol P̆ in (5.9), every node i ∈ I updates its state synchronously, at

time τh ∈ Υ. Differently from protocol P in (5.3), though, its neighbor set changes over

the time instants τh. We refer to the triple

S̆ = 〈Ğ, P̆ ,Υ〉 (5.10)

to define the synchronous system described above, where the synchronous protocol P̆

in (5.9) is run over the switching topology Ğ, described by the adjacency matrix (5.7),
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along the virtual time base Υ expressed by (5.5).

The synchronous max-consensus problem, related to system (5.10), is defined as:

Problem 5.2 (Synchronous max-consensus problem). Given system S̆, protocol P̆ solves

the synchronous max-consensus problem if there exists an integer β̆ ∈ N s.t. ∀k̆ ≥ β̆,

k̆ ∈ N, x̆[i](τk̆) = maxj∈I{x̆[j](τ0j )}, ∀i ∈ I, holds.

In the following section, relying on the equivalence between systems S and S̆, we prove

the convergence of the asynchronous protocol P in S.

5.5 Asynchronous Max-Consensus: Convergence

In this section, we provide the main result of this chapter, that is, the analysis of the

convergence properties of the max-consensus protocol in presence of asynchronous up-

dates and time delays. The study relies on a global knowledge of the network, therefore,

convergence cannot be detected at local level. Thus, we also define a strategy for the

distributed detection of convergence. Then, we discuss some implementation issues and,

finally, we consider again the single-task assignment problem introduced in Section 5.3

in order to show the effectiveness of our approach.

5.5.1 Convergence Analysis

Consider a networked system S characterized by triple (5.4). After having derived the

synchronous system S̆ expressed in (5.10), we now state the equivalence result.

Proposition 5.2. If system S̆ in (5.10) reaches max-consensus in finite time, that

is, if protocol P̆ solves the synchronous max-consensus problem 5.2 over the switching

network Ğh, h ∈ N0, then system S in (5.4) reaches max-consensus in finite time, that is,

protocol P solves the asynchronous max-consensus problem 5.1 over the static network

G. Moreover, if the two state variable sets {x̆i}i∈I and {xi}i∈I , of systems S̆ and S

respectively, assume identical initial values, i.e., x̆i(τ0i) = xi(t
[i]
0 ), ∀i ∈ I, then the two

systems converge to the same value, that is, maxi∈I{x̆i(τ0i)} = maxi∈I{xi(t
[i]
0 )}.

Proof. The proof is inspired by arguments presented in [91]. Consider node i ∈ I and

its state variable xi(t
[i]
k ) at the update time t

[i]
k ∈ T [i], k ∈ N. Then, assume:

x̆i(τki) = xi(t
[i]
k ), k ∈ N, (5.11)

where, from Eq. (5.6), τki = f(t
[i]
k ) (the equivalence x̆i(τ0i) = xi(t

[i]
0 ), ∀i ∈ I, is given by

assumption). We now prove that the application of a single step of the asynchronous
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max-consensus protocol P, expressed by Eq. (5.3) and here rewritten as

xi(t
[i]
k+1) = max{xi(t

[i]
k ),max

j∈Ni

j 6=i

{x(θijk )}}, (5.12)

takes the state variable xi to a value equal to the same value obtained for x̆i through

the application of the synchronous protocol (5.9) at every virtual update time occurring

in the interval [τki , τ(k+1)i).

First, consider the case τ(k+1)i 6= τki + c
O, i.e., τki + c

O does not refer to an update time

for node i. It follows from Eq. (5.9-(ii)) that

x̆i(τl) = x̆i(τki), ∀τl ∈ N s.t. ki ≤ l < (k + 1)i. (5.13)

Suppose now that, for some j ∈ Ni, j 6= i, there exists tijk ∈ R, such that: (i) τki ≤ tijk <

τ(k+1)i ; (ii) t
ij
k − dijq = τqj , where τqj is the virtual time corresponding to the local time

t
[j]
q ∈ T [j], q ∈ N0, at which the most recent value is sent by node j to its neighbours.

We indicate with kij =

⌈
tij
k

cO

⌉
the index of the virtual time base at which node i detects

that a new value has been received from j (⌈·⌉ indicates the ceiling function). Therefore,

for each τl ∈ Υ, kij ≤ l < (k + 1)i, node i assumes that

x̆j(τl) = xj(t
[j]
q ). (5.14)

We remark that if there exist neighboring nodes by which no new values are received,

tijk = τki (or, equivalently, kij = ki) and x̆j(τki) = x̆i(τki) hold. Assume now τh =

τ(k+1)i − cO, then in τh+1, applying Eqs. (5.9-(i)), (5.11), (5.13), the relation

x̆i(τh+1) = max
j∈Ni

{x̆j(τh)} =

= max{x̆i(τki),max

j∈Ni

j 6=i

{x̆j(τkij)} (5.15)

holds. By comparison of Eqs. (5.12) and (5.15), it is straightforward to verify that

xi(t
[i]
k+1) = x̆i(τ(k+1)i).

Once the equivalence between systems S̆ and S has been set, the convergence of the

asynchronous max-consensus protocol is proved. To this aim, we recall a convergence

theorem on synchronous max-consensus protocols in switching topologies.

Theorem 5.3. Given a finite sequence of r adjacency matrices Ă1, . . . , Ăk, . . . , Ăr which

defines a switching topology, the synchronous system (5.10) achieves max-consensus in a
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finite time β̆, for all initial condition vectors x̆0 = [x̆(τ01) . . . x̆(τ0n)]
T , if and only if the

sequence of digraphs Ğ(Ă1), . . . , Ğ(Ăk), . . . , Ğ(Ăr) is jointly strongly connected (notation

Ğ(Ăk) represents a digraph with adjacency matrix Ăk).

Proof. The proof is reported in [88].

On the basis of the results of Proposition 5.2 and Theorem 5.3, we shall prove in Theorem

5.5 the convergence of protocol P in S. To this aim, a further definition is needed.

Definition 5.1. (Partially asynchronous algorithm [86] [87]) An asynchronous algorithm

is called partially asynchronous if there exists a constant ∆ ∈ N, for which the following

two conditions hold:

1. each node performs an update at least once in ∆ time units in the virtual time

base;

2. the information used by any node is outdated by at most ∆ time units in the

virtual time base.

The positive constant ∆ ∈ N is called asynchronism measure.

Assumption 5.3. It is assumed that protocol P expressed by (5.3) is partially asyn-

chronous with asynchronism measure ∆, that is, local state updates cannot occur arbi-

trarily slow, with respect to the virtual time base.

This is a realistic assumption in most applicative settings, where the greatest clock

period and the greatest delay determine the value of the asynchronism measure.

Thus, the equivalent system S is also partially asynchronous with asynchronism measure

∆, and its partial asynchronism condition reads

Assumption 5.4. There exists a positive integer ∆ s.t.

1. for every i ∈ I and for every τh ∈ Υ, h ∈ N0, there exists at least one value k ∈ N0

s.t. f(t
[i]
k ) ∈ {τh, τh+1, ..., τh+∆−1}, with t

[i]
k ∈ T [i];

2. defining τqj ∈ T [j] as the virtual time at which node j ∈ Ni produces the informa-

tion used by node i at time τki ∈ T [i] through the state update rule (5.3), there

holds: τki −∆ · cO < τqj ≤ τki , ∀(j, i) ∈ E , i 6= j, ∀t
[i]
k ∈ T [i].

Assumption 5.4 implies that each node updates its state at least once during any time

interval of length ∆ · cO, and that, given any node, the state information received by its

neighbors is outdated no more than ∆ time units, expressed in the virtual time base.
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We observe that, given Definition 5.1, the synchronous case is included as a particular

case of the asynchronous one, with asynchronism measure ∆ = 1.

Theorem 5.4. Given the partially asynchronous system S = 〈G,P,T 〉 defined in (5.4)

and its equivalent synchronous system S̆ = 〈Ğ, P̆ ,Υ〉 defined in (5.10), if the digraph G

is strongly connected, then ∀τh ∈ Υ, ∃bh ∈ N s.t. the sequence {Ğh, . . . , Ğk, . . . , Ğh+bh}

is jointly strongly connected. Moreover, it results bh ≤ ∆− 1, ∀h ∈ N0.

Proof. Consider node i ∈ I and a virtual time τh ∈ Υ, h ∈ N0. The partial asynchronism

assumption 5.4 guarantees that in at most ∆ clock units expressed in the virtual time

base, node i receives the values of the state variables of every neighbor j ∈ Ni, that

is,
⋃h+∆−1
p=h N̆i(p) = Ni, ∀i ∈ I. Analogously, it can be verified that for all τh ∈ Υ,

it results G =
⋃h+∆−1
p=h Ğp and A =

∨h+∆−1
p=h Ăp, where

∨
is the element-wise logical

or of the adjacency matrices Ăp, describing the switching digraphs Ğp at times τp ∈

Υ, p ∈ {h, . . . , h + ∆ − 1}. The theorem is proved under the hypothesis of strongly

connectedness of the static digraph G (Assumption 5.2), since it is possible to consider

bh = ∆− 1, ∀τh ∈ Υ.

Thus, the main result of this chapter can be summarized in the following Theorem.

Theorem 5.5. If the digraph G of the partially asynchronous system S in (5.4) is

strongly connected, then the max-consensus protocol in (5.3) converges in finite time,

solving Problem 5.1, for all initial conditions xi(t
[i]
0 ), i ∈ I.

Proof. The proof follows directly from the results stated in Theorems 5.3 and 5.4, and

on the basis of the equivalence between systems S and S̆, stated in Proposition 5.2.

Our study on the upper bound of the convergence time for the asynchronous max-

consensus protocol is given in the following Corollary. It relies on the result on the

finite-time convergence of its equivalent synchronous system, stated in Theorems 5.1

and 5.4.

Corollary 5.1. (Upper bound on the convergence time) Let S be the system in (5.4),

where the asynchronous max-consensus protocol expressed by (5.3) is run over the static

digraph G. If G is strongly connected, then max-consensus is achieved, for all initial

conditions, in at most ∆ · D time steps, expressed in the virtual time base, where ∆ is

the asynchronism measure of S, and D is the diameter of G.

Proof. Consider the synchronous equivalent model S̆ of S, and the following D se-

quences of ∆ adjacency matrices: S1 , Ă1, . . . , Ă∆; S2 , Ă∆+1, . . . , Ă2∆; . . . ; SD ,
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Ă(D−1)∆+1, . . . , ĂD∆. Each adjacency matrix models the network topology at a specific

virtual time τh, h ∈ {1, . . . ,D ·∆}. From Theorem 5.4, it follows that each sequence Sk,

k ∈ {1, . . . ,D}, is jointly strongly connected, and G(Sk) = G, ∀k ∈ {1, . . . ,D}. Since G

is strongly connected by hypothesis (Assumption 5.2), it is possible to apply Theorem

5.1. In particular, each of the D steps required to reach consensus is formed by ∆ time

instants (this property is necessary to ensure the condition of jointly strongly connect-

edness of each sequence Sk). Therefore, the entire process takes ∆ · D times, referred

to the virtual time base. Given the equivalence stated in Theorem 5.2, the thesis is

proved.

The proof of convergence, derived by observing the network from a global point of view,

establishes a time-driven framework, in which each node has to run the protocol for a

given time, necessary to ensure convergence [18]. Nevertheless, if one wants to design

distributed applications relying directly on the theoretical results provided so far, some

global knowledge about the network properties must be known, that is, every node

should be able to estimate the asynchronism measure value ∆, the value of the diameter

of the network D, and the common virtual clock cO. In the particular case in which each

node owns a constant clock c[i] ∈ Q (here, clock periods are intended to be expressed in

the same measurement unit), and that all the starting times are synchronized, that is,

t
[i]
0 = t

[j]
0 , ∀{i, j} ⊆ I, the common virtual clock period cO can be computed as

cO = gcd
i
{c[i]}, i ∈ I, (5.16)

where gcd is the greatest common divisor operator. Under these conditions, t
[i]
k = kc[i],

∀k ∈ N0, i ∈ I. Thus the following relation

ki =
kc[i]

gcdi{c
[i]}

(5.17)

holds between index k of the local time base instant t
[i]
k and index ki of the corresponding

virtual update time. It is straightforward to note that τ0i = τ0, ∀i ∈ I. Therefore,

Eq. (5.16) can be combined with the result expressed by Corollary 5.1 in order to set a

time-driven convergence detection mechanism (note that the values of the asynchronism

measure ∆ and of the diameter D are also required).
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5.5.2 Event-based Convergence Detection Strategy

Convergence can alternatively be detected through an event-based strategy, which do

not require the knowledge of global variables. This is a viable alternative, which pro-

vides the same upper bound on the convergence time of the time-driven approach. The

proposed technique is inspired by [92] and [20], where it is used to solve a distributed

connectivity control problem and a distributed target tracking application, respectively.

Each node possesses a binary vector of tokens κi = [κ1i . . . κ
n
i ]
T ∈ {0, 1}n, i ∈ I. This is

a collection of n flags, where n is the total number of network nodes, that are updated

concurrently with the state of node i during the consensus process, on the basis of the

token information received by its neighbors. An element κui of the token vector set to 1

indicates that node i has received the state value of node u. If the condition κui = 1 is

verified for all u ∈ I, then node i holds the maximum value and stops participating in

the consensus process, after having sent its state value to all of its neighbors. We ob-

serve that, for the implementation of this event-based convergence detection technique,

the only global information needed by all nodes is the network size n. As stated earlier

in the thesis, this information can be easily computed in a distributed way [68], which

allows to keep the detection technique totally distributed.

Theorem 5.6. If every node i ∈ I updates its token vector κi(t
[i]
k+1) at time t

[i]
k+1 ∈ T [i],

according to the rule

κui (t
[i]
k+1) = κui (t

[i]
k )

∨

j∈Ni

κuj (θ
ij
k ),∀u ∈ I, (5.18)

then condition
∧
u∈I κ

u
i = 1 is verified after at most ∆ · D time units, expressed in

the virtual time base (the operator
∧

stands for the logical and of the vector elements).

This condition ensures the correct convergence of the consensus protocol to the maximum

value of the initial states xi(t
[i]
0 ), i ∈ I.

Proof. The proof of convergence with the token-mechanism follows the same arguments

used for the proof of Corollary 5.1. The u-th element of the token vector of a generic

node i ∈ I, at its virtual starting time τ0i , is defined as:

κui (τ0i) =

{
1 if i = u

0 otherwise
. (5.19)

According to the partial asynchronism assumption, after ∆ virtual time units the generic

node i has surely received the states of its neighbors, j ∈ Ni, and has updated its state.
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This implies that the token vector, at virtual time τ0i+∆, is described by

κui (τ0i+∆) =

{
1 if u ∈ Ni

0 otherwise
. (5.20)

After further ∆ virtual time units, it can be easily verified that

κui (τ0i+2∆) =

{
1 if u ∈ Ni ∪

⋃
p∈Ni

{Np}

0 otherwise
. (5.21)

This implies that in 2∆ virtual time units, a path of length 2 has been established be-

tween node i and its 2-hop neighbors w ∈
⋃
p∈Ni

{Np}. Iteratively, after k∆ virtual time

units, each node is able to establish a communication channel with its k-hop neighbors,

so that the relation

κi(τ0i+k∆) = κi(τ0i+(k−1)∆) ∨
∨

j∈Ni

κj(τ0i+(k−1)∆) (5.22)

holds, where ∨ is the element-wise boolean or operator. The generic element u of the

token vector at time k∆ can be inductively computed as

κui (τ0i+k∆) =

{
1 if u ∈ {Nl|κ

l
i(τ0i+(k−1)∆) = 1, l ∈ I}

0 otherwise
. (5.23)

Since the diameter D of a network represents the maximum length of the shortest path

between any pair of nodes, at most ∆ · D virtual time units are required to obtain an

all-one token vector κi = [1, 1, . . . , 1]T , ∀i ∈ I. Therefore, the token mechanism ensures

that every node in the network receives the state information from all the other nodes in

finite time. The convergence time of the procedure is bounded by the asynchronous max-

consensus convergence result, while the correctness of the convergence value is ensured

by the associative property of the max operator.

5.6 Numerical Results

In this section, we show that the proposed token-based convergence detection mech-

anism, supported by the finite-time convergence properties of the asynchronous max-

consensus protocol, provides an algorithmic framework to solve synchronization issues

in max-consensus-based distributed applications [93]. As an example, we consider again

the single task assignment problem, proposed in Section 5.3, showing that the token

mechanism drives the network towards a correct assignment, and that the number of

virtual updates to reach the convergence is upper bounded by ∆ · D.
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Figure 5.4: A numerical example: the evolution of the state and of the token vec-
tors for a network of 3 nodes (connected as in Fig. 5.1) operating an asynchronous
max-consensus with token-based convergence detection mechanism for a single task as-
signment problem. The vertical blue line indicates the convergence instant, while the
upper bound on the convergence time is indicated by the red one.

We consider the same network of Section 5.3, composed by n = 3 nodes (see Fig. 5.1),

with diameter D = 2. We suppose again that there is a single task to be assigned, and

that the network nodes set the following bids, x1(t
[1]
0 ) = 15, x2(t

[2]
0 ) = 8, and x3(t

[3]
0 ) = 2,

so that it should result that the task is assigned to node 1. We assume the following

constant clock periods, c[1] = 0.5 ms, c[2] = 0.3 ms, and c[3] = 0.2 ms, and a maximum

delay ď = 0.095 ms. Supposing all the starting times synchronized, it is easy to verify

that the system is partially asynchronous with asynchronism measure ∆ = 5. Moreover,

according to Eq. (5.16) it results cO = 0.1 ms. In Fig. 5.4, the temporal sequence of

send/receive messages, operated according to the asynchronous max-consensus protocol

with token-based convergence detection, is illustrated. The value of the information

state is also reported in correspondence of each time instant in which it evolves to a new

value. As can be seen, all nodes agree on the maximum bid (i.e., the network reaches

consensus) after 8 time units referred to the virtual time base (node 3 is the last one

that updates its state value to the maximum in τ8 = 0.8 ms). We remark that the upper

bound in this case is equal to ∆ · D · cO = 1 ms, and, thus, the token-based mechanism

allows the nodes to detect the convergence condition faster than the time-driven solution

where, provided that the network nodes were able to estimate the global parameters of

the system, they would run the protocol up to the upper bound for the convergence

time.
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Figure 5.5: A numerical example: the evolution of the state for a network of 3 nodes
(connected as in Fig. 5.1) operating an asynchronous max-consensus with token-based
convergence detection mechanism for a single task assignment problem. The red line
indicates the upper bound on the convergence time. Here, the convergence time is
reached in exactly ∆ · D time units.
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Figure 5.6: Box-plots of the convergence time of the max-consensus protocol for a
network of 11 nodes connected through different topologies: star, ring, and line, with
maximum communication delay (A) ď1 = 0.095 ms and (B) ď2 = 9.5 ms. The bottom
of the box indicates the first quartile, while the top indicates the third quartile. The
band inside the box is the second quartile, i.e., the median. The whisker at the bottom
of the box indicates the lowest data within 1.5 of the Interquartile Range (IQR, that is
to say, the difference between the third quartile and the first one) of the lower quartile,
while the top whisker indicates the highest data within 1.5 of the IQR of the upper
quartile.

Figure 5.5 illustrates a different scenario for the same network. This setup differs from

the previous one in the value of the clock period of node 3 (i.e., c[3] = 0.4 ms) and in

the distribution of the initial set of nodes’ bids, that is x1(t
[1]
0 ) = 2, x2(t

[2]
0 ) = 8, and

x3(t
[3]
0 ) = 15. Nevertheless, it still results ∆ = 5 and cO = 0.1 ms. In this case, the

evolution of the token-based mechanism makes the network reach the max-consensus in

exactly ∆ · D · cO = 1 ms.

As stated in the previous section, the convergence time of the asynchronous max-

consensus protocol depends on the diameter of the network, on the node’s clock periods,

and on the communication delays. An insight on the influence both of the network
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topology (and, therefore, of the network diameter) and of the maximum delay on the

asynchronous max-consensus convergence time is provided in Fig. 5.6. We consider a

network of 11 nodes arranged in three different topologies (i.e., star, ring, and line),

with the following diameter values D = 2, 5, 10, respectively. We run 100 Monte Carlo

simulations of the max-consensus protocol for each topology with a virtual time base

resolution fixed to 0.001 ms (i.e., cO = 0.001 ms). Moreover, we consider two differ-

ent maximum delay values, that is, ď1 = 0.095 ms (Fig. 5.6(A)), and ď2 = 9.5 ms

(Fig. 5.6(B)), respectively. We assume time-varying clock periods, i.e., c
[i]
k = c

[i]
avg +χ

[i]
k ,

i ∈ {1, . . . , 11}, k ∈ N, where χ
[i]
k ∼ N(0, 0.001), that is, χ

[i]
k is drawn from a Gaussian

distribution with zero mean and variance equal to 0.001 ms. For each simulation, the

average clock periods c
[i]
avg, i ∈ I, are set by drawing at random, with uniform prob-

ability, values from the set C = {0.1, 0.2, . . . , 0.9}. From the results in Fig. 5.6, we

observe that, for the same topology, the average convergence time increases as the maxi-

mum delay increases. For example, for the star topology the average convergence time is

equal to 1.693 ms for the case ď1 = 0.095 ms, while it increases to 4.627 ms for the case

ď2 = 9.5 ms. A similar trend can be observed for the ring topology, where the average

convergence time increases from 3.812 ms in the case ď1 = 0.095 ms to 12.48 ms for the

case ď2 = 9.5 ms, and also for the line topology, where the average convergence time

for the case ď1 = 0.095 ms is equal to 4.338 ms, while it is equal to 13.633 ms for the

case ď2 = 9.5 ms. On the other hand, Fig. 5.6 shows that, for the same maximum delay,

an increase of the network diameter causes an increase of the average convergence time,

as expected. In this regard, we observe that the average convergence time for a line

topology and small delay (Fig. 5.6(A)) is comparable with the average convergence time

for a network with star topology and large delay (Fig. 5.6(B)). This suggests that, in

networks where communication delays are expected to be substantial, the performance

in terms of convergence time can be improved through a sensible choice of the network

topology.

5.7 Conclusion

In this chapter, we analyze the convergence properties of the asynchronous discrete-time

max-consensus protocol. The work is motivated by the need to implement this protocol

in applications, such as the DKNS presented in Chapter 3, where asynchronous updates

and communication delays are usually present. The analysis relies on the equivalence

between the asynchronous protocol running on a static network and a corresponding syn-

chronous model running on a suitable switching topology. In particular, it is proved that,

in presence of arbitrary asynchronous updates, the max-consensus protocol converges in
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finite time if the underlying communication network is strongly connected, under the

mild hypothesis of partial asynchronism. Moreover, the convergence time is bounded

by a quantity which is function of the network diameter and of the asynchronism mea-

sure. To corroborate the theory, we propose an example where the asynchronous max-

consensus theory is applied to a decentralized single task assignment problem, where a

distributed mechanism for the detection of the convergence of the protocol, based on

token vectors, has been proposed and implemented.



Chapter 6

Conclusion

In this thesis we have mainly focused on the design of distributed estimation algorithms

for sensor and robotic networks. Specifically, a distributed Kalman filter and a dis-

tributed algorithm for the estimation of inertial parameters have been presented.

In chapter 3, we have addressed the problem of distributed Kalman filtering over het-

erogeneous sensor networks, by introducing a novel approach, the Distributed Kalman

filtering with Node Selection (DKNS). The equivalence of the DKNS to a centralized

Kalman filter with multiple measurements has been proved. The equivalent centralized

filter evolves according to a state-dependent switching dynamics, able to select and prop-

agate the best estimate of the process state through the sensor network in finite time.

It is possible to define the level of accuracy of the estimate through the definition of a

metric, called perception confidence value, which is related to the Fisher information.

We have applied the algorithm to the discrete-time tracking of a maneuvering target,

performed by a network of heterogeneous range-bearing sensors with limited sensing

capability, achieving very satisfactory results. A performance comparison with existing

algorithms based on sensor fusion yields the conclusion that DKNS is more effective than

sensor fusion when limitations on the sensing capability are present. In this case, in fact,

several inaccurate measurements could be present over the network. Since sensor fusion

strategies are mostly based on some form of averaging, the presence of many inaccurate

measurements can heavily affect the outcome of the fusion operation. On the other

hand, through node selection, averaging is not performed and only the most accurate

measurement is selected and propagated. It is evident that, when most of measurements

are accurate, the application of fusion strategies is beneficial, since it contributes to filter

out the noise associated to individual measurements. A real application of the DKNS in

an Ambient Assisted Living framework has also been presented and validated in detail.

Further work will deal with the possible presence of malicious or misbehaving nodes in
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distributed estimation schemes based on node selection, such as DKNS. Due to the main

characteristic of node selection algorithms, in fact, the presence of a faulty or malicious

node that provides an inaccurate estimate with a high perception confidence value may

heavily affect the outcome of the estimation process, since the faulty or malicious node

can be wrongly selected as the one with the most accurate measurement.

In chapter 4, we have addressed the problem of the distributed estimation of inertial

parameters of an unknown load manipulated by a network of robots. The estimation

is performed through a sequence of steps and is achieved in finite time. We assume

that each robot is able to control the exerted force and to measure the velocity of the

point where the force is exerted. On the other hand, we do not assume that the robots’

velocity can be controlled. An analysis of the influence of the measurement noise on the

estimate has been carried out by defining suitable strategies and confidence intervals

for the estimated quantities. Simulation results are very satisfactory and confirm the

effectiveness of our approach, while keeping a low computational burden. Future work

will deal with the extension of the proposed approach in three-dimensional applications

(e.g., in aerial manipulation applications), the inclusion of non deterministic elements,

such as delays, and the design and implementation of manipulation control strategies

based on distributed estimation of inertial parameters.

In chapter 5, we have studied the convergence properties of the asynchronous max-

consensus protocol. The work is motivated by the need to implement this kind of

protocol in real-world applications, where asynchronous updates are real issues to be

taken into account. The analysis is based on an equivalence between the asynchronous

protocol on the given static network and a corresponding synchronous protocol run on

a suitable switching topology. In particular, it is proved that, in presence of arbitrary

asynchronous updates, and bounded time delays, the max-consensus protocol converges

in finite time if the underlying communication network is strongly connected, under the

mild hypothesis of partial asynchronism. Moreover, the convergence time is bounded

by a quantity which is a function of the network diameter and of the asynchronism

measure. As an example, we have applied the asynchronous max-consensus theory to

a decentralized single task assignment problem, where a distributed mechanism for the

detection of the convergence of the protocol, based on token vectors, has been proposed

and implemented. Future work will deal with more in-depth studies on the dependence

of the convergence time on network delays and topology, and on the generalization of

the convergence results to a wider class of consensus protocols.



Appendix A

Linear Dynamics Filtering

In this appendix, we briefly recall a well-known parameter estimation procedure based on

filtering linear dynamics [73]. This approach is used in the development of the estimation

algorithms presented in Chapter 4 when dealing with constant parameters such as the

distance between contact points ‖zij , the moment of inertia J of the object, and its mass

m.

Given the linear system

ẏ = θu, (A.1)

we would like to estimate the unknown constant parameter θ ∈ R on the basis of

measurements of the input u ∈ Rl and the output y ∈ Rl, where l ≥ 1. We assume that

ẏ is unknown or not measured. To this aim, we compute low-pass filtered versions of

the measured signals u and y, namely uf and yf , respectively, defined as:

u̇f = kf (u− uf ) (A.2)

ẏf = kf (y − yf ) (A.3)

with kf > 0. Due to the linearity of (A.1)–(A.3), the following relation holds:

ẏf = θuf , (A.4)

which can be rewritten as

kf (y − yf ) = θuf . (A.5)
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We remark that (A.5) holds after a transient phase due to the filter initial conditions.

We observe that (A.5) relates known quantities, except for θ, which can be now esti-

mated through a suitable estimator, generically described by the following dynamics

that involves only quantities that are known, except for θ. Notably, the estimation hat

theta of parameter theta is performed through the dynamical system

˙̂
θ = fθ(y

f ,uf ,y), (A.6)

where fθ is a suitable function describing the desired estimator’s dynamics.
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