
Planning and Control for Robotic
Tasks with a Human-in-the-Loop

Von der Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik
und dem Stuttgart Research Centre for Simulation Technology

der Universität Stuttgart zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Carlo Masone
aus Roma (Italien)

Hauptberichter:
Mitberichter:

Institut für Systemtheorie und Regelungstechnik
Universität Stuttgart

2014

Acknowledgements
This thesis is the only final step of an itinerary of several years of hard and intense work,
which would have not been possible without the support of many people who accompanied
me along this long journey.

Firstly, I want to express my gratitude to Prof. Dr. Heinrich H. Bülthoff, for stimulating
me in my research and for allowing me to work in his group at MPI during these years.
He created a great research environment where I was able to meet brilliant colleagues and
precious friends.
Along similar lines I want to thank Prof. Dr. Frank Allgöwer, for accepting me in his group
within the prestigious university of Stuttgart, for co-advising my thesis and for giving me
invaluable help.
Lastly, I also want to thank Prof. Dr. Cristian Secchi, for showing interest in my work and
for accepting to co-advise my thesis.

My most sincere gratitude goes to Dr. Paolo Robuffo Giordano and Dr. Antonio Franchi,
who supervised me during the years of my doctorate. They have both given me constant
guidance and have been always available for proficuous discussion, on days, nights and
weekends. I will cherish the many things that I have learned from them during these years.

Finally, I want to thank the great colleagues that I was lucky to work with: Volker Grabe,
Thomas Nestmeyer, Martin Riedel, Markus Ryll, Burak Yüksel. They gave me technical
help in the many days and nights we worked side-by-side and, most importantly, they have
been truly good friends.

Tübingen, January 2014
Carlo Masone

iii

For my wife Paolina.

Table of Contents
Notation vii

Abstract ix

Deutsche Kurzfassung xi

1 Introduction 1
1.1 Robotic Tasks with a Human-in-the-Loop 1
1.2 Application Domains of RTHL and Related Fields 1
1.3 Motivations of RTHL . 4
1.4 Characteristics and Challenges of RTHL 4

1.4.1 Autonomy . 4
1.4.2 Human-to-robot ratio . 5
1.4.3 User interfaces . 5
1.4.4 Shared Control . 6

1.5 Objectives and Outline of the Thesis . 8

2 Design and control of a novel motion simulator 11
2.1 Introduction . 11

2.1.1 Related Works . 12
2.2 Preliminaries . 14
2.3 Cabin Kinematics . 16

2.3.1 Forward Kinematics . 18
2.3.2 Differential Kinematics . 22

2.4 High-Level Control . 23
2.5 Results . 26
2.6 Summary and Possible Extensions . 33

3 Shared control of a UAV bearing-formation 37
3.1 Introduction . 37

3.1.1 Related Works . 38
3.2 Preliminaries . 40

3.2.1 UAV Model . 40
3.2.2 Agent Model . 42

3.3 Relative bearings . 43
3.3.1 Properties of Relative Bearings . 44
3.3.2 Bearing-Formations . 47

3.4 Overview of the Framework . 51
3.5 Human Steering . 53
3.6 Formation Controller . 59

3.6.1 Computational and Communication Complexity 63

v

Table of Contents

3.6.2 Time-varying desired bearings . 64
3.7 Haptic Feedback Algorithm . 65
3.8 Simulations and Experiments . 67

3.8.1 Experimental Testbed . 67
3.8.2 Results . 71

3.9 Summary and Possible Extensions . 81

4 Shared Planning with Integral Haptic Feedback 83
4.1 Introduction . 83

4.1.1 Related Works . 84
4.2 Preliminaries . 85
4.3 B-Splines . 89
4.4 Overview of the Proposed Framework . 93
4.5 Human Guidance . 95
4.6 Autonomous Correction . 98

4.6.1 Reactive Path Deformation . 98
4.6.2 Generation of Non-homotopic Alternative Paths 105

4.7 Haptic Feedback . 109
4.8 Coverage Task with Human-in-the-loop . 113
4.9 Simulations and Experiments . 116

4.9.1 Experimental Testbed . 116
4.9.2 Results . 118

4.10 Summary and Possible Extensions . 132

5 Conclusions 135

Bibliography 139

vi

Notation
Throughout the different chapters of this thesis the notation has been kept as uniform and
consistent to the literature as possible, even though the problems discussed are various.
This section briefly presents the guidelines for the notation that is used in the thesis, in
order to provide an easy-to-access summary for the reader’s convenience. Nevertheless,
the symbols that are here described will be recalled whenever necessary. Moreover, the
symbols/notation that are used only in specific passages will be introduced only when
needed during the thesis.

Scalars, vectors and matrices Scalars are denoted with normal weighted characters,
e.g., k ∈ R or α ∈ SO(1). Vectors are indicated with boldfaced symbols, e.g., v ∈ R3 or
β ∈ R2. Matrices are denoted with capital normal weighted symbols, e.g., M ∈ R3×2, and
the range space of a matrix M is denoted as R(M). Special vectors are the column vector
of zeros, i.e., 0m ∈ Rm×1, and column vector of ones, i.e., 1m ∈ Rm×1. A special notation is
also reserved to the identity matrix, denoted as Im ∈ Rm×m, and the null matrix, written
as 0m×m ∈ Rm×m. Unit vectors are denoted as vectors with the symbol ·̂, e.g., v̂ ∈ S2. The
notation [v]∧ ∈ so(3) is used to denote the skew-symmetric matrix associated to a vector
v = (v1 v2 v3)T ∈ R3, i.e.,

[v]∧ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 . (0.1)

Conversely, the notation [S]∨,3 ∈ R3 denotes the vector that is extracted from a skew-
symmetric matrix S.

Frames of reference and transformations A frame of reference in the Cartesian space
is denoted as F : {O; ~X; ~Y ; ~Z}, where O ∈ R3 is the origin of the frame and ~X, ~Y , ~Z ∈ R3

are the axis of an orthonormal basis. The notation for the origin and axes of a frame is
deliberately chosen different from standard vectors in order make clear that they define
a frame. A vector expressed in a specific frame of reference, e.g., frame FW , is generally
written with the indicator of the frame as pre-superscript, e.g., Wv. The rotation matrix
of a frame FA with respect to another frame FW is written as WRA ∈ SO(3). For the
well known properties of rotation matrix, it is also WRT

A = WR−1
A = ARW . The canonical

rotation matrices around the frame axes are indicated as R ~X(·), R~Y (·) and R~Z(·).

vii

Abstract
The design of robotic tasks with a joint interaction with a human user (human-in-the-loop)
is currently a highly popular topic in robotics research. One of the main reasons of interest
is the possibility of combining the skills of both humans and robots to successfully perform
complex tasks. In particular:

• Robots are extremely capable at autonomously executing specific and repetitive
tasks, with great speed and precision, and they can operate in environments that are
dangerous for a human operator.

• With respect to robots, humans possess far superior cognitive capabilities and world
awareness which allow them to tackle applications that involve unstructured environ-
ments or require taking difficult and quick decisions.

The co-participation of humans and robots to a task can also arise from other reasons, such
as an implicit constraint of the task itself (wearable robots, motion simulators) or safety
regulations that require a human to supervise the activity of robotic workers.

In view of these considerations, shared control (between human and robot) is a promising
(and, in some fields, consolidated) approach to address a number of robotics applications.
However, there are several open questions and challenges regarding the design of shared
control architectures, such as choosing the role of the human in the task, devising suitable
command interfaces and feedback algorithms that increase the situation awareness of the
operator, and coping with the unpredictable signals or decisions from the human user.
In this doctoral thesis it is presented a study of some novel robotic tasks involving

human-robot interaction. The original shared control architectures developed for these
tasks illustrate several novel solutions to the aforementioned questions. Furthermore, the
tasks considered in the thesis span various possibilities for the typical characteristics of
shared control architectures in robotics, i.e.:

• the role of the human operator in the shared task and his/her interaction with the
robot(s);

• the typology and number of robots that participate to the shared task;

• the feedback returned to the human operator.

ix

Deutsche Kurzfassung
Planung und Steuerung von
Roboter-Mensch Systemen
Das Design von Aufgaben in der Robotik in Kooperation mit einer Bedienperson (human-
in-the-loop) ist zur Zeit ein sehr weitverbreitetes Problem in der Forschung. Eine der
Hauptgründe dieses Interesses ist die Möglichkeit, die Stärken sowohl des Menschen, als
auch der Roboter zu kombinieren, um erfolgreich komplexe Aufgaben zu erfüllen Im
Einzelnen:

• Roboter sind extrem gut darin, spezifische und sich wiederholende Aufgaben mit großer
Geschwindigkeit und Präzision auszuführen und können in Umgebungen arbeiten, die
gefährlich für einen Arbeiter sind.

• Im Gegensatz zu Robotern besitzen Menschen weit bessere kognitive Fähigkeiten
und ein Bewusstsein für ihre Umgebung, was ihnen erlaubt, Aufgaben in einer
unstrukturierte Umwelt auszuführen, welche schwierige und schnelle Entscheidungen
voraussetzen.

Gemeinsames Mitwirken von Menschen und Robotern an einer Aufgabe kann auch
andere Gründe haben, wie zum Beispiel eine implizite Einschränkung der Aufgabe selbst
(am Körper tragbare Roboter, Bewegungssimulatoren) oder Sicherheitsbestimmungen, die
vorschreiben, dass ein Mensch die Aktivitäten eines Roboters überwacht.

In Bezug auf diese Überlegungen ist die gemeinsame Kontrolle (zwischen Mensch und
Roboter) ein vielversprechender (und, in einigen Gebieten, fundierter) Ansatz, eine Großzahl
von Anwendungen in der Robotik anzugehen. Jedoch gibt es verschiedene offene Fragen
und Herausforderungen, die das Design der gemeinsamen Kontrollarchitektur betreffen,
wie beispielsweise die Rolle des Menschen an der Aufgabe, die Bestimmung geeigneter
Benutzeroberflächen, die das Bewusstsein des Bedieners für die Situation erweitern und Feed-
backalgorithmen, die mit unvorhersehbaren Signalen und Entscheidungen des menschlichen
Benutzers umgehen können.
In dieser Doktorarbeit wird eine Studie präsentiert, die neuartige Anwendungen in der

Mensch-Maschine-Interaktion untersucht. Die einzigartigen geteilten Kontrollarchitektu-
ren, die für diese Arbeit entworfen wurden, zeigen verschiedene neuartige Lösungen der
vorhergehenden Fragen. Zusätzlich spannen die Anwendungen, die in dieser Arbeit berück-
sichtigt wurden, verschiedenste Möglichkeiten für die typischen Charakteristiken geteilter
Kontrollarchitekturen in der Robotik:

• Die Rolle der Bedienperson in der geteilten Aufgabe und seine/ihre Interaktion mit
den Robotern;

xi

Deutsche Kurzfassung

• Den Typ und die Anzahl der Roboter die an der geteilten Aufgabe teilnehmen;

• Das Feedback, das an die Bedienperson gegeben wird.

xii

Chapter 1

Introduction

1.1 Robotic Tasks with a Human-in-the-Loop
Human-Robot Interaction (HRI) is a branch of robotics whose mission, according to Goodrich
and Schultz (2007), is "to understand and shape the interactions between one or more
humans and one or more robots". As this statement suggests, HRI is a very broad field of
research (the interested reader is referred to Goodrich and Schultz (2007); Thrun (2004)
for a wide overview), but it is also quite young in comparison to other fields of robotics
and rapidly growing. The first conference dedicated entirely to this subject started in
1992: the IEEE International Symposium on Robot & Human Interactive Communication
(RoMan). Nowadays, HRI has become one of the most relevant fields of robotics, as proven
by the numerous dedicated scientific meetings that have emerged in the last decade (e.g.,
the ACM/IEEE International Conference on Human-Robot Interaction (HRI conference)
or the workshop on Human Friendly Robotics (HFR). The importance of HRI is further
confirmed by several European projects: PHRIENDS1 (2006-2009), CHRIS2 (2008-2012),
SAPHARI3 (2011-2015).

A major topic within HRI is the study of robotic tasks with a human-in-the-loop (RTHL),
i.e., tasks that are cooperatively executed by humans and robots, in contrast to robotic tasks
in which people are obstacles or bystanders (Scholtz and Bahrami (2003)) in the environment
(e.g., autonomous vehicles driving in an urban environment). An example of RTHL is the
cooperative handling and transportation of objects presented by Kosuge and Hirata (2004).
In order to comprehend the variety of RTHL, the next section will describe few application
domains and research fields that involve or relate to the cooperation of humans and robots.
This brief overview, is helpful not only to understand the motivations for researching
human-robot co-partecipation to a task, but also to identify several characteristics and
open challenges of RTHL that will be addressed during the thesis.
.

1.2 Application Domains of RTHL and Related Fields
Field applications The domain of field applications pertains tasks that take place in
unstructured, unconstrained and dynamic environments, typically outdoors in the natural
world. This is a broad domain, spanning the topics of environmental monitoring, construc-
tion, forestry, agriculture, intelligent highways, search and rescue, etc. The overlap between

1Physical Human-Robot Interaction: Dependability and Safety, http://www.phriends.eu
2Cooperative Human Robot Interaction Systems, http://www.chrisfp7.eu
3Safe and Autonomous Physical Human-Aware Robot Interaction, http://www.saphari.eu

1

http://www.phriends.eu
http://www.chrisfp7.eu
http://www.saphari.eu

Chapter 1 Introduction

RTLH (or more in general HRI) and field robotics stems from the limited cognitive and
processing capabilities of current robots: at present, even the state of the art robotic systems
are not yet capable of fully autonomously coping with the complexity and unpredictability
of the natural world, therefore humans are generally required to control or supervise the
operations. For example, after the Tohoku earthquake and tsunami remotely operated
underwater vehicles were used to inspect critical infrastructures by Murphy et al. (2011).

Among field applications (see Yuta et al. (2006)), urban search and rescue (USAR) (Mur-
phy et al. (2008)) is often taken as an exemplary study of RTHL, because it includes many
of the problematics of human-robot interactions, such as user interfaces, sensing, evaluation
of human-factors, etc. For this reason USAR has also been suggested by a DARPA/NSF
study from Burke et al. (2004a) as one of the great challenges for human-robot interaction,
and USAR related competitions are organized at important robotics conferences in order to
promote and study important questions of RTHL. A detailed overview of RTHL in rescue
robotics is presented by Murphy (2004a).

Unmanned Aerial Vehicles Among mobile robots, Unmanned Aerial Vehicles (UAVs)
deserve a special mention as a blooming area of application for RTHL. UAVs can be roughly
defined as autonomously or remotely piloted vehicles that move in three dimensions and
possess 6 degrees of freedom (DoF). Thanks to their mobility and ability to quickly cover
large areas, UAVs have allowed to greatly expand the range of applications in the field
domain. For example, teams of UAVs can be extremely valuable for border patrolling
and surveillance tasks (see Girard et al. (2004)) or for environmental monitoring such as
forest fire monitoring (see Casbeer et al. (2005)) or pollution monitoring (see Kristiansen
et al. (2012)). In recent news, the importance of UAVs for monitoring missions has also
been recognized by the International Atomic Energy Agency4. The great interest in UAVs
research is also been confirmed by several European projects, such as sFly5 (2009-2011),
AIRobots6 (2010-2013), ARCAS7 (2011-2015) and ICARUS8 (2012-2016).

The overlap with RTHL is due to the fact that in most missions UAVs are remotely
operated for several reasons, such as the complexity of the task or the lack of predetermined
flight plans (see Quigley et al. (2004)). However, the main reason for remote teleoperation of
UAVs is safety. UAVs are deemed very risky, especially for urban missions, because they can
fall to the ground in case of failure. For this reason, there are often strict safety regulations
that mandate the presence at all times of human supervisors or pilots. The dichotomy
between the need for human pilots and the distance from the vehicles has recently prompted
the adoption of a bilateral teleoperation paradigms to command UAVs, in order to increase
telepresence and situation awareness, see e.g., Lam et al. (2006a,b).

Physical Human-Robot Interaction Physical human-robot interaction (pHRI) is
branch of HRI that studies tasks involving a direct contact between human and robot.
Perhaps, the main focus of pHRI is the question of safety, for example in the case of
accidental collisions of a robot with a person as shown by Haddadin et al. (2008). However,

4http://www.iaea.org/newscenter/news/2013/aerialvehicles.html
5http://www.sfly.org
6http://airobots.ing.unibo.it
7http://www.arcas-project.eu
8http://www.fp7-icarus.eu

2

http://www.iaea.org/newscenter/news/2013/aerialvehicles.html
http://www.sfly.org
http://airobots.ing.unibo.it
http://www.arcas-project.eu
http://www.fp7-icarus.eu

1.2 Application Domains of RTHL and Related Fields

the physical contact between human and robot could also be an implicit constraint or the
goal itself of a RTHL. A clear example of this kind of scenario is provided by assistive and
medical robots that are designed to support injured or disabled people during rehabilitation
(see Jungwon et al. (2010)). Another example of RTHL involving physical interaction is the
case of motion simulators, in which a person is situated onboard moving robotic platforms
that are used to create the perception of a desired motion, such as the motion of a vehicle.

Aviation Even though aviation does not involve RTHL and the literature from these
communities is completely disjoint, these two fields share several problems and questions.
For instance, the question of designing human-machine interfaces that simplify pilots’
control and increase their situation awareness has been for a long time a research topic
in aviation. An example of such interfaces are tunnel-in-the-sky displays that have been
designed to give the pilot a better understanding of the effect of his/her control on the
trajectory of the aircraft (see Mulder et al. (1999a,b)). Another element of similarity
with RTHL is the question of how many vehicles (or robots) a person can command or
supervise. In aviation, this question has been raised by the problem of air traffic control
(ATC), which requires a person to handle the traffic of multiple aircrafts. A possible point
of convergence between RTHL and aviation could be offered by the research on personal
aerial transportation systems, pursued for example within the European project myCopter9

(2011-2013). Realizing a mainstream personal aerial vehicle requires in fact to study the
question of balancing autonomy and manual control, which is central in RTHL.

Telerobotics and Haptics Telerobotics is one of the earliest fields of research in robotics
and it is also a major contributor to RTHL. The connection with RTHL is easily explained
by the very definition of telerobotics, which, according to Niemeyer et al. (2008), "... is
generally understood to refer to robotics with a human operator in control or human-in-the-
loop. Any high level, planning or cognitive decisions are made by the human user, while the
robot is responsible for their mechanical implementation. In essence, the brain is removed
or distant from the body". The key concept of telerobotics is indeed the distance of the user
from the robot, which in the RTHL applications could derive from the the nature of the
robot itself, as seen in the case of UAVs, or to the presence of dangers in the environment.
The distance between human operator and robot raises the issue of letting the human

operator perceive adequately the remote environment and the robot. To this purpose, the
human-robot interaction can made ‘bilateral’, i.e., suitable cues are provided to the human
co-operator in order to let her/him ‘feel’ the remote robot(s) and site (see Hokayem and
Spong (2006)). Haptic cues in particular appear to be a very effective way to convey this
kind of information. On one side, it was experimentally proven that in many cases this
‘bilateral’ interaction increases the situational awareness and consequently the performance
of the operator in the execution of the task, see, e.g., Abbink et al. (2011, 2012); Boessenkool
et al. (2013); Lam et al. (2009); Wildenbeest et al. (2013). On the other hand, haptic
feedback has the advantage of requiring little bandwith in comparison to video streaming,
thus making it the ideal solution for many scenarios such as remote control of underwater
vehicles shown by Murphy et al. (2011) or intercontinental control of mobile robots over
the internet shown by Riedel et al. (2012).

9http://www.mycopter.eu

3

http://www.mycopter.eu

Chapter 1 Introduction

1.3 Motivations of RTHL
Summarizing from the discussion of Sec. 1.2, there are several motivations for considering
RTHL:

• The joint execution of a task allows to combine the strengths of both humans and
robots:
– Robots are extremely capable at autonomously executing specific and repetitive

tasks, with great speed and precision, and they can operate in environments
that are dangerous for a human operator.

– Humans possess unmatched cognitive capabilities and world awareness which
allow them to tackle applications that involve unstructured environments or
require taking difficult and quick decisions.

This is for instance the case of field robotics and USAR, in which robots are used to
reach impervious and dangerous locations while human operators grant the cognitive
capabilities to cope with unstructured and unpredictable environments.

• The co-participation of humans and robots can be an implicit constraint of the task or
the goal itself. This is for instance the case of assistive robots for supporting injured
patients during their physical recovery or for human augmentation. Another example
of an application in which the interaction of the robot with the user is the primary
objective are motion simulators, i.e., robotic platforms that are designed to move the
user to simulate the motion of a vehicle.

• Safety regulations can mandate the presence at all times of a person in charge of
supervising and, if necessary, take direct control of the robotic workers. For example,
this is a common requirement in applications with UAVs, in particular when flying in
civil airspace such as over urban or populated areas.

1.4 Characteristics and Challenges of RTHL
The numerous application domains and research fields referred in Sec. 1.2 also suggest
that the cooperation of humans and robots can take various forms and present many
different problems, such as safety in physical human-robot interactions, social and ethical
implications, control, etc. Disregarding the ethical and social implications as well as safety
issues, the discussion hereinafter will focus on the control aspect of RTHL, addressing in
particular the few questions and aspects that are introduced in the following.

1.4.1 Autonomy
Autonomy is a key element in the design RTHL as well as one of the reasons leading
to its emergence. For a long time since the early years of robotics, robotic tasks have
been confined to an industrial setting (see Hägele et al. (2008)), in which the robots
operate in workcells where people are not allowed and that are engineered to maximize
productivity and guarantee repeatability. For example, automatic transportation of goods
in manufacturing centres is done along fixed paths that require painted routes or embedded

4

1.4 Characteristics and Challenges of RTHL

wires and magnets for motion guidance. In general, since work cells are engineered ad
hoc for a specific task, industrial robots do not need to have extensive perception of their
surroundings nor advanced intelligence.

What made possible the shift towards the application domains mentioned in Sec. 1.2, and
therefore RTHL, is the increased autonomy of the robots prompted by the technological
advancements made in several fields, such as sensing, estimation, artificial intelligence, etc..
In order to better understand its implications in RTHL, it is important to define more
precisely the concept of autonomy. In some cases it is considered as the capacity of a robot
to react to variations in the environment or as the mean time between failures. An operative
definition of autonomy is expressed by the neglect tolerance introduced by Crandall et al.
(2005): high autonomy corresponds to a robot that can operate without interactions,
i.e., a robot that is neglected. However, these definitions do not capture the essence of
human-robot cooperation which is the key in RTHL. A more fitting interpretation is found
in Sheridan and Verplanck (1978) (albeit for human-computer interaction) with the notion
of levels of autonomy: the levels of autonomy define a scale in which, at one extreme the
human executes the task and at the other extreme the computer (or robot) does the job
alone.

Following this interpretation, it is clear that the choice of the autonomy of the robots in a
RTHL is critical because it affects the role of the human operator in the task. One problem
in this regard is that in many real world applications robots often have little autonomy and
they largely rely on the constant supervision of human operators, who therefore are required
high workload and commitment. Therefore, finding viable ways to increase the autonomy
of the robots in the cooperation with humans, and thus elevate the role of operator at a
higher-level, is a key challenge of RTHL.

1.4.2 Human-to-robot ratio
RTHL does not only involve interactions between a single human and a single robot. On
the contrary, in many of the application domains cited in Sec. 1.1 multiple humans are
assigned to a single robot. For example, in missions with UAVs there are typically two
operators per vehicle: one acting as a pilot, the other as a specialist in charge of interpreting
sensor information (see Drury et al. (2006); McCarley and Wickens (2005)). The number
of operators might even increase due to the complexity of the mission or for safety reasons.
Similarly, in search and rescue it was proven by Burke et al. (2004b) that performance with
ground robots increases sensibly when two operators work together to control each robot.

Clearly, the need for a crew of multiple people per robot is not a problem for missions with
a single robot (or few robots), however it becomes a huge limitation for tasks involving large
teams or swarms of robots. Therefore, finding approaches to reduce the human-to-robot
ratio is a mandatory condition to make multi-robot systems viable in RTHL and it is
recognized as major challenge of HRI.

1.4.3 User interfaces
User interfaces (UIs) are a fundamental component of RTHL that allow for a bidirectional
exchange of information:

• commands or instructions are communicated by the operator to the robots;

5

Chapter 1 Introduction

• a feedback regarding the status of the task or the environment is computed from the
robots sensing and internal state and it is rendered back to the user.

As a consequence of this bidirectional flow of information, the challenge with UIs is twofold.
The first issue regards the complexity of the command interface. Control interfaces in

robotics applications generally are not very intuitive, because of the inherent complexity of
the task or of the robot. The drawback of difficult interfaces is that the operators must
undergo a training before being able to operate the robot, and it might be necessary to
rehearse it before every mission. This is a problem because in some cases is not possible to
constantly have a trained team of operators, for instance in the case of rescue robots that
are rarely used. As a practical example, a robot could not be used after the World Trade
Center disaster because of the complexity of its interface (see Murphy (2004b)). In view of
these considerations, a key issue in RTHL is to design UIs with command interfaces that
are easy to use and that provide a suitable level of abstraction to implement high-level
directives, such as formation behaviour control and motion planning.
The second issue regards the design of the feedback according to some human metrics

(see Murphy and Schreckenghost (2013) for several human metrics in HRI). For instance,
when the operator interacts with the robot(s) from a remote location it is critical that the
feedback provides a good situation awareness (SA). SA is one of several human metrics used
in HRI, as shown by Murphy and Schreckenghost (2013), and it is defined in Endsley (1988)
as "the perception of the elements in the environment within a volume of time and space,
the comprehension of their meaning, and the projection of their status in the near future".
Namely, SA can be seen as the pilot’s model at a certain point in time of the environment
where the task takes place. This model affects the pilot’s decisions and actions, therefore it
must be accurate for the success of a mission. However, if the interface provides too much
information it can be difficult and taxing for the pilot to parse and comprehend all the
data. For example, evaluation studies in rescue robotics show that the visual channel of
an operator is often overloaded, thus causing fatigue (see Murphy et al. (2008)). For this
reason, the use of other feedback modalities besides visual feedback is an active topic of
research. In this regard, the realization of realistic immersion in virtual environments is
another active topic of research in robotics-related fields (see Hettinger and Haas (2009)),
which aims at using multiple sensory cues (e.g., visual and haptic) not only to enhance the
operator’s SA of remote locations, but also to train him/her in specific tasks (see Bicchi
et al. (2008); Hokayem and Spong (2006)).

1.4.4 Shared Control
In Sec. 1.4.1 it has been discussed how the level of autonomy in a RTHL affects the role
of the operator. However, the level of autonomy influences also the control architecture
of the system (see Fig. 1.1). As shown in Niemeyer et al. (2008), the two extremes, i.e.,
no autonomy or complete autonomy, correspond to the paradigms of direct control and
supervisory control, respectively.

Direct control is a paradigm that involves no autonomy nor intelligence from the robot:
the human operator is in charge of directly piloting the robot, commanding, e.g., a thrust,
velocity or position. At the same time, a continuous feedback is necessary to let the pilot
understand how the robot is moving or what is the state of the environment. In short, the
robot can be considered as a mere extension of the user’s body. Furthermore, since the

6

1.4 Characteristics and Challenges of RTHL

Visual
Interface

Haptic
Interface

Auditory
Interface

Direct Control
Autonomy

Visual
Interface

Haptic
Interface

Auditory
Interface

Visual
Interface

Haptic
Interface

Auditory
Interface

Shared Control Supervisory Control

Direct
Commands

Sub-task
Commands

Continuous
Feedback

Sub-task
(augmented)

Feedback

Autonomous
Task

Autonomous
Task

(triggered)
High-level
Directives

Summary
Feedback

Figure 1.1: Different control paradigms for various levels of autonomy.

user executes the task through the robot, this approach requires a continuous and high
exchange of information.

On the other hand, supervisory control is a paradigm that involves the (almost) complete
autonomy of the robot. The definition of supervisory control was introduced by Ferrell
and Sheridan (1967) as an analogy to a hierarchical staff: at the high-level, the supervisor
(human) only gives directives to the subordinates (robots) who are then delegated the
execution of the task. A more detailed description of this approach is found in Sheridan
(1992). Contrary to direct control, this approach is characterized by a slow (or intermittent)
and modest information exchange, since the robot autonomously performs the task. In
fact, the human operator gives directives to the robot only when it is necessary to modify
the currently executed task (e.g., to change the goal of a planning algorithm) or at the
occurrence of trigger events (e.g., when it is required a critical decision or the current job is
completed). Also the feedback is provided when necessary (e.g., triggered by events) and it
informs the user about the overall status of the task.
The two control architectures just described, direct and supervisory, apply to cases in

which the task is executed (almost) completely by the operator or by the robot. The
co-participation of a human and a robot to a task requires a different architecture in which
the intelligence of the system is shared between the two, i.e., a shared control paradigm.
Shared control can be regarded as a compromise between direct and supervisory control,
because the operator directly and continuously controls only part of the task leaving the
rest to the robot. For example, in a multi-robot application the user might command global
behaviours of the group of robot and receive a feedback on the state of the overall group,
while individual control of each robot is left to the autonomous part of the system.

Shared control is adopted in several fields, such as space applications, where the large
time delays require some autonomy of the robot (see Hirzinger et al. (1994)), or surgical pro-
cedures, where the robot is required to autonomously compensate for the patients movement

7

Chapter 1 Introduction

in order to facilitate the job of the surgeon (see Ortmaier et al. (2005)). One advantage of
the this paradigm is that the autonomy of the robot can be used to augment the feedback
provided to the operator in order to assist him/her. An example of augmented feedback
is the use of virtual fixtures (see Rosenberg (1993)), i.e., guides that are superimposed to
the standard feedback (e.g., visual or haptic) to give an indication or even to constrain the
control inputs of the operator. The benefit of using such guides is well explained in Abbott
et al. (2007) with a similitude: "A straight line drawn by a human with the help of a ruler is
drawn faster and straighter than a line drawn freehand. Similarly, a robot can apply forces
or positions to a human operator to help him or her draw a straight line. However, a robot
(or haptic device) has the additional ability to provide assistance of varying type, level and
geometry." On the other hand, a challenge that arises with shared control architectures is
the fact that the unpredictable commands given (online) by the human operator to execute
his/her subtask can also affect the subtask executed autonomously by the robot.
In light of these considerations, the design of suitable shared control architectures is a

major theme of research in RTHL.

1.5 Objectives and Outline of the Thesis
The discussion so far has given a glimpse of the importance and broadness of RTHL and
it has illustrated several aspects and challenges that are characteristic of tasks with a
human-in-the-loop. The goal of this Ph.D. thesis is to study few specific problems that
well illustrate the main traits and variety of RTHL and, by solving these problems, provide
also an insight regarding the aspects and challenges that have been discussed in Sec. 1.4.
Summarizing, the contributions are:

• Autonomy: The problems studied exhibit different roles for the operator and increasing
levels of autonomy, from an almost direct control architecture for a robotic manipulator
to the shared control of mobile robots in which the autonomy of the robots is exploited
to reduce the workload of the user.

• Shared control: Various shared control architectures have been developed to tackle the
problems and they also illustrate different approaches for coping with the unpredictable
human commands.

• User Interface: The user interfaces that have been developed span various possibilities
for the typical RTHL, by illustrating different designs of command interfaces and
feedback (vestibular, visual, haptic). Furthermore, they extend the traditional
interfaces for shared control architectures in robotics with novel bilateral interfaces
for formation control and path planning.

• Human-to-robot ratio: One of the problems studied regards a multi-robot scenario.
By increasing the autonomy of the robots it has been designed a shared control
framework in which a single person can easily control a team of robots.

The rest of the thesis is organized as follows:

- In Chap. 2 it is modelled a novel actuated cabin to be used for a motion simulator
together with an anthropomorphic arm and then it is designed the control algorithm of
the overall simulator with a pilot in the loop.

8

1.5 Objectives and Outline of the Thesis

- In Chap. 3 it is developed a control architecture for a group of unmanned aerial vehicles
(UAVs) with bound formation and a human-in-the-loop that steers the overall swarm of
robots.

- In Chap. 4 it is designed a framework in which the motion planning of a mobile robot is
shared between a human operator and the robot itself.

- Chapter 5 contains a summary of the contributions of the previous chapters and a
discussion of the implications on RTHL that can be derived from the projects presented.

9

Chapter 2

Design and control of a novel motion
simulator
The discussion presented in this chapter is based upon the work published in Masone et al.
(2011) and presented in Masone (2011).

2.1 Introduction
Motion simulators are devices designed with the purpose of giving to the user the realistic
perception of being in a moving vehicle. The means to achieve this goal is providing the
user with the same sensor cues that would be experienced on the real vehicle, or similar
sensor cues that create the illusion of a realistic motion. Most simulators rely only on visual
cues to create the sensation of motion, also because it is suggested that drivers mostly
use visual information to follow the road (see Sivak (1996)). However, it was proven by
Groen and Bles (2004) that the vestibular cues provided by a moving platform positively
contribute to the immersion and feeling of realistic motion, thus making the development of
such platforms an important topic of research in robotics. The characteristics of a motion
simulator as RTHL are shown in the scheme of Fig. 3.1, in which:

Human: The human is onboard the motion platform and drives a model of a vehicle which
then produces a trajectory for the robot that gives a similar sensation of motion.

Robot: The robot (motion platform) has to track the desired trajectory as accurately as
possible, but it can deviate from it in order to account for its physical constraints
(e.g., joint limits).

Feedback: The vestibular feedback provided to the operator is given by the self motion of
the platform. The realization of a proper feedback is the goal of the simulator.

In this chapter it will be discussed the design of a novel moving cabin to be equipped
on an robotic arm platform to improve accuracy in rendering the desired feedback. The
redundancy granted by this novel 7-th joint is exploited to optimize the configuration of
the robot and avoid singularities/joint limits, with the latter being particularly critical for
the reproduction of the desired motion cues. It is also described the control architecture
that has been used for the extended system (actuated cabin + robotic arm), which well
illustrates the challenge of coping with the unpredictable commands given online by the
human-in-the-loop.

11

Chapter 2 Design and control of a novel motion simulator

pilot motion platform

vehicle model

command
reference
trajectory

vestibular feedback

trajectory

autonomous
corrections

motion
driving

algorithm

Figure 2.1: Scheme of the motion simulator.

2.1.1 Related Works
Historically, the wide diffusion of motion simulators dates back to 1965 with the Gough-
Stewart platform (more commonly known as Stewart platform or hexapod, see Stewart
(1965)) and the first studies were carried out in the field of aeronautics at NASA in the
70’s, see Conrad and Schmidt (1971); Dieudonne et al. (1972). Indeed, aviation is the
leading application for motion simulators, in particular for the training of pilots (see Burki-
Cohen et al. (2001)). A motion simulator in fact allows to reproduce unexpected and risky
situations in a controlled and repeatable way and, most importantly, in complete safety
for the crew and for the expensive aircrafts. For example, within the European project
SUPRA1 motion simulators have been used to reproduce the dangerous scenario of upset
recovery with aircrafts. Nowadays, motion simulators are also used for other purposes, for
instance for psychophysical research to evaluate human factors and to study how humans
perceive linear and rotational motions, see e.g., Nieuwenhuizen and Bülthoff (2013); Soyka
et al. (2011, 2012). A growing application field is the entertainment industry (discussed
in EUROP (2009)), where robotic motion platforms are used as rides or roller-coasters in
amusement parks. Motion platforms are also a fundamental tool in the automotive industry,
for collecting data in the development and evaluation of new vehicles. As a reflection
of this wide range of applications, motion simulators have been specialized to simulate
different typologies of vehicles, such as aircrafts, helicopters (see Beykirch et al. (2007)),
cars (see Robuffo Giordano et al. (2010c); Siuikat (2005)), motorcycles (see Avizzano et al.
(2000); Ferrazzin et al. (1999); Nehaoua et al. (2011)), sailing boats (see Avizzano et al.
(2010)) and even space flights (see Heindl et al. (2006)).

Despite their success in many different applications, motion simulators are still largely
researched to overcome the problem of the dissimilarity between the motion envelope of a
real vehicle and that of a motion platform. The limitations of a motion platform (workspace,
velocities, accelerations, etc.) make it impossible to exactly reproduce any motion of a
vehicle that is moving in a large (virtually unlimited) space. For example, it is clear that a
simulator cannot repeat the same motion of a car driven along a very long straight street,
because at some point the platform would reach its joint limits. Furthermore, if a joint
reaches its limit during the simulation, the reproduction of the desired motion can be

1http://www.supra.aero

12

http://www.supra.aero

2.1 Introduction

heavily distorted thus inducing false cues on the pilot. In order to cope with this limitation,
research has mainly taken two directions:

• The first approach is to develop motion cueing algorithms (MCA) that attempt to
generate a trajectory within the limited workspace of the robot but with the same
perception of the real trajectory of the vehicle. MCAs typically use two approaches,
i) motion scaling (see Berthoz et al. (2013); Schwarz (2007)), and ii) reorientation
of the gravity vector to create the illusions of sustained accelerations. This second
technique is known in literature as ‘tilt coordination’ due to its reference to flight
(see Grant and Reid (1997)).

• The second approach is to develop novel motion platforms specialized for specific tasks
or with a larger workspace in comparison to classic Stewart platforms. Examples of
unique architectures are the NASA vertical simulator (see Beard et al. (2013)) which
allows to have 60ft of vertical motion thus excelling at simulating aerospace vehicles,
or the Desdemona simulator (see Bles and Groen (2009); Wentink et al. (2005)) which
uses a gimbaled system and can rotate around a central axis to reproduce centrifugal
motion with g-loads up to 3g. The use of linear rails is another common strategy
for extending the workspace of a Stewart platform. This approach is used in the
most advanced motions simulators that are operative in the automotive industry,
such as the Daimler-Benz simulator (see Käding and Hoffmeyer (1995)), the Toyota
simulator2 or the Renault ULTIMATE3. However, these solutions for the automotive
industry are very expensive and require large spaces and infrastructures, thus they
are not viable for other applications.

Along the lines of developing novel motion platforms, serial manipulators have recently
gained attention in the research community. The underlying idea is to attach a seat or
a cabin to the end-effector of an industrial manipulator and move it (and the passenger
onboard) together with the robot. In comparison to parallel actuation systems (such as
classic Stewart platforms), serial architectures have inferior load capability, stiffness and
bandwidth but the great advantage of a much larger dexterity envelope. In particular,
by using a 6 DoF anthropomorphic manipulator such as the KUKA Robocoaster4, the
seat at the end-effector of a serial manipulator can be moved along complex trajectories
and reach any attitude. The seat could even be placed upside down in order to simulate
complex aerial manoeuvres such as inverted flight (see Bellman et al. (2007)) or sustained
negative vertical accelerations. Another reason for using industrial-like serial manipulators,
is the fact that, being mass produced, they are cheaper than Stewart platforms or other
specialised design.

Since the adaptation of anthropomorphic manipulators as motion simulators is a recent
concept, previous works in literature are mainly exploratory studies that use only a subset
of the DoF of the robot (see e.g., Beykirch et al. (2008); Nusseck et al. (2008); Pretto et al.
(2009)) or that work without a human-in-the-loop (see e.g., Bellman et al. (2007); Pollini
et al. (2008)). A complete control framework for simulating general vehicle dynamics by

2http://www.toyota-global.com/innovation/safety_technology/safety_measurements/
driving_simulator.html

3http://www.experts.renault.com/kemeny/projects/ultimate/
4A modified KUKA KR500 that is certified for mounting of a passenger seat/cabin, http://www.

kuka-entertainment.com/en/products/robocoaster/

13

http://www.toyota-global.com/innovation/safety_technology/safety_measurements/driving_simulator.html
http://www.toyota-global.com/innovation/safety_technology/safety_measurements/driving_simulator.html
http://www.experts.renault.com/kemeny/projects/ultimate/
http://www.kuka-entertainment.com/en/products/robocoaster/
http://www.kuka-entertainment.com/en/products/robocoaster/

Chapter 2 Design and control of a novel motion simulator

using a 6 DoF anthropomorphic robot arm was recently presented by Robuffo Giordano et al.
(2010b,c) under the name CyberMotion Simulator (CMS), and it was also demonstrated at
the ILA Berlin air show 20105 for a passive (without pilot) helicopter simulation.

The work presented in this chapter represents a step further in the direction of developing
more flexible motion simulators based on industrial manipulators. The novel CMS cabin
represents the first design of its kind and in this regard it should be noted that another
cabin design from DLR was presented by Bellmann et al. (2011a,b) (in contemporary to
the presentation of the CMS cabin by Masone et al. (2011)). However, unlike the CMS
cabin, the DLR cabin is not actuated

2.2 Preliminaries
The novel actuated cabin consists of two main parts, a gondola and an actuation system.
The gondola (illustrated in Fig. 2.2) is a 1.6× 1.8× 1.9 m closed shell that encapsulates
the seat (and the pilot). The closed shell design allows to eliminate the unwanted sensory
cues that come from the external environment, thus improving the simulated experience.
The dome of the gondola also plays the role of a large screen which, together with two
projectors mounted at the back of the cabin, allows to have a stereo visualisation and a
larger field of view in comparison to a traditional monitor. Moreover, the gondola offers a
great flexibility in terms of the input devices it can carry. For example, it has been used
with i) a full force-feedback helicopter control device, which includes cyclic stick, collective
stick and actuated pedals, and ii) a driving setup, composed by a force-feedback steering
wheel and pedals module. The possibility of having interchangeable input devices makes
the cabin suitable for the simulation of different typologies of vehicles. The communication
between the onboard control electronics and the control computer is done via a controller
are network (CAN) bus running at 1 kHz.
The actuation system is composed of several parts, as illustrated in Fig. 2.2. A rigid

flange (blue part in Fig. 2.2) is attached at the end-effector of the manipulator and it
mounts two servomotors capable of 328 Nm output torque6. The servomotors set in motion
a system of gears ending with two gears per side (pivots) that connect to metal rails. The
connection to the cabin is provided by two identical and parallel rails (green parts in
Fig. 2.2) that are rigidly fixed at the back of the gondola. By connecting the flange and
pivots (red parts in Fig. 2.2) to the rails, the servomotors can move the cabin thus providing
an additional DoF for the simulator.

The control architecture for the overall 7 DoF CMS (6 DoF robot + cabin) is organized
in two levels. The low-level controller (LLC) accepts joint increment commands that are
implemented at a fast rate, and it returns the measured joint configuration with an output
rate of Ts = 0.012 s. The inner structure of the LLC is not accessible due to the agreement
with KUKA (manufacturer of the manipulator that is used in the CMS), therefore the
high-level controller (HLC) is designed disregarding any dynamical issue and considering
joint velocities as actual control inputs, as it is classically done within the kinematic control
framework (see Chiacchio et al. (1991)). Formally, let q = [qTM qC]T ∈ R7 be the joint

5http://tuebingen.mpg.de/en/kybernetik-neuigkeiten/detail.html?tx_ttnews%5Btt_news%5D=
116&tx_ttnews%5BbackPid%5D=118&cHash=02d983541b49f603f4e14e2dad6d705c

6In order to reduce the weight of the cabin one servomotor has been later removed. However performance
was not affected since the second motor was present for redundancy.

14

http://tuebingen.mpg.de/en/kybernetik-neuigkeiten/detail.html?tx_ttnews%5Btt_news%5D=116&tx_ttnews%5BbackPid%5D=118&cHash=02d983541b49f603f4e14e2dad6d705c
http://tuebingen.mpg.de/en/kybernetik-neuigkeiten/detail.html?tx_ttnews%5Btt_news%5D=116&tx_ttnews%5BbackPid%5D=118&cHash=02d983541b49f603f4e14e2dad6d705c

2.2 Preliminaries

~XC

~YC

~ZC

~ZF

~YF

~XF

Figure 2.2: Details of the novel actuated cabin for the CyberMotion Simulator.

15

Chapter 2 Design and control of a novel motion simulator

Joint q qmin qmax q̇max q̈max

q1 −130◦ 130◦ 69◦/s 98◦/s2

q2 −128◦ −48◦ 57◦/s 70◦/s2

q3 −45◦ 92◦ 69◦/s 128◦/s2

q4 −180◦ 180◦ 76◦/s 33◦/s2

q5 −58◦ 58◦ 76◦/s 95◦/s2

q6 −180◦ 180◦ 120◦/s 77◦/s2

qC 0m 1.7317m 0.34m/s 0.6m/s2

Table 2.1: Joint range, velocity and acceleration limits of the 7-DOF manipulator with actuated
cabin. Entries q1 to q6 are expressed in degrees, q7 in meters.

configuration vector of the complete 7 DoF CMS, where qM = [q1 . . . q6] ∈ R6 is the joint
vector of the original KUKA Robocoaster and qC ∈ R is the parameter describing the
configuration of the cabin, which is hereinafter treated as a seventh joint. The LLC accepts
joint increments ∆qk = q(tk + 1)− q(tk) and returns the measured joint configuration q(tk)
with the output rate Ts. From the point of view of the HLC, the joint motion is modelled
as a single integrator

q̇ = u, (2.1)

where u ∈ R7 is the commanded joint velocity. The HLC scheme presented in Sec. 2.4 is
built on top of (2.1).
Finally, the joint limitations (join range, maximum joint velocity and maximum joint

acceleration) of the 7 DoF CMS are reported in Tab. 2.1.

2.3 Cabin Kinematics
In order to design the HLC for the 7 DoF CMS it is necessary to provide a kinematic
description of the new joint, i.e., a description of the pose and velocity of the cabin
w.r.t. the robotic manipulator and parameterised by a suitable configuration variable
qC . For this purpose, two frames of reference are introduced (see Fig. 2.2). The first
frame, FF : {OF ; ~XF ; ~YF ; ~ZF}, is fixed to the center of the flange and such that ~ZF is
perpendicular to the flange itself, and ~XF and ~YF are respectively perpendicular and parallel
to the rotation axes of the two engines. The second frame, FC : {OC ; ~XC ; ~YC ; ~ZC}, is fixed
to the gondola and such that ~XC and ~ZC are aligned with the gondola forward/upwards
direction, respectively, while ~YC is parallel to ~YF . Note that with this choice the direction
~YC is perpendicular to the rails of the actuation system, therefore no motion is allowed
in this direction. Namely, the displacement between OC and OF along ~YC is fixed and,
without loss of generality, equal to zero.

Since there is no relative motion between the two frames in the direction ~YC ≡ ~YF ,
the analysis of the kinematics of the cabin can be conducted on the plane Σ spanned by
{ ~XF , ~ZF}. In light of this consideration, the formulation hereinafter will refer to the sketch

16

2.3 Cabin Kinematics

qC

s1s2

s3

s4

L

L

OF

OC

~XC

~ZC

~ZF

~XF

⌧2

⌧1
�

Figure 2.3: Simplified sagittal view of the cabin, obtained by projection on the plane Σ =
span{ ~XF , ~ZF }

in Fig. 2.3, which depicts the simplified projection of the rails, pivots and flange on Σ.
The projection of the rails on Σ consists of two segments, ŝ1 s2, ŝ3 s4

7, having length L
and connected by a quarter of a circle ŝ2 s3 having radius λ. Without loss of generality,
the origin OC of frame FC is placed at the center of ŝ2 s3 (see Fig. 2.3). The projection
on Σ of the pivots, i.e., the gears in contact with the rails, is given by the two points τ1
and τ2. Finally, since the position of the pivots is fixed with respect to the flange, this
is represented by the segment τ̂1 τ2 (the red thick segment in Fig. 2.3) which, assuming
negligible deformations, has a fixed length, i.e.,

‖π1 − π2‖ = d. (2.2)

The mechanical design of the cabin also implies that τ1 and τ2 are bound to move on
̂s1 s2 s3 s4. The physical parameters in this model are reported in Tab. 2.2.
With this setting, the relative orientation FRC ∈ SO(3) from FC to FF is parameterized

by a single angle β (see Fig. 2.3) as

FRC =

cos β 0 − sin β
0 1 0

sin β 0 cos β

 . (2.3)

7The symbol ̂ is used to denote a segment or arc.

17

Chapter 2 Design and control of a novel motion simulator

L d λ θ

0.570m 0.200m 0.504m 11.446◦

Table 2.2: Physical parameters of the cabin

The translation vector from OF to OC is in the form8 FpC = (FpC,x 0 FpC,z)T ∈ R3, where
FpC,x and FpC,z are functions to be determined. Since OF was chosen at the center of the
flange, it follows that

FpC = − FRC
CpF , (2.4)

where
CpF = COF =

Cp1 + Cp2
2 , (2.5)

where Cp1 and Cp2 are the positions of τ1 and τ2 in FC.
Finally, the kinematic description of the joint must be parameterised as a function of a

single configuration variable, qC . The configuration variable is selected as the arc length of
pivot τ1 on ̂s1 s2 s3 s4. In particular, qC is chosen such that qC = qCmin = 0 when τ1 ≡ s1
and qC = qCmax = λπ2 + 2L− d when τ2 ≡ s4. Using this representation, in Sect. 2.3.1 it is
discussed the expression of FRC and FpC as functions of qC .

2.3.1 Forward Kinematics
The forward kinematics for the new joint is solved by providing the expression of β in (2.3)
and of FpC,x and FpC,z in (2.4) as functions of qC . By visual inspection of Fig. 2.3, it is
possible to identify the following cases for the cabin forward kinematics:

Case C1: when τ1 and τ2 are both on a linear segment (ŝ1 s2 or ŝ3 s4), the cabin works
as a prismatic (i.e., translational) joint. The frame FC can only translate with respect to
FF , while the relative orientation is constant.

Case C2: when τ1 and τ2 are both on the arc ŝ2 s3, the cabin acts as a revolute (i.e.,
rotational) joint. Owing to the placement of the two frames of reference, the position of
OC in FF is constant and only the relative orientation between the two frames changes.

Case C3: when only τ1 or τ2 is on the arc ŝ2 s3, both the relative position and orientation
between the FC and FF change. In this case the behaviour of the cabin differs from that of
other standard joints (see Waldron and Schmiedeler (2008)).

The switch among these cases occurs when either τ1 or τ2 is coincident with s2 or s3.
The corresponding switching conditions can be written in terms of qC as

τ2 ≡ s2 ⇒ qC = qC1 = L− d, C1
 C3
τ1 ≡ s2 ⇒ qC = qC2 = L, C3
 C2
τ2 ≡ s3 ⇒ qC = qC3 = L+ λ(π2 − 2 θ), C2
 C3
τ1 ≡ s3 ⇒ qC = qC4 = L+ λπ2 , C3
 C1

, (2.6)

8Superscripts are used to indicate the frames where quantities are expressed.

18

2.3 Cabin Kinematics

s1s2

s3

s4

OC
~XC

~ZC

~ZF

~XF

⌧1⌧2

⌧2

⌧1

~ZF

~XF

�

�

OF

OF
�

F pC

F pC

(a) Case C1.

s1s2

s3

s4

�

✓ �

OF

OC

~XC

~ZC

~ZF

~XF

⌧1

⌧2 �

(b) Case C2.

Figure 2.4

where θ = arcsin(d
2λ) and Ci
 Cj indicates the transition between Ci and Cj. By

construction it is qCmin ≤ qC1 ≤ . . . ≤ qC4 ≤ qCmax . The three cases are addressed
hereinafter.

Solution in case C1

This case presents itself in two different situations, as shown in Fig. 2.4a. In the first
situation it is qC ∈ [qCmin , qC1], i.e., τ1, τ2 ∈ ŝ1 s2. The constraint on the pivots implies that
FF is oriented exactly as FC , i.e. β = 0, and FpC =

(
qC + d

2 − L 0 λ
)T

.
In the second situation it is qC ∈ [qC4 , qCmax], i.e., τ1, τ2 ∈ ŝ3 s4. The constraint

on the pivots implies that FF is rotated by 90◦ w.r.t. FC , i.e. β = π
2 , and FpC =(

d
2 − L+ qC − λπ2 0 λ

)T
.

Solution in case C2

In this case it results qC ∈ [qC2 , qC3] and τ1, τ2 ∈ ŝ2 s3. The constraint on the pivots implies
that the frame FF moves on a circumference of radius λ, centered in OC and with ~ZF
always pointing towards the center. By visual inspection of Fig. 2.4b, it is clear that the
vector FpC is fixed and equal to FpC =

(
0 0 −λ cos θ

)T
. As for the relative orientation,

it is β = θ + φ with φ = (qC−L)
λ

.

Solution in case C3

Once again, this case presents itself in two different situations, as shown in Fig. 2.5. Consider
first the situation in which qC ∈ [qC1 , qC2]. In this situation, the relative pose of FC and FF
is subject to three constraints: i) τ1 ∈ ŝ1 s2, ii) τ2 ∈ ŝ2 s3 and iii) constraint (2.2) which

19

Chapter 2 Design and control of a novel motion simulator

s1s2

s3

s4

OC

~XC

~ZC

~ZF

~XF

⌧1
⌧2

⌧2

⌧1

~XF

~ZF

�

�

Figure 2.5: Case C3.

implies that τ1 and τ2 lie on a circle centered in the projection of OF on Σ and having
radius d

2 . The first constraint implies that Cp1 = (Cp1,x 0 Cp1,z)T =
(
L− qC 0 −λ

)T
.

The second and third constraints together allow to determine the position of the second
pivot Cp2 =

(
Cp2,x 0 Cp2,z

)T
by solving the following system

Cp2
2,x +C p2

2,z = λ2

(Cp2,x − Cp1,x)2 + (Cp2,z − Cp1,x)2 = d2 . (2.7)

With the parameters of Table 2.2, system (2.7) always admits two solutions (intersections),
and the correct one corresponds to Cp2,x < 0.
Consider now the second situation in which qC ∈ [qC3 , qC4]. The constraints in this

situation are i) τ1 ∈ ŝ2 s3, ii) τ2 ∈ ŝ3 s4 and iii) constraint (2.2) on the distance between τ1

and τ2. The first constraint implies that Cp1 = (Cp1,x 0 Cp1,z)T =
(
−λ sinφ 0 −λ cosφ

)T
.

The second constraint gives a component of Cp2, i.e., Cp2,x = −λ. Finally, similarly to the
previous situation, the third constraint provides a second order equation, i.e.,

(−λ+ λ sinφ)2 + (Cp2,z + λ cosφ)2 = d2. (2.8)

whose positive solution is Cp2,z.
To conclude this case, in both situations here discussed it is β = arctan (Cp2,z−Cp1,z)

(Cp1,x−Cp2,x) .

Complete Forward Kinematics

So far, it was shown that the forward kinematics (2.3) to (2.5) of the 7th joint is described
by a function that is split in five parts, according to the partition of the range [qC,min, qC,max]
that is introduced by (2.6). The complete forward kinematics of the 7 DoF system, follows
straightforwardly by plugging the cabin kinematics (2.3) to (2.5) from FF to FC into the

20

2.3 Cabin Kinematics

~XC

~ZC

~YC

~YF

~XF

~ZF

~Z0

~X0

~Y0

Figure 2.6: Side view of CyberMotion Simulator with the actuated cabin

well known forward kinematics of the anthropomorphic manipulator from the chosen world
frame F0 to FF (see Fig. 2.6). Additionally, it can be included a fixed transformation from
the cabin frame FC to a frame FP that is approximatively positioned where the head of
the pilot, and therefore his/her vestibular sensors, is located. The overall transformation is
obtained as(

0pP (q) 0RP (q)
0 1

)
=
(

0pF (qM) 0RF (qM)
0 1

)(
FpC(qC) FRC(qC)

0 1

)(
CpP I3×3

0 1

)

For the sake of readability, hereinafter the dependency from q ∈ R7 will be omitted, unless
strictly necessary.

So far, the orientation of frame FP w.r.t. F0 has been described by the rotation matrix
0RP , however for the design of the controller more efficient representations can be used. A
common choice is to resort to Euler angles (see Robuffo Giordano et al. (2010b)), since
the attitude of vehicles such as aircrafts or marine vehicles is generally given in this form.
However, Euler angles introduce representation singularities, i.e., configurations in which
the representation used for the orientation is not unique. For example, with a roll-pitch-
yaw (RPY) Euler representation, a singularity occurs when the pitch angle is ±π

2 . This
problem can be avoided by using unit quaternions to represent orientations. Hereinafter, the
orientation of frame FP w.r.t. F0 will be indicated by the unit quaternion η = (µ εT)T ∈ H,
where µ ∈ R is the scalar part of the quaternion and ε ∈ R3 is the vector part.

Analogously to the orientation, also the position of frame FP w.r.t. F0 can be expressed
using an alternative representation to the Cartesian coordinates 0pC = (x y z)T . In
particular, for the simulation of a vehicle motion the reference trajectory for the robot is
produced by a motion cueing algorithm which takes as inputs the linear acceleration Pa and
angular velocity Pω that act on the pilot according to the vehicle model. In this case and

21

Chapter 2 Design and control of a novel motion simulator

for the tests presented in Sec. 2.5, it is adopted the cylindrical MCA for anthropomorphic
manipulators introduced by Robuffo Giordano et al. (2010c) and adapted to accommodate
the use of Quaternions. The use of cylindrical coordinates in this MCA is motivated to
better fit the workspace of an anthropomorphic manipulator. Therefore, hereinafter the
position of the cabin in F0 is expressed in cylindrical coordinates ξ = (R α z)T ∈ R3. The
transformation from 0pC to ξ is given by

R =
√
x2 + y2

α = atan2(y, x)
z = z

(2.9)

Summarizing, r = [ξT ηT] ∈ R7 will be taken as task variables to be controlled.

2.3.2 Differential Kinematics
Similarly to the discussion of Sec. 2.3.1 for the forward kinematics, in order to compute the
differential kinematics of the 7 DoF CMS it is necessary to consider the contribution of
the motion of the gondola w.r.t. the flange, i.e, how q̇C determines the Cartesian/angular
velocity of FC w.r.t. FF . This contribution, expressed in world frame F0, is represented by
the geometric Jacobian (see Siciliano et al. (2009)) JC(q) ∈ R6×1 defined as

JC(q) =
(

0RF (qM) 03×3
03×3

0RF (qM)

)


∂FpC
∂qC

0
− ∂β
∂qC
0




, (2.10)

where 0RF (qM) ∈ SO(3) is the rotation matrix from FF to FC , and the quantities FpC and β
were introduced in Sec. 2.3. The Jacobian matrix JM ∈ R6×6 for the 6 DoF anthropomorphic
manipulator is well known and it maps a joint velocity q̇M to a Cartesian/angular velocity
of FF w.r.t. F0. In order to map q̇M to velocities of the cabin it is necessary to take into
account the displacement FpC from FF to FC . This yields the following R6×6 Jacobian
matrix

J̄M(q) =
(
I3×3 [−0RF

FpC]∧
03×3 I3×3

)
JM(qM), (2.11)

where [·]∧ ∈ R3×3 is the skew-symmetric matrix obtained from a vector. With the same
approach, the displacement from FC to the pilot frame FP is accounted by the following
transformation

JP (q) =
(
I3×3 [−0RF

CpP]∧
03×3 I3×3

)(
J̄M(q) JC(q)

)
, (2.12)

Finally, the complete task Jacobian mapping the joint velocity q̇ ∈ R7 of 7 DoF CMS to
cyilindrical/angular velocity of the pilot in world frame is obtained as

J(q) =
(
T (ξ(q)) 03×3

03×3 I3×3

)
JP (q) (2.13)

22

2.4 High-Level Control

where T (ξ(q)) is the matrix mapping from Cartesian to cylindrical coordinates, which has
the form

T (ξ(q)) =


 cosα sinα
−sinα

R

cosα
R

 0

0 I


with α and R previously defined in (2.9). Note that the evaluation of J(q) depends on the
particular cases introduced in Sec. 2.3.1.

2.4 High-Level Control
As shown in Sec. 2.3.1 the forward kinematics of the robot has the form

r(t) = f(q(t)), (2.14)

with the corresponding differential relation derived in Sec. 2.3.2

ṙ(t) = ∂ f(q(t))
∂ q

q̇(t) = J(q(t))q̇(t) (2.15)

Now it is necessary to design a control law u = g(q, rd, r) such that r(t) tracks rd(t). In the
classic kinematic control framework for manipulators (see Chiacchio et al. (1991); Siciliano
(1990)) this problems is tackled in two stages: first, the desired trajectory is transformed via
inverse kinematics into a desired joint trajectory qd(t), i.e., by inverting the mapping (2.15);
then the control problem is solved in the joint space. In the case of redundant manipulators,
multiple joint trajectories can generate the same task trajectory and the typical approach
to select a solution of the inversion is to the require a minimum-norm velocity, thus yielding
a least-squares solution

q̇d = J†ṙd (2.16)

where J† indicates the Moore-Penrose pseudo inverse of J (see Meyer (2001b)). However,
in this case rd might also be unfeasible because the structure of the MCA does not allow
to take explicitly into account the joint constraints (joint range, limited joint velocity and
acceleration), that are summarized as

a) ∀i, ∀t ≥ 0, qi,min ≤ qi(t) ≤ qi,max
b) ∀i, ∀t ≥ 0, |q̇i(t)| ≤ q̇i,max
c) ∀i, ∀t ≥ 0, |q̈i(t)| ≤ q̈i,max

. (2.17)

The numeric values for the terms qi,min, qi,max, q̇i,max and q̈i,max are contained in Tab. 2.1.
In addition to these limitations, the inversion scheme should avoid singularities or soften
their effect by passing as ‘smoothly’ as possible through them.
The problem of tracking a trajectory with these issues has been widely addressed in

literature. If rd is known in advance, at least in its geometric path, then the problem can
be solved by modifying the trajectory offline. Classic approaches for the offline optimization
of the timing-law in presence of constraints are presented in Bobrow et al. (1985); Shiller
(1994); Slotine and Yang (1989). However, for the problem here considered rd is not known
a priori because it depends on the unpredictable inputs that are provided by the human

23

Chapter 2 Design and control of a novel motion simulator

to the model of the vehicle. As discussed in Sec. 1.4, this is one of the main challenges
of RTHL. Several works in literature have proposed online methods for joint limits and
singularity avoidance based on artificial potentials (see Siciliano et al. (2009)) or on the
local optimization of some index (see Chang and Dubey (1995); Nelson and Khosla (1995)).
Nevertheless, such methods might start to degrade the tracking of rd even when there is
still margin before reaching a joint limit (2.17) or a singularity.

The problem of dealing online with the aforementioned constraints was tackled by imple-
menting a control architecture for the 7 DoF CMS that builds upon the controller presented
in Robuffo Giordano et al. (2010b) for a 6 DoF anthropomorphic manipulator. That
approach is based on the combination of a Task Priority (TP) architecture (see Chiaverini
(1997)) with a bang-bang control that is used to deterministically avoid joint limits given
the maximum velocities/accelerations characteristics of Table 2.1.

The main insight of the bang-bang strategy is that each joint qi has a bounded acceleration
q̈i,max that can be used to determine exactly, given the current qi, q̇i, the last moment the
joint can be stopped before hitting its range limit. Without going into the well known
details of bang-bang optimal control, the strategy is briefly summarized as follows: at every
time and for every joint qi the system has to check the intersection with the switching
curves 

γ− : qi = qi,max −
q̇2
i

2q̈i,max
if q̇i > 0

γ+ : qi = qi,min + q̇2
i

2q̈i,max
if q̇i < 0

and then apply a maximum acceleration command ±q̈i,max which is numerically integrated
to generate the velocity control. Once the bang-bang control is active for a joint, then that
joint will be locked until it fully stops and a command from the TP inversion scheme tries
to move it away from the limit. When one or more joints are locked they cannot be used
in the TP controller to track rd and there can be a performance degradation. Therefore,
the remaining joints must try to mitigate this effect. Indicating with the subscripts L
and U the properties (joints, inputs, Jacobians) referred to the joints that are respectively
locked/unlocked in the bang-bang strategy, the tracking problem can be reformulated to
determining the input uU such that the trajectory

ṙU = ṙ − JLuL = JUuU (2.18)

tracks rd. The reader is referred to Robuffo Giordano et al. (2010b) for more details on
this strategy.

Having summarized the bang-bang strategy to avoid joint range limits, the TP strategy
to track rd is now presented with the understanding that, if any joint is locked the
strategy can be referred to rU instead of r. The idea of TP architectures is that, for a
redundant system, multiple tasks can be arranged with different priorities in order to try and
simultaneously fullfill as many of them as possible. In this case, following the idea proposed
in Robuffo Giordano et al. (2010b), the TP strategy is based on the consideration that
correct orientation of gravity should be favoured in comparison to the other task variables
because MCAs exploit reorientations of the gravitational acceleration to provide a correct
feedback (tilt-coordination, see Grant and Reid (1997)). The advantage of this solution
is that, close to singularities, even though the simulator cannot track the complete rd it
might be able to follow exactly the attitude. Furthermore, the 7 DoF CMS is redundant

24

2.4 High-Level Control

for the task and this redundancy can be exploited to reduce the risk of locking some joints.
This is important because, despite the bang-bang strategy discussed before guarantees safe
behaviours in all conditions, the performed motion can result heavily distorted when several
joints become locked.
Three tasks have been considered for the TP controller, i.e.,

w1 = f 1(q) ∈ R3

w2 = f 2(q) ∈ R3

w3 = f 3(q) ∈ R
(2.19)

with priority decreasing from 1 to 3. Following the previous observations, the task trajectory
rd is split in two subtasks: highest priority task, w1, is the orientation task, and the
secondary task w2 is the position task. Finally, the third task w3 can be specified to
optimize some aspects of the execution, by exploiting the redundancy of the system.

Starting from the first task, the form of w1 depends on the representation chosen for the
orientation. For example, using a representation with actual and desired Euler angles ϕ
and ϕd respectively, w1 could be taken as

w1 = ϕ̇d +KO∆ϕ

where ∆ϕ = ϕd−ϕ denotes the orientation error and KO ∈ R3×3 is a positive definite and
diagonal matrix of gains. The orientation error is included to overcome the numerical drift
due to the discrete-time integration of ṙ(t), according to the well known CLIK paradigm Chi-
acchio et al. (1991). In order to express w1 for the unit Quaternion representation, it is
necessary to use a suitable orientation error. For this purpose, the error between the desired
orientation ηd = (µd εTd)T and the actual orientation η = (µ εT)T is computed, as shown
in Siciliano (1998), as

∆ε = µεd − µdε− [εd]∧ε. (2.20)

The error ∆ε defined in (2.20) is the vector part of the unit quaternion that describes the
relative orientation between the frames identified by ηd and η. The orientation task is
finally chosen as

w1 = ωd +KO∆ε, (2.21)

according to the unit Quaternion CLIK algorithm (see Caccavale and Siciliano (2001))
Similarly to the primary task, the position task w2 is chosen according to the CLIK

algorithm as
w2 = ξ̇d +KP∆ξ (2.22)

where ∆ξ = ξd − ξ and KP ∈ R3×3 is a positive definite diagonal gain matrix.
Finally, the lowest priority task w3 can be designed to locally optimize some metric

of the robot, e.g., dexterity. A common choice in the kinematic control of a redundant
manipulator is to maximize the manipulability ellipsoid, which was introduced by Yoshikawa
(1985) to represent the directional capability of the robot to execute a motion from a
certain configuration, and that is measured by the manipulator Jacobian as det(J(q)JT (q)).
Different extensions of Yoshikawa’s manipulability ellipsoid have been proposed, as discussed
in Doty et al. (1995). In the case of the CMS, it is not only important to maximize dexterity
but also to keep the joints away from their limits in order to prevent distortion of the
motion. For this purpose, it was used a measure that was introduced in Nelson and Khosla

25

Chapter 2 Design and control of a novel motion simulator

(1995) and which combines Yoshikawa’s manipulability measure with a penalty term that
goes to zero close to joint limits. The expression of this function is

H(q) =

1− e
−k
∏
n

i=1

(qi − qi,min)(qi,max − qi)
(qi,max − qi,min)2


√

det(J(q)JT (q)) (2.23)

where k is a design parameter and n is the number of joints. By maximizing H(q) the
robot will stay away from the singularities and joint limits. The threshold between these
two actions is determined by k. The lowest priority task is then implemented as a single
step of a gradient ascent as

w3 = kC
∂H(q)
∂q

T

, (2.24)

where kC > 0 is a user defined scalar that weights the task.
There are different variants of TP strategies, as shown in Antonelli (2009), and in this

case it was used an augmented inverse projection scheme based on the classic recursive
implementation from Siciliano and Slotine (1991), i.e.,

q̇i = q̇i−1 + (JiNA,i−1)#(wi − Jiq̇i−1) (2.25)

where i = 1, 2, ... is the priority of the tasks, the superscript # indicates the generalised
inverse of a matrix, Ji is the corresponding Jacobian and NA,i−1 = (I − J#

A,iJA,i) is the
null-space projection matrix for the augmented Jacobian JA,i = [JT1 JT2 . . . JTi−1 J

T
i]T . By

applying (2.25), the control law becomes

u =J#
1 w1 + (J2NA,1)#(w2 − J2J

#
1 w1)+

(NA,2)#(w3 − J#
1 w1 − (J2NA,1)#(w2 − J2J

#
1 w1)).

(2.26)

Moreover, in order to avoid ill-conditioning in the implementation of (2.26), the generalised
inverse was computed with a singularity-robust pseudoinversion based on the numerical
filtering by Maciejewski and Klein (1985). In particular, indicating with J = ∑s

i=1 σiuiv
T
i

the singular value decomposition of matrix J , then J# is implemented as

J# =
s∑
i=1

σi
σ2
i + λ2

i

viu
T
i (2.27)

where the parameter λi is the damping factor and it is chosen according to Chiaverini et al.
(1991), as

λ2
i =


0 if σi ≥ ε(

1−
(
σi
ε

)2
)
λ2
max if σi < ε

(2.28)

where ε > 0 is a parameter that defines the size of the singular region and λmax > 0 is the
maximum damping value. Note that this implementation introduces a damping only along
those directions that are unfeasible while keeping the remaining directions unchanged.

The control scheme described so far has not considered the limits on joint velocities and
accelerations (2.17). In order to ensure feasibility of the trajectory given the aforementioned
constraints it has been used the saturation strategy that was proposed in Robuffo Giordano

26

2.5 Results

et al. (2010b). This saturation strategy relies on the discretization of the control loop to
unify (2.17)a and (2.17)b. In particular, the constraint on joint velocities defines a region
of admissible velocities

B1 =
{
q̇ ∈ R7 : |q̇i| ≤ q̇i,max

}
.

Similarly, using the control loop interval Ts to define the maximum joint velocity increment
∆q̇i,max = Ts q̈i,max, constraint (2.17)b determines a region of feasible velocity increments

B2 =
{
q̇ ∈ R7 : |q̇i − q̇k,i| ≤ ∆q̇i,max

}
.

The idea of the saturation strategy is then to apply a uniform saturation of the velocity
command if possible, i.e., if there is a 0 ≤ k ≤ 1 such that ku ∈ B1 ∩B2. In this way, the
direction of motion of the end-effector remains unaltered. When that is not possible, it is
used a non-uniform saturation that does not change the direction of the acceleration q̈.

2.5 Results
The 7 DoF CMS here presented was evaluated in simulation and with experiments.

Simulation 1 First, the kinematic model of the cabin was tested in a Matlab/Simulink
simulation. For this test, the cabin is mounted on the 6 DoF robot and commanded a joint
velocity q̇C = 0.2, from a starting configuration qC = qCmin until qC = qCmax , while the arm
is kept fixed, i.e., q̇M = 06. The 3D models of the cabin and of the robot used for the
simulation are faithful representations of the real hardware based on measurements of the
various parts (see also the parameters in Tab. 2.2). The snapshots from the simulation in
Fig. 2.7 show the motion of the cabin and in particular the configurations corresponding to
the switching conditions described in Sec. 2.3.1.

The plots in Fig. 2.8 illustrate the trajectory of the frame FC in F0, in particular showing
the Cartesian position 0pC (Fig. 2.8a), RPY orientation ϕC (Fig. 2.8b), linear velocity
0ṗC (Fig. 2.8c) and angular velocity ωC (Fig. 2.8d). In all the plots, vertical dashed lines
indicate the time when a switching condition is met. Observe that, in accordance to the
discussion from Sec. 2.3.1, the motion is split in several phases: i) until qC = qC1 the
joint has a linear vertical motion (in F0) with constant speed; ii) from qC = qC1 until
qC = qC2 the joint also starts rotating; iii) from qC = qC2 until qC = qC3 the joint only
rotates with constant angular velocity; iv) from qC = qC3 until qC = qC4 there is again a
mixed translation and rotation; v) finally, from qC = qC4 until qC = qCmax the joint has a
linear vertical motion (in F0) with constant speed.

Simulation 2 The overall framework was then tested in a Matlab/Simulink simulation
and compared to the original 6 DoF system presented in Robuffo Giordano et al. (2010b,c).
The goal of this simulation is to realize a constant linear deceleration Cad = [−7 0 0]T
[m/s2] in FC that acts on the pilot under the assumption that CpP ' 03. This deceler-
ation is translated by an MCA into a desired task trajectory rd that has the following
characteristics: the cabin should move backwards (in FC) to reproduce the onset cue, and
tilt downwards to reproduce the persistent cue by exploiting gravity. The manipulator
starts from the configuration qM(t0) = [0 − 80 60 0 20 0]T [deg] and the cabin from the
configuration qC(t0) = 1.34 [m], both well inside the joint limits. The corresponding initial

27

Chapter 2 Design and control of a novel motion simulator

(a) qC = qCmin . (b) qC = qC1 . (c) qC = qC2 .

(d) qC = qC3 . (e) qC = qC4 . (f) qC = qCmax .

Figure 2.7: Simulation 1 - snapshots.

task configuration is r(t0) = [2.55 0 3.63 1 0 0 0]T , with the cabin being perfectly vertical
(i.e., ~ZC = ~Z0).

This task was chosen because the sustained brake is a relevant cue for a car simulator.
In Robuffo Giordano et al. (2010b,c) the CyberMotion Simulator was used with a fixed
seat to simulate a Formula 1 car. However, in that case the maximum simulated forward
deceleration without significant false cues was up to −4 [m/s2], while the simulated car
was capable of braking well beyond this value. This simulation will then show that the
new CyberMotion Simulator/cabin allows to increase the level of sustained deceleration
reproducible without significant artefacts.

In the rest of this section, the smallest singular value of the primary task Jacobian J1 is
indicated with σP and the smallest singular value of the secondary task ‘coupling’ matrix
J2NA,1 is denoted with σS. Furthermore, in the following plots the quantities relative to
the fixed cabin case (6 DoF) are represented with solid lines, those relative to the actuated
cabin with dashed lines, and any reference quantity with dotted lines.
The behaviour of the robot during the execution of the task can be understood with

the help of Fig. 2.9, that shows snapshots of the simulation for the non-actuated and
actuated cabin case respectively. In the snapshots it is also depicted the current direction
of the 5th link of the robot (blue dashed line) and its limit (solid red line). Consider
first the fixed cabin case. From the starting position in Fig. 2.9(a), the cabin must move
backwards along ~XC and at the same time must tilt downwards to correctly reorient the
gravity vector. In order to reorient the seat without deviating from ξd, joints 3 and 5
are mainly exploited. In particular the latter is driven towards its limit and at the time
T = 0.636 [s] the bang-bang controller activates and locks it (Fig. 2.9(b)). Hereafter, this

28

2.5 Results

0.2 0.4 0.6 0.8 1 1.2 1.4

0

1

2

3

4

qC

0
p
C

x y z

qC1
qC2

qC3
qC4

(a) Position.

0.2 0.4 0.6 0.8 1 1.2 1.40

0.5

1

1.5

2

qC

ϕ
C

roll pitch yaw

qC1
qC2

qC3
qC4

(b) Orientation.

0.2 0.4 0.6 0.8 1 1.2 1.4−0.2

−0.1

0

0.1

0.2

qC

0
p
C

x y z

qC1
qC2

qC3
qC4

·

(c) Linear velocity.

0.2 0.4 0.6 0.8 1 1.2 1.4−0.5

0

0.5

qC

ω
C

ωCx
ωCy ωCz

qC1
qC2

qC3
qC4

(d) Angular velocity.

Figure 2.8: Simulation 1 - plots

29

Chapter 2 Design and control of a novel motion simulator

(a) t=0 s. (b) t=0 s.

(c) t=0.636 s. (d) t=0.636 s.

(e) t=3.42 s. (f) t=3.42 s.

(g) t=12 s. (h) t=12 s.

Figure 2.9: Snapshots of the robot during the execution of the task, without using the 7-th joint
(left column: a,c,e,g) and using it (right column: b,d,f,h). The red line indicates the
current orientation of the 5-th joint and the dashed blue line indicates its limit.30

2.5 Results

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time [s]

ξ

(a)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

time [s]

Q

(b)

Figure 2.10: Evolution of the task variables. Solid lines refer to the fixed cabin case, dashed lines
refer to the actuated cabin case and dotted lines represent the reference task. In
Fig. 2.10(a), the color red is used for z, blue for R and green for α. In Fig. 2.10(b),
the color blue is associated to µ, while green, red and cyan are used to depict the
components of ε, in this exact order.

0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

10

12

time [s]

C
a

[m
/s

2
]

Figure 2.11: Simulated acceleration Ca in FC . Solid lines refer to the fixed cabin case, dashed
lines refer to the actuated cabin case. Blue, green and red lines refer to accelerations
along ~XC , ~YC and ~ZC , respectively

31

Chapter 2 Design and control of a novel motion simulator

event is indicated in the plots with a vertical dashed line. At this point, the robot is not
able to execute simultaneously ηd and ξd anymore, joint 5 reaches its limit and the cabin
visibly moves downwards (Fig. 2.9(c)). Finally, the onset cues expires and the desired
orientation of the cabin is reached (Fig. 2.9(d)). The execution of the task trajectory is
also shown in Fig. 2.10. In particular, starting at time T the robot is not able to track rd
anymore. While the primary task η, despite a little deviation from the reference, follows ηd
(Fig. 2.10(b)), the execution of the secondary task ξ is visibly different from ξd (Fig. 2.10(a)).
Since ξd is generated by the motion cueing algorithm to reproduce onset accelerations, this
mismatch on ξ produces a very strong false cue during the transient. Note also that the
desired forward deceleration −7 [m/s2] is reached at about t = 6 [s].
Consider now the actuated cabin case. Starting from the same initial configuration

(Fig. 2.9(e)), the reorientation is more efficiently executed by exploiting the 7-th axis. At
the time T (Fig. 2.9(f)) joint 5 is not locked and the robot can continue to track ξd to
reproduce the onset cue (Fig. 2.9(g)). Eventually, the movement stops and the cabin
remains in the desired orientation (Fig. 2.9(h)). The task trajectory is tracked accurately
(see Fig. 2.10) and thus the desired deceleration is simulated without significant false cues
(Fig. 2.11). The reference acceleration −7 [m/s2] is also reached earlier, at about t = 2.9 [s].

The different performance in the two cases can be analyzed by looking at the evolution
of the joint variables during the task (Fig. 2.12). In the fixed cabin case, after being locked
at the time T, joint 5 remains at its upper limit until the end (Fig. 2.12(e)). This also
results in a larger evolution for joint 3 (Fig. 2.12(c)), that compensates for the loss of
mobility. Clearly, at time T the modified manipulability function (2.23) rapidly goes to zero
(Fig. 2.12(h)). Moreover, when joint 5 becomes locked, σS goes to zero as the secondary
task ‘coupling’ matrix J2NA,1 corresponding to the unlocked joints is singular (Fig. 2.13(b)).
Anyway, thanks to the TP control, this singularity does not affect the primary task and σP
is always greater than its starting value (Fig. 2.13(a)). With the addition of the actuated
cabin, the burden on joints 3 and 5 is reduced and the vector q remains well inside the
limits. Also, the manipulability function (2.23) never decreases below the starting value
(Fig. 2.12(h)), and neither σP nor σS encounter singularities (Fig. 2.13).

Experiment Finally, the complete system with the 7 DoF CMS was tested in an ex-
periment with a human-in-the-loop, who is asked to drive the virtual racing car modelled
in Robuffo Giordano et al. (2010c). Figure 2.14 shows a snapshot taken during the experi-
ment from a camera mounted inside the cabin, behind the pilot. In the figure it is clearly
visible the visual feedback projected on the interior of the gondola as well as the input
device used to command the virtual car.

Figures 2.15a and 2.15b illustrate the desired forward and lateral acceleration expressed
FP that should be acting on the pilot, according to the vehicle model and to the motion
cueing. Note that these accelerations have been scaled down with respect to the original
accelerations produced by the car model in order to avoid excessive strain on the untrained
pilot. The accelerations acting on the pilot within the cabin were also measured by an IMU
mounted within the gondola. The measured forward and lateral accelerations are plotted
in Figs. 2.15a and 2.15b. By comparing the plots of the desired and measured accelerations
it is visible a substantial agreement of the two, however the measured acceleration clearly
exhibits strong vibrations. Apart from the unavoidable noise, this is mainly due to the
actual vibrations of the motion platform caused by the large mass added at the end of the

32

2.5 Results

0 2 4 6 8 10 12
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time [s]

q 1

(a) q1

0 2 4 6 8 10 12

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

time [s]

q 2

(b) q2

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

2

time [s]

q 3

(c) q3

0 2 4 6 8 10 12
−4

−3

−2

−1

0

1

2

3

4

time [s]

q 4

(d) q4

0 2 4 6 8 10 12

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

q 5

(e) q5

0 2 4 6 8 10 12
−4

−3

−2

−1

0

1

2

3

4

time [s]

q 6

(f) q6

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time [s]

q 7

(g) q7

0 2 4 6 8 10 12
0

1

2

3

4

5

6

time [s]

H
(q

)

(h) H(q)

Figure 2.12: Figures 2.12(a-g) show the evolution of the joint variables during the execution. The
red lines indicate the limits for each joint. (h) shows the evolution of the modified
manipulability function (2.23). In all the figures solid lines refer to the fixed cabin
case, dashed lines refer to the actuated cabin case. 33

Chapter 2 Design and control of a novel motion simulator

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

σ
P

(a) σP

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]
σ

S

(b) σS

Figure 2.13: Evolution of σP and σS during the execution. Solid lines refer to the fixed cabin case,
dashed lines refer to the actuated cabin case.

Figure 2.14: Experiment - snapshot from a camera inside the cabin.

34

2.6 Summary and Possible Extensions

0 50 100 150 200 250

−4

−2

0

2

p
a
x
si
m
.
[m

/
s2
]

time [s]

(a) Desired forward acceleration.

0 50 100 150 200 250
−5

0

5

p
a
y
si
m
.
[m

/
s2
]

time [s]

(b) Desired later acceleration.

0 50 100 150 200 250

−4

−2

0

2

p
a
x
re
c.

[m
/
s2
]

time [s]

(c) Measured forward acceleration.

0 50 100 150 200 250
−5

0

5

p
a
y
re
c.

[m
/
s2
]

time [s]

(d) Measured lateral acceleration.

Figure 2.15: Experiment - plots.

manipulator and not accounted for by the low-level controller. Indeed these vibrations
severely degrade the vestibular feedback, therefore suggesting for the future developments
to i) reduce the weight of the cabin, and ii) account, if possible, for the additional mass in
the low-level controller. Furhtermore, it should be noted that this experiment considers an
extreme scenario (racing car), as a proof of concept, but most applications (e.g., driving a
normal car) present smaller and smoother accelerations.

2.6 Summary and Possible Extensions
Summarizing, the following results have been presented:

1. It was presented a novel design of actuated cabin that extends the motion envelope of
anthropomorphic robotic arms to be used as motion simulator. The kinematic model
of the cabin was formally given, showing a mixed translational/rotational behaviour.

2. It was described the control architecture of the 7 DoF system which exploits the
redundancy of the system to optimise the motion of the platform and is capable to
cope with the unpredictable trajectory generated online by the human operator.

3. The framework was validated both in simulation and with a real experiment, using
the CMS simulator to simulate the sensation of driving a race car.

Because of the prioritization in (2.26), an extension to the proposed high-level controller
could be the adoption of a saturation algorithm that takes into account the different

35

Chapter 2 Design and control of a novel motion simulator

priorities. A similar idea was developed in Arrichiello et al. (2009) by considering the
case of the sole actuator velocity saturations, and by applying different uniform scalings
to the tasks starting from the highest priority one until the lowest priority one. Another
possible extension to this research, could be the adoption of a model predictive control for
the high-level controller, in case it is provided a model of the pilot or if the commanded
trajectory has some given geometric structure (for example exploiting the knowledge of
the street or track where the simulated vehicle moves). Moreover, additional tests and
experiments could be executed to evaluate the benefit of the chosen lower priority task of
the TP controller in comparison to other choices was well as the general benefit of using
the actuated cabin in term of the motion perceived by test subjects.

36

Chapter 3

Shared control of a UAV
bearing-formation
The discussion presented in this chapter is based upon the work that I have done under the
supervision of Dr. Franchi and published in Franchi et al. (2011a, 2012a).

3.1 Introduction
As mentioned in Sec. 1.1, field applications represent one of the most important domains of
RTHL, with tasks ranging from exploration to coverage and surveillance, see e.g. Franchi
et al. (2009); Howard et al. (2006); Renzaglia et al. (2012); Schwager et al. (2011). Such
applications are often carried out using multi-robot systems due to their resilience to single-
point failures and adaptability to different scenarios. Among the others, UAVs are probably
the most suitable robotic platform for remote exploration of large and/or unstructured
areas since they possess large adaptability and potential pervasiveness in many different
scenarios. The problem, as already discussed in Sec. 1.4.2, is that the robots seldom operate
in full autonomy, on the contrary the human-to-robot ratio is typically larger than 1, i.e.
it is usually needed more than one human for operating a single robot. In order to make
the whole multi-robot system easily manageable by a single person, in this chapters it is
explored the idea of i) increasing the autonomy of the robots by letting them autonomously
achieve and keep a desired formation, and ii) making the human-robot interaction ‘bilateral’
with suitable cues (such as haptic) that let the human co-operator ‘feel’ the remote robots
and site.

The design of a formation controller for the UAVs is however dependent on the measure-
ments that are available. In multi-robot research, it is generally considered a requirement
to devise motion controllers based only on relative measurements (see Franchi et al. (2010)).
This way, the controller is independent of the knowledge of the robot absolute positions in
space and, thus, does not require global localization systems such as GPS or SLAM algo-
rithms (see, e.g., Durham et al. (2012)). In the same spirit, substantial research efforts have
been devoted to the development of solutions based on standard, light-weight, low-energy,
and cheap sensors (like onboard cameras), rather than active and energetically-expensive
sensing devices (like, e.g., laser/structured-light range-sensors), as shown in Schwager et al.
(2011). When mapping/surveillance tasks are based on relative measurements obtained by
cameras, a parallel objective for the group of robots is the maintenance of a 3D formation
that optimizes some suitable ‘visually-motivated’ performance criterion. For example, in
the context of environmental coverage (see Schwager et al. (2011)), one can minimize
the overlap of the camera field-of-views (FoVs) or maximize the focus on some areas of

37

Chapter 3 Shared control of a UAV bearing-formation

Human Operator UAVs

Transmission Channel

Formation
Control

group
commands

visual/haptic
feedback

Figure 3.1: Shared formation control scheme.

interest. Similarly, in visual-based cooperative map building, the robot 3D formations
can be carefully designed so as to facilitate the acquisition of those relative measurements
strictly needed for solving the mutual localization problem (see Cognetti et al. (2012)) — a
necessary prerequisite for accurate merging of the individual maps. Since, regardless of the
particular application, cameras eventually provide as a direct measurement only a bearing
(angular) information, in this chapter it is considered the problem of realizing and keeping
a desired UAV 3D formation defined in terms of sole relative (inter-robot) bearings (i.e., a
bearing-formation).

Summarizing, the main characteristics of this RTHL scenario are depicted in Fig. 3.1:

Robot: The robots (UAVs) implement a formation controller based only on relative bearing
measurements that autonomously achieves and maintains the desired formation.

Human: While fulfilling the relative bearing constraints, the remaining DoF of the formation
are exploited to let the human co-operator steer the whole group of UAVs.

Feedback: Together from the visual feedback from the onboard cameras, a suitable bilateral
controller provides force cues informative of how well the UAVs, as a group, are
executing the human’s intended motion.

3.1.1 Related Works
The previous works related to the topics of this paper can be roughly grouped in the
following two categories:

Bearing/Vision-based Formation control

In literature, the use of bearing measurements has been mainly explored for groups of
non-holonomic ground (2D) robots with a special attention to leader-follower configurations.
In Das et al. (2002) a leader-follower control based on input-output feedback linearization
is proposed. Every robot can control bearing and distance from another robot, or a
combination of them from two other robots, and obstacle points. The quantities needed

38

3.1 Introduction

for the controller are either retrieved by an omnidirectional camera or estimated via
EKF. Shakernia and Sastry (2003) presents a visual-servoing approach exploiting motion
segmentation from panoramic images to estimate position and velocity of the leaders.
In Johnson et al. (2004) distance estimation from the leader using bearing plus acceleration
measurements is achieved using an EKF and a neural network. In Orqueda and Fierro
(2006) a leader-follower approach based on feedback linearization is proposed. The relative
pose (bearing, distance and orientation) is estimated directly from the image using fiducial
markers and a high gain non-linear observer. In Moshtagh et al. (2009) parallel and circular
flocking formations (i.e., with constant non-zero speed) are obtained using the bearing
angle, optical flow and time to collision.
Even though all the aforementioned approaches do not assume availability of distance

measurements, they also aim at concurrently regulating all the robot inter-distances. This is
typically achieved by fusing bearing-only measurements with additional metric information
such as acceleration, velocity, or known size of objects. Therefore the fulfillment of suitable
observability conditions must be taken into account as, e.g., shown in Mariottini et al.
(2009), as well as the maintenance of some sort of persistency of excitation condition during
the motion. This can be obtained by either requiring the presence of a leader in charge
of constantly “pulling” the formation, or by perturbing the motion of the robots with
sinusoidal-like inputs.

Such a persistent-excitation behavior is not needed by the formation controller presented
in this chapter, which neither uses nor regulates the inter-distances between the robots
(while albeit ensuring their boundedness). The lack of a metric scale could be overcome, in
some limited situations, by fusing visual information with onboard accelerometer readings
as done in Kelly and Sukhatme (2011); Kneip et al. (2011). However, the solution presented
here delegates to the human co-operator the role of regulating the expansion/contraction
rate of the UAV group.

High-level steering of multiple mobile robots

Any approach involving a group of robots tracking a collective reference trajectory can
be loosely considered as non-bilateral (unilateral) steering of multiple mobile robots. For
instance, in Belta and Kumar (2004) a group of robots is made able to track given trajectories
in the reduced space of some global quantities (e.g., the centroid of the formation), and
conceptually similar problems are addressed in Antonelli et al. (2009); Kitts and Mas (2009)
and references therein. Compared to the scenario considered here, all these approaches: i)
propose different solutions to multi-robot formation control, ii) do not focus on the specific
case of bearing-only measurements, and iii) only consider the unilateral steering case.

While many papers in the past literature did consider bilateral teleoperation of a single
mobile robot, only a few addressed the multiple mobile robot case. In Lee and Spong (2005)
a passivity-based approach to bilaterally teleoperate a group of holonomic/non-holonomic
ground robots is presented, and in Rodríguez-Seda et al. (2010) bilateral teleoperation of
a group of UAVs is realized by directly coupling the position of the haptic device to the
position of the formation centroid. This solution does not take into account the kinematic
dissimilarity between the haptic device and the slave mobile robots (bounded vs. unbounded
workspace), which, on the contrary, is explicitly considered in Lee et al. (2011). Here
the authors present a UAV bilateral teleoperation scheme where the velocity of the group
is controlled by the position of the haptic device, while still guaranteeing passivity (I/O

39

Chapter 3 Shared control of a UAV bearing-formation

stability) of the teleoperation system. Along similar lines, in Franchi et al. (2011b, 2012c,d);
Robuffo Giordano et al. (2011a,b); Secchi et al. (2012) a different bilateral teleoperation
control strategy is proposed with the emphasis on the possibility to allow autonomous
split and rejoin decisions within the group in a passive/stable way. Nevertheless, all the
aforementioned approaches are not bearing-only based but explicitly require knowledge of
metric information.

3.2 Preliminaries
This section introduces the models of the UAV and of a virtual kinematic system, called
agent, that generates the reference trajectory for the UAV. The symbols used to define
this models follow the general guidelines of the manuscript. In particular, vectors will be
denoted with boldfaced symbols, scalars with normal weighted characters, and matrices
with normal wighted capital characters.

3.2.1 UAV Model
The multi-robot system is composed of N UAVs, with N ≥ 3, that are modeled as rigid
bodies in space. The pose (position and attitude) of a rigid object in the environment is
expressed with respect to an inertial (world) frame denoted with FW : {OW ; ~XW ; ~YW ; ~ZW},
where OW indicates the origin of the frame and ~XW , ~YW , ~ZW indicate its orthogonal axes
(unit vectors). In order to describe the pose of the UAVs, each robot is endowed with a
body fixed frame that is attached to the center of mass of the UAV itself. The body frame
for the i-th UAV is denoted with FAi : {OAi , ~XAi , ~YAi , ~ZAi}, in accordance to the standard
notation used for frames. An example of these frames is illustrated in Fig. 3.2. With this
setting, the configuration of the i-th UAV is represented by the position WpAi ∈ R3 of OAi
in FW and by the rotation matrix WRAi ∈ SO(3) that expresses the orientation of FW with
respect to FAi . Clearly, a rotation matrix is only one of the possible representations for the
orientation of the robots in world frame. Another representation that is used hereinafter is
in terms RPY Euler angles, with roll φAi , pitch θAi and yaw ψAi

1. Each UAV is assumed
to possess several properties, that are summarized in the following.

Measure of relative bearings Each UAV, e.g. the i-th UAV, is assumed capable of
measuring the direction pointing towards the center of mass of another UAV, e.g. the j-th
UAV, and expressed in body frame FAi (relative bearing). Namely, this relative bearing is
the direction from OAi to OAj in FAi , and it is formally defined as

βAiAj = AiRW

WpAj −
WpAi

‖WpAj − WpAi‖
∈ S2, (3.1)

where, as usual, a subscript/superscript shift denotes the inverse/transpose of a rotation
matrix (i.e., AiRW = WRAi

−1). Note that the local frame of reference is not indicated
in βAiAj , i.e. it is dropped the superscript from AiβAiAj , because it is clear that relative

1In literature these representation is also known as ZYX angles to indicate the order according to which
the elementary rotations around the current coordinate axes are composed.

40

3.2 Preliminaries

~XW~YW

~ZW

~ZAi

~XAi

~YAi

~YAj

~XAj

~ZAj

WpAj

WpAi �Ai Aj

�Aj Ai

Figure 3.2: Model of two UAVs (in this case two quadrotors), each of them with a body-fixed
frame, and the corresponding relative bearings.

bearings are expressed in the local frame. An example of relative bearings is shown in
Fig. 3.2.

One important thing to point out is that, even though definition (3.1) uses the absolute
positions WpAj and

WpAi , in practice it is not necessary to measure WpAj and
WpAi to

evaluate βAiAj . In fact, a direct measure of βAiAj can be obtained by means of a calibrated
monocular camera mounted on the i-th UAV. For this reason, in the following βAiAj will
be sometimes referred to as measured relative-bearing.

Measure of attitude Each UAV is assumed capable of locally measuring the roll and
pitch angles (φAi , θAi). In practice, UAVs are always equipped with onboard inertial
measurement units (IMUs consisting of accelerometers and gyros) that allow to retrieve
these measures, for instance by implementing standard estimation algorithms such as
complementary filters (see e.g., Mahony et al. (2008)). It will be shown in the following that
these measures are used by the bearing-formation controller, in particular to evaluate (3.5).
The assumption above does not include the (absolute) yaw angle ψAi , because this

information cannot be recovered from standard IMUs. Clearly, one could use additional
specialized sensors, such as a compass, in which case the measure of ψAi could be used by
the bearing-formation controller and by the low-level trajectory controller. However, there
are two reasons that deter from this approach:

• these additional sensors typically have a limited reliability (e.g., compasses do not
work well indoor or close to strong magnetic fields);

• adding more sensors to the UAVs increases the overall weight and power draw, which
is undesirable especially for very small vehicles.

In view of these considerations, the framework discussed in this chapter has been developed
without requiring the measure of the absolute yaw angle.

41

Chapter 3 Shared control of a UAV bearing-formation

Trajectory tracking The i-th UAV is assumed capable of tracking any smooth reference
trajectory (pi(t), ψi(t)) ∈ R3 × S1. This requirement is less demanding and more feasible
than tracking any arbitrary trajectory (WpAi(t),

WRAi(t)) ∈ SE(3). A sufficient condition
satisfying this assumption is that position and yaw angle

(
WpAi , ψAi

)
of the UAV are

flat outputs (see Fliess et al. (1995)) of the system, i.e, together with their derivatives
they algebraically define the state and control inputs of the UAV. Differential flatness is
essentially equivalent to exact dynamic feedback linearizability with

(
WpAi , ψAi

)
taken

as linearizing outputs (see Isidori (1995)). Helicopters and quadrotors are examples of
differentially flat systems (see Mistler et al. (2001); Nieuwstadt and Murray (1998)).

From an implementation point of view, the trajectory tracker of each UAV is assumed to
operate at the kinematic level, i.e., it is assumed capable of following a reference velocity
trajectory (ṗi(t), ψ̇i(t)) with good performance and keeping the tracking error small enough.
This assumption has been used in previous related works that also included experimental
validations: for example, in Schwager et al. (2009) the authors consider the UAV a simple
kinematic integrator, in Fink et al. (2010) the UAVs are abstracted again as kinematic
integrators with some additional details on low-level PID controls.

3.2.2 Agent Model
A virtual kinematic system, henceforth called agent, is introduced in order to generate a
reference velocity trajectory (ṗi(t), ψ̇i(t)) that is given as input to the trajectory tracker of
the i-th UAV. The i-th agent can be imagined as a moving frame Fi : {Oi; ~Xi; ~Yi ~Zi} that
is free to translate in 3D, but whose orientation is constrained to have roll and pitch angles
φi = θi = 0. With this setting, the pose of the i-th agent in the world frame is described by
its position Wpi ∈ R3 and by rotation matrix WRi = R~Zi

(ψi) which indicates the canonical
rotation matrix around the axis ~Zi. In order to make the notation less cumbersome, in the
following the superscript/subscript W that denotes the world frame will be dropped from
the pose of the agent. Namely, this means that the notation Wpi, WRi will will be replaced
by pi, Ri.
The kinematic model of the i-th agent is(

ṗi
ψ̇i

)
=
(
Ri 03
0T3 1

)(
ui
wi

)
, (3.2)

where 03 = (0 0 0)T , and the body-frame linear velocity ui ∈ R3 and yaw-rate wi ∈ R are
the inputs. Vector qi = (pi, ψi) ∈ R3 × S1 is defined as the i-th agent configuration, and
vector q = (q1, . . . , qN) ∈ (R3 × S1)N denotes the collection of configurations of all the
agents. Lastly, for the well known properties of rotation matrices, the rotation between the
body frames of agents i and j is described by iRj = iRRj, where iR = RT

i as usual.
Analogously to UAVs (cf. (3.1)) a notion of relative bearing is formulated also for agents,

as detailed hereinafter.

Agent relative bearing The direction between the i-th and j-th agent (seen from the
body frame of the i-th agent) is defined as agent relative bearing. Formally, it is

βij(q) = βij(qi,pj) =
iRpij
δij

∈ S2, (3.3)

42

3.3 Relative bearings

where pij = pj − pi, and

δij(q) = δij(pi,pj) = ‖pj − pi‖ (3.4)

is the inter-distance between agents i and j.
There is a subtle difference between the agent relative bearing defined in (3.3) and the

measured UAV relative bearing introduced in (3.1). Besides possible mismatches as the
UAV tracks the trajectory (3.2), the two bearings differ because the simplified agent model
does not account for roll and pitch rotations of the body frame. Nevertheless, an evaluation
of βij2 can be obtained from the roll φAi , pitch θAi , and relative bearing βAiAj measured
from the UAV, as

βij ' R~YAi
(θAi)R ~XAi

(φAi)βAiAj , (3.5)

where R ~XAi
(·), R~YAi

(·) are the canonical rotation matrixes around the axes ~XAi and ~YAi ,
respectively. Approximation (3.5) holds as long as the discrepancy between the position
of the j-th UAV in the frame of the i-th UAV, i.e., AiRW(WpAj −

WpAi), and that of the
associated virtual agents, i.e., iR(pj − pi), stays small enough. This has been confirmed by
the extensive set of simulations and experimental results presented in Sec. 3.8. Furthermore,
practical applications of UAV formations, such as map reconstruction or monitoring, do
not feature aggressive motions but they rather require that the vehicles keep the angles
(φAi , θAi) very small, for example for collecting data with down-facing sensors.

Among all the possible configurations of agents, there is one special situation that deserves
attention and that is characterized by the following definition.

Definition 3.1 (Degenerate configuration). A configuration q is called degenerate if
the associated agent positions p1, . . . ,pN are all aligned, i.e., β12(q) = ±β13(q) =
. . . = ±β1N(q).

In the next section it will be shown that degenerate configurations correspond to a loss of
several properties of a bearing-formation.

3.3 Relative bearings
Before proceeding with the design of the sought charred controller, it is of paramount
importance

1) to understand what are the fundamental properties of the agent relative bearings;

2) to formally define a bearing-formation and to study its parameterization.

All these aspects are addressed in this section.
For the upcoming discussion, it is necessary to introduce few more concepts that will

simplify the formulation. Firstly, recall from the notation guidelines that [v]∧ ∈ so(3)
denotes the skew-symmetric matrix associated to a vector v = (v1 v2 v3)T ∈ R3 (cf. (0.1)).
The second concept regards the inter-distances among the agents:

2The dependence from q is omitted here and in the following, whenever not needed or clear from the
context.

43

Chapter 3 Shared control of a UAV bearing-formation

l

m

n

�ln

�lm

�mn

(a)

m
l ⌘ n

�ln = 0

�lm = �mn

�lmn =
�ln

�lm
= 0

(b)

l

m ⌘ n
�lm = �ln

�mn = 0

�lmn =
�ln

�lm
= 1

(c)

Figure 3.3: Inter-distances. a) For three non-coincident agents, formula (3.6) is valid. b) When
l ≡ n, then γlmn = 0. c) When m ≡ n, then γlmn = 1.

Definition 3.2 (Inter-distance ratio). For any 3 agents l,m, and n, the scalar ratios
among their relative inter-distances are denoted as

γlmn = δln
δlm
∈ R+, γmln = δmn

δml
∈ R+, (3.6)

assuming that pl and pm are not coincident (see Fig. 3.3a). In the singular case l = n
and m = n, definition (3.6) is extended as

γlml = 0, γlmm = 1, (3.7)

(see Figs. 3.3b and 3.3c).

3.3.1 Properties of Relative Bearings

It is now possible to introduce the three fundamental properties of Orientation, Triangulation
and Composition for relative bearings.

Orientation

Property 3.1. (Orientation) If βij 6= ±(0 0 1)T then

iRj = R
(
βij,βji

)
= exp (arccos(cij) [vij]∧) (3.8)

where vij = −βij × βji and cij = βij · βji. Moreover if βij = ±(0 0 1)T but
βik 6= ±(0 0 1)T then

iRj = iRk
kRj = R (βik,βki)R

(
βkj,βjk

)
. (3.9)

44

3.3 Relative bearings

j

i i

j

�ji�ji

�ij �ij

~Zj
~Zj

~Xj ~Yj

~Xj

~Yj

~Yi

~Xi

~Zi
~Zi

~Xi

~Yi

(a)

j

i

�ji

�ij

~Zj

~Xj

~Yj

~Yi

~Zi

~Xi

~Zk

~Xk

~Yk

k

�ik

�ki

�kj

�jk

(b)

Figure 3.4: Property 3.1: a) With just two vertically aligned agents i and j, it is not possible
to uniquely define their relative orientation, because the body fixed frames Fi and
Fj can freely rotate around ~Zi ≡ ~Zj . b) Adding a third agent that is not vertically
aligned allows to disambiguate the rotation around the vertical axis.

Proof of Property 3.1. Multiplying both sides of (3.3) with Ri yields Riβij = pij/δij, and
symmetrically Rjβji = pji/δji. Noting that pij = −pji and δij = δji, the left sides of the
previous equations can be equated thus obtaining Riβij = −Rjβji. This can be rewritten
as jRiβij = −βji showing that jRi is the rotation matrix among the directions βij and
−βji. This consists of a rotation about the axis vij of an angle arccos(cij), and takes
the exponential form (3.8). To conclude the proof, note that iRj is always a rotation
matrix of the form R~Zj

(·) by construction. Therefore, for any a = b = ±(0 0 1)T , the
equation iRj a = b does not admit a unique solution (any rotation matrix R~Zj

(·) would
be a solution), implying that iRj cannot be evaluated whenever βij = ±(0 0 1)T . Finally,
the last statement of the proposition is proven by applying the first part of Property 3.1
twice.

Property 3.1 states that the relative orientation iRj between agents i and j can be always
retrieved from βij and βji, as long as the two agents are not vertically aligned. If the two
agents are vertically aligned, then the bearings βij and βji constrain the frames Fi and
Fj to have their Z axes aligned, i.e., ~Zi ≡ ~Zj, however the rotation around ~Zi (or ~Zj) is
undetermined (see Fig. 3.4a). In this case it is necessary a third agent not vertically aligned
with the first two in order to disambiguate the rotation of Fi and Fj (see Fig. 3.4b).

Triangulation

Property 3.2. (Triangulation) Consider 3 agents l,m, and n, s.t. pl, pm, and pn are
not aligned, i.e., βlm 6= ±βln. Then the following identities hold:

γlmn = Γ(βmn,βml,βln) (3.10)
γmln = Γ(βln,βlm,βmn), (3.11)

45

Chapter 3 Shared control of a UAV bearing-formation

l m

n

� ln
=
� lm

n
� lm

�
m

n =
�
m

ln �
m

l

�ln

�lm �ml

�mn
�mn �ln

�lm

Figure 3.5: The plane spanned by the three agents l, n,m and Property 3.2.

where the function Γ : (S2)3 → R+ is defined as

Γ(β1,β2,β3) = ‖β1 × β2‖
‖β3 ×R(β3,β2)β1‖

. (3.12)

If βlm = ±βln but βlm 6= ±βlo, γlmn is still obtainable as:

γlmn = δln
δlo

δlo
δlm

= Γ(βon,βol,βln)Γ(βmo,βml,βlo). (3.13)

Proof of Property 3.2. Figure 3.5 represents the plane spanned by the points pl, pm, pn.
From the law of sines, it follows δln

δlm
= sin(∆ln)

sin(∆lm) , where sin(∆ln) = ‖βmn × βml‖ and

sin(∆lm) = ‖βnl × βnm‖ = ‖lRnβnl × lRnβnm‖ =
= ‖ − βln × lRm

mRnβnm‖,

thus proving (3.10). Finally, (3.11) follows from (3.6) via suitable relabeling.

Property 3.2 states that the inter-distance ratios (3.6) for three agents that are not
aligned can always be computed from the relative bearings among the three agents. However,
if the three agents are aligned, then the information provided by their reciprocal relative
bearings is not sufficient to retrieve the ratios between the inter-distances (see Fig. 3.6a).
In this case it is necessary to triangulate with a fourth agent that is not aligned with the
first three, in order to disambiguate the ratios (see Fig. 3.6b).

Composition

46

3.3 Relative bearings

l m
n

l
m n

�lm = �ln

�lm = �ln �ml

�ml

�mn

�mn

�nl = �nm

�nl = �nm

(a)

l m n

o

�ln

�on�ol

�lo
�mo

�ml

(b)

Figure 3.6: Property 3.2: a) When the three agents l,m, n are aligned, their relative-bearings do
not allow to determine the inter-distances ratios. b). Adding a fourth agent o not
aligned to l,m, n allows to disambiguate the inter-distances ratios. The example shows
the relative-bearings that allow to compute γlmn.

Property 3.3. (Composition) Consider 3 agents l,m, n then, if βlm 6= ±βln, the
following identity holds:

βmn = mRl
βlnγlmn − βlm
‖βlnγlmn − βlm‖

. (3.14)

Proof of Property 3.3. Identity (3.14) follows from

βmn =
mR(pn − pm)
‖pn − pm‖

=
mR(pl +Rlβlnγlmnδlm − pl −Rlβlmδlm)

‖pn − pm‖

=
mRRl(βlnγlmn − βlm)

(‖pn − pm‖δ−1
lm)

,

where the denominator ‖pn − pm‖δ−1
lm = ‖βlnγlmn − βlm‖ since βmn is a unit vector.

Property 3.3 provides a tool that allows to compose the relative bearings βln, from agent
l to agent n, and βlm, from agent l to agent m, to determine the bearing βmn, from agent
m to agent n.

3.3.2 Bearing-Formations
The concept of formation is expressed in a clear and compact form by borrowing the
formalism of graph-theory. Let G = (V , E) indicate a generic graph with nodes V =
{1, . . . N} and edges E ⊆ T = {(i, j) ∈ V × V | i 6= j}. A formation is then represented
as the ‘graph-plus-configuration’ structure obtained by associating to each node of the
graph the configuration of an agent or robot. This kind of representation is also known in

47

Chapter 3 Shared control of a UAV bearing-formation

literature as framework or point-formation, see, e.g. Eren et al. (2003, 2006). The formalism
just introduced is now applied to define two different typologies of formations.

Agent-formation A formation of agents, or just agent-formation, is a pair (G, q) consist-
ing of a generic graph G = (V , E) and a configuration vector q = (q1, . . . , qN) that assigns
to every node i ∈ V the configuration qi = (pi, ψi) ∈ q (introduced in Sec. 3.2.2 to model
agents).
There are several attributes that can be associated to an agent-formation (G, q):

- An agent-formation (G, q) is called degenerate if q is degenerate in the sense of Defini-
tion 3.1.

- Two agent-formations (G, q) and (G, q′) with the same graph G but with different config-
urations q and q′ are said edge-equivalent if

βij(q) = βij(q′) ∀(i, j) ∈ E , (3.15)

and similar if

βij(q) = βij(q′) ∀(i, j) ∈ T . (3.16)

- An agent-formation (G, q) is called rigid if all its edge-equivalent agent-formations are
also similar.

Bearing-formation A formation of bearings, or simply a bearing-formation, is a pair
(G,α) made of a generic graph G = (V , E) and a collection of |E| unit vectors α =
(. . . ,αij, . . .) ∈ S2|E| that assigns to every edge (i, j) ∈ E the unit vector3 αij ∈ α.Analogously
to agent-formations, bearing-formations can have various attributes:

- A bearing-formation (G,α) is said feasible if all the unit vectors contained in α can
simultaneously exist as actual relative bearings βij(qα) for some configuration qα, i.e.,
such that βij(qα) = αij ∀ (i, j) ∈ E . In this case, (G, qα) is called a realization of (G,α).
Figure 3.7 provides an example of feasible and unfeasible bearing-formations.

- A feasible bearing-formation (G,α) is called rigid if it only has rigid realizations. This
also implicitly defines (feasible) non-rigid bearing-formations.

- A feasible bearing-formation (G,α) is called degenerate if it has at least a degenerate
realization. This also implicitly defines (feasible) non-degenerate bearing-formations.

- Two rigid bearing-formations (G,α) and (G ′,α′) are said equivalent if (3.16) holds for any
pair of realizations (G, qα) and (G ′, qα′) of (G,α) and (G ′,α′), respectively. Therefore,
two equivalent rigid bearing-formations share the same set of realizations.

Before proceeding further, it is important to stress out, despite the ‘duality’ between the
definitions of (G, q) and (G,α), the substantial difference between agent-formations and
bearing-formations. A bearing-formation can be considered as a set of constraints that

3Notice that here the term ‘bearing’ is used as a synonym of ‘unit vector’.

48

3.3 Relative bearings

↵ij =

✓
cos(�90�)
sin(�90�)

◆
↵ik =

✓
cos(�45�)
sin(�45�)

◆

↵ji =

✓
cos(90�)
sin(90�)

◆
↵jk =

✓
cos(45�)
sin(45�)

◆

↵ki =

✓
cos(0�)
sin(0�)

◆
↵kj =

✓
cos(20�)
sin(20�)

◆

i j

k

~Xi

~Yi

~Yj

~Xj

�ij

�ik

�ji

�jk

45� 45�

90�

(a)

↵ij =

✓
cos(�90�)
sin(�90�)

◆
↵ik =

✓
cos(�45�)
sin(�45�)

◆

↵ji =

✓
cos(90�)
sin(90�)

◆
↵jk =

✓
cos(45�)
sin(45�)

◆

↵ki =

✓
cos(�45�)
sin(�45�)

◆
↵kj =

✓
cos(�135�)
sin(�135�)

◆

i j

k

~Xi

~Yi

~Yj

~Xj

�ij

�ik

�ji

�jk

45� 45�

90�

~Xk

~Yk

(b)

Figure 3.7: Example of planar bearing-formations. a) Unfeasible bearing-formation. b) Feasible
bearing-formation.

is expressed in the form of relative-bearings α. On the other hand, an agent-formation
(G, qα) whose relative bearings satisfy the constraints imposed by (G,α) is only one specific
realization. In fact, there can be other agent-formations with configurations that are different
from qα but that still satisfy the constraints of (G,α), or there can be no agent-formation
at all that can satisfy the constraints. Therefore, the bearings α of a bearing-formation
(G,α) are decoupled from the notions of agent configuration and relative bearings of an
agent-formation.

To summarize and clarify some of previous definitions, a bearing-formation is rigid if it is
feasible and implicitly defines all the relative bearings of its realizations, i.e., if it provides
the maximum information obtainable using only relative bearings. This is a powerful
concept and it will be further extended and exploited to design the formation controller.
Furthermore, if a rigid bearing-formation is degenerate then no constraint exists among the
inter-distances of its realizations, as shown by the example of Fig. 3.6a. On the other hand,
in case of non-degeneracy, the inter-distance ratios are strictly constrained, as shown in the
example of Fig. 3.6b.

Minimality for Rigid Bearing-Formations

By adopting the previous definitions, the goal of the formation control can be naively
identified with the requirement of regulating all the relative bearings βij(q), (i, j) ∈ T ,
where T is the set of all possible links among the agents, to some desired values βdij, i.e.

β(q) = (. . . ,βij(q), . . .)(i,j)∈T → βd = (. . . ,βdij, . . .)(i,j)∈T .

This naive objective can be revised by using the concept of rigidity. Assume that
there exists a graph G = (V , E) such that the (desired) bearing-formation (G,βdE), where
βdE = (. . . ,βdij . . .)(i,j)∈E is the restriction of desired bearings βd to E , is rigid. From the
property of rigidity it follows directly that βij(q) → βdij, ∀ (i, j) ∈ E , implies βij(q) →

49

Chapter 3 Shared control of a UAV bearing-formation

βdij, ∀ (i, j) ∈ T \E . Moreover, the desired bearing-formation (G,βdE) can be replaced
by any equivalent bearing-formation (G ′,βdE ′) for realizing the same formation control
goal. Therefore, in order to reduce the number of measured quantities and the overall
computational load of the formation controller it is desirable to use a minimal number of
controlled and measured relative bearings. This point raises the issue of minimality for
rigid bearing-formations, i.e., of the minimal cardinality of |E| needed to define a rigid
bearing-formation.

Lemma 3.1. (Parameterization of a bearing-formation) The equivalence class of all
the realizations of a non-degenerate and rigid bearing-formation (G,α) is the set
{(G, qα) |qα ∈ Q} where Q is a 5-dimensional manifold embedded in (R3 × S1)N , and
globally parameterized by the configuration qαi of one agent (4 parameters) and the
distance δij(qα) between two agents (1 parameter).

Proof of Lemma 3.1. Consider any realization (G, qα). In order to prove the Lemma, the
proof will show that, without loss of generality, if qα1 , δ12(qα) and all the relative bearings
β(qα) are known, then all the rotation matrices Rj(qα) and positions pαj , j 6= 1, can be
explicitly obtained. In the following the dependency from qα is omitted for conciseness.
First of all, since Rj = R1

1Rj and pαj = pα1 + R1β1jδ1j, the problem can be reduced
to the computation of 1Rj ∀j > 1 and δ1j ∀j > 2. If β1j 6= ±(0 0 1)T then 1Rj follows
from (3.8) using the bearings β1j and βj1.
If β1j = ±(0 0 1)T (i.e., agents 1 and j are on on top of each other), let h be any agent
such that β1h 6= ±(0 0 1)T (non-degeneracy guarantees existence of at least one such agent).
Then, one can compute 1Rh and hRj from β1h,βh1,βhj,βjh using (3.8) twice, to finally
obtain 1Rj = 1Rh

hRj.
As for the inter-distances, since qα is non-degenerate, there exists at least an agent

h such that β12 6= ±β1h. Then, applying (3.6) with (l,m, n) = (1, 2, h), one can obtain
δ1h = γ12hδ12 and δ2h = γ21hδ12 as a function of δ12 and the needed relative bearings. Finally,
consider the case j 6= 1, 2, h: if β1j 6= ±β12 then δ1j = γ12jδ12, otherwise δ1j = γ1hjδ1h, thus
concluding the proof.

Although E can contain up to |T | = N(N − 1) = O(N2) pairs, Lemma 3.1 shows
that any rigid non-degenerate bearing-formation defines a 5-dimensional manifold in a
4N -dimensional space. Therefore, only 4N − 5 independent constraints are actually needed
to determine a bearing-formation. This fact motivates the following definition:

Definition 3.3 (Minimally-linear rigid bearing-formation). A non degenerate and rigid
bearing-formation (G,α) is called minimally-linear rigid if any (G ′,α′) with E ′ (E ,
α′ (α is not rigid, and |E| = O(N).

The following Lemma shows how to explicitly construct an important class of minimally-
linear rigid bearing-formations which will then be used by the formation controller.

50

3.3 Relative bearings

Lemma 3.2 (Construction of a minimally-linear rigid bearing formation). Given a
non-degenerate rigid bearing-formation (G,α), consider any corresponding realization
(G, qα). Then there exists at least one agent relabeling such that β12(qα) 6= ±β13(qα) 6=
±(0 0 1)T . Consider any one of these relabelings and define the following sets I2, I3 ⊂ V
and Ê (T :

I2 = {3} ∪ {j ∈ {4, . . . , N} | β1j(qα) 6= ±β12(qα)} (3.17)
I3 = {4, . . . , N}\I2. (3.18)
Ê = {(1, j), (j, 1)}Nj=2 ∪ {(j, 2)}j∈I2 ∪ {(j, 3)}j∈I3 . (3.19)

Define also Ĝ = (V , Ê) and βαÊ = (. . . ,βij(qα), . . .)(i,j)∈Ê . Then the bearing-formation
(Ĝ,βαÊ) is non-degenerate, minimally-linear rigid, and equivalent to (G,α).

Proof of Lemma 3.2. It is easy to check that non-degeneracy implies the existence of at least
one relabeling meeting the requirement β12(qα) 6= ±β13(qα) 6= ±(0 0 1)T . Furthermore,
the equivalence follows from the fact that (Ĝ,βαÊ) has been generated from a realization
of (G,α). The linearity can be checked computing the cardinality of Ê that is |Ê | =
2(N − 1) + |I2|+ |I3| = 3N − 4, which is linear in the number of agents N .

In order to demonstrate rigidity, the proof shows that all the bearings βij(qα) with
(i, j) 6∈ Ê can be uniquely computed from the bearings in βαÊ . Hereinafter the dependency
from qα is omitted for brevity.
All the bearings β2j, ∀j ∈ I2, can be computed by evaluating γ1j2 from (3.6) with
(l,m, n) = (1, j, 2), and then applying (3.14) with (l,m, n) = (1, 2, j) and noting that
γ12j = γ−1

1j2. With the same approach it is also possible to determine β3j ∀j ∈ I3.
The rotation matrixes of the form jR1, ∀j > 1, can be computed as follows: if β1j 6= ±(0 0 1)
then jR1 is determined using (3.8) with (i, j) = (1, j). Otherwise, if j ∈ I2, then jR1 can be
evaluated as jR2

2R1 using (3.8) twice, first with (i, j) = (j, 2) and then with (i, j) = (2, 1).
Finally, if j ∈ I3, it is possible can determine jR1 = jR3

3R1 in a similar fashion. This
further allows to obtain any jRi, ∀j 6= i, since jRi = jR1

iRT
1 . Consequently, for any known

relative bearing βij, one also gets βji = −jRiβij.
To conclude the proof of rigidity, it is necessary to show how to compute βij for any
i > 3, j > i. To this end it is sufficient to apply (3.14) using (l,m, n) = (1, i, j), where γ1ji
can be obtained as γ12i/γ12j if j ∈ I2, or as γ13i/γ13j if j ∈ I3.
Finally, in order to demonstrate minimality, the proof shows that rigidity is lost if any

relative bearing is removed from Ê . First, if any bearing of the form β1i or βi1, i > 1,
is removed, then iR1 can be any rotation matrix of the form Rz(·), thus contradicting
Lemma 3.1. Second, if any bearing of the form βji, with i = 2, 3, j ∈ Ii, is removed, then
the ratio γ1ij can take any value, i.e., δ1i and δ1j can be chosen freely, thus leading again
to a contradiction with Lemma 3.1. Therefore no relative bearing can be removed from Ê
without losing rigidity, hence proving the last part of the statement.

As an example, Fig. 3.8 illustrates the construction of a minimally-linear rigid set in the
case of 5 agents where agents 1, 2 and 5 are aligned.

51

Chapter 3 Shared control of a UAV bearing-formation

2

5
1

4

2

3

Figure 3.8: Construction of the minimally-linear rigid bearing-formation described in Lemma 3.2
for the case of 5 agents. Agents 1, 2, and 5 are aligned, therefore I2 = {3, 4}, I3 =
{5}, and, as a consequence, Ê = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (3, 1), (4, 1), (5, 1)} ∪
{(3, 2), (4, 2)} ∪ {(5, 3)}. Note that |Ê | = 3 · 5− 4 = 11 instead of |T | = (5− 1) · 5 = 20
(the number of all possible relative bearings).

3.4 Overview of the Framework
Following the notation introduced in Sec. 3.3.2, let (G,βdE) denote the desired rigid and
non-degenerate bearing-formation that specifies the aim of the formation-control. Let also
(G, q) indicate the agent-formation consisting of the same graph G and of the current agent
configuration q. Finally, indicate with q(t0) the generic initial configuration of the agents.
The goal of the shared control of the bearing-formation is:

1. to automatically bring and maintain (G, q(t)) within the class of realizations of (G,βdE)
(the control objective);

2. to allow the human to steer (G, q(t)) inside the class of realizations of (G,βdE);

3. to generate a force feedback that is informative of the mismatch between the command
from the human and the motion of the robots.

In order to achieve points 1 and 2, the control input of the i-th agent (3.2) is split into
two terms

(ui, wi) = (uhi , whi) + (ufi , w
f
i), (3.20)

where the term (uhi , whi) represents the action of the human4 in charge of steering the
collective motion of the UAV group, and the term (ufi , w

f
i) enforces convergence to the

desired bearing formation (G,βdE).
The framework, depicted in Fig. 3.9, is organized according to the following structure:

4The paradigm can be generalised by substituting the human with an ‘external high-level planner’.

52

3.5 Human Steering

Formation
Controller

Human
Steering

Haptic
Feedback

✓
Ri 03

0T
3 1

◆✓
ui

wi

◆
Agent Model

UAV

�
uh

i , wh
i

�

⇣
uf

i , wf
i

⌘

+

+

Input
Devices

⇣
ṗi, ̇i

⌘

�d
E

�d
E

(⌫, s, w)

�E

�E

(ui, wi)

(⌧ l, ⌧ r)

i = 1, . . . , N

Figure 3.9: Overview of the framework.

Human Steering: it lets the human operator steer the whole formation by reading the
configuration of actuated multi-DoF input devices and by accordingly generating the
signals (uhi , whi) for the i-th agent, with i = 1, . . . , N . The control inputs (uhi , whi) are
computed in the ‘orthogonal’ set of virtual inputs able to steer (G, q(t)) inside the
class of realizations of (G,βdE).

Formation Control: it generates the control signals (ufi , w
f
i) by using only a minimally

linear number of relative-bearing measurements.

Haptic Feedback Algorithm: it closes the interaction-loop between the human operator and
the autonomous formation controller by rendering on the actuated input devices an
appropriate torque τ that is helpful to increase the user’s SA.

3.5 Human Steering
As previously stated in Sec. 3.4, the Human Steering has to be designed so that the signals
(uhi , whi) steer (G, q(t)) inside the class of realizations of (G,βdE). To this aim, consider
instead of (G,β(q)) the bearing-formation (K,β(q)), where K = (V , T) is the complete
graph. This choice is motivated by two considerations:

i) using K instead of a generic G automatically guarantees rigidity of (K,β(q)) for any
configuration q;

ii) the class of realizations of (K,β(q)), denoted with RK(q), was proven in Lemma 3.1
to be a 5-dimensional manifold. The class RK(q) is the same class of realizations
obtained by any other rigid bearing formation (G,βE(q)), with G = (V , E) and
βE(q) = (. . . ,βij(q), . . .)(i,j)∈E .

With this setting, denote as q̇ = (ṗT1 ψ̇1 . . . ṗ
T
N ψ̇N)T ∈ R4N the vector of generalized

velocities of the agents. By plugging (3.20) into (3.2) it is clear that q̇ = q̇f + q̇h, where q̇f
and q̇h depend only on (ufi , w

f
i) and (uhi , whi), respectively, with i = 1 . . . N . Therefore the

goal of the Human Steering is reformulated as follows:

53

Chapter 3 Shared control of a UAV bearing-formation

Objective 3.1. Design (uhi , whi) such that q̇h belongs to TqRK(q), the tangent space at q
of RK(q).

The motivation of Objective 3.1 is quite intuitive. If the human operator were free
to command any motion to the UAVs, than his/her commands could interfere with the
formation control objective. Rather than letting the Formation Controller cope with any
unpredictable human command, the solution sought here is to rather design the human
commands so that they preserve the current relative bearings β(q) and thus will not alter
the bearing formation.

To achieve Objective 3.1 it is necessary to have an analytical expression for TqRK(q), for
which it will be used the following notation: i) p̂ij = pij

δij
∈ S2, ∀i 6= j indicates the relative

position of two agents, with the convention that p̂ii = 03, ∀i = 1, . . . , N ; ii) R(A) denotes
the range (or column) space of a matrix A; iii) S = [e3]∧ is the skew-symmetric matrix
associated to e3 = (0 0 1)T ; iv) I3 is the 3× 3 identity matrix and 03 = (0 0 0)T . As a first
step towards the formalisation of TqRK(q), the following lemma provides a description of
the tangent space at q of RK(q) in the case of three agents (N = 3).

Lemma 3.3 (Bearing-invariant motions for 3 agents). If N = 3 and q is non-degenerate,
then TqRK(q) = R(T3), being

T3 =

 I3 03 I3 03 I3 03
0T3 0 p̂T12 0 γ123 p̂

T
13 0

0T3 1 −(Sp12)T 1 −(Sp13)T 1


T

∈ R12×5. (3.21)

Proof of Lemma 3.3. The time derivative of a bearing β̇ij is obtained by differentiating (3.3)
as

β̇ij = 1
δij

iR
[
ψ̇iSpij + P (p̂ij)ṗij

]
, (3.22)

where P (p̂ij) = (I − p̂ijp̂Tij) ∈ R3×3 is the projection matrix onto the plane perpendicular
to p̂ij. Imposing β̇ij = 0 in (3.22) results in the following condition

0 = ψ̇iSpij + P (p̂ij)ṗij, (3.23)

which, combined with the symmetric condition β̇ji = 0, yields(
ψ̇j − ψ̇i

)
Spij = ψ̇ijSpij = 0, (3.24)

where it was exploited the fact that pij = −pji, ṗij = −ṗji, p̂ij = −p̂ji, and P (p̂ji) =
P (p̂ij).
In the particular case of N = 3 agents considered here, the constraints (3.24) for all possible
agent pairs are simply

ψ̇12Sp12 = 0, ψ̇13Sp13 = 0, ψ̇23Sp23 = 0. (3.25)

Being kerS = span{(0 0 1)T}, these can be satisfied when either pij ∝ (0 0 1)T or ψ̇ij = 0.
However, since the positions p1,p2, and p3 are not aligned, there exist at least two vectors

54

3.5 Human Steering

among (p12, p13, p23) not in kerS. Therefore, it is possible to conclude that at least two
entries among (ψ̇13, ψ̇12, ψ̇23) must be zero. Being ψ̇13 = ψ̇12 + ψ̇23 by construction, it
necessarily follows that ψ̇13 = ψ̇12 = ψ̇23 = 0.
Consider now the (globally invertible) change of coordinates

Πq = q′ = (p1 p12 p13 ψ1 ψ12 ψ13)T

and the associated new generalized velocities

Πq̇ = q̇′ = (ṗ1 ṗ12 ṗ13 ψ̇1 ψ̇12 ψ̇13)T ,

with Π ∈ R12×12, the determinant det Π 6= 0, being the nonsingular transformation matrix
associated to this change of coordinates. Constraints (3.23) can be rewritten in a matrix
form in terms of q′ and q̇′ as:

03×3 P (p̂12) 03×3 Sp12 03 03
03×3 03×3 P (p̂13) Sp13 03 03
03×3 −P (p̂23) P (p̂23) Sp23 03 03
0T3 0T3 0T3 0T3 1 0
0T3 0T3 0T3 0T3 0 1


︸ ︷︷ ︸

A(q′)∈R11×12

q̇′ = A(q′)q̇′ = 0,

where 03×3 is the 3×3 null matrix, and the facts that ṗ23 = ṗ13− ṗ12 and ψ̇12 = ψ̇2− ψ̇1 = 0
were exploited.

Then, one can identify Tq′RK(q) with kerA(q′). Note that, although max(rank(A(q′))) = 11,
implying that min(dim kerA(q′)) = 1, it is already known that dim kerA(q′) = 5 (resp. rank(A(q′)) =
7) by construction. In fact, being RK(q) a regular manifold of dimension 5 (Lemma 3.1),
the dimension of its tangent space at any point, i.e., of ker(A(q′)), must be necessarily
5. An explicit expression for Tq′RK(q) can then be found by inspection as Tq′RK(q) =
kerA(q′) = R(T ′3) where

T ′3 =

 I3 03×3 03×3 03 03 03
0T3 p̂T12 γ123p̂

T
13 0 0 0

0T3 −(Sp12)T −(Sp13)T 1 0 0


T

∈ R12×5.

In fact, letting t′i ∈ R12 be the i-th column of T ′3, one can easily check that (t′T1 , t′T2 , t′T3)T
are in kerA(q′). Furthermore, t′4 ∈ kerA(q′) since P (p̂12)p̂12 = 03 and P (p̂13)p̂13 = 03 by
construction, and −P (p̂23)p̂12 + γ123P (p̂23)p̂13 can be rewritten as

1
δ12

(−P (p̂23)p12 + P (p̂23)p13) =

1
δ12

(−P (p̂23)(p13 − p23) + P (p̂23)p13) =

1
δ12

(−P (p̂23)p13 + P (p̂23)p13) = 03.

Finally, t′5 ∈ kerA(q′) since −P (p̂12)Sp12 + Sp12 = −Sp12 + Sp12 = 03 and, similarly,
−P (p̂13)Sp13+Sp13 = −Sp13+Sp13 = 03, implying that P (p̂23)Sp12−P (p̂23)Sp13+Sp23 =
P (p̂23)Sp13 − P (p̂23)Sp23 − P (p̂23)Sp13 + Sp23 = −Sp23 + Sp23 = 03.

55

Chapter 3 Shared control of a UAV bearing-formation

Note that rank(T ′3) = 5 as expected. This can be easily verified by noting the ‘upper
triangular’ form of T ′3. As a last step, it is possible to recover the sought T3 in (3.21) by
going back to the original coordinates q, i.e., by taking T3 = Π−1T ′3. The resulting matrix
is explicitly shown in (3.21).

Before generalizing the result of Lemma 3.3 formations with N ≥ 3 agents, it is worth
analyzing with the help of Fig. 3.10 the geometrical meaning of the columns of T3 and
get an intuitive understanding of the actual agent motion they represent. To this end, let
ti ∈ R12 be the i-th column of T3.
A motion along (t1 t2 t3), i.e.,

q̇ = [t1 t2 t3]ν = [I3 03 I3 03 I3 03]Tν

for some ν ∈ R3 represents a synchronized translation of the formation with velocity ν (see
Fig. 3.10b).

A motion along t4, i.e.,

q̇ = t4s = [0T3 0 p̂T12 0 γ123p̂
T
13 0]T s

for some s ∈ R represents a synchronized expansion of the formation with expansion rate s.
In particular, agent 1 does not move, agent 2 moves along the connecting line with 1 at
speed s, and agent 3 moves along the connecting line with 1 at speed γ123s, that is, exactly
the speed needed to keep the relative bearings unchanged (see Fig. 3.10c).

Finally, a motion along t5, i.e.,

q̇ = t5w = [0T3 1 − (Sp12)T 1 − (Sp13)T 1]Tw

for some w ∈ R represents a synchronized rotation around agent 1 with rate w. Agent 1
rotates in place with an angular speed ψ̇1 = w, agent 2 rotates with the same angular speed
ψ̇2 = w but is also translating around agent 1 with linear velocity −(Sp12)w, and likewise
for agent 3 (see Fig. 3.10d). Note also that synchronized translations and expansions can be
performed with the sole knowledge of relative bearings, while execution of a synchronized
rotation necessarily requires an additional metric information (the magnitudes of p12 and
p13).
The result of Lemma 3.3 can now be generalized to a group of N agents.

Propositon 3.1 (Bearing-invariant motions for N agents). Given a non-degenerate
configuration q, consider the sets I2(q) and I3(q) obtained by applying Lemma 3.2
to (K,β(q)). Then, the set of motions keeping constant the relative bearings at q can
always be expressed, with an agent relabeling if necessary, as TqRK(q) = R(TN), where

56

3.5 Human Steering

~XW

~YW

~ZW

1

2

3

�12

�13
�21

�23

�31 �32

(a) Initial configuration.

~XW

~YW

~ZW

1

2

3

�12

�13 �21

�23

�31 �32

1

3

2

(b) 3D translation.

~XW

~YW

~ZW

1

2

3

�12

�13

�21

�23

�31

�32

(c) Expansion.

~XW

~YW

~ZW

1
2

3

�12

�13

�21

�23

�31

�32

(d) Synchronized rotation.

Figure 3.10: Bearing invariant motions with a formation of three agents.

57

Chapter 3 Shared control of a UAV bearing-formation

TN =
[
T T3 T T4 T T5

]T
∈ R4N×5, T3 is defined in (3.21),

T4 =

· · · I3 03 · · ·
· · · γ12ip̂

T
1i 0 · · ·

· · · −(Sp1i)T 1 · · ·


T

i∈I2(q)\{3}

∈ R4(|I2(q)|−1)×5 (3.26)

T5 =

· · · I3 03 · · ·
· · · γ13ip̂

T
1i 0 · · ·

· · · −(Sp1i)T 1 · · ·


T

i∈I3(q)

∈ R4|I3(q)|×5. (3.27)

Proof of Proposition 3.1. Applying Lemma 3.2 to (K,β(q)) yields the equivalent rigid and
non-degenerate bearing-formation (Ĝ,βÊ), where
βÊ = (. . . , βij(q), . . .)(i,j)∈Ê . Then the sought tangent space can be defined as the set of
those velocities q̇ keeping all the bearings in βÊ constant. Consider the sets composed
by the relative bearings β̂i(q) = {β1j,βj1,βi1,β1i,βij,βji} where j = 2, if i ∈ I2(q) and
j = 3, if i ∈ I3(q). It is clear that βÊ ⊂ ∪Ni=3β̂i(q). Apply now Lemma 3.3 replacing agents
2 with j and 3 with a generic agent i ∈ {3 . . . N}, and consider the corresponding matrix
Ti (3.21) defined as

Ti =

 I3 03 I3 03 I3 03
0T3 0 p̂T1j 0 γ1jip̂

T
1i 0

0T3 1 −(Sp1j)T 1 −(Sp1i)T 1


T

∈ R12×5. (3.28)

This matrix defines the motions of agents 1, j, and i which keep all the relative bearings in
β̂i(q) constant. Note that the motions of agents 1 and j are independent from the state of
agent i. Therefore, in order to keep the bearings of all the subsets β̂i(q) constant, one can:
i) choose the motion of agent 1 and 2, then ii) select the motion of every agent i ∈ I2(q) as
per the last four rows of (3.28), with j = 2, and finally iii) select the motion of every other
agent i ∈ I3(q) as per the last four rows of (3.28), with j = 3. This procedure directly
yields matrix TN and thus proves the Proposition.

Similarly to the previous case of 3 agents, the bearing-invariant motions represented by
TN are of three kinds: a synchronized translation with velocity ν ∈ R3, a synchronized
expansion with rate s ∈ R, and a synchronized rotation with speed w ∈ R.
Having provided an analytical expression of TqRK(q), it is now possible to design the

control terms (uhi , whi) so that they impose the aforementioned bearing-invariant motions
to the group of UAVs. Without loss of generality, It is assumed that the human operator
controls the group from the body-frame of agent 1. This is a conventional choice, since many
works on multi-robot systems in literature assume the presence of a leader or preferred robot,
see e.g. Das et al. (2002). From Proposition 3.1, this is achieved by letting, ∀i = 1 . . . N ,

uhi = iR1ν − sγ12iβi1 + wδ12γ12iSβi1 (3.29)
whi = w. (3.30)

where γ12i is computed as γ123γ13i for those i ∈ I3(q). The following statement characterizes
the choice of the human control terms (uhi , whi).

58

3.5 Human Steering

Lemma 3.4. Commands (3.29–3.30) result in ṗ1 = R1ν, ψ̇1 = w for agent 1, and
in exactly those coordinated motions preserving all the relative bearings, for all the
remaining agents i = 2 . . . N . Furthermore, it also results in δ̇12 = s.

Proof. To prove the first part of the statement, consider (3.29) and (3.30) with i = 1.
Since it is 1R1 = I3 and, from Definition 3.2, γ121 = 0, then it follows that uh1 = R1ν. By
plugging (uh1 , wh1) into (3.2) one gets immediately ṗ1 = R1ν, ψ̇1 = w. Consider now the
i-th UAV, assuming without loss of generality that i ∈ Is(q). By injecting (3.29) and (3.30)
into (3.2), and exploiting the expressions of the bearings (3.3) and of the inter-distance
ratios (3.6), it follows

ṗi = R1ν − sγ12i
p1 − pi
δ1i

+ wδ12γ12iS
p1 − pi
δ1i

= R1ν −
s

δ12
(p1 − pi) + wS(p1 − pi)

(3.31)

Therefore for two generic agents i and j (w.l.o.g. j ∈ Is(q)) it is

ṗij = ṗj − ṗi = s

δ12
pij − wS pij.

Substituting this expression of ṗij in the time derivative of βij (3.22), it finally follows

β̇ij = 1
δij

iR
[
wSpij + P (p̂ij)ṗij

]

= 1
δij

iR

wSpij + P (p̂ij)
s

δ12
pij︸ ︷︷ ︸

=03

−P (p̂ij)wS pij︸ ︷︷ ︸
wSpij

 = 03,

where it was used the fact that P (p̂ij)pij = 03 and P (p̂ij)Spij = Spij. This proves that
the bearings are preserved. Finally, by differentiating the δ12 and using (3.29), it follows

δ̇12 = p̂T12 (R1ν − sR2β21 + wδ12SR2β21 −R1ν)
= sp̂T12p̂12 + wδ12p̂

T
12Sp̂12 = s

where it was used the property that p̂T12Sp̂12 = 03.

Note that control (3.29–3.30) is a function of only bearing measurements (using Proper-
ties 3.1 and 3.2) with the exception of the unique metric quantity δ12. This is in fact needed
in (3.29) to correctly implement a synchronized group rotation. If δ12 is available through
direct measurement or online estimation, then (3.29) can be exactly implemented. If the
distance δ12 is not available then it can be replaced with an arbitrary initial guess δ̂12 > 0,
e.g., chosen by the human operator. This choice will result in a non-perfect execution
of the synchronized rotation command, which will pull the bearing-formation away from
the desired one. On the other hand, the feedback action of the term (ufi , w

f
i) in (3.20) –

see (3.35–3.37) – will keep these disturbances bounded by trying to achieve the desired
formation, eventually keeping a (bounded) non-zero bearing error at steady-state. These
intuitive considerations have been empirically proven by the simulations and experiments
of Sec. 3.8, while a formal characterization is destined to future works.

59

Chapter 3 Shared control of a UAV bearing-formation

Input Devices The interaction with the human is realized by means of two actuated
input devices: a 3 DoF device for controlling the group linear velocity ν, and a 2 DoF
device for commanding the group expansion/rotation rates (s, w). These haptic devices
are modeled as generic mechanical systems

Mt(xt)ẍt + Ct(xt, ẋt)ẋt = τ t + f t (3.32)
Mr(xr)ẍr + Cr(xr, ẋr)ẋr = τ r + f r (3.33)

where xt ∈ R3 and xr =
(
xs xw

)T
∈ R2 are the device position vectors,Mt(xt) ∈ R3×3 and

Mr(xr) ∈ R2×2 their positive-definite and symmetric inertia matrices, Ct(xt, ẋt) ∈ R3×3 and
Cr(xr, ẋr) ∈ R2×2 represent Coriolis and centrifugal terms, and the pairs (f t, τ t) ∈ R3×R3,
(f r, τ r) ∈ R2 × R2 are the human/control forces acting on each device, respectively. The
control forces τ t and τ r will be discussed in Sec. 3.7. As usually done, gravity effects are
assumed to be locally compensated.
The control actions (3.29) and (3.30) are then implemented by setting

ν = λtxt,

(
s
w

)
=
(
λs 0
0 λw

)
xr, (3.34)

where λt > 0, λs > 0, and λw > 0 are suitable scaling factors from the device positions
(xt, xr) to the generalized velocity commands. The proposed architecture implements
a position-velocity coupling between the haptic device and the UAV group. This is the
most natural choice in order to handle the kinematic dissimilarity, i.e., the fact that the
haptic device has a bounded workspace but the UAVs are characterized by an unbounded
workspace, e.g., see also Franchi et al. (2011b).

3.6 Formation Controller
By applying Lemma 3.2 with βdE playing the role of α, the agents are able to compute a
minimally-linear rigid bearing-formation (Ĝ,βdÊ) equivalent to (G,βdE), thus sharing the
same class of realizations. Without loss of generality, agents 1, 2, and 3 as per the definition
of Ê are hereinafter called beacon agents. However, their role can be taken by any triplet
whose positions in a realization of (G,βdE) (and then also of (Ĝ,βdÊ)) are not collinear. Note
also that by exploiting the desired bearings in βdÊ , the agents are also able to compute all
the desired relative rotations 1Rd

i and desired distance ratios γd12i for any i = 2 . . . N as
shown by Properties 3.1 and 3.2, respectively. The objective of the formation controller is
stated as follows:
Objective 3.2. Design (ufi , w

f
i) such that βÊ → βdÊ .

To achieve this objective, the term (ufi , w
f
i) in (3.20) is designed as follows:(

uf1
wf1

)
=
(

0
0

)
(3.35)

(
uf2
wf2

)
=
Kp

2R1[β12 × (βd12 × β12)]
Kω

[
1Rd

2
2R1 − 1R2

2Rd
1

]
∨,3

 (3.36)

(
ufi
wfi

)
=
Kp

iR1
(
γd12iβ

d
1i − γ12iβ1i

)
Kω

[
1Rd

i
iR1 − 1Ri

iRd
1

]
∨,3

 (3.37)

60

3.6 Formation Controller

with i = 3, . . . , N , Kp, Kω > 0 being positive gains, and [A]∨,3 representing the third
component of the vector associated to a skew-symmetric matrix A. The following statement
provides a formal validation of the effectiveness of the chosen control term (ufi , w

f
i) in

controlling the bearing-formation.

Propositon 3.2 (Formation Control). Given a desired non-degenerate rigid bearing-
formation (G,βdE), consider the relabeling and equivalent minimally-linear rigid forma-
tion (Ĝ,βdÊ) obtained by applying Lemma 3.2. Control (3.20), together with (3.29–3.30)
and (3.35–3.37), asymptotically and almost globally steers (Ĝ, q(t)) towards the partic-
ular realization of (Ĝ,βdÊ) such that

q1(t) = q1(t0) +
∫ t

t0

(
R(ψ1)ν
w

)
dt (3.38)

δ12(t) = δ12(t0) +
∫ t

t0
s dt, (3.39)

provided that
∫ t
t0
s dt > −δ12(t0) and Kp > s for any t ≥ 0. Furthermore δ1i → γd12iδ12,

for any i = 3 . . . N .

Proof. The first condition (3.38) is a trivial consequence of (3.35) and (3.29–3.30) evaluated
for i = 1. In order to show (3.39), differentiate the dynamics of δ12 using (3.4) together
with (3.29),(3.35–3.36) and i = 1, j = 2. This yields

δ̇12 = βT12(1R2u
f
2) + s =

= Kpβ
T
12

1R2
2R1[β12 × (βd12 × β12)] + s = s.

Since the control action (3.29-3.30) is designed to not change any bearing, the dynamics
of βij, obtained differentiating (3.3), is

β̇ij = −

 0
0
wfi

× βij +
I − βijβTij

δij

(
iRju

f
j − u

f
i

)
. (3.40)

In order to prove that (Ĝ, q(t)) converges to the set of realizations of (Ĝ,βdÊ), it is sufficient
to show that βij(t)→ βdij , ∀(i, j) ∈ Ê . For a better readability, the proof is now divided in
several sub-cases:

Convergence of β1i to βd1i the first step is to prove that β12 → βd12 by plugging the
control inputs (3.35–3.36) into (3.40) (with i = 1, j = 2) and obtaining

β̇12 = (Kp/δ12(t))(β12 × (βd12 × β12)) =
= (Kp/δ12(t))[βd12(βT12β12)− β12(βT12β

d
12)].

Consider the dynamics of the error term e12 = βT12β
d
12 − 1, that is,

ė12 = β̇
T

12β
d
12 = −(Kp/δ12(t))((βT12β

d
12)2 − 1) =

= −(Kp/δ12(t))(βT12β
d
12 − 1)(βT12β

d
12 + 1) =

= −(Kp/δ12(t))(βT12β
d
12 + 1)e12.

61

Chapter 3 Shared control of a UAV bearing-formation

Except from the zero-measure case of an initial condition β12(t0) = −βd12, it is βT12β
d
12+1 > 0.

Since also δ12(t) > 0 by assumption, it follows that e12 → 0 almost everywhere and, therefore,
that β12 → βd12.
To prove that β1i → βd1i, with i = 3 . . . N , one can show that β1iδ1i → βd1iγ

d
12iδ12, which

also implies δ1i → γd12iδ12, i.e., γ12i → γd12i. Consider now the error e1i = β1iδ1i − βd1iγd12iδ12.
Since β1iδ1i = 1Rp1i, after some straightforward algebra the error dynamics results in:

ė1i = 1RRiu
f
i − (βd1iγd12i − β1iγ12i)s =

= (Kp − s) 1Ri
iR1

(
γd12iβ

d
1i − γ12iβ1i

)
= −Kp − s

δ12(t) e1i,

thus proving global exponential convergence of e1i to zero since δ12(t) > 0 and Kp − s > 0
by assumption.

Convergence of βi1 to βdi1 First, one can start showing that iR1 converges to iRd
1. Let

ψ1i = ψ1 − ψi represent the relative yaw among agents 1 and i, and note that, because of
their definitions, iR1 = Rz(ψ1i) and iRd

1 = Rz(ψd1i). Therefore ψ1i → ψd1i implies iR1 → iRd
1.

Define eψ1i = ψd1i − ψ1i as error term and note that ėψ1i = −wfi since wh1 = whi = w
from (3.30). By applying control (3.37) one obtains

ėψ1i = −Kω

[
1Rd

i
iR1 − 1Ri

iRd
1

]
∨,3

= −2Kω sin(eψ1i),

showing that eψ1i → 0 for all initial conditions apart from the zero-measure case eψ1i(t0) =
±π.
Since βi1 = −iR1β1i, and having proven that β1i → βd1i (previous point) and iR1 → iRd

1,
it follows straightforwardly that βi1 → βdi1.

Convergence of βjk to βdjk, for any remaining (j, k) ∈ Ê from the proof of Prop-
erty 3.1 and Property 3.3 with l = 1, m = k, l = j, it follows that

βjk = −jRkβkj = −jR1
β1jγ1kj − β1k

‖β1jγ1kj − β1k‖
.

Note that from (3.6) it follows γ1kj = γ12j/γ12k. Since from the previous points, it has been
shown that (β1j, β1k,

jR1, γ12j, γ12k) converge to their desired values, it obviously follows
that βjk → βdjk.

In order to better understand the action of control (3.35–3.37) it is useful to highlight,
with the help of Fig. 3.11, some properties depending on the human’s steering inputs ν, s,
and w:

1. the translational dynamics of agent 1 is affected only by the high-level command ν,
therefore it will stay fixed in space when ν = 0;

2. if s = 0 then agent 2 will rotate and travel along the geodesic path on the sphere
centered on agent 1 by keeping the ‘radius’ δ12 constant. Indeed, i) the control action
uf2 is always orthogonal to β12(q) which represents the direction of the line connecting
agents 1 and 2; ii) the external input ν moves the agents 1 and 2 cohesively, and iii)
the external input w generates a motion that is also orthogonal to β12(q);

62

3.6 Formation Controller

3

2

14

Figure 3.11: Visual representation of the action of the formation controller (3.35–3.37) in the
case of 4 agents. Current agent positions are marked with solid dots, while black
arrows and double-white arrows denote measured and corresponding desired bearings,
respectively. The target positions for every agent are marked with white circles (note
that these are not explicitly computed by the controller). Long and thick white
arrows indicate the paths followed by the agents under the control action: agent 1
is stationary; agent 2 moves on the sphere centered around 1 following a geodesic
path; agent 3 and 4 move along a straight line. All the motions are executed without
resorting to any distance measurement.

3. if ν = 0 and s = w = 0 then agents 3 . . . N will rotate and move along the straight
lines connecting their initial position with the final position satisfying the constraints
βij(q) = βdij, ∀(i, j) ∈ Ê , q1 = q1(t0), and δ12 = δ12(t0).

There are several observations to be made regarding the proposed formation controller.

Remark 1. The measured quantities needed to implement controller (3.35–3.37) are β21,
β1i, iR1, and γ12i ∀i = 2 . . . N . Since iR1 and γ12i can always be obtained as a function of
relative bearings (see Properties 3.1 and 3.2), the control law (3.35–3.37) uses only relative
bearings as expected.

Remark 2. Condition Kp > s does not constitute a limit of the proposed controller, since
it can be always guaranteed by choosing a Kp large enough, given the range of variation of s
in the specific application. Furthermore, in practical applications s cannot grow unbounded,
mainly because of the actuation limits of a real UAV.

Remark 3. For a generic desired bearing-formation (i.e., whose realizations have no special
alignments), any triplet of agents can be chosen as beacon agents in Lemma 3.2. A possible
direction for future developments could be to study the problem of optimizing this choice of

63

Chapter 3 Shared control of a UAV bearing-formation

beacon agents with respect to any suitable criterion, such as robustness against measurement
noise.

Remark 4. Control (3.35–3.37) becomes singular only when all the agents happen to be
aligned during a transient phase (this is structurally avoided at steady-state since (G,βdE)
is assumed to be non-degenerate). Such situation represents a zero-measure case, and, in
practice, is very unlikely to occur. For instance, it was never encountered during simulations
or experiments. Nevertheless, since it is in principle possible to fall in its neighborhood, a
practical workaround is to apply a suitable constant control action for a short phase in
order to quickly exit from this singular configuration.

Remark 5. The Formation Controller does not have a built-in inter-agent collision avoid-
ance, because this would require the UAVs to be able to measure their inter-distances while
here it is assumed that the from the onboard camera only measure of relative-bearings
are retrieved. Clearly, an inter-agent collision avoidance could be integrated if distance
measures would be available. Nevertheless, if the UAVs are already close to a realization
of the desired bearing-formation, then the operator can also assume the responsibility of
avoiding inter-UAVs collisions, for example by expanding the formation if necessary.

3.6.1 Computational and Communication Complexity
One of the issues in multi-agent problems is the computational and communication com-
plexity of the controller. These aspects are analyzed in the following propositions.

Propositon 3.3 (Computational Complexity). The computational complexity of
control (3.35–3.37) is O(N). In fact, it can be implemented by only using the 3N − 4
relative-bearing measurements defined by the pairs included in Ê obtained by applying
Lemma 3.2 with βdE playing the role of α.

Proof. Matrix 2R1 can be computed from β12 and β21, and iR1 and γ12i, i = 3 . . . N , can
be obtained as follows: i) if i ∈ I2, iR1 = iR2

2R1 and iR2 can be evaluated by first
applying Property 3.3 and then Property 3.1. As for γ12i, it can be obtained by applying
Property 3.2; ii) if i ∈ I3, iR1 = iR3

3R1 and iR3 follows by first applying Property 3.3 and
then Property 3.1. Furthermore, from its definition, γ12i = γ13i/γ123, and γ13i, γ123 follow
from Property 3.2.

The applicability of Properties 3.1–3.3 is always verified at the desired bearing-formation
and, thus, when the controller (3.35–3.37) has reached a steady-state regime. However,
during initial transients, some of the assumptions needed by the Properties could temporarily
not be met, e.g., when, for i ∈ I2, β12 = ±β1i. These transient situations can always be
disambiguated by (temporarily) exploiting additional measurements in order to recover the
loss of information, see for instance the second parts of Properties 3.1–3.2.
As for the issue of communication complexity of controller (3.35–3.37), let NC be the

number of exchanged messages per unit of time. Since not all the needed measurements are
locally available, the agents need to share some information among themselves. For example,
in order to implement (3.37), agent 2 needs to receive β12 from agent 1. When considering
inter-agent communication issues, in order to prevent network congestions it is important

64

3.7 Haptic Feedback Algorithm

to render NC bounded with respect to the number of agents N . Typically, NC = O(N) is
considered as a good tradeoff, see for instance the case of consensus/agreement algorithms
with a bounded number of neighbors per agent (Lynch (1997)).

Propositon 3.4 (Communicational Complexity). The communication complexity of
controller (3.35–3.37) is O(N).

Proof. Agent 1 needs no external information, agent 2 needs β12, agents i ∈ I2 need β1i
and β2i, and agents i ∈ I3 need β1i and β3i, for a total of NC = 2(N − 1) + 1 exchanged
messages over the network per unit of time.

3.6.2 Time-varying desired bearings
Formation controller (3.35) to (3.37) can be extended to the case where the desired relative
bearings are not constant but (known) time-varying quantities defined as β̃dij(t) = R̃i(t)βdij ,
with R̃i(t) given. This extension will be exploited in the experiments reported in Sec. 3.8.2,
and is important to both overcome limited FoV of the relative-bearing sensor, and to allow
for a possible scanning of the environment during a 3D coverage task, e.g., exploration,
mapping, or surveillance.
The rotation matrices R̃i(t) considered here are only of the kind R~Zi

(·) since these are
the ones affected by the agent inputs wi. Denote with ω̃i(t) = (0 0 ω̃i,3)T ∈ R3 the angular
velocity associated to R̃i(t), i.e., such that ω̃i(t) = [R̃T

i (t) ˙̃Ri(t)]∨, where the [·]∨ represents
the vector associated to a skew-symmetric matrix. Presence of a time-varying bearing can
be easily handled by using β̃ij instead of βdij and adding a suitable feedforward term to the
yaw-rate part of the controller (3.35–3.37), i.e., using:

wf1 = − ω̃1,3 (3.41)
wf2 = − ω̃2,3 +Kω

[
1R̃2

2R1 − 1R2
2R̃1

]
∨,3

(3.42)

wfi =− ω̃i,3 +Kω

[
1R̃i

iR1 − 1Ri
iR̃1

]
∨,3
. (3.43)

Note that presence of a time-varying component in the desired bearings does not affect
the overall formation shape, but only causes the agents to suitably rotate in space. In this
way, the agents can track any exogenous rotation signal while still keeping the same shape
implicitly defined by the static component of the desired bearings.

3.7 Haptic Feedback Algorithm
The loop with the human is closed by generating the control torques τ t and τ r that
are rendered on the haptic devices (3.32) and (3.33) to increase the performances in
human-robot cooperation. The underlying idea is to design the haptic cues so that they
are informative of how well the real UAVs, as a group, are executing the desired human
commands (3.34). Recalling the definition from Sec. 3.2.1, let ṗAi ∈ R3 be the body-frame
velocity vector of the i-th UAV, and ψ̇Ai ∈ R its yaw rate. It is important to stress,

65

Chapter 3 Shared control of a UAV bearing-formation

again, that these represent real (measured) UAV quantities and not the reference (virtual)
velocities of the agent model (3.2) tracked by the UAVs.

After the initial transient needed for reaching the desired bearing formation, i.e., when
controller (3.35–3.37) has reached its steady-state, the components (ufi , w

f
i) in (3.20)

become negligible and the only motion input for the UAV group is due to the high-level
commands (uhi , whi) (3.29–3.30). As first haptic cue, it is then considered the mismatch
between the commanded translational velocity ν and its actual execution by the UAVs.
From (3.29) and (3.34) it follows that, for each i-th UAV,

xt = 1
λt
ν = 1

λt
1Ri(uhi + sγ12iβi1 − wδ12γ12iSβi1)

= 1
λt

1Ri

(
uhi + γ12i(λsxsβi1 − λwxwδ12Sβi1)

)
(3.44)

' 1
λt

1Ri

(
ṗAi + γ12i(λsxsβi1 − λwxwδ12Sβi1)

)
=: zti.

The approximation in (3.44) has two sources: (i) temporary presence of nonzero formation
control inputs (ufi , w

f
i) in (3.20) because of transient disturbances in the maintenance of

the bearing-formation, and (ii) a generic non-perfect tracking of the commanded velocities
ui from UAVs, that is, ṗAi 6= uhi (e.g., presence of wind, actuator saturations, UAV inertia,
etc.). Whatever the reason, the mismatch eti = xt − zti represents a good measurement
of how well the i-th UAV is executing the human translational motion command ν. The
average translational mismatch is then obtained as

et = xt −
1
N

N∑
i=1
zti = xt − zt. (3.45)

The mismatch between commanded expansion/rotation rates (s, w) and their actual
execution by the UAVs are derived analogously. From (3.29) and (3.34) it can be seen that,
for each i-th UAV,

xs = s

λs
= 1
λsγ12i

(iR1ν − uhi + wδ12Sβi1) · βi1 =

= 1
λsγ12i

(iR1ν − uhi) · βi1 '
1

λsγ12i
(iR1ν − ṗAi) · βi1

=: zsi (3.46)

where it was exploited the fact that Sβi1 ⊥ βi1. Averaging over all UAVs yields the overall
expansion error

es = xs −
1
N

N∑
i=1

zsi = xs − zs. (3.47)

As for the rotation rate, eq. (3.30) simply yields

xw = w

λw
' ψ̇Ai

λw
= zwi (3.48)

with the corresponding average error

ew = xw −
1
N

N∑
i=1

zwi = xw − zw. (3.49)

66

3.7 Haptic Feedback Algorithm

Finally, the mismatch between the commanded and actual expansion/rotation rates is
expressed as the vector

er =
(
es
ew

)
= xr −

(
zs
zw

)
= xr − zr. (3.50)

Note that an evaluation of zt and zr requires each UAV to send to the haptic device its
body-frame velocity and yaw rate (ṗAi , ψ̇Ai), its relative bearing βi1 w.r.t. agent 1, and
the scaling factor γ12i.
The control torques in (3.32–3.33), aimed at providing a useful force-feedback to the

human operator, are then computed as

τ t = −Btẋt −Ktxt −Ke
t et (3.51)

τ r = −Brẋr −Krxr −Ke
rer. (3.52)

Here, Bt ∈ R3×3, Br ∈ R2×2 are positive definite damping matrices whose role is to stabilize
the haptic devices, Kt ∈ R3×3, Kr ∈ R2×2 are semi-definite diagonal matrices (possibly
null) for giving the user a perception of the distance to the zero-commanded velocity, and
Ke
t ∈ R3×3, Ke

r ∈ R2×2 are positive definite diagonal matrices meant as scaling factors for
et and er.

Control (3.51–3.52) is, however, not robust against the destabilizing effects of the typical
non-idealities in haptic-device/UAVs communication channels, that is, possible presence of
discrete sampling, delays and packet losses. In order to guarantee teleoperation stability
despite these effects, let (zt[k], zr[k]) be the discrete (received) versions of (zt(t), zr(t)).
Then, the actual implementation of the force controller takes the form

τ t = −Btẋt −Ktxt −Ke
t (xt − z̄t[k]) (3.53)

τ r = −Brẋr −Krxr −Ke
r (xr − z̄r[k]). (3.54)

where the quantities (z̄t[k], z̄r[k]) are the passive set-position modulation (PSPM) versions
of the received (zt[k], zr[k]). The PSPM framework by Lee and Huang (2010) is a general
tool for guaranteeing haptic-device passivity and, therefore, stability of the closed-loop
system when dealing with possible delays/ discretization/ packet losses of the signals
exchanged over the haptic-device/UAVs communication channel. The action of the PSPM
is to modulate a received signal z[k] into a (possibly) attenuated version z̄[k] so that
implementation of (3.53–3.54) will meet the haptic-device (energetic) passivity constraint
over its external power port. Being the slave considered in this work a kinematic (first-
order) system (agent model (3.2)), this is indeed sufficient to ensure stability of the overall
closed-loop teleoperation scheme by further assuming, as usually done (see, e.g., Hogan
(1989)), passivity of the human side. The interested reader is referred to Lee et al. (2011);
Lee and Huang (2010) and references therein for a complete treatment and formal proofs
of these statements. Note that, besides the passifying action against non-idealities of the
communication channel, the PSPM framework also allows to enforce closed-loop stability
despite the nonstandard position-velocity coupling between haptic-device and the UAVs
adopted in this work, see again Lee et al. (2011) for a more thorough treatment.

The resulting haptic cues will not only give a general feeling of the execution accuracy of
the human commands, but are specifically designed to represent the execution mismatches
along the 5 motion directions in a decoupled way.

67

Chapter 3 Shared control of a UAV bearing-formation

3.8 Simulations and Experiments

3.8.1 Experimental Testbed
The two haptic devices used both for the simulations and real experiments are shown in
Fig. 3.12a: the device on the right is the 3 DoF device5 modeled by (3.32) and responsible
for the command ν in (3.34) and the force feedback term τ t in (3.53). The device on the left
is also a 3 DoF device but constrained via software to only move on the 2D horizontal plane
in order to behave as (3.33). This device is responsible for the commands (s, w) in (3.34)
and the force feedback term τ r in (3.54). Both devices are connected to a GNU-Linux
machine where a local control loop implements the forces τ t and τ r at a frequency of 2.5 kHz.
The control program also sends over a wireless channel the inputs (ν, s, w) to the UAV
controllers at 120Hz, and receives the UAV measurements needed to implement τ t and τ r.

The UAVs used in these simulations/experiments are quadrotors, see Figs. 3.12 and 3.14.
Indeed, the use of quadrotors makes it possible to empirically validate the preliminary
assumption of Sec. 3.2, i.e., to exactly track the virtual agent dynamics (3.2) thanks
to the flatness of the quadrotor outputs (pAi , ψAi). As summarized by Fig. 3.13, the
controller of each quadrotor (both simulated/real) runs three processes: the agent-process,
the velocity-tracker and the inter-agent bearing estimator.
The agent process locally implements the Human Steering and Formation Control

algorithms. At the beginning of the task, the i-th UAV receives from the human the
desired bearing-formation. Then, during the task the UAV receives the commands (ν, s, w)
in (3.34) from the haptic devices to implement (3.29) and (3.30). Analogously, the UAV
communicates via a wireless link with the agent processes of the other UAVs to receive
the bearing measures that are necessary to compute the formation control terms (3.35)
to (3.37).

The velocity-tracker enables the quadrotor to track smooth body-frame reference velocities
(ui, wi) by implementing a standard cascaded controller similar to the one used in Michael
et al. (2010) but without position error terms. Namely, the velocity tracker regulates the
real (measured) UAV velocities (ṗA, ψ̇A) to the desired ones. These measured velocities are
also sent back to the Haptic Feedback Algorithm to compute the haptic cues (3.53–3.54)

Finally, the inter-agent bearing estimator measures the UAV relative bearings βAiAj and
roll/pitch angles (φAi , θAi) to obtain the corresponding inter-agent relative bearings (3.5)
that are used by the UAV controller and communicated to the Haptic Feedback Algorithm
and to the other UAVs in the group.

The simulation environment is made of a custom software Lächele et al. (2012) based on
third party 3D graphics and physics engines6 (see Fig. 3.12b for two screenshots). This
environment simulates the quadrotor rigid-body dynamics and generates the measurements
needed by the controllers.
As for the experiments, 3 real quadrotors7 have been used with the setup shown in

Fig. 3.14a. The velocity-tracker and agent-process implementation is split between the
onboard microcontroller (Fig. 3.14c1), a desktop PC and a small GNU-Linux PC-board8

mounted underneath the quadrotor (Fig. 3.14c3). Measurements of the quadrotor current
5http://www.forcedimension.com
6http://www.ogre3d.org, http://www.nvidia.com/object/physx_new.html
7http://www.mikrokopter.de
8http://www.seco.it/en/, http://www.qseven-standard.org/

68

http://www.forcedimension.com
http://www.ogre3d.org
http://www.nvidia.com/object/physx_new.html
http://www.mikrokopter.de
http://www.seco.it/en/
http://www.qseven-standard.org/

3.8 Simulations and Experiments

(c1)

(c3)

1

3

2

32

1

2
3

(c2)

(b1) (b2)

(a)

(b)

(c)

Figure 3.12: Experimental setup: (a) 3 DoF haptic-feedback devices used to perform the bilateral
high-level steering. (b) Simulation environment used to physically simulate the
quadrotors: side (b1) and top (b2) views of 12 quadrotors in a icosahedron formation
with agents 1 and 2 being highlighted. (c) Real UAV setup with 3 quadrotors: (c1)
top-view of the formation in the 3D visualizer; (c2) triangular formation used during
the experiments; (c3) onboard camera view of agent 1 with agent 2 and 3 detected
by the image processing algorithm.

69

Chapter 3 Shared control of a UAV bearing-formation

Formation
Control

Operator
Commands

Velocity
Tracker

Generic-UAV
Dynamics

Relative-bearing
Measure

Velocity
Measure

+

Generic UAV

Human-UAV

Communication

Inter-UAV
Communication

�

�

�

⌫, s, w

uh, wh

uf , wf

�other

�

ṗA, ̇AṗA, ̇A

Attitude
Estimation

Inter-agent relative-bearing
estimator

(G,�d
E)

u, w

�A, ✓A�A

Figure 3.13: Overall system architecture as seen from the point-of-view of a generic UAV.

roll and pitch angles (φAi , θAi) are obtained by fusing the onboard IMU readings by means
of a standard complementary filter. The absolute yaw ψAi , on the other hand, is not
measured nor estimated since it is not needed by the framework. An external optical
tracking system9 is used to only retrieve the quadrotor body-frame velocity since, again,
no additional global position measurements were needed. Note however that this velocity
information could also be obtained exploiting vision/optical flow Grabe et al. (2012) or
range finders.

The relative bearings needed by the controller were obtained from an onboard monocular
camera (Fig. 3.14b) with an horizontal/vertical FoV of about 88/60 deg. In particular, by
equipping every quadrotor with a colored sphere on its top (Fig. 3.14a1), measurements of
relative bearings are estimated by segmenting these spheres from the onboard camera images.
This algorithm could run with a rate of about 7Hz and with an average latency of 500ms.
This relatively poor performance was mainly due to the absence of a dedicated driver
for the camera and to the lack of a GPU in the used small PC-board. Nevertheless, the
approach was robust enough to deal with these and additional non-idealities representative
of real-world conditions. A visualization of the ball-tracker output is shown in Fig. 3.12c3,
where the detection of the balls is highlighted with red circles.

3.8.2 Results
Simulation 1

The first results here presented are from a Human/Hardware in-the-loop simulation involving
12 UAVs that start far from the desired bearing-formation. The desired bearing-formation
has been chosen so that realizations are regular icosahedra having the agents as vertices.
In this test the UAVs have been simulated with an unlimited FoV capability so that
relative bearings could always be retrieved. The simulation is articulated in two phases:
at the beginning, only the formation control is active while the human operator holds the
two haptic devices fixed at their neutral position. This first phase is illustrated by the
screenshots in Fig. 3.15. After the time t = 17 s (vertical dashed black line in Figs. 3.17a
to 3.17f), the desired formation is eventually reached, and the human operator starts
commanding the overall group. Screenshots from this second phase are shown in Fig. 3.16.

9http://www.vicon.com/

70

http://www.vicon.com/

3.8 Simulations and Experiments

 b1

 b2

 c1

 c2

 c3

 c4

(a)

(b)

(c)

 a1 a2

Figure 3.14: Quadrotor setup. (a) Quadrotor in its flight configuration: a1) colored sphere used
for the visual tracking, a2) reflective marker used for the ground-truth tracking
system (b) Camera setup: b1) Consumer-market camera, b2) 140◦ lens. (c) Compu-
tational setup: c1) Microcontroller and IMU, c2) Battery, c3) GNU-Linux PC Board,
c4) Wireless adapter.

(a) t = 0s. (b) t = 4s. (c) t = 17s.

Figure 3.15: Screenshots of the simulation. The Formation Controller drives the robot to a
realization of the desired bearing-formation.

71

Chapter 3 Shared control of a UAV bearing-formation

This second phase is itself split into two sub-phases: at first (from t = 17 s to t = 110 s), the
human operator intentionally commands the 5 available motion directions once at a time
by following this particular order νy → νx → νz → r → w (see Fig. 3.17b). This is done
to isolate the effects of each command. Then, during the last sub-phase (from t = 110 s
to t = 150 s), the human operator gives a generic command which shuffles the 5 motion
directions all together.

Figures 3.17a to 3.17c show the average tracking errors between the actual UAV velocities
(ṗAi , ψ̇Ai) and the reference velocities (ui, wi) associated to the agent model (3.2). As
expected, due to the flatness of the quadrotor, the velocity tracker is able to keep the
tracking error sufficiently small, thus confirming the assumptions of Sec. 3.2. Figure 3.17e,
shows the evolution of the average quadratic error of the bearing-formation βdij − βij,
∀βdij ∈ βdE : this goes exponentially to zero until t = 17 s, and then does not increase when
the human starts commanding the group during the second phase. The only exception
is a bounded error occurring whenever the human is commanding a rotation w: this is
due to the mismatch between the actual distance δ12 and the constant guess δ̂12 used
to implement (3.29), see the remarks in Sec. 3.5. This is in perfect agreement with the
theoretical analysis and expectations.

Figure 3.17d shows the behavior of the error vectors (et, er) in (3.45)–(3.50). The peaks
occur when the commanded acceleration is at its maximum as a consequence of the non-
negligible inertia of the physically simulated quadrotors. Note also how the components of
(et, er) show a good decoupling during the first phase of the human operation, roughly from
t = 17 s to t = 110 s: activation of one particular command among (ν, r, w) only affects its
associated component of the error vectors (et, er), with, again, the only exception of the
command w because of the wrong estimate δ̂12. Finally, Fig. 3.17f shows the control torques
(τ t, τ r) computed from (3.53–3.54) during the motion. These are basically proportional to
the error vectors (et, er) as expected, since matrices Ke

t and Ke
r have been chosen to be

dominant with respect to Bt, Kt, and Br, Kr, respectively, in (3.51-3.52).

72

3.8 Simulations and Experiments

(a) Rotation - start. (b) Rotation - end.

(c) Expansion - start. (d) Expansion - end.

Figure 3.16: Screenshots of the simulation - Rotation and change of scale commanded by the
Human Steering.

73

Chapter 3 Shared control of a UAV bearing-formation

0 20 40 60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

e
ṗ
=

av
g
(u

i
−

ṗ
A

i
)
[m
s
]

time [s]

eṗx eṗy eṗz

(a)

0 20 40 60 80 100 120 140
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ν
,s

[m
s
],
w

[r
a
d
s
]

time [s]

νx νy νz s w

(b)

0 20 40 60 80 100 120 140
−20

−15

−10

−5

0

5

10

15

20

av
g
(w

i
−

ψ̇
A

i
)
[d

e
g s
]

time [s]

(c)

0 20 40 60 80 100 120 140
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
e
t,
e
r
s
[m
s
],
e
r
w
[r

a
d
s
]

time [s]

etx ety etz ers erw

(d)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
β
=

av
g
√

(β
d ij
−

β
ij
)2

time [s]

eβx eβy eβz

(e)

0 20 40 60 80 100 120 140
−10

−8

−6

−4

−2

0

2

4

6

8

10

τ
t
,
τ
r
[N

]

time [s]

τtx

τty τtz τrs τrw

(f)

Figure 3.17: Results with a group of 12 simulated quadrotors. a,c: Average velocity and yaw rate
tracking errors; b: Operator commands: translation velocity, expansion rate and
rotation speed; d: Mismatch between commands and executions; f: Force feedback; e:
Mean square error w.r.t. desired bearing-formation.

74

3.8 Simulations and Experiments

Experiment 1

Next results are from an experiment executed with the 3 real quadrotors whose setup is
shown in Figs. 3.12 and 3.14. In this case, the quadrotors are already at the beginning
of the experiment close to the desired bearing-formation and the human operator can
immediately control their motion. Screenshots of the experiments at three different times
(t1 = 36 s, t2 = 62 s and t3 = 79 s) are shown in Fig. 3.18. There are two main reasons why
the quadrotors start close to the desired formation: i) the limited workspace available for
the experiment, and ii) the limited FoV of the onboard cameras, which required to choose
the desired bearing-formation as well as the starting one such that every UAV is in the
visibility range of the others.

In Figs. 3.19a and 3.19c it can be observed again that the average tracking errors
of the quadrotor actual velocities (ṗAi , ψ̇Ai) w.r.t. the reference velocities (ui, wi) stays
approximately zero despite the noisier measurements and all the unmodeled dynamics not
taken into account in the analysis and simulation results — see Figs. 3.17a and 3.17c for
a comparison. Similarly, Fig. 3.19e shows that the average quadratic bearing error also
remains approximately zero during the motion. A bounded error only appears when the
human operator commands a rotation of the formation for the reasons explained before, thus
confirming again the theoretical analysis and the simulation results. The behavior of the
user commands and error vectors (et, er) is reported in Figs. 3.19b and 3.19d, respectively.
Once again, note the bounded translational error triggered by the rotation command to
the whole formation. Finally, Fig. 3.19f shows the control torques (τ t, τ r) presented as
force cues to the human operator.
Onboard cameras provide the position of the tracked object in their image plane, i.e.,

an information equivalent to a pair of horizontal/vertical angles (azimuth and elevation).
Relative bearings βij can then be computed in terms of relative azimuth ζij and elevation
ηij as

βij = (cos ηij cos ζij cos ηij sin ζij sin ηij)T . (3.55)

Figure 3.20a shows the mean square error between the azimuth/elevation measurements
obtained from the onboard cameras and those obtained from the ground-truth. One can
verify that the mismatch always stays below 3 deg. During the experiment it was observed a
constant temporal lag of 0.5, w.r.t. the ground-truth, as visible in Fig. 3.20b. Nevertheless,
the control framework proved to be robust enough to this unmodeled delay.

75

Chapter 3 Shared control of a UAV bearing-formation

1 2 3

1

23

1 2 3

1

2

3t3

t1

1 2 3

1
2

3

t2

Figure 3.18: Three snapshots of the experiment with 3 quadrotors. Pictures on the left show the
haptic interfaces used to command the group motion and receive suitable haptic cues.
Pictures on the right report the corresponding external views of the formation and,
superimposed, the local views from the onboard cameras of each UAV.

76

3.8 Simulations and Experiments

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
e
ṗ
=

av
g
(u

i
−

ṗ
A

i
)
[m
s
]

time [s]

eṗx eṗy eṗz

(a)

0 20 40 60 80 100

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ν
,s

[m
s
],
w

[r
a
d
s
]

time [s]

νx νy νz s w

(b)

0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

20

av
g
(w

i
−

ψ̇
A

i
)
[d

e
g s
]

time [s]

(c)

0 20 40 60 80 100

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

e
t,
e
r
s
[m
s
],
e
r
w
[r

a
d
s
]

time [s]

etx ety etz ers erw

(d)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
β
=

av
g
√

(β
d ij
−

β
ij
)2

time [s]

eβx eβy eβz

(e)

0 20 40 60 80 100

−5

−4

−3

−2

−1

0

1

2

3

4

5

τ
t
,
τ
r
[N

]

time [s]

τtx

τty τtz τrs τrw

(f)

Figure 3.19: Results with a group of 3 real quadrotors. a),c): Average velocity and yaw rate tracking
errors; b): Operator commands: translation velocity, expansion rate and rotation
speed; d): Mismatch between commands and executions; f): Force feedback; e): Mean
square error w.r.t. desired bearing-formation.

77

Chapter 3 Shared control of a UAV bearing-formation

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

e
ζ
,
e
η
[d
eg
]

time [s]

eζ eη

(a)

0 5 10 15 20 25
−10

−5

0

5

10

15

20

25

30
ζ
g 13
,
ζ
c 13
,
η
g 13
,
η
c 13

[d
eg
]

time [s]

ζ
g

13 ζc13 η
g

13 ηc13

(b)

Figure 3.20: Experiments: mean square measurement error a) and measurement lag b) when
comparing the measures obtained from the on-board cameras with the one computed
from the ground-truth.

78

3.8 Simulations and Experiments

Environmental Scanning in case of Limited Field-of-View

In the discussion of the previous experiment it was noted that the desired bearing-formations
achievable by the UAVs were limited by the finite FoV of the onboard cameras. To overcome
the restrictions due to the limited FoV in the horizontal plane, every UAV was forced
to rotate with some desired rotation speed ω̃i,3(t) in order to ‘scan’ the environment and
periodically detect all the other UAVs. This is recast into the problem of letting the UAVs
tracking a time-varying desired bearing trajectory without affecting the geometrical shape
of the formation, as explained in Sec. 3.6.2.
Every agent i ∈ (1, . . . , N) maintains a local estimation of the azimuth ζij relative to

another agent j by means of the following dynamical system

ξ̇ij = Kξ(ζij − ξij)− ψ̇Ai (3.56)

where ψ̇Ai is the measured yaw-rate of the UAV, the estimation gain Kξ > 0 if a measure-
ments ζij is available, and Kξ = 0 otherwise. This simple estimation scheme will converge
if the bearing-formation is kept close enough to the desired one, so that no additional
dynamics influence the evolution of ζij. For instance, this estimation will not exactly track
the real ζij whenever a rotation command w is applied with a wrong guess for δ̂12.

Then one can freely design the scan rotation speed ω̃i,3(t) in (3.41–3.43) as long as it can
guarantee that the relative bearing measurements are acquired often enough to refresh the
estimation (3.56). For the tests that will be presented in the following it was chosen the
following refreshing strategy: at the beginning of the task, every UAV performs a complete
360◦ scan to initialize the estimations of all the needed relative azimuths. During normal
motion, on the other hand, the i-th UAV will rotate towards the UAV that was not seen for
the longest time, say j. The sign of ω̃i,3(t) is chosen in order to travel the smallest angle.
When j is in the FoV of i, the measurement ζij is plugged into (3.56), and the procedure
is repeated for another agent k. Depending on the configuration of the formation, this
strategy will make some agent to periodically invert the rotation direction, and others
to persistently rotate in the same direction. Finally, if a UAV can measure the bearings
relative to all the other UAVs, it simply rotates to keep them in the most centered way.
This strategy was first tested in simulation assuming a horizontal FoV of [−44◦, +44◦].

Figure 3.21 shows the results of 7 simulated quadrotors which, starting from the desired
bearing formation, are commanded with translations and expansion rates while implementing
the estimation law (3.56) with the proposed scanning strategy. Figure 3.21a reports the
average quadratic error of the bearing formation computed from the ground-truth position
measurements available in simulation. Note how this error is almost zero during the
whole simulation, showing that the desired bearing-formation was indeed correctly realized.
Figure 3.21b depicts the time behavior of an estimated azimuth (red line) and of the
corresponding real value (blue line). One can appreciate how the estimation is able to track
the true azimuth value also when the other UAV is out of the FoV (above the horizontal
black line in the plot). In this case, the maximum estimation error was around 2 deg and
occurred when the other UAV was not in visibility.

The same scenario was then repeated in an experiment with 3 real quadrotors as before.
All the bearing measurements were obtained from the cameras shown in Fig. 3.14b, which
have an horizontal FoV of about [−44◦, +44◦]. Figure 3.23a shows again the mean square
error of the bearing-formation from the ground-truth data. The error remains very small
although the quadrotors are often using the estimated bearings from (3.56). Similarly to

79

Chapter 3 Shared control of a UAV bearing-formation

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
β
=

av
g
√

(β
d ij
−

β
ij
)2

time [s]

eβx eβy eβz

(a)

0 5 10 15 20 25 30 35 40 45
20

30

40

50

60

70

80

90

100

110

ζ 3
4
,
ξ 3

4
[d
eg
]

time [s]

ζ34 ξ34

(b)

Figure 3.21: Simulation with 7 quadrotors waving to overcome the limited FoV. a): bearing
formation error. b): Estimated azimuth vs. ground-truth measure

(a) (b)

Figure 3.22: Experiment with scanning: screenshots from onboard camera. a) Blue UAV acquired.
b) Green UAV acquired.

before, Fig. 3.23b reports the evolution of an estimated azimuth and the corresponding
ground-truth value obtained from the external tracking system. In this case, the estimation
degrades when the tracked UAV is outside of the camera FoV (above the horizontal black
line in the plot), with a maximum error of about 10 deg. This poorer performance w.r.t. the
simulation case is due to all the unmodeled effects and real-world conditions and also to
the wrong estimate δ̂12 when commanding a rotation. However, the controller was still able
to keep the desired formation despite of these degrading effects.

80

3.8 Simulations and Experiments

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
β
=

av
g
√

(β
d ij
−

β
ij
)2

time [s]

eβx eβy eβz

(a)

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

ζ 2
1
,
ξ 2

1
[d
eg
]

time [s]

ζ21 ξ21

(b)

Figure 3.23: Experiment with scanning. a): bearing formation error. b): Estimated azimuth vs.
ground-truth measure.

81

Chapter 3 Shared control of a UAV bearing-formation

3.9 Summary and Possible Extensions
Summarizing, the following results have been presented:

1. It was introduced and rigorously analyzed the concept of 3D bearing-formations,
describing the minimal sets of bearings needed to unequivocally define a bearing-
formation with linear cardinality in the number of robots.

2. It was proposed a 3D bearing-formation controller for UAVs based on only relative
bearings. The controller is proven to be almost globally convergent, to stabilize the
UAV inter-distances to a finite value despite the lack of metric measurements, and to
not require any persistency of excitation condition to accomplish this task.

3. The set of generalized velocities of the remaining DoF of a UAV group constrained
to maintain a desired bearing-formation was formally characterized and exploited to
implement a bilateral teleoperation system which allows the human operator to steer
the formation.

4. The framework was validated by means of extensive human/hardware-in-the-loop
simulations and real experiments employing a group of quadrotors with onboard
cameras and two force-feedback devices.

The formation control could be extended by including robots with different sensors. For
example, there could be a small number of robots equipped with expensive sensors and
in charge of a specialised aspect of the task. Another possible extension of the framework
could be to include an estimation of the actual inter-agent distances by exploiting the
steady-state error present during synchronized rotations and due to wrong initial guesses in
the quantity δ12. Estimating inter-distances, or in general metric quantities, could also be
used for obstacle avoidance purposes. Finally, already developed visual-based techniques
using onboard optical flow extraction and decomposition could be included to become fully
independent from external tracking devices.

82

Chapter 4

Shared Planning with Integral
Haptic Feedback
The discussion presented in this chapter is based upon the work previously published and
presented Franchi et al. (2012b); Masone et al. (2012a,b), accepted Masone et al. (2014a)
and submitted Masone et al. (2014b).

4.1 Introduction
Many of the applications considered in RTHL involve mobile robots. In particular, their
mobility is often exploited for tasks that require traveling along some predefined routes, for
example to perform environmental monitoring (see Smith et al. (2011)), border patrolling
(see Girard et al. (2004); Matveev et al. (2010)) or urban structure coverage (see Cheng
et al. (2008)). The drawback, discussed already in Sec. 1.3, is that real-world applications
are often too challenging to be fully tackled by completely autonomous (mobile) robots.
In fact, despite the algorithmic and sensorial advancements, robots are still limited in
their world awareness and cognitive capabilities, thus being incapable of making complex
decisions in real-world unstructured scenarios. For this reason, safety regulations generally
require or suggest the presence of a human co-operator to control of the robot.
These factors have motivated the application of bilateral teleoperation frameworks to

mobile robots, in order to provide the human with suitable cues that are informative of
the state of the robot and of the remote site. Indeed, it has been often shown that haptic
shared control brings an increase of performance with respect to manual control while still
preserving the humans’ control skills (see Mulder et al. (2012)). However, letting the human
operator directly pilot the robot (robots) during the whole execution of the aforementioned
tasks requires him/her a profound commitment and can result in intense workload and
stress level. In view of these considerations, in this chapter it is presented an extension of
the bilateral shared control framework for mobile robots in which the action of the human
is moved at the planning level by letting him/her control online the planned route. The
conceptual scheme of this framework is depicted in Fig. 4.1:

Human: The operator modifies online the planned trajectory to be tracked by the mobile
robot for a given future time horizon. The modification is achieved by changing the
planned path.

Robot: The robot autonomously corrects the path specified by the operator in order to
avoid collisions, to proven irregularities of the path or to reach important locations;

83

Chapter 4 Shared Planning with Integral Haptic Feedback

Human Operator

planned
path

haptic/visual feedback

Autonomous Corrections
Robotmodified

path
Obstacle

Avoidance

Path Regularity
Maintenance

Replanning

Points of Interest

Figure 4.1: Shared planning scheme.

Feedback: A force-feedback is computed on the the base of the mismatch between the path
planned by the human and the one corrected by the robot. A visual feedback using a
virtual representation of the environment or an augmented video stream can be used
to show the path to the operator.

4.1.1 Related Works
The previous works related to the topics of this paper can be roughly grouped in the

following two categories:

Path planning/reshaping

This study relates to the topic of corrective path planning, i.e., adapting in real-time a
given path to a new, slightly modified situation. A common solution to this problem is
pure replanning, i.e., calculating from scratch a new path. This is generally achieved by
using graphs (roadmaps) whose nodes are free-space configurations, and which are built via
sampling-based algorithms (see LaValle (2006) for an overview). The two main paradigms
for the construction of such graphs, RRT (see e.g., LaValle (1998); LaValle and Kuffner
(2001)) and PRM (see e.g., Kavraki et al. (1996)) were originally conceived to be used
off-line or for static environments, but with the increase in computational power they
have been adapted to on-line usage. The main idea is to add a preprocessing stage that
computes an initial roadmap which is then updated on-line when environmental changes
occur (see e.g., Leven and Hutchinson (2002), Sa and Corke (2006)). Despite the efficiency
improvements, path replanning alone is still not a viable solution for real-time corrections
in complex scenarios. A big downfall is that the robot is forced to stop whenever the new
path is not calculated in time, and this can severely limit the performances of fast and agile
robots.

Reshaping methods are better suited for real-time applications because they only refine
locally the path without starting anew. The "elastic bands" or "elastic strips" approaches
by Quinlan and Khatib (1993) and Brock and Khatib (2002) fall within this categorization:
therein, the sequence of configurations defining the path to be tracked is corrected by

84

4.1 Introduction

obstacle artificial potentials in order to minimize some ‘energy’ criterium. A descent
optimization method is also used in Lamiraux et al. (2004) to determine perturbations
of the input function of the system along the admissible directions of motion. Other
methods rely on group transformations to modify (segments of) the path, such as Lie group
symmetries (in Seiler et al. (2011)) and affine groups transformation (in Pham (2011);
Pham and Nakamura (2012)).

Even though reshaping approaches have proven to be effective for online path corrections,
they suffer from the local nature typical of local methods. The strengths of reshaping and
replanning can also be combined by using both methods, as shown in Yoshida and Kanehiro
(2006). Nevertheless, none of the aforementioned approaches integrates a human operator
in the planning scheme and therefore are limited in terms of cognitive and decisional
capabilities.

Bilateral teleoperation of mobile robots

This study is also related to the bilateral shared control paradigm for mobile robots
(see Niemeyer et al. (2008)). In the classical bilateral teleoperation framework, the human
operator commands with a haptic device the current1 desired state of the robotic system
(e.g., the current desired position, velocity, and acceleration). The robot executes the
command while retaining some autonomy in order, e.g., to avoid obstacles or other dangers.
Finally, the loop is closed by rendering on the haptic feedback a force that is proportional to
the mismatch between commanded and executed motion in order to increase the operator’s
situational awareness. In the recent literature, this paradigm has been successfully applied to
mobile robots, as already shown by several examples mentioned in Secs. 1.2 and 3.1. To recall
a few examples, in Lee and Spong (2005) a passivity-based approach to bilaterally teleoperate
a group of holonomic/non-holonomic ground robots is presented, and in Rodríguez-Seda
et al. (2010) bilateral teleoperation of a group of UAVs is realized by directly coupling the
position of the haptic device to the position of the formation centroid. This solution does
not take into account the kinematic dissimilarity between the haptic device and the slave
mobile robots (bounded vs. unbounded workspace), which, on the contrary, is explicitly
considered in Lee et al. (2011). Other similar approaches have been seen in Lam et al.
(2006a,b) and in Franchi et al. (2012c,d).

In comparison to these prior works, the novel framework presented in Chap. 3 constitutes
a step towards a higher-level of human steering, because the operator is allowed to command
various motions of the whole group of robots and not just translations. The feedback
is also presented on the same input channels, i.e., translational, rotational and scaling.
Nevertheless, like in all the aforementioned approaches, in this case the robots are still
directly ‘controlled’ by the operator’s commands and their autonomy is only exploited
to keep some desired geometric formation. Without commands from the operator the
formation of robots stays still, therefore the human is required to constantly guide the
robots throughout the environment in order to execute a task. In comparison to these prior
works, the idea presented in this chapter is to let the robot follow a planned trajectory
even without commands from the user. The operator can modify the planned motion of
the robot but he/she does not have to directly steer the robot.

1i.e., the state at the current time or in the very next future.

85

Chapter 4 Shared Planning with Integral Haptic Feedback

4.2 Preliminaries
This section introduces the problem setting, with models of the robot, of the path and of
the environment where the task takes place. The notation adopted follows the guidelines
described in the Notation Section.

Robot

The scenario considered for the design of a shared planning framework features a single
mobile robot that is tasked to travel along a desired path. The robot is modelled as a rigid
body in space and its position in the environment is expressed with respect to an inertial
frame denoted with FW : {OW ; ~XW ; ~YW ; ~ZW}, where OW indicates the origin of the frame
and ~XW , ~YW , ~ZW are its coordinate axes.
In order to keep the formulation general, the robot is simply assumed to possess a

characteristic point (output), whose position in FW is denoted as pr, that is capable of
traveling with a non-zero speed along any sufficiently smooth regular path. This assumption
is easily achievable for flat systems if the trajectory is sufficiently smooth and the initial
condition is consistent2, see e.g Faiz et al. (2001). Exact path following of sufficiently
smooth path for flat systems has been proven with very mild conditions (see Faulwasser
et al. (2011)). These results make flatness a very useful tool for path planning, because
the problem to go from one location in space to another one is reduced to finding a
suitable interpolation between two points. The second advantage of this results is that this
property is possessed by the large majority of mobile robots, such as aircrafts (see Hauser
and Hindman (1997); Khan and Agrawal (2007); Mistler et al. (2001)), wheeled vehicles
(see Agrawal and Jin (2003); Luca et al. (1997)), underwater vehicles (see Fraga et al.
(2003)) and others (see Murray et al. (1995)). In the scenario here considered, these results
are applicable when the robotic system is differentially flat and the characteristic point pr is
part of its flat output (see Fliess et al. (1995)), or, equivalently, when the robot is feedback
linearizable with the characteristic point pr taken as linearizing output (see Isidori (1995)).

Path

In the shared planning framework paths are represented as B-splines (see Biagiotti and
Melchiorri (2008)), i.e., as a linear combination of a certain number of suitable basis
functions. The use of B-splines is motivated by their generality and versatility, since
they can describe or approximate arbitrary functions. Moreover, the relation between the
parameters of a B-spline and the shape of the corresponding path is easy to manage and
can be exploited to create an intuitive interface for a human operator. Even though the
framework here proposed generalizes to R3, the formulation is henceforth restricted to
planar paths in order to simplify the exposition. Nevertheless, the planar case is relevant
per se in many real-world scenarios, e.g., in the case of a ground robot or of an aircraft
monitoring the earth surface while flying at a constant altitude.
The family of planar B-spline curves here considered is described by the function

γ : R2n × S → R2, (4.1)
2For example, a non-holonomic car-like vehicle must start aligned with the direction of motion Luca et al.
(1997).

86

4.2 Preliminaries

x1

x2

x3

x4

x5

x6

�S(x)

Figure 4.2: Example of B-spline path.

where S ⊂ R is a compact set and R2n is the parameterization domain. A B-spline curve
of this family is a function

γ(x, ·) : S → R2, s 7→ γ(x, s) (4.2)

that is parameterized by the vector of coplanar control points x =
(
xT1 · · · xTn

)T
∈ R2n.

According to this notation, γ(x, s) ∈ R2 is a single point of the B-spline curve, i.e., the
point obtained by evaluating the function γ(x, ·) in s ∈ S. Finally, the path corresponding
to the B-spline curve γ(x, ·) is

γS(x) = {γ(x, s) ∈ R2 | s ∈ S}, (4.3)

i.e., the set of points obtained by varying the coordinate s within S. Therefore, according
to (4.3) the control points x parameterizing the B-spline define the shape of the path
γS(x). Figure 4.2 shows an example of path γS(x) given by six control points (n = 6).
In order to make the notation less cumbersome, several additional constant parameters

have been omitted from definitions (4.1) to (4.3): the degree λ ∈ N>0, which relates
to the smoothness of the B-spline curve with respect to the variable s, and the knots
s1, s2, . . . , sl ∈ R with s1 ≤ s2 ≤ . . . ≤ sl, that determine the set S = [s1, sl] and affect the
basis functions of the spline. For compactness, the vector of all the knots is denoted as s.
Further details on the parametrization and structure of the B-spline curves (4.2) are given
in Sec. 4.3.
Recalling the hypothesis of exact path-following made in the model of the robot, one

important requirement to be verified is that γ(x, ·) is at least a Ck function (k > 0) with
respect to both the parameters x and the coordinate s. This requirement can be easily
satisfied by choosing a sufficiently high degree for the B-spline, as it will be made clear in
Sec. 4.3. However, there is another issue to be accounted which relates to the well known
concepts of singularity and regularity of parametric curves (see Manocha and Canny (1992);
Stone and DeRose (1989)). These concepts, in reference to the function γ(x, ·), are defined
as follows:

87

Chapter 4 Shared Planning with Integral Haptic Feedback

Definition 4.1. A point γ(x, s) with x ∈ R2n, s ∈ S and such that ∂ γ
∂s

∣∣∣
(x,s)

= (0 0)T ∈
R2 is called a singularity of γS(x). A path γS(x) without singularities is called regular.

Namely, a singularity is a point in which the tangent space of the path, i.e., the directions
where the motion is allowed, vanishes. Geometrically, this situation could correspond to a
cusp or a backtracking in the path, e.g., see Fig. 4.3. Therefore, besides the requirement of
sufficient smoothness, it is also necessary to guarantee that γ(x, ·) is regular in order to
avoid that the direction of motion vanishes. This ulterior requirement can be satisfied by
appropriately choosing the vector of control points x. To clarify this statement, it is first
necessary to introduce some notations:

• Let bλi (s, ·) : S → R indicate the basis function associated to the i-th control point xi
(the expression of bλi (s, s) will be detailed in Sec. 4.3).

• Define the knots subrange Si = {s ∈ [sj, si),with j = max(λ− i, 1) : d bλi (s,s)
d s

6= 0}.

• Finally, define the following function.

x?i (x, ·) : Si → R2

s 7→ x?i (x, s) : ∂γ
∂s

∣∣∣∣∣((xT1 ...xTi−1 x
?
i (x,s)T xTi+1 ...x

T
n)T ,s)

=
(

0
0

)
(4.4)

Details on the computation of x?i (x, s) are given in Sec. 4.3, where it is also shown that
for each s ∈ Si the point x?i (x, s) is unique and independent from xi. The restriction of
x?i (x, ·) to Si ⊂ S is due to the fact that outside this range the control point xi does not
affect the tangent ∂γ

∂s
, as it will be clear in Sec. 4.3.

With these tools it is possible to introduce the concept of singular curves, which provides
the relation between the control points in x and the presence of singularities in γS(x).

Definition 4.2. Consider a regular path γS(x) of degree λ > 1, with S ⊂ R and
x = (xT1 xT2 . . . xTn)T ∈ R2n. The ‘singular curve’ of the control point xi ∈ R2 is the
collection of points Ωi(x) = {x?i (x, s) | s ∈ Si}.

The interpretation of singular curves is twofold. Firstly, a path γS(x) is regular if none
of its control points lies on the corresponding singular curve. Secondly, if γS(x) is regular,
the singular curve Ωi describes how the control point xi can be modified without creating
singularities. These concepts are illustrated by the example in Fig. 4.3.

Environment

The environment where the task takes place is populated by static obstacles to be avoided
and points of interest to be reached. Obstacles are modeled as a finite set of nO ≥ 0
balls with fixed radius. The position of the center of an obstacle ball in FW is denoted as
o ∈ R2, and the vector with all the centers is indicated with O ∈ R2×nO . The path γS(x)
is considered as collision free if it lies outside the obstacle balls. This formulation is quite

88

4.2 Preliminaries

Figure 4.3: Example of a B-spline (black line) of degree λ = 3, with 4 control points (colored
points). By moving one control point, the B-spline is made non-regular. Top-Left:
initial regular B-spline and singular curves (colored lines) of the control points (with
the same color pattern). The dashed lines are the singular curves of the fixed control
points. Other boxes: the B-spline becomes non-regular when one control point (red
one) is moved onto its singular curve.

89

Chapter 4 Shared Planning with Integral Haptic Feedback

o1

o2

o3

o4

o5

r1

Figure 4.4: Example of environment. The obstacles (grey) are approximated by several obstacle
balls of different radii. A single point of interest, r1, is moving in the environment.

generic, because any obstacle can be approximated by several balls of various radii (see
example of Fig. 4.4). Without loss of generality and to limit the amount of symbols used,
hereinafter all obstacle balls o ∈ O3 are assumed to have the same radius RO.
The nR ≥ 0 points of interest (PoIs) represent important locations for the task. For

example, they could be fixed stations that allow to exchange data within a limited range,
victims and critical locations in search and rescue applications or moving objects to be
monitored. The position of a generic PoI in FW is indicated as r ∈ R2 and the vector of
all PoIs is denoted as R ∈ R2×nR . Contrarily to the obstacles, PoIs are not necessarily
static (see Fig. 4.4): they could be added or removed by the human operator during the
task execution or they can be dynamically generated by an external algorithm such as a
dynamic routing strategy Bullo et al. (2011). In this regard, in Sec. 4.8 it is presented an
algorithm that dynamically updates the PoIs to facilitate the execution of a coverage task.

4.3 B-Splines
This section briefly recalls some well known properties of B-splines that are instrumental
to prove the fundamental results of the proposed framework, and it describes exactly the
structure of the specific function γ(x, s). The interested reader can refer to Biagiotti and
Melchiorri (2008) for a more detailed introduction on the subject.
B-splines are linear combinations of independent polynomial basis functions that are

completely parameterized by:

1. A sequence of scalars s1, . . . , sl (knots sequence), with sj ≤ sj+1 for j = 1, . . . , l − 1.
The knots sequence determines the pool of basis functions that define the spline.

2. A parameter λ ∈ N>0 (spline degree). It is related to the differentiability with respect
to s at the knots because the B-spline is λ − k times continuously differentiable

3Note that O is equally considered as a set of center positions.

90

4.3 B-Splines

at a knot with multiplicity k. In the interior of the knot intervals, the B-spline is
differentiable infinite times.

3. A vector of planar4 points x = [x1 . . . xn]T (control points), with xj ∈ R2 and
j = 1, . . . , n, which are the coefficients of the linear combination of basis functions.

It is important to underline that a B-spline path does not necessarily pass through its
control points. The control points are the vertices of the so called control polygon (dashed
line in Fig. 4.2), that is an approximation of the B-spline. As a rule of thumb, the lower
the degree λ, the closer the B-spline path is to the control polygon.

The first important observation that can be derived from the elements introduced so far
regards the requirement of smoothness made in Sec. 4.2. To satisfy this requirement, it is
sufficient to choose the degree λ such that the function γ(x, s) is sufficiently differentiable
at the knots. Note also that, as mentioned in Sec. 4.2, here the knots are considered fixed
and so it is also their multiplicity.

Given the vector of control points x, the evaluation of the B-spline requires to compute
the basis functions. For reasons that will be soon explained, this computation has been
split in two cases: open B-splines and cyclic B-splines.

open B-splines The relation between the number l of knots, the number n of control
points and the degree λ of the B-spline is

l = n− λ+ 1 (4.5)

For the computation of the basis functions, it is introduced the knots vector s

s = [s1, . . . , s1︸ ︷︷ ︸
λ+1

, s2, . . . , sl−1, sl, . . . , sl︸ ︷︷ ︸
λ+1

] (4.6)

The repetition of the first and last knots is imposed in order to force the B-spline to start
exactly at the first control point, x1, and end at the last control point, xn, as explained
in Biagiotti and Melchiorri (2008). With this setting, the basis function of degree λ in the
knot interval [sj, sj + 1], with j = 1, . . . , n− 1, is denoted as bλj (s, s) and it is computed
recursively according to the algorithm from De Boor (1972)

b0
j(s, s) =

1, if sj ≤ s < sj+1

0, otherwise

bλj (s, s) = s− sj
sj+λ − sj

bλ−1
j (s, s) + sj+λ+1 − s

sj+λ+1 − sj+1
bλ−1
j+1 (s, s)

(4.7)

An example of basis functions for an open B-spline is illustrated in Fig. 4.5.

cyclic B-splines Traditionally, closed B-splines are generated using (4.5) to (4.7) with
the additional constraint x1 = xn (the first and last control point are coincident). However,
this approach is not suitable for the sought planning strategy for two reasons. Firstly, it
does not impose continuity of the derivatives of γ(x, s) at the initial and final knot, so

4Because the formulation is developed for planar paths.

91

Chapter 4 Shared Planning with Integral Haptic Feedback

0 0.3333 0.6667 10

0.2

0.4

0.6

0.8

1

s

b3
1

b3
2 b3

3 b3
4 b3

5

b3
6

Figure 4.5: Basis functions for an open B-spline with s = [0 0 0 0 0.3333 0.6667 1 1 1 1].

0 0.25 0.5 0.75 10

0.2

0.4

0.6

0.8

1

s

b3
1 = b3

5 b3
2 b3

3 b3
4 b3

1 = b3
5

Figure 4.6: Basis functions for a cyclic B-spline with s = [0 0.25 0.5 0.75 1].

additional constraints should be considered. Secondly, this approach is not suitable for
online path modifications because a change at the beginning of the γS(x) would not be
propagated also at the end, and the other way around. Therefore, the computation of
closed (cyclic) B-splines has ben modified as follows.
The relation between the number l of knots, the number n of control points and the

degree λ of the B-spline is
l = n ≥ λ (4.8)

The knots vector s is
s = [s1, . . . , sl] (4.9)

Finally, the recursive algorithm (4.7) is modified by replacing all knot subtractions and
knot index additions with modulus operations on [s1, sl] and [1, l]. An example of basis
functions for a cyclic B-spline is illustrated in Fig. 4.5.

A comparison of a closed B-spline generated by an open B-spline with x1 = xn and by a
cyclic B-spline is showed in Fig. 4.7. Moreover, note that the basis functions (both for open
and cyclic B-splines) have the following property (cf. Biagiotti and Melchiorri (2008)):

Remark 6. The basis functions are always nonnegative. Furthermore, for any s ∈ [s1, sl]
it is ∑j=n

j=1 b
λ
j (s, s) = 1.

92

4.3 B-Splines

For both open and cyclic B-splines, the expression of the point γ(x, s) of the B-spline
curve γ(x, ·) is given by

γ(x, s) =
n∑
j=1
xjb

λ
j (s, s) = Bs(s)x (4.10)

where Bs ∈ R2×n is

Bs(s) =
[
bλ1(s, s) 0 · · · bλn(s, s) 0

0 bλ1(s, s) · · · 0 bλn(s, s)

]
(4.11)

Consequently, the k-th derivative of the B-spline curve (4.10) with respect to s is

dk γ(x, s)
d sk

= dk Bs(s)
d sk

x =
n∑
j=1
xj
dk bλj (s, s)

d sk
, (4.12)

where bλj (s, s) is computed efficiently with the following recursive algorithm

dk bλj (s, s)
d sk

= λ!
(λ− k)!

k∑
i=0

ak,ib
λ−k
j+i (4.13)

with

a0,0 = 1

ak,0 = ak−1,0

sj+λ−k+1 − sj

ak,i = ak−1,i − ak−1,i−1

sj+λ+i−k+1 − sj+i
, i = 1, . . . , k − 1

ak,k = −ak−1,k−1

sj+λ+1 − sj+k

From the implementation point of view, since the basis functions (and their derivatives)
depend only on the constant parameters λ and s1, . . . , sl, they can be rewritten as polyno-
mials in s whose coefficients can precomputed offline. Therefore, the computational load to
evaluate B-spline functions is very limited.
A significant property of B-spline functions (see Biagiotti and Melchiorri (2008)) that

will be useful in the design of the framework is the following:

Remark 7. On any knot span [si, si+1), with i = 1, . . . , n−1, at most λ+1 basis functions
are non zero, i.e., bλi−λ, . . . , bλi . As a consequence of (4.13) at any knot span [si, si+1) at
most λ+ 1 basis functions derivatives are non zero, i.e., d

k bλi−λ
d sk

, . . . ,
dk bλi
d sk

, with k = 1, . . . , λ.

Singular curves With the B-spline representation introduced so far, the computation of
x?i (x, s), for s ∈ Si (cfr. Definition 2), follows from (4.12) with k = 1, i.e.,

dγ(x, s)
d s

=
n∑

j=1, j 6=i
xj
d bλj (s, s)

d s
+ xi

d bλi (s, s)
d s

.

93

Chapter 4 Shared Planning with Integral Haptic Feedback

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Open B-spline.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Cyclic B-spline

Figure 4.7: Comparison of a closed B-spline with λ = 3, using both open and cyclic formulations.
In both cases it is x1 = [0.1660 0.5138]T , x2 = [0.5173 0.7599]T , x3 = [0.7860 0.4309]T ,
x4 = [0.4232 0.3432]T , x5 = x1.

Then, by imposing that the left side is (0 0)T and rearranging, it follows

x?i (x, s) = −

∑n

j=1,j 6=i xj
d bλj (s,s)
d s

d bλi (s,s)
d s

(4.14)

Observe that i) d bλi (s,s)
d s

6= 0 for s ∈ Si, therefore on Si x?i (x, s) is always defined and unique,
and ii) x?i (x, s) does not depend on the value of xi.

4.4 Overview of the Proposed Framework
Given the problem setting described in Sec. 4.2 and the B-spline structure and properties
introduced in Sec. 4.3, now it will be discussed the framework that has been developed for
the shared planning.

The simple, but effective, idea behind the framework is to let a human operator influence in
real time the shape of the path with the assistance of an autonomous algorithm that corrects,
if necessary, the operator’s directives so that the path remains regular and satisfies the
requirements regarding obstacles and PoIs. Path modifications are realized by introducing
a time dependency in x, so that γ(x(t), s) becomes a time-varying point and γS(x(t)) a
time-varying path. Note that, by introducing also a signal s(t), then γ(x(t), s(t)) would
provide the reference trajectory for the robot according to the well-known decoupled design
in path and timing law shown in Kant and Zucker (1986), Peng and Akella (2005). However,
the design of a timing-law s(t) is not the focus of this project and in the simulations and
experiments presented in Sec. 4.9.2 it was simply used a signal s(t) that keeps the traveling
speed small5 and modulates it with the curvature of the path. The interested reader can
however find in literature other algorithms for the generation of s(t), see e.g., Faulwasser
et al. (2011), Smith et al. (2012).

5For the applications considered, such as monitoring or coverage, the speed of the robot is generally small.

94

4.4 Overview of the Proposed Framework

Human Input
Device

Haptic
Feedback

uh

ua

N
xẋN(uh + ua)

Z
�S(x)

user
force

force
feedback

x

feedback cue

actual path

ẋ x

ẋh xh

Environment

Reactive

Replanner
O
R

Autonomous
Corrector

reset

Human
Guidance

xo

ẋh + kh(xh � x)

Q (xh) Kq

x0

Z

init

x0

human
commanded path

�S(xh)

init

q

xhẋh

Figure 4.8: Overview of the framework. The signals xh and ẋh indicate the desired corrections
given by the human (see Sec. 4.5).

The signal x(t) is generated online according to the following dynamical system

ẋ = N
(
uh + ua

)
, x(0) = x0, N ∈ R2n×2n (4.15)

where uh ∈ R2n is the control term influenced by the human operator (described in Sec. 4.5),
and ua ∈ R2n and N ∈ R2n×2n are two control terms generated by the autonomous algorithm
(described in Sec. 4.6). The initial condition x0 is assumed to define a regular and collision
free path and it can be specified by the human operator or by a preliminary planning
algorithm tailored for the task at hand6. In general the trajectory initialization can be
repeated over time, for instance when the robot has almost completed the current trajectory.
For example, in Sec. 4.6.2 it is shown how, in presence of obstacles, x can be automatically
reinitialized by a replanning algorithm in order to overcome the limitations of the purely
reactive corrections implemented by ua.
The framework, depicted in Fig. 4.8, is organized according to the following circular

structure:

Human guidance: It provides the signal uh in (4.15) that steers the actual path γS(x(t))
towards the desired path γS(xh(t)), which is modified by the human via an actuated
multi-DoF input device.

Autonomous corrector : It consists of two parts: 1. a reactive algorithm that corrects, if
necessary, the human commands such that the actual path γS(x(t)) complies with
the requirements of staying regular, collision free and attracted by nearby points of
interest; 2. a replanner that reinitializes the path in presence of obstacles.

6For example, it can be an exploration algorithm planning the next move based on the current partial
map, or a coverage method that selects one among predefined curve patterns.

95

Chapter 4 Shared Planning with Integral Haptic Feedback

Haptic feedback: It closes the interaction-loop between the human operator and the au-
tonomous correction algorithm in order to increase his/her situational awareness.
This is obtained by appropriately controlling the force exerted by the actuated input
device, thus producing a haptic feedback that physically informs the operator about
the changes brought by the autonomous correction to his/her suggested modifications
to the current path.

The three parts of the framework are explained in detail in Sections 4.5, 4.6 and 4.7
respectively.

4.5 Human Guidance
The human guidance is obtained by making use of an input device with 1 ≤ m ≤ 2n
fully-actuated DoF7. An example of actuated input device is illustrated in Fig. 4.9. The
device is modeled as a generic (gravity pre-compensated) mechanical system

M(q)q̈ + C(q, q̇)q̇ = τ + τ h (4.16)

where q ∈ Rm is the configuration vector of the device,M(q) ∈ Rm×m is the positive-definite
and symmetric inertia matrix, C(q, q̇)q̇ ∈ Rm are the Coriolis and centrifugal terms, and τ ,
τ h ∈ Rm are the control and human forces, respectively. The computation of τ is done
automatically by the haptic feedback algorithm and it is described in Sec. 4.7. Multiple
input devices can also be used at once and in this case q, τ and τ h are obtained by stacking
in columns the corresponding vectors of each device, while M and C become block diagonal
matrices.
The configuration vector q is used by the operator to generate uh in (4.15) and thus

modify the reference path. The connection between q and uh is provided by an auxiliary
vector of control points xh ∈ R2n that evolves according to the following dynamical system

ẋh = Q (xh)Kq , xh(0) = x0, (4.17)

where K ∈ Rm×m is a diagonal matrix of positive gains and Q : R2n → R2n×m is a nonlinear
mapping. The vector xh defines a ‘virtual’ path γS(xh) controlled by the operator alone,
without any autonomous correction, i.e., γS(xh) is the desired path planned according to
the human operator. The term uh in (4.15) is then designed to steer the actual x towards
the desired xh by implementing a feedforward/proportional-like action, i.e.,

uh = ẋh + kh(xh − x), (4.18)

with kh > 0.
The matrix Q(xh) in (4.17) determines how the human operator is allowed to interact

with the path. Clearly any mapping Q could be used, but for the sake of making this
approach usable with proficiency by pilots without extensive training it is fundamental
that the effect of mapping (4.17), i.e., how q changes γS(xh), is intuitive for a human
operator. Keeping this in mind, it is desirable to map each DoF (or group of DoF) of the

7In practice, input devices have at most seven fully-actuated DoF (m) while the number n of control
points that specifies a path easily reaches the hundreds even in simple cases.

96

4.5 Human Guidance

input device to a ‘canonical’ transformation of the path that can be easily managed by the
operator, such as translations, scalings and rotations. Following this idea, Q is designed as
the juxtaposition of nQ elementary matrices Qi(xh) ∈ R2n×νi with i = 1 . . . nQ

Q(xh) =
(
Q1(xh) | . . . | QnQ(xh)

)
, (4.19)

where 1 ≤ nQ ≤ m, 1 ≤ νi ≤ m , and∑nQ
i=1 νi = m. Partition (4.19) induces a corresponding

partition of q
q =

(
qT1 | . . . | qTl

)T
with qi ∈ Rνi for i = 1 . . . nQ. Each qi is thus mapped through the corresponding
elementary matrix Qi(xh) to a different canonical transformation of the desired path.

Hereinafter are given three examples of elementary matrices Qi that map qi to selected
transformations of a subset of control points of the path. The indices of the selected control
point are denoted with X ⊂ {1, . . . , n}, and idX : X → {0, 1} is the indicator function8 of
X defined as

idX (j) :=

1 if j ∈ X
0 if j /∈ X

Translation

The configuration qi ∈ R2 is mapped to a translation of the selected subset of control points
by the following elementary matrix

Qi(xh) =
(
idX (1) · · · idX (n)

)T
⊗ I2 (4.20)

where I2 ∈ R2×2 is the identity matrix and ⊗ denotes the Kronecker product of two matrixes.
Notice that Qi does not depend on xh, since the velocity applied to each control point is
simply a scaled version of vector qi, without further transformations. If X = {1, . . . , n}
then qi commands a desired velocity to the whole path (see Fig. 4.9a). Moreover, multiple
elementary matrices of the form (4.20) can be juxtaposed in (4.19) to command different
translations to different subsets of control points.

Scaling

A single DoF qi ∈ R is mapped to a scaling of the selected subset of control points, i.e., it
moves these control points away or towards a given fixed point p̄i ∈ R2. The sought Qi is

Qi(xh) = diag (idX (1)I2, · · · , idX (n)I2) (xh − 1n ⊗ p̄i) (4.21)

where 1n is an n-dimensional column vector of ones and diag(·) denotes a diagonal (or
block diagonal) matrix with its argument as the diagonal entries. If X = {1, . . . , n} then
qi commands a dilation/contraction of the whole path (see Fig. 4.9b). Also in this case
multiple elementary matrices of the form (4.21) can be juxtaposed in (4.19) to command,
to different subsets of control points, changes of scale with respect to different fixed points.

8In literature, the indicator function is usually denoted as 1X . The notation here is different to avoid
confusion with a vector of ones 1.

97

Chapter 4 Shared Planning with Integral Haptic Feedback

(a) Translation

p̄i

(b) Scaling w.r.t. p̄i

p̄i

(c) Rotation around p̄i

Figure 4.9: Examples of three canonical path transformations applied to different paths and
commanded with the same actuated input device. Green arrows represent the DoF.
Continuous green arrows indicate the DoF used by the specific transformation: 2
DoF for translation, 1 DoF for scaling, 1 DoF for rotation. Blue arrows represent the
commands and corresponding motion of the control points.

98

4.6 Autonomous Correction

Rotation

A single DoF qi ∈ R can be used to command a rotation of the subset of the control points
around a given fixed point p̄i ∈ R2. The expression of Qi in this case is

Qi(xh) = diag (idX (1)R90, . . . , idX (n)R90) (xh − 1n ⊗ p̄i) , (4.22)

where R90 =
(

0 −1
1 0

)
. If X = {1, . . . , n} then qi commands a rotation of the whole path

(see Fig. 4.9c). Also in this case multiple elementary matrices of the form (4.22) can be
juxtaposed in (4.19) to command, for different subsets of control points, rotations with
respect to different fixed points.

4.6 Autonomous Correction

Having described the interface with the human operator, it will now be discussed the
autonomous component of the framework in its two parts.

4.6.1 Reactive Path Deformation

The reactive part of the autonomous corrector is responsible for generating the control
terms N and ua in (4.15). Hereinafter it will be used the notation •(k) to indicate the k-th
derivative of a function w.r.t. time, e.g., x(k)(t) = dk x(t)

d tk
.

The design of N and ua must meet several objectives:

Objective 4.1. Suppose that an external algorithm provides a timing law s(t) ∈ Ck
together with its first k derivatives, and denote with p(t) = γ(x(t), s(t)) the trajectory
tracked by the robot. The trajectory time derivatives ṗ(t), p̈(t), . . . ,p(k)(t) must not be
affected by the time derivatives of the curve parameters x(t) at the current s(t).

Objective 4.2. The distance between any obstacle point o ∈ O and γS(x) is always
greater than RO.

Objective 4.3. The path γS(x) is regular.

Objective 4.4. The path γS(x) is attracted by every PoI that is closer than RR to the
path itself.9

In the following, it is first discussed Objective 4.1 and how this goal is satisfied by suitably
choosing the control term N in (4.15). Afterwards, it is designed ua in order to satisfy the
remaining objectives.

9Notice how this objective prescribes a qualitative behavior and therefore it intentionally represents a sort
of soft constraint for the autonomous corrector.

99

Chapter 4 Shared Planning with Integral Haptic Feedback

user
command

(a) Without N
user

command

(b) With N

Figure 4.10: User commanding a desired translation (blue arrow) to the path γS(xh) (blue line),
while the robot is traveling it with nonzero speed (yellow arrows). In this example it
is assumed that the control term ua is null. a) Without the projection matrix N , the
actual path γS(x) follows exactly the command, but the resulting motion is unfeasible
for the robot. b) When using (4.23) and (4.24), the local geometric properties of
γS(x) are preserved and the path translation does not affect the instantaneous motion
of the robot.

Realization of Objective 4.1

Objective 4.1 is important for preventing that path modifications caused by the exogenous
human command uh in (4.15) may result in an unfeasible reference trajectory for the
robot at its current location on the curve. This could happen, for example, if the operator
abruptly steers the path sideways with respect to the current velocity of the robot (see
Fig. 4.10).
Secondly, when exploiting the differential flatness of the system for the control de-

sign, the computation of the robot inputs requires knowledge of ṗ(t), p̈(t), . . . ,p(k)(t) (see
e.g. Mellinger and Kumar (2011) for the case of a quadrotor). However, since the derivatives
of uh are not assumed available, ẍ(t), . . . ,x(k)(t) and, consequently, also p̈(t), . . . ,p(k)(t)
can only be computed when meeting Objective 4.1.

Lastly, Objective 4.1 can simplify the design of external algorithms providing the timing
law s(t), since the trajectory derivatives only depend on the derivatives of s(t) and not on
the derivatives of x(t). For instance, Objective 4.1 allows to command the robot to remain
still just by keeping s(t) constant, regardless of any underlying path modification.
In order to achieve this goal, the control term N in (4.15) is designed as

N = I2n − J†J (4.23)

where I2n ∈ R2n×2n is the identity matrix and J† indicates the Moore-Penrose pseudoinverse

100

4.6 Autonomous Correction

of J ∈ R2k×2n, with k < n and J defined as

J(x(t), s(t)) =
(
∂γ

∂x

T ∂

∂x

(
∂γ

∂s

)T
. . .

∂

∂x

(
∂kγ

∂sk

)T)∣∣∣∣∣
T

(x(t),s(t))
(4.24)

The Jacobian J relates variations of x to changes of local geometric properties of the path
in s(t), such as the position of the point γ(x(t), s(t)), the tangent vector ∂

∂ s
γ(x(t), s(t)),

the curvature vector ∂2

∂s2γ(x(t), s(t)), and so on.
The matrix N in (4.23) is the well known orthogonal projection matrix in the null-space
of J (see Chiaverini et al. (2008)), i.e., it is such that JN = 02k×2n. This property gives
an intuitive interpretation to the choice of (4.23) and (4.24), and also of its effect on the
path γS(x). Namely, this design imposes the invariance of the local geometric properties
of the path at the current location of the robot regardless of the global changes brought
by uh and ua in (4.15), as illustrated in the example of Fig. 4.10b. This local geometric
invariance of the path is beneficial to ease the tracking of the reference trajectory p(t), as
experimentally shown by the results in Sec. 4.9.2.
The following property is helpful to characterize the null-space projection matrix N .

Property 4.1. Let γ(x, ·) be a B-spline of order λ and suppose that the current value
of the path coordinate is s(t) ∈ [si, si+1) with i ∈ {1, . . . , n− 1}. The range space R(J)
of J has dimension dim(R(J)) ≤ 2(λ+ 1) and the projection of uh + ua through N is

N
(
uh + ua

)
=

I2(i−λ−1) 0 0
0 Nλ 0
0 0 I2(n−i)

(uh + ua
)
, (4.25)

where Nλ ∈ R2(λ+1)×2(λ+1) is a projection matrix and 0 indicate matrices of zeros with
suitable dimensions.

Proof of Property 4.1. The proof Property 4.1 refers to the B-spline structure described in
Sec. 4.3. From Remark 7 it follows that only the basis function derivatives dj bλi−λ

d sj
, . . . ,

dj bλi
d sj

for j = 0, . . . , k can be not null. Therefore, the expression (4.24) of matrix J becomes

J =
[

02k×2(i−λ−1) M 02k×2(n−i)

]
(4.26)

where M ∈ R2k×2(λ+1) is the following matrix

M =



bλi−λ 0
0 bλi−λ

· · · bλi 0
0 bλi

...
dk bλi−λ
d sk

0

0 dk bλi−λ
d sk

· · ·
dk bλi
d sk

0

0 dk bλi
d sk


. (4.27)

Note that it was omitted the dependency from (s, s) to have a compact notation. Expres-
sion (4.27) proves that dim(R(J)) ≤ 2(λ+ 1).

101

Chapter 4 Shared Planning with Integral Haptic Feedback

Introduce now the matrix Nλ = I2(λ+1) −M †M , with Nλ ∈ R2(λ+1)×2(λ+1). By substitut-
ing (4.26) and (4.27) into (4.23), N has the following structure

N =

I2(i−λ−1) 0 0
0 Nλ 0
0 0 I2(n−i)

 , (4.28)

where the terms 0 indicate matrices of zeros of appropriate size that complete the non-
diagonal blocks of N , which concludes the proof.

Property 4.1 gives a local characterization to the projection matrix N , because it only
affects the velocity of the control points xi−λ, . . . ,xi that (locally) paameterize the shape
of the path around γ(x(t), s(t)), while the rest of the path follows exactly the corrections
specified by uh and ua.
It is now possible to present the first important result which states that the proposed

controller fullfills Objective 4.1.

Propositon 4.1. If N in (4.15) is chosen as in (4.23) and (4.24), then the trajectory
derivatives ṗ(t), p̈(t), . . . ,p(k)(t) are not functions of the time derivatives of x(t).

Proof. The proof proceeds by writing the trajectory derivatives ṗ, p̈, . . . ,p(k) under the
assumption that condition Jẋ = 02n, with J defined in (4.24), is verified. Starting from
p(t) = γ(x(t), s(t)), the first derivative of the trajectory is

dγ(x(t), s(t))
d t

= ∂ γ(x, s)
∂ x

ẋ+ ∂ γ(x, s)
∂ s

ṡ = 0 + ∂ γ(x, s)
∂ s

ṡ

= ṗ(x(t), s(t), ṡ(t))

where ∂ γ(x,s)
∂ x

ẋ = 0 results from the initial assumption. Applying the chain rule, the second
derivative is

d2 γ(x(t), s(t))
d t2

= ∂

∂ x

(
∂ γ(x, s)
∂ s

ṡ

)
ẋ︸ ︷︷ ︸

=(0 0)T

+
2∑
j=1

∂

∂s(j−1)

(
∂ γ(x, s)
∂ s

ṡ

)
s(j)

= p̈(x(t), s(t), ṡ(t), s̈(t))

where it was imposed ∂
∂ x

(
∂ γ(x,s)
∂ s

)
ẋ = 0 from the initial assumption. Iterating with the

chain rule to compute higher order trajectory derivative, at each step the initial assumption
Jẋ = 02n annihilates the terms containing the partial derivatives w.r.t. x, and the i-th
derivative, with 1 ≤ i ≤ k, becomes

di γ(x(t), s(t))
d ti

= ∂

∂x

(
p(i−1)(x, s, ṡ, . . . , s(i−1))

)
ẋ︸ ︷︷ ︸

=(0 0)T

+
i∑

j=1

∂

∂s(j−1)

(
p(i−1)(x, s, ṡ, . . . , s(i−1))

)
s(j)

= p(i)(x(t), s(t), ṡ(t), . . . , s(i)(t))

(4.29)

102

4.6 Autonomous Correction

0 1 2 3 4 5
0

2

4

6

8
ϕ
O
,
ϕ
R
,
ϕ
I
,
ϕ
E

ϕO
ϕR
ϕI
ϕE

Figure 4.11: Example of the artificial potentials ϕO, ϕR and ϕI used to compute ua, and of the
potential ϕE that is used in Sec. 4.6.2.

Realization of Objectives 4.2, 4.4 and 4.3

In order to satisfy Objectives 4.2, 4.3 and 4.4, the control term ua is designed as the sum
of three terms

ua = ua,O(x,O) + ua,I(x) + ua,R(x,R). (4.30)

The three components of ua are now discussed in detail.

Design of ua,O This term is designed to satisfy Objective 4.2. The expression of ua,O is

ua,O = −
∑
o∈O

∫
S

∂γ(x, s)
∂x

† ∂ϕO(‖γ(x, s)− o‖)
∂γ(x, s)

T

︸ ︷︷ ︸
ṗo(s)

∣∣∣∣∣∣
x(t)

ds (4.31)

where ϕO : R≥RO → R≥0 is a smooth distance-based artificial potential function chosen
such that

ϕO = 0 if ‖γ(x, s)− o‖ ≥ R̄O
ϕO →∞ if ‖γ(x, s)− o‖ → R+

O

with R̄O > RO. Furthermore, ϕO is strictly monotonic in [RO, R̄O]. An example of potential
ϕO is depicted in Fig. 4.11.
The meaning of (4.31) is straightforward. For every obstacle o ∈ O, the artificial

potential ϕO applies to every point γ(x(t), s) of the path a repulsive velocity −ṗo(s) that
is directed away from the obstacle, and with intensity growing unbounded as γ(x(t), s)
approaches the boundary RO of the obstacle ball. This repulsive velocity is mapped onto
the R2n space of control points by using the pseudo-inverse ∂γ(x,s)

∂x

†
to invert the relation

−ṗo(s) = dγ(x, s)
dt

= ∂γ(x, s)
∂x

ẋ+ ∂γ(x, s)
∂s

ṡ︸ ︷︷ ︸
=(0 0)T

.

103

Chapter 4 Shared Planning with Integral Haptic Feedback

Here, ∂ γ(x,s)
∂s

ṡ is null since s in (4.31) is not a function of time. Finally, the line integral
in (4.31) evaluates the effect of the artificial potential over all the points of the path. From
a practical standpoint, the analytical expression of (4.31) can be hard to determine and a
numerical evaluation of the integral may be needed.

Design of ua,I This term is designed to satisfy Objective 4.3. The expression of ua,I is

ua,I = −
n∑
i=1

∫
Si

∂ϕI(‖xi − x?i (x, s)‖)
∂x

T
∣∣∣∣∣∣
x(t)

ds (4.32)

where Si was introduced in Sec. 4.2 and ϕI : R≥0 → R≥0 is a smooth distance-based
artificial potential function such that

ϕI = 0 if ‖xi − x?i ‖ ≥ RI
ϕI →∞ if ‖xi − x?i ‖ → 0+

Furthermore, ϕI is strictly monotonic in [0, RI]. An example of ϕI is depicted in Fig. 4.11.
The effect of (4.32) is better understood by writing the control term as

ua,I = −
n∑
i=1

n∑
j=1

0j−1
1

0n−j

⊗ ∫
Si

∂ϕI(‖xi − x?i (x, s)‖)
∂xj

T
∣∣∣∣∣∣
x(t)

ds. (4.33)

From (4.33) and by recalling that x?i (x, s) does not depend on xi (see Sec. 4.3), it is clear
that the action of potential ϕI(‖xi − x?i ‖) on a the j-th control point xj is twofold:

• If j = i, then the potential applies to xi a velocity that steers it away from the
singular point x?i (x, s), ∀s ∈ Si.

• If j 6= i, the potential applies to xj a velocity such that the singular point x?i (x, s) is
moved away from xi.

As for the computation of (4.32), the same remarks apply to this case (a numerical
evaluation of the integral may be needed in practice).

Design of ua,R This term is designed to satisfy the ‘qualitative’ Objective 4.4. The
expression of ua,R is the following

ua,R = −
∑
r∈R

∂γ(x, s)
∂x

† ∂ϕR(‖γ(x, s)− r‖)
∂γ(x, s)

T

︸ ︷︷ ︸
ṗr(s̄r)

∣∣∣∣∣∣
(x,s̄r)

(4.34)

where s̄r indicates the point of γS(x) closest to r, i.e., ‖γ(x, s̄r)−r‖ = mins∈S ‖γ(x, s)−r‖,
and ϕR : R≥0 → R≥0 is a smooth distance-based artificial potential function that is designed
such that

ϕR = 0 if ‖γ(x, s)− r‖ = 0
ϕR = UR > 0 if ‖γ(x, s)− r‖ ≥ RR

Furthermore, ϕR is strictly monotonic in [0, RR] and it has bounded slope that vanishes
at 0 and RR. An example of ϕR is depicted in Fig. 4.11. Unlike the potential functions

104

4.6 Autonomous Correction

ϕO and ϕI , potential ϕR is bounded with bounded derivative because reaching the PoIs is
only a qualitative goal and it has a lower priority in comparison to maintaining collision
avoidance and path regularity.

The structure of (4.34) is similar to that of ua,O (cf. (4.31)). The artificial potential ϕR
applies to the point γ(x, s̄r) an attractive velocity −ṗr(s̄r) that is directed towards r and
has bounded intensity. This attractive velocity is projected on the R2n space of the control
points by the pseudo-inverse ∂γ(x,s)

∂x

†
. Note that the attractive action is not evaluated over

the whole path since this is not required by Objective 4.4 and it could tend to collapse
portions of γS(x) to a point.
From a practical point of view, sr in (4.34) can be computed numerically and the

implementation done for the simulations and experiments presented in Sec. 4.9.2 was able
to perform this computation (and the computation of all previous integrals) in real time on
a standard CPU and for several points of interest.

It is now possible to present the second important result of the proposed controller, by
showing that Objectives 4.2 to 4.4 are achieved. Regarding Objective 4.4, it has already
been observed that it is only a qualitative goal which does not require the path γS(x)
to reach the PoIs. In this regard, ua,R is constructed to attract γS(x) to nearby PoIs
but without guarantee of reaching them. Regarding the accomplishment of Objectives 4.2
and 4.3, the following Proposition is valid.

Propositon 4.2. Suppose that uh is bounded and that ‖uh +ua,R‖ ≤ ū. Then, γS(x)
remains collision free and regular.

Proof. The proof relies on the structure of B-splines that is described in Sec. 4.3. Consider
the Lyapunov function

V (t) :=
∑
o∈O

∫
S

1
k(s)ϕO(‖γ(x, s)− o‖)ds+

n∑
i=1

si∫
si−λ

ϕI(‖xi − x?i (x, s)‖)ds
(4.35)

where the dependence on time is in x(t) and k(s) = ∑n
i=1 b

2
i (s, s) > 0 owing to Remark 6.

Therefore V (t) > 0 and, since i) ϕO → ∞ iff the path is approaching a collision, and
ii) ϕI → ∞ iff the path is becoming non regular, then V (t) < ∞ implies that the path
remains regular and collision free.
The time derivative of V (t) is

V̇ (t) =

∑
o∈O

∫
S

∂ϕO
∂γ

Bs
k(s)ds+

n∑
i=1

si∫
si−λ

∂ϕI
∂x

T

ds


︸ ︷︷ ︸

wT= ∂V
∂x

ẋ (4.36)

where it was used the fact that ∂γ(x,s)
∂x

= Bs(s), that ȯ = 0 (i.e., static obstacles) and that
k(s) is not a function of time because the knots s are fixed (see Sec. 4.2).

105

Chapter 4 Shared Planning with Integral Haptic Feedback

By injecting (4.15) and (4.30) in (4.36) it follows

V̇ (t) = wTN
(
uh + ua,R︸ ︷︷ ︸

v

− (−ua,O − ua,I)︸ ︷︷ ︸
w̃

)
. (4.37)

By comparing (4.36) to (4.31) and (4.32) it is clear that w̃ differs from w only because in
ua,O there is the pseudoinverse Bs(s)† rather than Bs(s)T

k(s) . However, from (4.11) and from
the definition of k(s) it results that

Bs(s)† = (Bs(s)TBs(s))−1Bs(s)T = Bs(s)T
k(s) , (4.38)

hence w̃ = w and (4.37) becomes

V̇ (t) =−wTNw +wTNv (4.39)

In (4.28) it was proven that N has a particular structure, and this can be exploited (with
a possible row rearrangement) to rewrite (4.39) as

V̇ (t) =− (wT
1 w

T
2)
(
In−λ−1 0

0 Nλ

)(
w1
w2

)
+ (wT

1 w
T
2)
(
In−λ−1 0

0 Nλ

)(
v1
v2

)
(4.40)

where w = (wT
1 w

T
2)T and v = (vT1 vT2)T are the partitions corresponding to the block

diagonal structure of N . Matrix Nλ ∈ R2(λ+1)×2(λ+1) is a projection matrix, thus it only has
0 and 1 as eigenvalues and it is diagonalizable as Nλ = HΛHT , where H and HT are the
right and left eigenvectors10 of Nλ and Λ is the diagonal matrix of the eigenvalues. Without
loss of generality, assume that the first elements of the diagonal of Λ are the 1 eigenvalues
and indicate Λ = diag(Λ1 Λ0). With the change of coordinates HTw2 = (wT

Λ1 w
T
Λ0) and

HTv2 = (vTΛ1 v
T
Λ0), equation (4.40) can be rewritten as

V̇ (t) =− (wT
1 w

T
Λ1 w

T
Λ0)

In−λ−1 0 0
0 Λ1 0
0 0 Λ0


w1
wΛ1

wΛ0

+

(wT
1 w

T
Λ1 w

T
Λ0)

In−λ−1 0 0
0 Λ1 0
0 0 Λ0


 v1
vΛ1

vΛ0


=−wT

=w= +wT
=v= ≤ −‖w=‖2 + ‖w=‖ū

(4.41)

where w= = (wT
1 wΛ1) and v= = (vT1 vΛ1) are the components of w and v that are not

annihilated by the null space of N and where it was used the assumption ‖v=‖ ≤ ‖v‖ ≤ ū
from the statement of Proposition 4.2.

Since ϕO and ϕI are unbounded with unbounded gradients, one can always find a finite
value M > V (0) such that, when V (t) ≥ M and if ‖w=‖ 6= 0 then ‖w=‖ ≥ ū. Hence,
V̇ (t) ≤ 0, i.e., V (t) remains bounded and the path remains collision free and regular.

4.6.2 Generation of Non-homotopic Alternative Paths
The reactive part of the Autonomous Corrector described in Sec. 4.6 ensures that the path
is collision free, however the reactive obstacle avoidance also prevents γS(x) to ‘pass over
10Since Nλ is symmetric H can be chosen as an orthonormal basis of R2(λ+1).

106

4.6 Autonomous Correction

o

RO

RO

(a)

o

RO

RO

(b)

o

RO

RO

(c)

Figure 4.12: a) to c): Sequence showing the deformation of a path γS(x) (red curve) with respect
to the desired path γS(xh) (blue line) that is moved through an obstacle (from left
to right). In the end, the deformed path becomes a suboptimal w.r.t., e.g., a straight
line.

an obstacle’ and this can lead to suboptimal paths (see Fig. 4.12 for an example). This is
a well known limitation of reactive planners and it can severely degrade the capability of
the human operator to steer the path, especially in a cluttered environment. In order to
overcome this problem it is necessary a strategy for generating new alternative paths in
presence of obstacles. For example, in the elastic strip framework by Brock and Khatib
(2002) this is done by allowing the separation of the elastic strip so that it can cross over
the obstacle, however the strip cannot be reconnected if the obstacle remains in between.
The replanning method that has been developed for this framework is still based on

continuous deformations, but these deformations actively drive the path to the other side
of an obstacle to create an alternative route. The underlying idea is that, given an obstacle
o and a collision free path γS(x) between two points11, it is possible to find a new vector
of control points xo ∈ R2n such that γS(xo) is collision-free, it has the same endpoints of
γS(xo), and it is non-homotopic (LaValle (2006)) to γS(x) (i.e., it cannot be continuously
morphed into γS(x) without intersecting o (see Fig. 4.12)). For each obstacle o ∈ O, the
computation of xo is done in three steps, as detailed hereinafter.

Crossing The step starts when the repulsion applied to γS(x) by o is greater than a
predefined threshold F > 0, i.e.,

(Cond. C1)


∥∥∥∥∥∂ϕO(‖γ(x, s̄)− o‖)

∂γ(x, s̄)

∥∥∥∥∥ ≥ F

s.t. s̄ = argmins∈S‖γ(x, s)− o‖
(4.42)

11It can also be a portion of the path.

107

Chapter 4 Shared Planning with Integral Haptic Feedback

When condition C1 becomes true, let this be at time t1, vector xo is initialized and evolved
according to

ẋo = ∂γ(x, s)
∂x

∣∣∣∣∣
†

(xo,ŝ)
G
o− γ(x, s̄)
‖o− γ(x, s̄)‖

xo(t1) = x(t1)
(4.43)

where G > 0 is a parameter and γ(xo, ŝ) is the intersection between γS(xo) and the segment
o− γ(x, s̄). System (4.43) creates γS(xo) as a copy of γS(x) and then ‘pulls’ the point
γ(xo, ŝ) ∈ γS(xo) along the direction o−γ(x,s̄)

‖o−γ(x,s̄)‖ with a force of intensity G (see Fig. 4.13a).

Expansion System (4.43) remains active until γS(xo) becomes non-homotopic to γS(x)
w.r.t. o, i.e.,

(Cond. C2) (o− γ(x, s̄))T (γ(xo, ŝ)− γ(x, s̄))
‖o− γ(x, s̄)‖2 ≥ 1 + Fc (4.44)

where Fc > 0 is a user defined threshold (see Fig. 4.13b). When (4.44) becomes true, the
evolution of xo switches to

ẋo = −
∫
S

∂γ(x, s)
∂x

†∂ϕE(‖γ(x, s)− o‖)
∂γ(x, s)

T
∣∣∣∣∣∣
xo(t)

ds (4.45)

where ϕE : R≥0 → R≥0 is a smooth distance-based artificial potential function, that is
strictly monotonic in [0, R̄O], with finite slope and such that

ϕE = 0 if ‖γ(xo, s)− o‖ ≥ R̄O
ϕE → U if ‖γ(xo, s)− o‖ → 0+

where U > 0 is a fixed parameter (see Fig. 4.11 for an example of ϕE). System (4.45)
‘pushes’ γS(xo) outside the obstacle ball centered in o (see Fig. 4.13c).

Activation When γS(xo) is collision free, i.e.,

(Cond. C3) min
s∈S
‖γ(xo, s)− o‖ > RO (4.46)

the evolution of xo changes to (4.15)12 and γS(xo) is ready to be selected (see Fig. 4.13d).
The alternative path γS(xo) becomes active (i.e., x and xo are switched) only when

(Cond. C4)



‖xo − xh‖ < ‖x− xh‖
‖γ(x, s(t))− γ(xo, s(t))‖ ' 0

...∥∥∥∥∥dk γ(x, s(t))
d tk

− dk γ(xo, s(t))
d tk

∥∥∥∥∥ ' 0

. (4.47)

Condition C4 requires that i) xo is closer to xh than x, and ii) the change from x to xo
causes no discontinuities in the trajectory tracked by the robot. The switch to the new
path is depicted in Fig. 4.13e.
12Using xo instead of x for the computation of N , uh and ua.

108

4.6 Autonomous Correction

�(xo, ŝ)

�(x, s̄)

o

RO

RO

G

(a) Crossing.

�(xo, ŝ)

�(x, s̄)

o

RO

RO

(b) C2 = true.

o

RO

RO

(c) Expansion.

o

RO

RO

(d) Activation.

o

RO

RO

(e) Switch (C4).

o

RO

RO

F

(f) C5 = true.

Figure 4.13: Generation of an alternative path: γS(xo) (green line), γS(x) (red line), γS(xh)
(blue line), obstacle o (gray disc). From a) to f), γS(x) is moving from left to right,
passing over the obstacle.

ẋo = @�(x,s)
@x

���
†

(xo,ŝ)
G o��(x,s̄)

ko��(x,s̄)k

xo(t1) = x(t1)

ẋo = N (uh + ua)

C4 true

xo(t) = ;

ẋo = �
Z

S

⇣
@�(x,s)

@x

† @'E(k�(x,s)�ok)
@�(x,s)

T⌘���
xo(t)

ds

C1

true

C5 true

C3

true

switch

x, xo

C5

true

C2 true
C5

true

Figure 4.14: Block representation of the replanning algorithm. The algorithm starts from the
central block and proceedes as conditions C1 to C5 are met.

109

Chapter 4 Shared Planning with Integral Haptic Feedback

Finally, γS(xo) is deleted from memory if the reaction applied to γS(x) by o becomes
sufficiently small, i.e.,

(Cond. C5) max
s∈S

∥∥∥∥∥∂ϕO(‖γ(x, s)− o‖)
∂γ(x, s)

∥∥∥∥∥ ≤ F (4.48)

where 0 < F < F (see Fig. 4.13f) A block representation of the overall system is depicted
in Fig. 4.14.

Although the algorithm has been discussed for a single obstacle, it generalizes to multiple
obstacles. By taking into account all the nO obstacles in O, one would have up to 2nO − 1
new paths non-homotopic to γS(x) and to each other. In practice, the number of alternative
paths considered was limited at once to one per obstacle. Although not complete, this
solution resulted very effective due since the generation of an alternative path is very fast,
as shown in the results presented in Sec. 4.9.2.

4.7 Haptic Feedback
The haptic feedback algorithm computes the force τ rendered by the input device (cf. (4.16))
to inform the operator of the discrepancies between the path γS(xh) generated by the
Human Guidance (see Sec. 4.5) and the actual path γS(x) modified by the Autonomous
Corrector (see Sec. 4.6). Recall that these discrepancies are due to the null space projection
matrix N and to the reactive terms ua, as illustrated with examples in Fig. 4.15. The force
τ is designed as a function of two haptic cues, eẋ and ex, that are described hereinafter.

First haptic cue Analogously to what has been done in Sec. 3.7, the first haptic
cue provides a feedback indicating how well the teleoperated system is following the
instantaneous motion command given by the human. This is a common approach in the
bilateral teleoperation of mobile robots, see e.g., Franchi et al. (2012a,c,d) and Lee et al.
(2013). In this case, since the human operator commands the velocity ẋh, the haptic cue
eẋ should represent the mismatch between ẋh itself and the actual velocity ẋ. However,
there are some observations to be made with the help of Fig. 4.16a:

1. The Human Guidance maps a scaled configuration Kq ∈ Rm of the haptic device to a
velocity ẋh ∈ R2n of the control points through the matrix Q(xh). Note that the map
Q(·) depends on the application point and in general it is Q(xh) 6= Q(x), therefore a
command applied in x produces a different velocity than a command applied in xh.

2. The velocity ẋ computed by Autonomous Corrector is not achieved through the map
Q(x), i.e. ẋ /∈ R(Q(x)), where R(Q(x)) denotes the range space of Q(x). Namely,
ẋ in general does not correspond to a modification that could be commanded by the
human through the input device.

These considerations suggest that the simple difference ẋh− ẋ would not be a meaningful
cue, for two reasons. Firstly, ẋh and ẋ are velocity vectors applied to different configurations
of the control points and therefore their difference is not representative of how well a
command from the human is executed. For example, imagine that γS(x) is exactly a scaled
version of γS(xh) and that the operator is commanding a rotation of the path around

110

4.7 Haptic Feedback

�S(x) �S(xh)

(a)

RO

o

�S(xh)�S(x)

(b)

Figure 4.15: Examples of discrepancies between γS(xh) (blue curve) and γS(x) (red curve). a)
The projection term N causes the velocity ẋ (red arrows) to be different from the
commanded ẋh (blue arrows). b) The reactive correction due to the obstacle o causes
a mismatch between γS(xh) and γS(x), even at the equilibrium when ẋh = ẋ = 0.

111

Chapter 4 Shared Planning with Integral Haptic Feedback

x

Q(x)

Q†(x)

Q†(xh) Kq

ẋ

ẋh

Q†(x)ẋ

R2n (Control Points Space) Rm (Input Device Space)

ẋproj

eẋ

Q(x)

Q(xh)xh

Q(xh)

(a)

x

Q(x) Q†(xh)

R2n (Control Points Space) Rm (Input Device Space)

Q(xh)
xh

Q(xh)k(x � xh)proj

k(x � xh)
ex

(b)

Figure 4.16: Computation of the haptic feedback. a) First haptic cue, eẋ. b) Second haptic cue,
ex.

112

4.7 Haptic Feedback

the center of mass of the control points (using the canonical map (4.22)). In this case,
if both γS(xh) and γS(x) rotate with the same angular rate, then the velocity vectors
ẋh and ẋ would be different because the control points have to move on circles with
different radius. Therefore, this example shows that the difference ẋh − ẋ does not provide
a good information on how well a command from the user is executed. Secondly, in general
ẋh − ẋ is not a velocity achievable through the map Q(·), i.e., (ẋh − ẋ) /∈ R(Q(xh)) and
(ẋh − ẋ) /∈ R(Q(x)) (see Fig. 4.16a). This means that the difference ẋh − ẋ cannot be
transformed to a meaningful feedback along the directions (DoF) of the input device that
are used by the human operator.
For these reasons, the approach adopted here is to first map ẋh and ẋ back onto the

space of input device configurations and only afterwards consider their difference. Following
this idea, the haptic cue eẋ is

eẋ = Q(xh)†ẋh −Q(x)†ẋ
= Kq −Q(x)†ẋ

(4.49)

with Q(·)† = (Q(·)T Q(·))−1Q(·)T . Observe that:

Property 4.2. Q(x)†ẋ is the mapping onto the space of input device configurations
of the orthogonal projection of ẋ on R(Q(x)).

Proof. The statement is a simple result of linear algebra (Meyer (2001a)). The well known
orthogonal projection operator onto R(Q(x)) is the matrix

Q(x)(Q(x)T Q(x))−1Q(x)T ≡ Q(x)Q(x)†,

therefore the orthogonal projection of ẋ on R(Q(x)) is ẋproj = Q(x)Q(x)†ẋ. Thus, the
mapping of ẋproj on the space of input device configurations is

Q(x)†ẋproj = Q(x)†Q(x)Q(x)†ẋ = Q(x)†ẋ.

In other words, Property 4.2 means that, since ẋ cannot be brought back to any command
of the user (or equivalently to a configuration of the input device), then it is taken the
closest velocity ẋproj that represents a meaningful command.

Second haptic cue The first cue, eẋ, has been designed to represent how well ẋ follows
the signal ẋh given by the human. However, this cue does not capture if and how much
γS(x) differs from γS(xh). For example, imagine that the operator steers the desired path
γS(xh) towards an obstacle, so that the actual γS(x) results modified by the reactive
corrections but not reinitialized by the replanner. In this situation, if the operator gives no
commands anymore, when the actions of ua,O and uh counteract each other the error eẋ
would vanish and therefore there would be no feedback even though γS(x) 6= γS(x) (see
example in Fig. 4.16b). This phenomenon is due to the integration of the signals ẋh and ẋ
that is done within the framework (cf. Fig. 4.8). In order to account for this integration
the second haptic cue ex is chosen to represent the mismatch between xh and x.

113

Chapter 4 Shared Planning with Integral Haptic Feedback

The cue ex has been designed with the goal of providing a force feedback that ‘guides’
the operator so that his/her commands reduce the mismatch between γS(xh) and γS(x).
For instance, in the example of Fig. 4.16b a force feedback towards the left should be
rendered on the input device so that the desired path is steered away from the obstacle and
towards γS(x). To achieve this result, it is taken as cue the velocity vector k(x−xh), with
k > 0, which drives xh towards x (see Fig. 4.16b). Analogously to the previous discussion
of eẋ, also in this case k(x− xh) in general does not correspond to a command achievable
through the map Q(xh), therefore it is mapped on the space of input device configurations
by Q(xh)†. This yields

ex = kQ(xh)†(x− xh). (4.50)

Force feedback The force τ corresponding to the two haptic cues eẋ and ex is

τ = −Bq̇ −KMq −K∗(eẋ − ex) (4.51)

where B is a positive definite damping matrix used to stabilize the device, KM is a
diagonal non-negative matrix used to provide a perception of the distance from the zero-
commanded velocity13, and K∗ a diagonal positive definite matrix of gains. As in all
bilateral teleoperation applications, the presence of the force feedback τ may cause unstable
behaviors of the haptic interface because of non-modeled dynamics, communication delays
and packet losses. In order to guarantee stability despite all these shortcomings, like in
Sec. 3.7, it is adopted the PSPM approach by Lee and Huang (2010) to guarantee stability
(passivity) of the master side and of the closed-loop teleoperation system. Let z̄[k] be the
PSPM version of the following signal

z = Q(x)†ẋ+ kQ(xh)†(x− xh), (4.52)

that is sampled and sent from the mobile robot to the haptic interface through the
(possibly non-ideal) communication channel. Exploiting the PSPM action, the final passive
implementation of τ in (4.51) then becomes

τ = −Bq̇ −KMq −K∗ (Kq − z̄[k]) . (4.53)

This is sufficient for guaranteeing stability (passivity) of the bilateral system assuming that
the human operator behaves as a passive system (see Lee and Huang (2010)).

4.8 Coverage Task with Human-in-the-loop
Many applications discussed in Sec. 1.1, such as environmental monitoring, dusting, lawn

mowing and patrolling, require the robot to persistently move in a compact environment
A ⊂ R2. The persistent motion in these coverage tasks is normally achieved by letting
the robot circulate on a suitable14 closed path (see e.g., Smith et al. (2012)), however the
path is generally considered fixed. In this section it will be shown how, besides ensuring
the Objectives while tracking the human commands, the Autonomous Corrector can be
13If this effect is not desired, one can alway disable it by taking KM = 0.
14In a monitoring task the path is chosen to cover locations where the data or material to be collected is

expected to be more significant.

114

4.8 Coverage Task with Human-in-the-loop

exploited to modify in real-time the coverage path, e.g., in response to environmental
changes or to improve the performance with respect to the initial path. A naive idea to
tackle this problem could be to steer the control points where the coverage is more required,
however the path could transit far away from its control points (e.g., see Fig. 4.3). Instead,
the approach adopted here is to design an algorithm that autonomously steers a set of PoIs
that, in turn, modify the path.

Before designing the algorithm it is necessary to model the coverage task. It is assumed
that the robot executes the task by means of a device15 with a finite circular footprint
P(pr(t), R) = {a ∈ A : ‖a− pr(t)‖ ≤ R}, where pr(t) ∈ A is the position of the robot and
R > 0 is the footprint radius. The coverage state of A is modelled as a time varying scalar
field

C : A× R≥0 → [0, 1], s.t. (a, t) 7→ c

where C(a, t) = 1 indicates perfect coverage and C(a, t) = 0 indicates no coverage in a at
the time t. The field C evolves according to the following dynamical system

Ċ(a,pr, t) =


−α, if a /∈ P(pr, R) ∧ C(a,pr, t) > 0
βR−‖a−pr‖

R
, if a ∈ P(pr, R) ∧ C(a,pr, t) < 1

0 otherwise.
C(a,pr, 0) = 0

(4.54)

where α, β > 0 are parameters assumed to be measured or estimated from the sensor/tool
and from the environment. According to (4.54),

1. At each point a /∈ P, the field decreases with a constant rate −α < 0, for ex-
ample because the information at a is becoming old or some physical quantity is
consumed/accumulated.

2. At each point a ∈ P, the field increases with a non-uniform rate that represents a
degradation effect at the edge of P(pr(t), R).

With this setting, the goal is now to design an algorithm that steers the PoIs where
the field C is low. The sought algorithm has been developed according to the well known
iterative method called Lloyd’s algorithm or Voronoi iteration (see Cortés et al. (2004)),
that is used to deploy robotic networks. The algorithm starts by initializing R with a
uniform distribution over A and such that r 6= r′, ∀r, r′ ∈ R. Afterwards, each iteration
consists of three steps:

1) Voronoi partitioning Given the current R, compute the Voronoi partition (or
tessellation) of A. Each one of the nR Voronoi cells contains a different PoI and in
particular Vr(R) is the Voronoi cell associated to r ∈ R.

2) Centroids computation In the second step the algorithm computes the centroid of
each cell. For this computation it is used the density function φς (a, t) : A× R≥0 → [0, 1]
defined as

φ(a, t) = e−ςC̄(a, t) + (1− e−ς) sin
(
π(C̄(a,t))

2

)eς
(4.55)

15It could be, e.g., a sensor, like a down-facing or omnidirectional camera, or a physical effector, like a tool
to take samples of the environment or a rotating brush used to clean the floor.

115

Chapter 4 Shared Planning with Integral Haptic Feedback

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

φ
(a
,t
)

C̄(a, t)

ζ = 0
ζ = 2
ζ = 4
ζ = 8

(a) Density function.

C
(a
,t
)

0

0.5

1

R ζ = 0 ζ = 2 ζ = 4 ζ = 8

(b) Centroids computation.

Figure 4.17: Effect of the parameter ς on the density function (4.55) and on the computation of
the centroids (4.56).

where C̄(a, t) = 1−C(a, t) and ς ≥ 0 is a free parameter. The use of C̄ instead of C stems
from the need of directing the points of interest towards low-coverage zones. If ς = 0 then
it is exactly φ(a, t) = C̄(a, t). By increasing the parameter ς it is possible to amplify the
density of the points where the coverage is lower and reduce the density of the points where
the coverage is higher (see Fig. 4.17).
The centroid of Vr(R) is then given by

ār(t) = 1∫
Vr(R) φ(a, t) da

∫
Vr(R)

aφ(a, t) da. (4.56)

3) PoIs update Given the centroids of the Voronoi tessellation, each point of interest
r ∈ R is updated with a gradient ascent of the function ‖ār − r‖, i.e.,

ṙ = kc(ār − r), (4.57)

where kc > 0.16 As the PoIs are updated, the path γS(x) reacts accordingly, thanks to the
action of the autonomous corrector. An example of the evolution of a path γS(x) with this
algorithm is shown in Fig. 4.18.

The proposed iterative algorithm has several advantages over applying a pure gradient-
descent approach to the point of interests without using the Voronoi tessellation. Firstly,
it guarantees that the PoIs never overlap since they are constricted to the interior of
different Voronoi cells. Secondly, this method is more efficient because each update uses
the information of an extended region, the Voronoi cell, thus making it more robust to
local minima. The method has been tested in simulation and the results are presented in
Sec. 4.9.2.

116

4.9 Simulations and Experiments

C
(a
,t
)

0

0.5

1

(a) Initial configuration.

C
(a
,t
)

0

0.5

1

(b) Updated configuration.

Figure 4.18: Evolution of the actual path (red line) with a fixed field C (magenta-scale), using
the PoI steering algorithm. The desired (human-commanded) path is shown with a
dashed blue curve. Black lines indicate the Voronoi cells. a) Initial configuration:
actual path and desired path coincides and randomly selected PoIs (black points) are
added in the scene. b) Starting from the initial configuration, the PoIs are updated
with the algorithm and the path is modified accordingly, reaching the places where
C is lower and following the desired curve if possible.

4.9 Simulations and Experiments

4.9.1 Experimental Testbed
The shared planning framework has been extensively tested both in simulation and in
experiments with a real robot. In both cases, two haptic devices have been used and they
are shown in Fig. 4.19a. The device on the left is an Omega.617 with 6 DoF (only 3 DoF
are actuated), but only 2 DoF have been used to command changes of scale and rotations
of the path with respect to the centre of mass of the control points. The device on the right
is a Phantom Omni18 with 6 DoF (only 3 DoF are actuated), and only 2 DoF have been
used to command translations in the plane spanned by (~XW , ~YW). The components of the
force feedback τ have been partitioned between the two devices according to the division
of the commands. Both devices are connected to a Linux machine where a local control
loop implements the force τ at a frequency of 2.5kHz.

The software implementation of the framework consists of three parts that are all executed
on the same Linux machine where the local controller of the input devices resides. The
three parts, which are interfaced according to the diagram shown in Fig. 4.20, are the
following:

A) The basis of the software implementation is TeleKyb (see Grabe et al. (2013)), a
middleware open source software based on the Robot Operating System (ROS19).
Telekyb was used to realize all the communication interfaces among the different

16In the practical (discrete) implementation of (4.57), the gain kc is chosen using a simple line-search and
ensuring that, at each step, every PoI remains inside its Voronoi cell.

17www.forcedimension.com
18www.geomagic.com
19www.ros.org

117

www.forcedimension.com
www.geomagic.com
www.ros.org

Chapter 4 Shared Planning with Integral Haptic Feedback

A
B

C

D E

(a) Input devices and software. (b) Quadrotor.

Figure 4.19: Experimental setup. a) Software components of the framework and input devices: A)
TeleKyb; B) SwarmSimX; C) Matlab; D) Omega.6, used to command changes of scale
(magenta) and rotations (cyan); E) Phantom Omni, used to command translations
along ~XW (yellow) and along ~YW (green). b) The quadrotor used for the experiments.

components of the framework (input devices, simulation environment, robot, Matlab).
In Fig. 4.19a Telekyb is shown running in the background together with the other
processes.

B) The second component of the software is SwarmSimX (see Lächele et al. (2012)), a
real-time simulation environment that uses Ogre3D20 as graphical engine and Nvidia
PhysX to physically simulate robots. The role of SwarmSimX is twofold. In the
experiments, only the graphical engine is used in order to provide a visual feedback
to the operator by showing the evolution of the paths γS(xh) and γS(x) in a virtual
reconstruction of the real environment. In this case, the simulated robot moving in
the virtual environment is only a graphical object whose state is updated with the
measured state of the robot. On the other hand, in the simulations SwarmSimX is also
used to physically simulate the robot and for this it receives the reference trajectory
and implements internally the model of the robot.

C) The third component of the software is Matlab21 and Simulink, that is used to compute
the reference trajectory for the robot. In particular, in this part of the software
implements the Human Guidance, the Autonomous Controller, the computation of
the haptic cues and the PoIs update algorithm. All these algorithms were able run in
real-time on a normal pc using single core.

The robot used both in the simulations and in the experiments is a quadrotor. The use
of a quadrotor allows to empirically validate the preliminary assumption made in Sec. 4.2
thanks to the flatness of the point pr (it is part of the flat output). For the experiments
and simulations the trajectory commanded to the robot were not aggressive, since in typical
applications such as monitoring or exploration the robot is required to travel at low speed to
collect data and to allow the operator to observer the environment. Given this assumption,
20http://www.ogre3d.org
21http://www.mathworks.com

118

http://www.ogre3d.org
http://www.mathworks.com

4.9 Simulations and Experiments

Sensors

Robot

Matlab

Telekyb

Omega.6

Phantom

ROS
Interface

SSX

Human Guidance

Autonomous Corrector

Haptic Cues

Reference TrajectoryROS
Interface

Experiment
manager

Trajectory
Tracker

Force
Feedback

Loop

q1

q2

⌧ 2

⌧ 1

pr (exp.)

q

p, x, xh

ex, eẋ

x, xh

pr (exp.)
pr (sim.)

pr (sim.)

thrust roll
pitch yaw

Figure 4.20: Experimental testbed.

it was used a near-hovering trajectory tracker. The results presented hereinafter confirm
that the robot could precisely follow the commanded trajectory.

4.9.2 Results
Test 1

The first test was conducted to assess the contribution of the control term N in (4.15)
by letting the quadrotor travel along a straight reference path γS(xh) that is commanded
lateral translations by the human operator. This test was initially conducted in simulation,
with two conditions: once using the control points evolution (4.15) (snapshot in Fig. 4.21a)
and the second time removing the control term N from (4.15) (snapshot in Fig. 4.21b). In
order to compare the two cases, the operator commands from the first trial are recorded
and used as inputs in the second trial.

The reference trajectory p(t) to be tracked by the robot is shown in Fig. 4.21c for both
cases. A simple visual inspection of Figs. 4.21a and 4.21b suggests that: i) without N ,
γS(x) is identical to γS(xh) but the robot cannot follow it because of the human commands;
ii) with N , γS(x) differs from γS(xh) but the robot can follow it quite precisely. This
analysis is confirmed by Fig. 4.22d, which displays the tracking error, in both conditions,
of the real robot position with respect to γ(x(t), s(t)). Remember that the goal is not to
track exactly γ(xh, s), because the human-commanded path γS(xh) is not guaranteed to
be collision-free and regular. Moreover, the unpredictable path variations commanded by
the user could make tracking γ(xh, s) difficult and they could result in large and dangerous
overshoots. Snapshots 4.21a and 4.21b also suggest that without the control term N the
quadrotor has to tilt (roll) more in order to cope with the commands given by the human.
Once again, this is confirmed by the plot of the roll angle in Fig. 4.22f.

The same test was then repeated in an experiment using the real quadrotor. The results

119

Chapter 4 Shared Planning with Integral Haptic Feedback

plotted in Fig. 4.22 are consistent with the results from the simulation, thus confirming the
positive effect of the projector N .

120

4.9 Simulations and Experiments

~XW

~YW

(a) Snapshot: N on.

~XW

~YW

(b) Snapshot: N off.

0 2 4 6 8 10
−15

−10

−5

0

5

time [s]

p
(t
)
[m

]

x N off y N off x N on y N on

(c) Reference trajectory p(t).

0 2 4 6 8 10
−0.5

0

0.5

time [s]

tr
a
ck
in
g
er
ro
r
[m

]

x N off y N off x N on y N on

(d) Tracking error.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

time [s]

p
at
h
d
is
ta
n
ce

[m
]

N off
N on

(e) Tilt angle

0 2 4 6 8 10

−0.5

0

0.5

time [s]

ro
ll
[r
a
d
]

N off
N on

(f) Tilt angle

Figure 4.21: Simulation 1: Projection term N . In the snapshots a) and b): the desired path
γS(xh), the control points xh and the velocities ẋh are depicted as a thick blue line,
blue squares and thin blue lines respectively. The actual path γS(x), the control
points x and the velocities ẋ are depicted as a thick red line, red squares and thin
red lines respectively.

121

Chapter 4 Shared Planning with Integral Haptic Feedback

~XW

~YW

(a) Snapshot: N on.

~XW

~YW

(b) Snapshot: N off.

0 2 4 6 8 10
−4

−2

0

2

4

time [s]

p
(t
)
[m

]

x N off y N off x N on y N on

(c) Reference trajectory p(t).

0 2 4 6 8 10

−1

−0.5

0

0.5

1

time [s]

tr
ac
k
in
g
er
ro
r
[m

]

x N off y N off x N on y N on

(d) Tracking error.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

time [s]

p
at
h
d
is
ta
n
ce

[m
]

N off
N on

(e) Tilt angle

0 2 4 6 8 10

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

ro
ll
[r
a
d
]

N off
N on

(f) Tilt angle

Figure 4.22: Experiment 1: Projection term N . In the snapshots a) and b): the desired path
γS(xh), the control points xh and the velocities ẋh are depicted as a thick blue line,
blue squares and thin blue lines respectively. The actual path γS(x), the control
points x and the velocities ẋ are depicted as a thick red line, red squares and thin
red lines respectively.

122

4.9 Simulations and Experiments

Test 2

The second test is designed to showcase the Human Guidance, by letting the operator
command path modifications in a free environment (without obstacles an PoIs). For this
test, both haptic devices in Fig. 4.19b have been used to command path translations,
changes of scale and rotations as defined by (4.20) to (4.22). In particular, both rotation
and scaling maps (4.21) and (4.22) have been implemented with the center of mass of the
control points as the center of rotation/scaling. The test is repeated twice, using both an
open and a closed self-intersecting path, in order to show the generality of the framework
and its capability to deal even with even non-trivial paths.
This test was first conducted in simulation, and Figs. 4.23a to 4.23c and Figs. 4.24a

to 4.24c show snapshots of the execution, where the velocities of xh (blue squares) and x
(red squares) are depicted as blue and red thin lines respectively. Observe that during a
translation (Figs. 4.23a and 4.24a) the velocity vectors are all the same, during a rotation
(Figs. 4.23b and 4.24b) they are all moving around the center of rotation, and during a
rescaling (Figs. 4.23c and 4.24c) they are all moving towards or from the center of scaling.
Observe also that the control points of the vector x around the current robot location do
not follow exactly the desired velocity ẋh. This is due to the projection operator N , which
modifies the human directives in order to preserve the properties specified by (4.24).
Once again, the tracking error is small (see Figs. 4.23d and 4.24d), thus confirming the

hypothesis of precise tracking. Figures 4.23e and 4.24e show the commands given by the
operator. Notice that the operator controls at the same time all the 4 DoF to command
path modifications through (4.20) to (4.22). Finally, the difference between actual and
desired path is captured by the force feedback rendered on the input devices, which is
depicted in Figs. 4.23f and 4.24f.

Analogous results were obtained in the experiments executed with the real quadrotor, as
shown in Figs. 4.25 and 4.26

123

Chapter 4 Shared Planning with Integral Haptic Feedback

(a) Translation. (b) Rotation.

(c) Scaling.

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2

time [s]

tr
ac
k
in
g
er
ro
r
[m

]

x y

(d) Tracking error.

0 5 10 15 20 25 30 35

0

Tr: −1 [m/s]
Sc. rate: −0.12
Rot: −6 [deg/s]

Tr: 1 [m/s]
Sc. rate: 0.12
Rot: 6 [deg/s]

time [s]

co
m
m
a
n
d
s

Translx Transly Scal Rot

(e) Human commands

0 5 10 15 20 25 30 35
−15

−10

−5

0

5

10

15

time [s]

τ
[N

]

Translx Transly Scal Rot

(f) Force feedback

Figure 4.23: Simulation 2 - human guidance (closed path). In a) to c): the desired path γS(xh),
the control points xh and the velocities ẋh are depicted as a thick blue line, blue
squares and thin blue lines, respectively. The actual path γS(x), the control points
x and the velocities ẋ are depicted as a thick red line, red squares and thin red lines,
respectively.

124

4.9 Simulations and Experiments

(a) Translation. (b) Rotation.

(c) Scaling.

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2

time [s]

tr
ac
k
in
g
er
ro
r
[m

]

x y

(d) Tracking error.

0 5 10 15 20 25 30 35

0

Tr: −1 [m/s]
Sc. rate: −0.12
Rot: −6 [deg/s]

Tr: 1 [m/s]
Sc. rate: 0.12
Rot: 6 [deg/s]

time [s]

co
m
m
a
n
d
s

Translx Transly Scal Rot

(e) Human commands

0 5 10 15 20 25 30 35
−15

−10

−5

0

5

10

15

time [s]

τ
[N

]

Translx Transly Scal Rot

(f) Force feedback

Figure 4.24: Simulation 2 - human guidance (open path). In a) to c): the desired path γS(xh),
the control points xh and the velocities ẋh are depicted as a thick blue line, blue
squares and thin blue lines, respectively. The actual path γS(x), the control points
x and the velocities ẋ are depicted as a thick red line, red squares and thin red lines,
respectively.

125

Chapter 4 Shared Planning with Integral Haptic Feedback

(a) Translation. (b) Rotation.

(c) Scaling.

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

time [s]

tr
a
ck
in
g
er
ro
r
[m

]

x y

(d) Tracking error.

0 20 40 60 80 100

0

Tr: −1 [m/s]
Sc. rate: −0.12
Rot: −6 [deg/s]

Tr: 1 [m/s]
Sc. rate: 0.12
Rot: 6 [deg/s]

time [s]

co
m
m
a
n
d
s

Translx Transly Scal Rot

(e) Human commands

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

time [s]

τ
[N

]

Translx Transly Scal Rot

(f) Force feedback

Figure 4.25: Experiment 2 - human guidance (closed path). In a) to c): the desired path γS(xh),
the control points xh and the velocities ẋh are depicted as a thick blue line, blue
squares and thin blue lines, respectively. The actual path γS(x), the control points
x and the velocities ẋ are depicted as a thick red line, red squares and thin red lines,
respectively.

126

4.9 Simulations and Experiments

(a) Translation. (b) Rotation.

(c) Scaling.

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

time [s]

tr
a
ck
in
g
er
ro
r
[m

]

x y

(d) Tracking error.

0 10 20 30 40

0

Tr: −1 [m/s]
Sc. rate: −0.22
Rot: −7 [deg/s]

Tr: 1 [m/s]
Sc. rate: 0.22
Rot: 7 [deg/s]

time [s]

co
m
m
a
n
d
s

Translx Transly Scal Rot

(e) Human commands

0 10 20 30 40
−15

−10

−5

0

5

10

15

time [s]

τ
[N

]

Translx Transly Scal Rot

(f) Force feedback

Figure 4.26: Experiment 2 - human guidance (open path). In a) to c): the desired path γS(xh),
the control points xh and the velocities ẋh are depicted as a thick blue line, blue
squares and thin blue lines, respectively. The actual path γS(x), the control points
x and the velocities ẋ are depicted as a thick red line, red squares and thin red lines,
respectively.

127

Chapter 4 Shared Planning with Integral Haptic Feedback

Test 3

The third test is designed to asses the effect of the reactive control from the Autonomous
Corrector in presence of obstacles and PoIs, while the human operator steers the desired
path by commanding translations (2 DoF) and changes of scale (1 DoF).
The test is first executed in a simulation in which the PoIs are represented by barrels

in the environment and the UAV should fly over them, for example to gather data from
a down-facing camera (represented by a pink cone, as visible from Figs. 4.27a to 4.27c).
Snapshots 4.27a to 4.27c illustrate some meaningful moments during the execution of the
task:

a) at the time t ≈ 12s, γS(x) is attracted by a nearby PoI (Fig. 4.27a);

b) at the time t ≈ 33s, the operator has discarded the previous PoI after it was visited and
now steers the path towards two obstacles (Fig. 4.27b) while the Autonomous Corrector
prevents collisions;

c) at the time t ≈ 47s, the operator shrinks the path to make it pass between two obstacles
(Fig. 4.27c).

The commands given by the operator and the forces rendered on the input devices are
depicted in Figs. 4.27d and 4.27e, respectively. Notice the effect of the PoIs when they are
within the range of action of the artificial potential ϕR, at around 4.6s and 61.3s (vertical
dashed lines in the plots): i) the force feedback has peaks that inform the operator about
the presence of the PoIs; ii) the human is guided by the force feedback and reacts by
steering the path towards the PoIs. The distance of γS(x) from the PoIs is plotted in
Fig. 4.27f. Note that the distance from the PoIs rapidly decreases when they are within
the range RR of action of the potential ϕR. In Fig. 4.27f it is also shown how the operator
discards the first PoI after it has been visited by the robot. The autonomous corrector
also ensures that γS(x) is collision free and regular: Fig. 4.27g shows that the distance
from the obstacles always stays above the threshold RO, and Fig. 4.27h shows that the
distance mini=1,...,n ‖Ωi(x) − xi‖ between the control points and their singular curve is
always greater than zero.

The test was then conducted in an experiment with the real quadrotor. In the experiment,
the environment contains two obstacles which are two vertical bars and a single PoI shaped
like a target that is placed on the ground. The environment is designed so that the operator
must manipulate the path past the obstacles in order to reach the PoI. The quadrotor is
equipped with a down-facing camera which allows the operator to have a visual feedback of
the target. Note that in comparison to the simulation the space available in the environment
is quite smaller and the operator must steer the path in the limited corridor between the
two obstacles in order to reach the target. For this reason the operator commands more
frequent corrections with all the commands at his disposal (see Fig. 4.27d). Similarly to
the simulation, also in this case the Autonomous Corrector keeps the traveled path regular
and collision free, and it attracts it to the single PoI. Figure 4.28f shows a snapshot from
the onboard camera when the UAV transits over the target, thanks to the attractive action
implemented by ua,R on γS(x).

128

4.9 Simulations and Experiments

~YW
~XW

(a) Snapshot 1, t ≈ 12s.

~YW
~XW

(b) Snapshot 2, t ≈ 33s.

~YW
~XW

(c) Snapshot 3, t ≈ 47s.

0 10 20 30 40 50 60 70

0

Tr: −1.5 [m/s]
Sc. rate: −0.15

Tr: 1.5 [m/s]
Sc. rate: 0.15

time [s]

co
m
m
a
n
d
s

Translx Transly Scal POI

(d) Human commands.

0 10 20 30 40 50 60 70
−15

−10

−5

0

5

10

15

time [s]

τ
[N

]

Translx Transly Scal POI

(e) Force feedback.

0 20 40 60
0

1

2

3

4

5

time [s]

m
in

S
‖γ

(x
,s
)
−

r
‖
[m

]

RR

r1 r2 r1 discarded

(f) Distance of the path from the PoIs.

0 20 40 60
0

1

2

3

time [s]

m
in

S
‖γ

(x
,s
)
−

o
‖
[m

]

RO

R̄O

r1 r2

(g) Distance of the path from obstacles and sin-
gularities.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

m
i
n
i

=
1

,
.

.
.

,
n

‖Ω
i(
x
)
−

x
i
‖
[m

]

time [s]

(h) Distance of the control points from singular-
ity curves.

Figure 4.27: Simulation 3: obstacles and PoIs.

129

Chapter 4 Shared Planning with Integral Haptic Feedback

~XW

~YW

(a) Snapshot: t ' 1s.

~XW

~YW

(b) Snapshot: t ' 22s.

0 10 20 30 40 50 60 70

0

Tr: −1 [m/s]
Sc. rate: −0.1
Rot: −8 [deg/s]

Tr: 1 [m/s]
Sc. rate: 0.1
Rot: 8 [deg/s]

time [s]

co
m
m
a
n
d
s

Translx Transly Scal Rot

(c) Commands.

0 10 20 30 40 50 60 70
−10

−5

0

5

10

time [s]

τ
[N

]

Translx Transly Scal Rot

(d) Force feedback.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

RR

m
in

S
‖
γ
(x
,
s
)
−

r
‖
[m

]

time [s]

(e) Distance from PoI. (f) PoI (onboard camera).

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

time [s]

m
in

S
‖
γ
(x
,
s
)
−

o
‖
[m

]

RO

R̄O

o1 o2

(g) Distance from obstacles.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

m
in

i=
1,
..
.,
n
‖
Ω
i(
x
)
−

x
i‖

[m
]

time [s]

(h) Distance from singularities.

Figure 4.28: Experiment 3: obstacles and PoIs.

130

4.9 Simulations and Experiments

Test 4

The fourth test showcases the mechanism for the generation of alternative paths in a cluttered
environment. Figures 4.29a to 4.29d illustrate the different phases of the generation of an
alternative path and the path switch, in simulation:

a) At time t = 17.52s the algorithm is in the crossing step and the alternative path is
‘pulled’ to the other side of the obstacle. Note that the velocity vectors of the control
points xo (thin green lines) are pointing in the direction of the obstacle.

b) At time t = 17.80s the algorithm is in the expansion step and γS(xo), which is already
non-homeotopic to γS(x), is ‘pushed’ out of the obstacle ball. Note that the velocity
vectors of the control points xo (thin green lines) are pointing away from the obstacle.

c) At time t = 19.96s the algorithm is in the activation step and the alternative path is
fully generated.

d) At time t = 23.00s, condition C4 is verified and the current path switches to the
alternative one.

Similarly to Simulation 3, the repulsive term (4.31) keeps the distance between γS(x)
and the obstacles in the environment always greater than RO, even when multiple obstacles
are present at the same time (see Fig. 4.29e). Furthermore, the alternative paths algorithm
allows γS(x) to easily move past an obstacle: this prevents the algorithm to get stuck in a
suboptimal path in terms of closeness to the desired γS(xh). The effect is clearly visible
in Fig. 4.29f which shows how a reduction of the mismatch ‖x − xh‖ occurs whenever
there is a path switch. Figures 4.29g and 4.29h show the evolution of the commands given
by the human operator and of the force feedback. There is a clear jump in the forces,
and consequently in the commands, when the path switches to a new alternative given by
the replanner. This effect gives the natural sensation that the resistance produced by the
obstacle is finally removed and therefore the path is free to move in that direction.
Similar result have also been obtained in experiments, as shown in Fig. 4.30. Note

that the experimental environment contains three obstacles not too far apart, and the
replacer is capable of generating at the same time one alternative path for each obstacle
(see Fig. 4.30e).

131

Chapter 4 Shared Planning with Integral Haptic Feedback

~XW

~YW

(a) Crossing, t = 17.52s.

~XW

~YW

(b) Expansion, t = 17.80s.

~XW

~YW

(c) Activation, t = 19.96s.

~XW

~YW

(d) Switch, t = 23.00s.

0 20 40 60
0

0.5

1

1.5

2

2.5

time [s]

m
in

S
‖γ

(x
,s
)
−

o
‖
[m

]

RO

R̄O

o1 o2 o3 o4 o5

(e) Distance path - obstacles.

0 20 40 60
0

5

10

15

time [s]

‖x
−

x
h
‖
[m

]

switch

(f) Mismatch ‖x− xh‖.

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

co
m
m
an

d
s
[m

/
s]

Translx Transly

(g) Commands.

0 10 20 30 40 50 60 70

−10

−5

0

5

10

time [s]

co
m
m
an

d
s
[m

/
s]

Translx Transly

(h) Force feedback.

Figure 4.29: Simulation 4: generation of alternative paths.

132

4.9 Simulations and Experiments

~YW

~XW

(a) Crossing, t = 17.52s.

~YW

~XW

(b) Expansion, t = 17.80s.

~YW

~XW

(c) Activation, t = 19.96s.

~YW

~XW

(d) Switch, t = 23.00s.

~YW

~XW

(e) Alternative paths with mutliple obstacles.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

time [s]

m
in

S
‖
γ
(x
,
s
)
−

o
‖
[m

]

RO

R̄O

o1 o2 o3

(f) Distance path - obstacles.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

time [s]

‖x
−

x
h
‖
[m

]

switch

(g) Mismatch ‖x− xh‖.

0 10 20 30 40 50 60 70

−1

−0.5

0

0.5

1

time [s]

co
m
m
an

d
s
[m

/
s]

Translx Transly

(h) Commands.

0 10 20 30 40 50 60 70

−10

−5

0

5

10

time [s]

τ
[N

]

Translx Transly

(i) Force feedback.

Figure 4.30: Simulation 4: generation of alternative paths. Snapshots of the phases of the proposed
algorithm.

133

Chapter 4 Shared Planning with Integral Haptic Feedback

Test 5

In the fifth simulation the framework is applied to a coverage task. The task is carried out
in two phases: first, the human operator steers γS(x) in the environment and selects the
area to be monitored; then, the monitoring of the selected area is executed autonomously
by using the PoIs update procedure proposed in Sec. 4.8. Fig. 4.31a shows, first, the
commands given by the user prior to select the initial desired path for the coverage. In
the second part, Fig. 4.31a shows the normalized integral of the coverage function on the
area monitored, i.e., CA =

∫
AC(a, t)da/

∫
A da. The integral CA rapidly increases and it

stabilizes at around 0.7 because of the consumption in the coverage field model (4.54).
Snapshots 4.31b to 4.31d clearly illustrate how the PoIs move during the task and how the
path γS(x) reacts. Observe in particular that at the beginning of the task (Fig. 4.31b),
since the coverage field C is zero almost everywhere, the PoIs are close to the geometrical
centre of the Voronoi cells. As the task is executed the PoIs reach all the locations that
have not be covered, including the centre of the reference path (Fig. 4.31c) and the corners
of A (Fig. 4.31c), and the path γS(x) readily adapts to the PoIs motion.

4.10 Summary and Possible Extensions
Summarizing, it has been presented an extension of the bilateral shared control approach
for mobile robots in which:

1. The operator acts at the planning level and modifies online the desired path planned
for the robot, thus reducing his/her commitment and increasing the autonomy of the
system. The framework provides an intuitive human interface which allows the user
to command a broad variety of path modifications and to use multiple input devices.

2. A reactive algorithm autonomously corrects the path planned by the operator to
guarantee obstacle avoidance and path regularity, and to reach interesting locations
in the environment. The guarantee of a collision free and regular path was formally
proven. The algorithm is integrated with a separate module that allows online
planning of alternative paths.

3. The force feedback is proportional to the mismatch between the planned path and
the one corrected by the robot (i.e., the error is computed in an integral sense on the
future trajectory).

4. The framework was validated by means of extensive human/hardware-in-the-loop
simulations and real experiments employing a quadrotor and two force-feedback
devices.

Several extensions of this framework are possible. Firstly, it could be interesting to make
an evaluation study with subjects to assess the benefits of the integral haptic feedback
and also the importance of the virtual/augmented visual feedback. Another extension
is to include an additional task, such as grasping an object in a certain point, which
would constrain the path modifications. One observation is that in this project have not
been considered possible kinodynamics constraints of the vehicle. This is often done in
monitoring, coverage and patrolling tasks (see e.g., Smith et al. (2012)), where the robots

134

4.10 Summary and Possible Extensions

0 20 40 60 80 100

0

Tr: −0.8 [m/s]
Sc. rate: −0.1

Tr: 0.8 [m/s]
Sc. rate: 0.1

time [s]

co
m
m
a
n
d
s

CoverageHuman

Translx Transly Scal

0 20 40 60 80 100
0

0.5

1

∫ A
C
(a
,t
)d
a
/
∫ A

d
a

(a) Human and coverage phases. (b)

(c) (d)

Figure 4.31: Simulation 5: coverage task. a) in a first phase the operator commands the initial
desired path shape for the coverage; in the second phase the coverage is executed.
b) to d) snapshots of the simulation that depict: γS(x) (red line), γS(xo) (blue
line), the footprint F(p(t), R) covered by the robot (light blue disc), the PoIs (black
dots) and the corresponding Voronoi tessellation of A (black lines), and the coverage
function on A (C = 0 is white and C = 1 is magenta)

135

Chapter 4 Shared Planning with Integral Haptic Feedback

are not required aggressive motion. In this regard, a future extension could be to design an
ad hoc timing law controller that regulates the circulation speed of the robot, including
possible actuation constraints that are generally disregarded, and study also how such
constraints limit the path reshaping.

136

Chapter 5

Conclusions
This manuscript has presented a study on robotic tasks with a human-in-the-loop (RTHL)
a topic of research that recently has received great attention from the research community.
The relevance of this subject has been illustrated in Chap. 1 with a brief summary of
several application domains that involve RTHL. Indeed, the topic is very broad, however the
projects that have been presented in Chaps. 2 to 4 provide a general overview by spanning
various possibilities for the characteristic aspects of RTHL:

Human: In the three projects the human has different roles, i.e., piloting a simulated
vehicle, high-level steering a team of robots and modifying the planned path of a
mobile robot.

Robot: Several kinds of robots have been considered, i.e., a motion platform based on an
extended anthropomorphic manipulator, a group of UAVS and a single mobile robot.

Feedback: Various sensorial cues have been adopted to provide a feedback to the operator,
i.e., vestibular, visual and haptic cues.

Besides giving an overview on RTHL, the three projects are also individually relevant and
involve applications and problems that are presently of great interest. In particular, each
of the frameworks that have been developed add several novel contributions to prior works
and could be extended or generalized to other scenarios. In short:

• In Chap. 2 it was presented and modelled a novel actuated cabin that can be mounted
on industrial manipulators to be used as motion platforms in order to extend their
motion envelope. This novel ‘joint’ could also be used without gondola to increase
the manipulability of a tooltip. Lastly, the control algorithm is in general applicable
to any redundant manipulator that has to track a trajectory unknown in advance.

• In Chap. 3 it was presented a formation controller that regulates the relative bearings
of a group of UAVs while allowing the operator to command synchronised motions
of all the UAVs. The framework also extends the classic bilateral haptic control of
mobile robots by providing an haptic feedback on these synchronised motions. Lastly,
this framework could be generalized to other formations, beyond bearing-formations.

• In Chap. 4 it was presented a framework for shared motion planning, in which the
operator modifies online the path travelled by a robot. The robot can then further
correct the modified path in order to verify some properties. This framework also
extends the classic bilateral haptic control of mobile robots by providing an integral
haptic feedback on the evolution of the planned path. Lastly, this framework could

137

Chapter 5 Conclusions

be generalized by adding to the planned motion constraints from other tasks, such as
grasping a certain object in the environment.

It should also be noted that the three frameworks could also be combined to provide
new paradigms of human-robot interaction. For instance, in the shared bearing-formation
control architecture the human could steer the UAVs from onboard the motion simulator,
which can then be used to provide the operator with a suitable vestibular feedback that
increases his/her situation awareness. In this case the vestibular feedback could reproduce
the sensation of motion of the 1st UAV (beacon of the formation) or of the whole team. A
preliminary study in this direction was presented in Robuffo Giordano et al. (2010a), in
which it was evaluated the performance of a pilot that was tasked to steer a single UAV
while being onboard the motion simulator, however the authors only combined a visual
feedback from a camera onboard the UAV with the vestibular feedback from the motion
simulator but without haptic feedback. Another possibility is to combine the bearing
formation control with the shared planning framework, by letting the operator operate at
the planning level and modifying the planned path for the whole formation of robots (or of
a characteristic point of the formation).

Looking now at the three projects together, there are several observations to be made
regarding the challenges and properties of RTHL introduced in Sec. 1.4.

Human-in-the-loop One of the main challenges of RTHL is that the unpredictable
actions of the human-in-the-loop may complicate or conflict with the task assigned to the
robot, and this problem affects the design of the shared control architecture. This is also
true for the three projects presented in Chaps. 2 to 4, and the frameworks therein illustrate
different approaches to deal with this problem:

Chapter 2: The operator commands, through a motion cueing algorithm, a reference
trajectory for the robot that does not account for the the limitations of the robot, such
as the joint limits. The controller of the robot is then designed to follow, when possible,
the trajectory originated from the operator while coping with the aforementioned
limitations.

Chapter 3: In the shared bearing-formation control the user interface is designed so that
the commands of the operator do not change the relative bearings of group of UAVs
thus not interfering with the task assigned to the robots.

Chapter 4: In the shared planning framework the user commands through a suitable
interface modifications of the path traveled by the robot. These transformations are
locally locally cancelled by means of a null-space projection to ease tracking for the
robot.

Summarizing with some abstraction, the frameworks show how to deal with the unpre-
dictability of the human-in-the-loop on three different levels: 1) on the robot side, by
delegating to the robot the duty of coping with the exogenous human’s signals; 2) on the
human side, by designing the user interface such that the operator does not interfere with
the task of the robot; 3) on the interconnection between human and robot, by cancelling or
filtering the components of the human’s signals that conflict with the task of the robot.

138

These three different strategies entail a higher complexity of different parts of the human-
robot system and they could also be combined together. The advantages of the different
approaches could be assessed by further comparative studies.

Autonomy, role of the operator and UI Another question with HRLTs is ‘how much
autonomy should be given to the robots’? The answer to this question is generally left to
the designer’s choice, but from the three projects that have been tackled it is possible to
gain some insight on what this choice entails. Consider first the motion simulator presented
in Chap. 2. The shared architecture in this case involves little autonomy of the robot and
it is actually very close to a direct control paradigm, because the human directly pilots
a simulated vehicle and the robot tracks the trajectory generated by the aforementioned
virtual vehicle. In other words, the limited autonomy in this architecture translates to a
(almost) direct command interface and it also determines a more involved role of the person
who participates to the task because he/she has to (almost) directly control the motion of
the robot at all times. In the case of the motion simulator the role of the operator and
the command interface are actually implicitly specified by the application itself. Even the
involvement of the operator during the task is desirable, because it can help increasing the
sensation of ‘realistic’ simulated motion. However, for other applications it is in general
desirable to reduce the commitment of the operator in order to decrease his/her workload
and stress level.
Consider now the projects presented in Chaps. 3 and 4. In both cases, the underlying

idea of the frameworks is to give to the robots more autonomy and elevate the role of
the operator at a higher level, i.e., high-level steering of a group of UAVs and motion
planning. The first observation is that with the shift in the role of the human it becomes
necessary to delegate to the robots the execution of larger parts of the task, e.g., 1) in the
shared bearing-formation control, the regulation of the formation is done by the robots, and
2) in the shared planning the mobile robot autonomously ensures that the planned path is
collision free and regular. Besides this transfer of authority, the increased autonomy of the
robots and the new role of the human operator is also reflected by a change in the UIs.

Namely, the commands provided by the human are not anymore direct motion references
for the robots, but motions of a higher-level system, e.g., 1) in the shared bearing-formation
control, the operator gives motion commands to the formation of robots as a single entity,
and 2) in the shared planning framework the operator commands modification of the
planned path. In the frameworks that have been developed for these projects the new
command paradigms have been achieved by designing suitable maps from the degrees of
freedom of the input device used by the operator to motions of the high-level system. The
main observation in regard to these new command paradigms is that they can provide
easier and more intuitive interfaces to the operator with respect to traditional direct control.
This observation was confirmed by the numerous simulations and experiments which have
shown that the operator was able alone to steer a formation of robots and to modify a
planned path with good skill and without any prior training. Indeed, in the projects that
have been completed the focus was not on human factors, therefore further studies should
be conducted to evaluate the benefits of this paradigm shift for the performance of the
operator. However this appears to be a promising direction to attenuate several issues of
RTHL, such as the need of training and commitment of the human-in-the-loop.

Another observation is that the feedback given to the human must be modified accordingly

139

Chapter 5 Conclusions

to the change of his/her role and of the command interface. The feedback in this case
should not give an information of the state of the individual robots but rather of the state of
the system controlled by the operator. In this respect, in the bilateral haptic architectures
of Chaps. 3 and 4 the feedback was rendered on the input channels provided to the operator
(e.g., in the shared formation-control the feedback is given on the translational, rotational
and scaling channels). This change towards a ‘high-level feedback’ can drastically reduce the
amount of data that the operator has to interpret, e.g., by providing a global information
of a team of robots rather than on every individual robot (see framework of Chap. 3). In
practice, the simulations and experiments that have been discussed in Chaps. 3 and 4 have
shown that the novel haptic feedback paradigms were very helpful to the operator. However,
as already discussed for the command interfaces, it will be necessary to conduct additional
studies focused on human-factors in order to evaluate how this high-level feedback affects
situation awareness, workload and performance of the human.
The last observation regards the question of human-to-robot ratio in RTHL. It was

discussed in Sec. 1.4 that the difficulty of the tasks assigned to the human and the
complexity of the UIs often mandate the presence of multiple persons to manage a single
robot, thus making the use of large teams of robots not viable in practice. The framework
presented in Chap. 3 shows that, even though controlling independently and simultaneously
several robots is unfeasible for a single person, shifting the role of the operator and making
him/her control only some global aspect of the group of robots as a whole is a promising
solution to decreasing the human-to-robot ratio. Further studies could be needed to assess
the performance and workload of a single person controlling multiple robots with this new
high-level command interface and feedback.

140

Bibliography
D. A. Abbink, M. Mulder, F. C. T. van der Helm, M. Mulder, and E. R. Boer. Measuring
neuromuscular control dynamics during car following with continuous haptic feedback.
IEEE Trans. on Systems, Man, & Cybernetics. Part B: Cybernetics, 41(5):1239–1249,
2011.

D. A. Abbink, M. Mulder, and E. R. Boer. Haptic shared control: smoothly shifting control
authority? Cognition, Technology & Work, 14(1):19–28, 2012.

J. J. Abbott, P. Marayong, and A. M. Okamura. In S. Thrun, R. Brooks, and H. Durrant-
Whyte, editors, Robotics Research, volume 28 of Springer Tracts in Advanced Robotics,
pages 49–64. Springer Berlin Heidelberg, 2007.

S. K. Agrawal and Y. Jin. A three-wheel vehicle with expanding wheels: differential flatness,
trajectory planning, and control. In 2003 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, volume 2, pages 1450–1455, 2003.

G. Antonelli. Stability analysis for prioritized closed-loop inverse kinematic algorithms for
redundant robotic systems. IEEE Trans. on Robotics, 25(5):985–994, 2009.

G. Antonelli, F. Arrichiello, and S. Chiaverini. Experiments of formation control with
multirobot systems using the null-space-based behavioral control. IEEE Trans. on Control
Systems Technology, 17(5):1173–1182, 2009.

F. Arrichiello, S. Chiaverini, G. Indiveri, and P. Pedone. The null-space based behavioral
control for a team of cooperative mobile robots with actuator saturations. 2009 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 5911–5916, 2009.

C. A. Avizzano, F. Barbagli, and M. Bergamasco. Washout filter design for a motorcycle
simulator. In 2000 IEEE Int. Conf. on Systems, Man, and Cybernetics, volume 2, pages
995–1000, 2000.

C. A. Avizzano, P. Tripicchio, L. Joale, and M. Bergamasco. Design of a motion based
sailing simulator. In 2010 IEEE IEEE Int. Symp. on Robots and Human Interactive
Communications, pages 1–7, 2010.

S. D. Beard, S. E. Reardon, E. L. Tobias, and B. L. Aponso. Simulation system fidelity
assessment at the vertical motion simulator. In American Helicopter Society (AHS)
Annual Forum and Technology Display, Phoenix, AZ, USA, 2013.

T. Bellman, M. Otter, J. Heindl, and G. Hirzinger. Real-time path planning for an
interactive and industrial robot-based motion simulator. In Proc. of the 2nd Motion
Simulator Conference, 2007.

141

Bibliography

T. Bellmann, J. Heindl, M. Hellerer, R. Kuchar, K. Sharma, and G. Hirzinger. The DLR
robot motion simulator part I: Design and setup. In 2011 IEEE Int. Conf. on Robotics
and Automation, pages 4694–4701, 2011a.

T. Bellmann, M. Otter, and G. Hirzinger. The DLR robot motion simulator part II:
Optimization based path-planning. In 2011 IEEE Int. Conf. on Robotics and Automation,
pages 4702–4709, 2011b.

C. Belta and V. Kumar. Abstraction and control for groups of robots. IEEE Trans. on
Robotics, 20(5):865–875, 2004.

A. Berthoz, W. Bles, H. H. Bülthoff, B. J. Grácio, P. Feenstra, N. Filliard, R. Huhne,
A. Kemeny, M. Mayrhofer, M. Mulder, H.-G. Nusseck, P. Pretto, G. Reymond, R. Schlus-
selberger, J. Schwandtner, H. Teufel, B. Vailleau, M. M. van Paassen, M. Vidal, and
M. Wentink. Motion scaling for high-performance driving simulators. Human-Machine
Systems, IEEE Transactions on, 43(3):265–276, 2013.

K. Beykirch, F. M. Nieuwenhuizen, H. Teufel, H.-G. Nusseck, J. Butler, and H. H. Bülthoff.
Control of a lateral helicopter side-step maneuver on an anthropomorphic robot. In
AIAA Modeling and Simulation Technologies Conference and Exhibit, pages 1–11, 2007.

K. Beykirch, F. M. Nieuwenhuizen, H. J. Teufel, H.-G. Nusseck, and H. H. Bülthoff. A
roll-lateral helicopter side-step maneuver on the MPI motion simulator. In AHS 64th
Annual Forum, pages 1–8, 2008.

L. Biagiotti and C. Melchiorri. Trajectory Planning for Automatic Machines and Robots.
Springer, 2008. ISBN 978-3540856283.

A. Bicchi, M. Buss, M. O. Ernst, and A. Peer. The Sense of Touch and Its Rendering:
Progress in Haptics Research. Springer Tracts in Advanced Robotics, 2008.

W. Bles and E. Groen. The desdemona motion facility: Applications for space research.
Microgravity Science and Technology, 21(4):281–286, 2009.

J. E. Bobrow, S. Dubowski, and J. S. Gibson. Time-optimal control of robotic manipulators
along specified paths. The International Journal of Robotics Research, 4(3):3–17, 1985.

H. Boessenkool, D. A. Abbink, C. J. M. Heemskerk, F. C. T. van der Helm, and J. G. W.
Wildenbeest. A task-specific analysis of the benefit of haptic shared control during
telemanipulation. IEEE Transactions on Haptics, 6(1):2–12, 2013.

O. Brock and O. Khatib. Elastic strips: A framework for motion generation in human
environments. The International Journal of Robotics Research, 21(12):1031–1052, 2002.

F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic vehicle routing for
robotic systems. Proceedings of the IEEE, 99(9):1482–1504, 2011.

J. Burke, R. R. Murphy, E. Rogers, V. J. Lumelsky, and J. Scholtz. Final report for
the DARPA/NSF interdisciplinary study on human-robot interaction. IEEE Trans. on
Systems, Man, & Cybernetics. Part C: Applications and Reviews, 34:103–112, May 2004a.

142

Bibliography

J. L. Burke, R. R. Murphy, M. D. Coover., and D. L. Riddle. Moonlight in miami: Field
study of human-robot interaction in the context of an urban search and rescue disaster
response training exercise. Human–Computer Interaction, 19(1-2):85–116, 2004b.

J. Burki-Cohen, T. H. Go, and T. Longridge. Flight simulator fidelity for total air line pilot
training and evaluation. In Proc. of the AIAA Modeling and Simulation Technologies
Conference, 2001.

F. Caccavale and B. Siciliano. Quaternion-based kinematic control of redundant space-
craft/manipulator systems. In Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, volume 1, pages 435–440, 2001.

D. W. Casbeer, R. W. Beard, T. W. McLain, S.-M. Li, and R. K. Mehra. Forest fire
monitoring with multiple small UAVs. In 2005 American Control Conference, pages
3530–3535, 2005.

T. F. Chang and R. V. Dubey. A weighted least-norm solution based scheme for avoiding
joint limits for redundant joint manipulators. IEEE Trans. on Robotics and Automation,
11(2):286–292, 1995.

P. Cheng, J. Keller, and V. Kumar. Time-optimal UAV trajectory planning for 3d urban
structure coverage. In 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 2750–2757, 2008.

P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano. Closed-loop inverse kinematics
schemes for constrained redundant manipulators with task space augmentation and task
priority strategy. The International Journal of Robotics Research, 10(4):410–425, 1991.

S. Chiaverini. Singularity-robust task-priority redundancy resolution for real-time kinematic
control of robot manipulators. IEEE Trans. on Robotics and Automation, 13(3):398–410,
1997.

S. Chiaverini, O. Egeland, and R. K. Kanestrom. Achieving user-defined accuracy with
damped least-squares inverse kinematics. In Proc. of the 5th Int. Conf. on Advanced
Robotics, volume 1, pages 672–677, 1991.

S. Chiaverini, G. Oriolo, and I. D. Walker. Kinematically redundant manipulators. In
B. Siciliano and O. Khatib, editors, Springer Handbook of Robotics, pages 245–285.
Springer, 2008.

M. Cognetti, P. Stegagno, A. Franchi, G. Oriolo, and H. H. Bülthoff. 3-D mutual localization
with anonymous bearing measurements. In 2012 IEEE Int. Conf. on Robotics and
Automation, pages 791–798, St. Paul, MN, May 2012.

B. Conrad and S. F. Schmidt. A study of techniques for calculating motion drive signals
for flight simulators. Technical Report NASA CR-114345, NASA, 1971.

J. Cortés, S. Martínez, F. Karataş, and F. Bullo. Coverage control for mobile sensing
networks. IEEE Trans. on Robotics and Automation, 20(2):243–255, 2004.

143

Bibliography

J. W. Crandall, M. A. Goodrich, D. R. O. Jr., and C. W. Nielsen. Validating human-robot
interaction schemes in multitasking environments. In IEEE Trans. on Systems, Man, &
Cybernetics. Part A: Systems & Humans, volume 35, pages 438–449, 2005.

A. K. Das, R. Fierro, V. Kumar, P. Ostrowski, J. Spletzer, and C. J. Taylor. A vision-based
formation control framework. IEEE Trans. on Robotics and Automation, 18(5):813–825,
2002.

C. De Boor. On calculating with b-splines. Journal of Approximation Theory, 6(1):50–62,
1972.

J. E. Dieudonne, R. V. Parrish, and R. E. Bardusch. An actuator extension transformation
for a motion simulator and an inverse transformation applying newton-raphson’s method.
Nasa tn d-7067, National Aeronautics and Space Administration, 1972.

K. L. Doty, C. Melchiorri, E. M. Schwartz, and C. Bonivento. Robot manipulability. IEEE
Trans. on Robotics and Automation, 11(3):462–468, 1995.

J. L. Drury, L. Riek, and N. Rackliffe. A decomposition of UAV-related situation awareness.
In Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction,
pages 88–94, Salt Lake City, UT, USA, 2006.

J. W. Durham, A. Franchi, and F. Bullo. Distributed pursuit-evasion without global
localization via local frontiers. Autonomous Robots, 32(1):81–95, 2012.

M. R. Endsley. Design and evaluation for situation awareness enhancement. Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, 32(2):97–101, 1988.

T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. O. Anderson. Sensor and
network topologies of formations with direction, bearing, and angle information between
agents. In 42nd IEEE Conf. on Decision and Control, volume 3, pages 3064–3069, 2003.

T. Eren, W. Whiteley, and P. Belhumeur. Using angle of arrival (bearing) information in
network localization. In 45th IEEE Conf. on Decision and Control, pages 4676–4681,
San Diego, CA, Jan. 2006.

EUROP. Robotic vision - to 2020 and beyond, 2009. The Strategic Research Agenda for
Robotics in Europe, EUROP,2009.

N. Faiz, S. K. Agrawal, and R. M. Murray. Trajectory planning of differentially flat systems
with dynamics and inequalities. Journal of Guidance, Control, and Dynamics, 24(2):
219–227, 2001.

T. Faulwasser, V. Hagenmeyer, and R. Findeisen. Optimal exact path-following for
constrained differentially flat systems. In 2011 IFAC World Congress, pages 9875–9880,
Sept. 2011.

D. Ferrazzin, F. Salsedo, and M. Bergamasco. The MORIS simulator. In Robot and Human
Interaction, 1999. RO-MAN ’99. 8th IEEE International Workshop on, pages 136–141,
1999.

144

Bibliography

W. R. Ferrell and T. B. Sheridan. Supervisory control of remote manipulation. IEEE
Spectrum, 4(10):81–88, 1967.

J. Fink, N. Michael, S. Kim, and V. Kumar. Planning and control for cooperative
manipulation and transportation with aerial robots. The International Journal of
Robotics Research, 30(3):324–334, 2010.

M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of nonlinear systems:
Introductory theory and examples. International Journal of Control, 61(6):1327–1361,
1995.

S. L. Fraga, J. Borges de Sousa, and F. L. Pereira. User-assisted trajectory generation- of
underwater vehicles. In Proceedings of OCEANS 2003, volume 2, pages 696–701, 2003.

A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli. The sensor-based random graph method
for cooperative robot exploration. IEEE/ASME Trans. on Mechatronics, 14(2):163–175,
2009.

A. Franchi, G. Oriolo, and P. Stegagno. Probabilistic mutual localization in multi-agent
systems from anonymous position measures. In 49th IEEE Conf. on Decision and Control,
pages 6534–6540, Atlanta, GA, Dec. 2010.

A. Franchi, C. Masone, H. H. Bülthoff, and P. Robuffo Giordano. Bilateral teleoperation of
multiple UAVs with decentralized bearing-only formation control. In 2011 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 2215–2222, San Francisco, CA, Sep.
2011a.

A. Franchi, P. Robuffo Giordano, C. Secchi, H. I. Son, and H. H. Bülthoff. A passivity-based
decentralized approach for the bilateral teleoperation of a group of UAVs with switching
topology. In 2011 IEEE Int. Conf. on Robotics and Automation, pages 898–905, Shanghai,
China, May 2011b.

A. Franchi, C. Masone, V. Grabe, M. Ryll, H. H. Bülthoff, and P. Robuffo Giordano.
Modeling and control of UAV bearing-formations with bilateral high-level steering. The
International Journal of Robotics Research, Special Issue on 3D Exploration, Mapping,
and Surveillance, 31(12):1504–1525, 2012a.

A. Franchi, C. Masone, and P. Robuffo Giordano. A synergetic high-level/reactive planning
framework with application to human-assisted navigation. In 2012 IEEE IROS Work.
on Real-time Motion Planning: Online, Reactive, and in Real-time, Vilamoura, Portugal,
Oct. 2012b.

A. Franchi, C. Secchi, M. Ryll, H. H. Bülthoff, and P. Robuffo Giordano. Shared control:
Balancing autonomy and human assistance with a group of quadrotor UAVs. IEEE
Robotics & Automation Magazine, Special Issue on Aerial Robotics and the Quadrotor
Platform, 19(3):57–68, 2012c.

A. Franchi, C. Secchi, H. I. Son, H. H. Bülthoff, and P. Robuffo Giordano. Bilateral
teleoperation of groups of mobile robots with time-varying topology. IEEE Trans. on
Robotics, 28(5):1019–1033, 2012d.

145

Bibliography

A. R. Girard, A. S. Howell, and J. K. Hedrik. Border patrol and surveillance missions using
multiple unmanned air vehicles. In 2004 IEEE Conf. on Decision and Control, volume 1,
pages 620–625, 2004.

M. A. Goodrich and A. C. Schultz. Human-robot interaction: a survey. Foundations and
Trends in Human-Computer Interaction, 1(3):203–275, 2007.

V. Grabe, H. H. Bülthoff, and P. Robuffo Giordano. On-board velocity estimation and
closed-loop control of a quadrotor UAV based on optical flow. In 2012 IEEE Int. Conf.
on Robotics and Automation, pages 491–497, St. Paul, MN, May 2012.

V. Grabe, M. Riedel, H. H. Bülthoff, P. Robuffo Giordano, and A. Franchi. The TeleKyb
framework for a modular and extendible ROS-based quadrotor control. In 6th European
Conference on Mobile Robots, Barcelona, Spain, Sep. 2013.

P. R. Grant and L. D. Reid. Motion washout filter tuning: rules and requirements. J. of
Aircraft, 34(2):145–151, 1997.

E. L. Groen and W. Bles. How to use body tilt for the simulation of linear self motion.
Journal of Vestibular Research, 14(5):375–385, 2004.

S. Haddadin, A. Albu-Schäffer, A. D. Luca, and G. Hirzinger. Collision detection and
reaction: A contribution to safe physical human-robot interaction. In 2008 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 3356–3363, 2008.

M. Hägele, K. Nilsson, and J. N. Pires. Industrial robotics. In B. Siciliano and O. Khatib,
editors, Springer Handbook of Robotics, pages 963–986. sv, 2008.

J. Hauser and R. Hindman. Aggressive flight maneuvers. In 1997 IEEE Conf. on Decision
and Control, volume 5, pages 4186–4191, 1997.

J. Heindl, M. Otter, H. Hirschmueller, M. Fromberger, F. Siegert, and H. Heinrich. The
robocoaster simulation platform, path and video generation for an authentic mars flight
simulation. In Proceedings ISR-2006, Joint Conference on Robotics / ROBOTIK 2006,
München, 2006.

L. J. Hettinger and M. W. Haas. Virtual and adaptive environments: applications, implica-
tions and human performance issues. LEA, 2009.

G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl. Rotex-the first remotely controlled
robot in space. In 1994 IEEE Int. Conf. on Robotics and Automation, volume 3, pages
2604–2611, 1994.

N. Hogan. Controlling impedance at the man/machine. In 1989 IEEE Int. Conf. on
Robotics and Automation, pages 1626–1631, Scottsdale, AZ, May 1989.

P. F. Hokayem and M. W. Spong. Bilateral teleoperation: An historical survey. Automatica,
42(12):2035–2057, 2006.

A. Howard, L. E. Parker, and G. S. Sukhatme. Experiments with a large heterogeneous
mobile robot team: Exploration, mapping, deployment and detection. The International
Journal of Robotics Research, 25(5-6):431–447, 2006.

146

Bibliography

A. Isidori. Nonlinear Control Systems, 3rd edition. Springer, 1995. ISBN 3540199160.

E. N. Johnson, A. J. Calise, R. Sattigeri, Y. Watanabe, and V. Madyastha. Approaches
to vision-based formation control. In 43th IEEE Conf. on Decision and Control, pages
1643–1648, Paradise Island, Bahamas, Jan. 2004.

Y. Jungwon, B. Novandy, C.-H. Yoon, and K.-J. Park. A 6-DOF gait rehabilitation robot
with upper and lower limb connections that allows walking velocity updates on various
terrains. IEEE/ASME Trans. on Mechatronics, 15(2):201–215, 2010.

W. Käding and F. Hoffmeyer. The advanced Daimler-Benz driving simulator. In SAE
Technical Paper 950175, 1995.

K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-velocity
decomposition. The International Journal of Robotics Research, 5(3):72–89, 1986.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Trans. on Robotics and
Automation, 12(4):566–580, 1996.

J. Kelly and G. S. Sukhatme. Visual-inertial sensor fusion: Localization, mapping and
sensor-to-sensor self-calibration. The International Journal of Robotics Research, 30(1):
56–79, 2011.

Z. A. Khan and S. K. Agrawal. Control of longitudinal flight dynamics of a flapping-wing
micro air vehicle using time-averaged model and differential flatness based controller. In
2007 American Control Conference, pages 5284–5289, 2007.

C. A. Kitts and I. Mas. Cluster space specification and control of mobile multirobot systems.
IEEE/ASME Trans. on Mechatronics, 14(2):207–218, 2009.

L. Kneip, A. Martinelli, S. Weiss, D. Scaramuzza, and R. Siegwart. Closed-form solution
for absolute scale velocity determination combining inertial measurements and a single
feature correspondence. In 2011 IEEE Int. Conf. on Robotics and Automation, pages
4546–4553, Shanghai, China, May 2011.

K. Kosuge and Y. Hirata. Human-robot interaction. In 2004 IEEE Int. Conf. on Robotics
and Biomimetics, pages 8–11, Aug. 2004.

R. Kristiansen, E. Oland, and D. Narayanachar. Operational concepts in UAV formation
monitoring of industrial emissions. In 2012 IEEE Int. Conf. on Cognitive Infocommuni-
cations (CogInfoCom), pages 339–344, 2012.

J. Lächele, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano. SwarmSimX: Real-time
simulation environment for multi-robot systems. In I. Noda, N. Ando, D. Brugali,
and J. Kuffner, editors, 3rd Int. Conf. on Simulation, Modeling, and Programming for
Autonomous Robots, volume 7628 of Lecture Notes in Computer Science, pages 375–387.
Springer, 2012.

T. M. Lam, V. D’Amelio, M. Mulder, and M. V. Paassen. UAV tele-operation using
haptics with a degraded visual interface. In 2006 IEEE Int. Conf. on Systems, Man, and
Cybernetics, volume 3, pages 2440–2445, 2006a.

147

Bibliography

T. M. Lam, M. Mulder, and M. M. V. Paassen. Haptic feedback for UAV tele-operation -
force offset and spring load modification. In 2006 IEEE Int. Conf. on Systems, Man,
and Cybernetics, volume 2, pages 1618–1623, 2006b.

T. M. Lam, H. W. Boschloo, M. Mulder, and M. M. V. Paassen. Artificial force field for
haptic feedback in UAV teleoperation. IEEE Trans. on Systems, Man, & Cybernetics.
Part A: Systems & Humans, 39(6):1316–1330, 2009.

F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation for nonholonomic
mobile robots. IEEE Trans. on Robotics, 20(6):967–977, 2004.

S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. TR 98-11
Computer Science Dept. Iowa State University, Oct. 1998.

S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006. ISBN 0521862051.
Available at http://planning.cs.uiuc.edu.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The International
Journal of Robotics Research, 20(5):378–400, 2001.

D. Lee and M. W. Spong. Bilateral teleoperation of multiple cooperative robots over delayed
communication network: theory. In 2005 IEEE Int. Conf. on Robotics and Automation,
pages 360–365, Barcelona, Spain, Apr. 2005.

D. Lee, A. Franchi, P. Robuffo Giordano, H. I. Son, and H. H. Bülthoff. Haptic teleoperation
of multiple unmanned aerial vehicles over the internet. In 2011 IEEE Int. Conf. on
Robotics and Automation, pages 1341–1347, Shanghai, China, May 2011.

D. J. Lee and K. Huang. Passive-set-position-modulation framework for interactive robotic
systems. IEEE Trans. on Robotics, 26(2):354–369, 2010.

D. J. Lee, A. Franchi, H. I. Son, H. H. Bülthoff, and P. Robuffo Giordano. Semi-
autonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles.
IEEE/ASME Trans. on Mechatronics, Focused Section on Aerospace Mechatronics, 18
(4):1334–1345, 2013.

P. Leven and S. Hutchinson. A framework for real-time path planning in changing environ-
ments. The International Journal of Robotics Research, 21(12):999–1030, 2002.

A. D. Luca, G. Oriolo, A. De, and C. Samson. Feedback control of a nonholonomic car-like
robot, 1997.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997. ISBN 1558603484.

A. A. Maciejewski and C. A. Klein. Numerical filtering for the operation of robotic
manipulators through kinematically singular configurations. J. Robot Syst., 5(6):527–552,
1985.

R. Mahony, T. Hamel, and J.-M. Pflimlin. Nonlinear complementary filters on the special
orthogonal group. IEEE Trans. on Automatic Control, 53(5):1203–1218, 2008.

148

Bibliography

D. Manocha and J. F. Canny. Detecting cusps and inflection points in curves. Comp. Aided
Geom. Design, 9:1–24, 1992.

G. L. Mariottini, F. Morbidi, D. Prattichizzo, N. Vander Valk, N. Michael, G. Pappas,
and K. Daniilidis. Vision-based localization for leader-follower formation control. IEEE
Trans. on Robotics, 25(6):1431–1438, 2009.

C. Masone. Mechanical design and control of the new 7-DOF cybermotion simulator. In
5th Human Centered Motion Cueing Workshop at VTI, Göteborg, Sweden, 2011.

C. Masone, P. Robuffo Giordano, and H. H. Bülthoff. Mechanical design and control
of the new 7-DOF cybermotion simulator. In 2011 IEEE Int. Conf. on Robotics and
Automation, pages 4935–4942, 2011.

C. Masone, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano. Interactive planning of
persistent trajectories for human-assisted navigation of mobile robots. In 2012 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 2641–2648, Vilamoura, Portugal,
Oct. 2012a.

C. Masone, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano. Shared trajectory planning
for human-in-the-loop navigation of mobile robots in cluttered environments. In 5th Int.
Work. on Human-Friendly Robotics, Bruxelles, Belgium, Oct. 2012b.

C. Masone, P. Robuffo Giordano, H. H. Bülthoff, and A. Franchi. Semi-autonomous
trajectory generation for mobile robots with integral haptic shared control. Accapted at
2014 IEEE Int. Conf. on Robotics and Automation, 2014a.

C. Masone, P. Robuffo Giordano, H. H. Bülthoff, and A. Franchi. A real-time framework
for semi-autonomous motion planning and control of mobile robots with integral haptic
feedback. submitted to IEEE Trans. on Robotics, 2014b.

A. S. Matveev, H. Teimoori, and A. Savkin. A method for navigation of an autonomous
vehicle for border patrol. In 2010 American Control Conference, pages 6187–6190, 2010.

J. S. McCarley and C. D. Wickens. Human factors implications of UAVs in the national
airspace. Technical report, University of Illinois, 2005.

D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors.
In 2011 IEEE Int. Conf. on Robotics and Automation, pages 2520–2525, 2011.

C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2001a. ISBN 978-
0898714548.

C. D. Meyer. Matrix Analysis and Applied Linear Algebra. siam, 2001b.

N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The GRASP multiple micro-UAV
testbed. IEEE Robotics & Automation Magazine, 17(3):56–65, 2010.

V. Mistler, A. Benallegue, and N. K. M’Sirdi. Exact linearization and noninteracting control
of a 4 rotors helicopter via dynamic feedback. In 10th IEEE Int. Symp. on Robots and
Human Interactive Communications, pages 586–593, Bordeaux, Paris, France, Sep. 2001.

149

Bibliography

N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis. Vision-based, distributed control
laws for motion coordination of nonholonomic robots. IEEE Trans. on Robotics, 25(4):
851–860, 2009.

M. Mulder, J. A. Mulder, and H. G. Stassen. Cybernetics of tunnel-in-the-sky displays. I.
straight trajectories. In IEEE Int. Conf. on Systems, Man, and Cybernetics, volume 5,
pages 1082–1087, 1999a.

M. Mulder, J. A. Mulder, and H. G. Stassen. Cybernetics of tunnel-in-the-sky displays. II.
curved trajectories. In IEEE Int. Conf. on Systems, Man, and Cybernetics, volume 5,
pages 1088–1093, 1999b.

M. Mulder, D. A. Abbink, and E. R. Boer. Sharing control with haptics: Seamless driver
support from manual to automatic control. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 54(52):786–798, 2012.

R. R. Murphy. Human-robot interaction in rescue robotics. IEEE Trans. on Systems, Man,
& Cybernetics. Part C: Applications and Reviews, 34(2):138–153, May 2004a.

R. R. Murphy. Trial by fire [rescue robots]. IEEE Robotics & Automation Magazine, 11(3):
50–61, 2004b.

R. R. Murphy and D. Schreckenghost. Survey of metrics for human-robot interaction.
In 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pages 197–198, 2013.

R. R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset, and A. M. Erkmen.
Search and rescue robotics. In B. Siciliano and O. Khatib, editors, Springer Handbook of
Robotics, pages 1151–1173. Springer, 2008.

R. R. Murphy, K. L. Dreger, S. Newsome, J. Rodocker, E. Steimle, T. Kimura, K. Makabe,
, F. Matsuno, S. Tadokoro, and K. Kon. Use of remotely operated marine vehicles at
minamisanriku and rikuzentakata japan for disaster recovery. In 2011 IEEE Int. Symp.
on Safety, Security and Rescue Robotics, pages 19–25, Kyoto, Japan, Nov. 2011.

R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of mechanical control
systems: A catalog of prototype systems. In Proceedings of the 1995 ASME International
Congress and Exposition, 1995.

L. Nehaoua, H. Arioui, and S. Mammar. Review on single track vehicle and motorcycle
simulators. In 2011 19th Mediterranean Conference on Control Automation (MED),
pages 940–945, 2011.

B. J. Nelson and P. K. Khosla. Strategies for increasing the tracking region of an eye-in-hand
system by singularity and joint limit avoidance. The International Journal of Robotics
Research, 14(3):255–269, 1995.

G. Niemeyer, C. Preusche, and G. Hirzinger. Telerobotics. In B. Siciliano and O. Khatib,
editors, Springer Handbook of Robotics, pages 741–757. Springer, 2008.

150

Bibliography

F. M. Nieuwenhuizen and H. H. Bülthoff. The MPI cybermotion simulator: A novel research
platform to investigate human control behavior. Journal of Computing Science and
Engineering, 7(2):122–131, 2013.

M. J. V. Nieuwstadt and R. M. Murray. Real-time trajectory generation for differentially
flat systems. International Journal on Robust and Nonlinear Control, 8:995–1020, 1998.

H.-G. Nusseck, H. J. Teufel, F. M. Nieuwenhuizen, and H. H. Bülthoff. Learning system
dynamics: Transfer of training in a helicopter hover simulator. In Proc. of the AIAA
Modeling and Simulation Technologies Conference, pages 1–11, 2008.

O. A. A. Orqueda and R. Fierro. Robust vision-based nonlinear formation control. In 2006
American Control Conference, pages 1422–1427, Minneapolis, MN, Jun. 2006.

T. Ortmaier, M. Groger, D. H. Boehm, V. Falk, and G. Hirzinger. Motion estimation in
beating heart surgery. IEEE Trans. on Biomedical Engineering, 52(10):1729–1740, 2005.

J. Peng and S. Akella. Coordinating multiple robots with kinodynamic constraints along
specified paths. The International Journal of Robotics Research, 24(4):295–310, 2005.

Q.-C. Pham. Fast trajectory correction for nonholonomic mobile robots using affine
transformations. In 2011 Robotics: Science and Systems, June 2011.

Q.-C. Pham and Y. Nakamura. Regularity properties and deformation of wheeled robot
trajectories. In 2012 IEEE Int. Conf. on Robotics and Automation, pages 3212–3217,
May 2012.

L. Pollini, M. Innocenti, and A. Petrone. Novel motion platform for flight simulators using
an anthropomorphic robot. AIAA Journal of Aerospace Computing, Information, and
Communication, 5:175–196, 2008.

P. Pretto, H.-G. Nusseck, H. J. Teufel, and H. H. Bülthoff. Effect of lateral motion on
drivers’ performance in the MPI motion simulator. In Driving Simulation Conference
Europe, 2009.

M. Quigley, M. A. Goodrich, and R. W. Beard. Semi-autonomous human-UAV interfaces for
fixed-wing mini-UAVs. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, volume 3, pages 2457–2462 vol.3, 2004.

S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and control. In 1993
IEEE Int. Conf. on Robotics and Automation, pages 802–807, Atlanta, GA, May 1993.

A. Renzaglia, L. Doitsidis, A. Martinelli, and E. B. Kosmatopoulos. Multi-robot three
dimensional coverage of unknown areas. The International Journal of Robotics Research,
31(6):738–752, 2012.

M. Riedel, A. Franchi, H. H. Bülthoff, P. Robuffo Giordano, and H. I. Son. Experiments
on intercontinental haptic control of multiple UAVs. In 12th Int. Conf. on Intelligent
Autonomous Systems, pages 227–238, Jeju Island, Korea, Jun. 2012.

151

Bibliography

P. Robuffo Giordano, H. Deusch, J. Lächele, and H. H. Bülthoff. Visual-vestibular feedback
for enhanced situational awareness in teleoperation of UAVs. In AHS International 66th
Annual Forum, pages 2809–2818, 2010a.

P. Robuffo Giordano, C. Masone, J. Tesch, M. Breidt, L. Pollini, and H. H. Bülthoff. A
novel framework for closed-loop robotic motion simulation - part I: Inverse kinematics
design. In 2010 IEEE Int. Conf. on Robotics and Automation, pages 3876–3883, 2010b.

P. Robuffo Giordano, C. Masone, J. Tesch, M. Breidt, L. Pollini, and H. H. Bülthoff. A
novel framework for closed-loop robotic motion simulation - part II: Motion cueing design
and experimental validation. In 2010 IEEE Int. Conf. on Robotics and Automation,
pages 3896–3903, 2010c.

P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff. Bilateral teleoperation of
groups of UAVs with decentralized connectivity maintenance. In 2011 Robotics: Science
and Systems, Los Angeles, CA, Jun. 2011a.

P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff. Experiments of passivity-
based bilateral aerial teleoperation of a group of UAVs with decentralized velocity
synchronization. In 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
163–170, San Francisco, CA, Sep. 2011b.

E. J. Rodríguez-Seda, J. J. Troy, C. A. Erignac, P. Murray, D. M. Stipanović, and M. W.
Spong. Bilateral teleoperation of multiple mobile agents: Coordinated motion and
collision avoidance. IEEE Trans. on Control Systems Technology, 18(4):984–992, 2010.

L. B. Rosenberg. Virtual fixtures: Perceptual tools for telerobotic manipulation. In 1993
IEEE Virtual Reality Annual Int. Symp., pages 76–82, Seattle, WA, 1993.

I. Sa and P. Corke. Replanning with RRTs. In 2006 IEEE Int. Conf. on Robotics and
Automation, May 2006.

J. Scholtz and S. Bahrami. Human-robot interaction: development of an evaluation
methodology for the bystander role of interaction. In 2003 IEEE Int. Conf. on Systems,
Man and Cybernetics, volume 4, pages 3212–3217, 2003.

M. Schwager, B. J. Julian, and D. Rus. Optimal coverage for multiple hovering robots with
downward facing cameras. In 2009 IEEE Int. Conf. on Robotics and Automation, pages
3515–3522, Kobe, Japan, May 2009.

M. Schwager, B. Julian, M. Angermann, and D. Rus. Eyes in the sky: Decentralized
control for the deployment of robotic camera networks. Proceedings of the IEEE, 99(9):
1541–1561, 2011.

C. W. Schwarz. Two mitigation strategies for motion system limits in driving and flight
simulators. IEEE Trans. on Systems, Man, & Cybernetics. Part A: Systems & Humans,
37(4):562–568, 2007.

C. Secchi, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano. Bilateral teleoperation of
a group of UAVs with communication delays and switching topology. In 2012 IEEE Int.
Conf. on Robotics and Automation, pages 4307–4314, St. Paul, MN, May 2012.

152

Bibliography

K. M. Seiler, S. P. Singh, S. Sukkarieh, and H. Durrant-Whyte. Using Lie group symmetries
for fast corrective motion planning. The International Journal of Robotics Research, 31
(2):151–166, 2011.

R. V. O. Shakernia and S. Sastry. Formation control of nonholonomic mobile robots with
omnidirectional visual servoing and motion segmentation. In 2003 IEEE Int. Conf. on
Robotics and Automation, pages 584–589, Taipei, Taiwan, Sep. 2003.

T. B. Sheridan. Telerobotics, Automation, and Human Supervisory Control. MIT Press,
Cambridge, MA, USA, 1992.

T. B. Sheridan and W. L. Verplanck. Human and computer control of undersea teleoperators.
Technical report, MIT Man-Machine Laboratory, 1978.

Z. Shiller. On singular time-optimal control along specified paths. IEEE Trans. on Robotics
and Automation, 10(4):561–566, 1994.

B. Siciliano. Kinematic control of redundant robot manipulators: A tutorial. Journal of
Intelligent and Robotic Systems, 3(3):201–212, 1990.

B. Siciliano. On the use of quaternions for robot interaction control tasks. In Proceedings
of the 5th Int. Symposium on Methods and Models in Automation and Robotics, 1998.

B. Siciliano and J.-J. Slotine. A general framework for managing multiple tasks in highly
redundant robotic systems. In Advanced Robotics, 1991. ’Robots in Unstructured En-
vironments’, 91 ICAR., Fifth International Conference on, volume 2, pages 1211–1216,
1991.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning and
Control. Springer, 2009.

R. Siuikat. The new dynamic driving simulator at DLR. In Driving Simulator Conference
2005, pages 374–381, Orlando, FL, USA, 2005.

M. Sivak. The information that drivers use: is it indeed 90% visual? Perception, 25(9):
1081–1089, 1996.

J.-J. Slotine and H. S. Yang. Improving the efficiency of time-optimal path-following
algorithms. IEEE Trans. on Robotics and Automation, 5(1):118–124, 1989.

R. Smith, M. Schwager, S. L. Smith, D. Rus, and G. Sukhatme. Persistent ocean monitoring
with underwater gliders: Towards accurate reconstruction of dynamic ocean processes.
In 2011 IEEE Int. Conf. on Robotics and Automation, pages 1517–1524, 2011.

S. L. Smith, M. Schwager, and D. Rus. Persistent robotic tasks: Monitoring and sweeping
in changing environments. IEEE Trans. on Robotics, 28(2):410–426, 2012.

F. Soyka, P. Robuffo Giordano, K. Beykirch, and H. H. Bülthoff. Predicting direction
detection thresholds for arbitrary translational acceleration profiles in the horizontal
plane. Experimental Brain Research, 209(1):95–107, 2011.

153

Bibliography

F. Soyka, P. Robuffo Giordano, M. Barnett-Cowan, and H. H. Bülthoff. Modeling direction
discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary
motion profiles. Experimental Brain Research, 220(1):89–99, 2012.

D. Stewart. A platform with six degrees of freedom. Proceedings of the Institution of
Mechanical Engineers, 180(1):371–386, 1965.

M. C. Stone and T. D. DeRose. A geometric characterization of parametric cubic curves.
ACM Trans. Graph., 8(3):147–163, 1989.

S. Thrun. Toward a framework for human-robot interaction. Human–Computer Interaction,
19(1-2):9–24, 2004.

K. Waldron and J. Schmiedeler. Kinematics. In B. Siciliano and O. Khatib, editors, Springer
Handbook of Robotics, pages 9–33. Springer, 2008.

M. Wentink, W. Bles, R. Hosman, and M. Mayrhofer. Design & evaluation of spheri-
cal washout algorithm for desdemona simulator. In AIAA Modeling and Simulation
Technologies Conference and Exhibit, San Francisco, CA, USA, 2005.

J. G. W. Wildenbeest, D. A. Abbink, C. J. M. Heemskerk, F. C. T. van der Helm, and
H. Boessenkool. The impact of haptic feedback quality on the performance of teleoperated
assembly tasks. IEEE Transactions on Haptics, 6(2):242–252, 2013.

E. Yoshida and F. Kanehiro. Reactive robot motion using path replanning and deformation.
In 2006 IEEE Int. Conf. on Robotics and Automation, pages 5456–5462, May 2006.

T. Yoshikawa. Manipulability of robotic mechanisms. The International Journal of Robotics
Research, 4(2):3–9, 1985.

S. Yuta, H. Asama, S. Thrun, E. Prassler, and T. Tsubouchi. Field and Service Robotics,
volume 24 of Springer Tracts in Advanced Robotics. Springer, 2006.

154

	Notation
	Abstract
	Deutsche Kurzfassung
	Introduction
	Robotic Tasks with a Human-in-the-Loop
	Application Domains of RTHL and Related Fields
	Motivations of RTHL
	Characteristics and Challenges of RTHL
	Autonomy
	Human-to-robot ratio
	User interfaces
	Shared Control

	Objectives and Outline of the Thesis

	Design and control of a novel motion simulator
	Introduction
	Related Works

	Preliminaries
	Cabin Kinematics
	Forward Kinematics
	Differential Kinematics

	High-Level Control
	Results
	Summary and Possible Extensions

	Shared control of a UAV bearing-formation
	Introduction
	Related Works

	Preliminaries
	UAV Model
	Agent Model

	Relative bearings
	Properties of Relative Bearings
	Bearing-Formations

	Overview of the Framework
	Human Steering
	Formation Controller
	Computational and Communication Complexity
	Time-varying desired bearings

	Haptic Feedback Algorithm
	Simulations and Experiments
	Experimental Testbed
	Results

	Summary and Possible Extensions

	Shared Planning with Integral Haptic Feedback
	Introduction
	Related Works

	Preliminaries
	B-Splines
	Overview of the Proposed Framework
	Human Guidance
	Autonomous Correction
	Reactive Path Deformation
	Generation of Non-homotopic Alternative Paths

	Haptic Feedback
	Coverage Task with Human-in-the-loop
	Simulations and Experiments
	Experimental Testbed
	Results

	Summary and Possible Extensions

	Conclusions
	Bibliography

