Decentralized Estimation and Control Methods for Cooperative Robot Motion

Antonio Franchi

CNRS, LAAS, France, Europe

Seoul National University, Engineering Seoul, South Korea 25th October, 2016

- 1. Graphs, Matrices, and Eigenvalues
- 2. Connectivity vs Infinitesimal Rigidity
- 3. Maintenance Problems and Methods
- 4. Handling Multiple Objectives in Maintenance Problems
- 5. Applications

Partial list:

- P. Yang, R.A. Freeman, G.J. Gordon, K.M. Lynch, S.S. Srinivasa, and R. Sukthankar, "Decentralized estimation and control of graph connectivity for mobile sensor networks," Automatica, vol. 46, no. 2. pp. 390–396, Feb. 2010.
- G. Hollinger and S. Singh, "Multirobot coordination with periodic connectivity: Theory and experiments," IEEE Transactions on Robotics , 2012,
- L. Sabattini, C. Secchi, N. Chopra, and A Gasparri. Distributed Control of Multirobot Systems With Global Connectivity Maintenance. Robotics, IEEE Transactions on Robotics, 29(5):1326-1332, 2013.
- D. Carboni, R.K. Williams, A. Gasparri, G. Ulivi, and G.S. Sukhatme. Rigidity-Preserving Team Partitions in Multi-Agent Networks. IEEE Transactions on Cybernetics, pp 1-14, 2014.

If you want to know more about what follows:

- Robuffo Giordano, P., A. Franchi, C. Secchi, and H. H. Bülthoff (2013). *A Passivity-Based Decentralized Strategy for Generalized Connectivity* Maintenance". The International Journal of Robotics Research 32.3, pp. 299–323.
- Zelazo, D., A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano (2014). Decentralized Rigidity Maintenance Control with Range Measurements for Multi-Robot Systems. The International Journal of Robotics Research 34.1, pp. 105–128.
- Nestmeyer T., P. Robuffo Giordano, H. H. Bülthoff, and A. Franchi (2016), Decentralized Simultaneous Multi-target Exploration using a Connected Network of Multiple Robots. Autonomous Robots, online first June 2016, doi:10.1007/s10514-016-9578-9

Graphs, Matrices, and Eigenvalues

Graph

- $\mathcal{G} = (\mathcal{V}, \, \mathcal{E})$ is an undirected graph or simply graph
 - $\mathcal{V} = \{1, \dots, N\}$ vertex set
 - $\mathcal{E} \subset (\mathcal{V} \times \mathcal{V}) / \sim$ edge set
 - \sim equivalence relation identifying (i, j) and (j, i)

A Graph models an Adjacency Structure

 $[(i, j)] \in \mathcal{E} \Leftrightarrow$ vertexes *i* and *j* are **neighbors** or **adjacent**

• (i, j), i < j representative element of the equivalence class [(i, j)]

$$[\mathcal{V} \times \mathcal{V}] = \{(1, 2), (1, 3), \dots, (1, N), \dots, (N-1, N)\} \\ = \{e_1, e_2, \dots, e_{N-1}, \dots, e_{N(N-1)/2}\}$$

- $[(i, i)] \notin \mathcal{E}, \forall i \in \mathcal{V} \text{ (no self-loops)}$
- $\mathcal{N}_i = \{j \in \mathcal{V} \mid (i, j) \in \mathcal{E}\}$ set of **neighbors** of *i*

 $E \in \mathbb{R}^{N \times N(N-1)/2}$ is the (full) incidence matrix of \mathcal{G}

- $\forall e_k = (i, j) \in [\mathcal{V} \times \mathcal{V}]:$
 - $E_{ik} = -1$ and $E_{jk} = 1$, if $e_k \in \mathcal{E}$
 - $E_{ik} = 0$ and $E_{jk} = 0$, otherwise

Matricial representation of a graph

Example:

$$E = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 & -1 \end{pmatrix}$$
$$e_1 \quad e_2 \quad e_3 \quad e_4 \quad e_5 \quad e_6$$

remember:

$$\{e_1, e_2, \ldots, e_{N-1}, \ldots, e_{N(N-1)/2}\} = \{(1, 2), (1, 3), \ldots, (1, N), \ldots (N-1, N)\}$$

LAAS CNRS

Assume N mobile robots moving in an environment:

- $\mathbf{x}_i \in \mathbb{R}^{N_{\mathbf{x}}}$ *i*-th robot configuration, $i \in 1 \dots N$
- $\boldsymbol{z} \in \mathbb{R}^{N_{\boldsymbol{z}}}$ environment configuration

Consider two maps

 $\begin{array}{rll} \mbox{robot map} & \mbox{v}: & \ensuremath{\mathbb{R}}^{N_x} \ensuremath{\; \ni \;} x_i \ensuremath{\; \mapsto \;} v(x_i) = \mbox{v}_i \in \ensuremath{\mathbb{R}}^{N_v} \\ \mbox{connection map} & \mbox{w}: & \ensuremath{\mathbb{R}}^{N_x} \times \ensuremath{\mathbb{R}}^{N_z} \ensuremath{\; \ni \;} (x_i, x_j, z) \ensuremath{\; \mapsto \;} w(x_i, x_j, z) = \mbox{w}_{ij} \in \ensuremath{\mathbb{R}}_{\geq 0} \end{array}$

with the properties

•
$$\mathbf{w}_{ij} = \mathbf{w}_{ji}$$
 (symmetry)

• **w**_{ii} = 0

example: what can those maps model?

The connection map w defines an associated graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where

- $\mathcal{V} = \{1, 2, \dots, N\}$
- $\mathcal{E} = \{ e_k = (i, j) \mid \mathbf{w}_{ij} > 0 \}$
- the **positive weight** \mathbf{w}_{ij} is associated to each edge $(i, j) \in \mathcal{E}$

Both maps **v** and **w** define an associated framework $(\mathcal{G}, \mathbf{v})$ where

- ${\mathcal G}$ is the associated graph
- \mathbf{v}_i is associated to each vertex $i \in \mathcal{V}$

$$A = \begin{pmatrix} 0 & \mathbf{w}_{12} & \dots & \mathbf{w}_{1N} \\ \mathbf{w}_{12} & 0 & \dots & \mathbf{w}_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{w}_{1N} & \mathbf{w}_{2N} & \cdots & 0 \end{pmatrix}$$

 $\in \mathbb{R}^{\textit{N} \times \textit{N}}$ is the adjacency (or weight) matrix of $\mathcal G$

Note that

- $A_{ij} = 0$ if $(i, j) \notin \mathcal{E}$
- $A_{ij} > 0$ otherwise

Properties:

$$\mathsf{P.1} \ \mathsf{A} = \mathsf{A}(\mathsf{x}_1, \ldots, \mathsf{x}_N, \mathsf{z})$$

P.2 A is square

$$\begin{array}{l} \mathsf{P.3} \ A_{ij} = A_{ij} \ (\text{symmetric}) \\ \mathsf{P.4} \ A_{ij} = A_{ij} \geq 0 \ (\text{nonnegative}) \\ \mathsf{P.5} \ A_{ii} = 0 \end{array}$$

Example:

$$A = \begin{pmatrix} 0 & \mathbf{w}_{12} & \mathbf{w}_{13} & \mathbf{w}_{14} \\ \mathbf{w}_{12} & 0 & \mathbf{w}_{23} & 0 \\ \mathbf{w}_{13} & \mathbf{w}_{23} & 0 & \mathbf{w}_{34} \\ \mathbf{w}_{14} & 0 & \mathbf{w}_{34} & 0 \end{pmatrix}$$

$$L = \begin{pmatrix} \sum_{j=1}^{n} \mathbf{w}_{1j} & -\mathbf{w}_{12} & \dots & -\mathbf{w}_{1N} \\ -\mathbf{w}_{12} & \sum_{j=1}^{n} \mathbf{w}_{j2} & \dots & -\mathbf{w}_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -\mathbf{w}_{1N} & -\mathbf{w}_{2N} & \dots & \sum_{j=1}^{n} \mathbf{w}_{jN} \end{pmatrix}$$

 $\in \mathbb{R}^{\textit{N} \times \textit{N}}$ is the Laplacian matrix of $\mathcal G$

Note that

Example:

•
$$L = \operatorname{diag}(\delta_i) - A$$
,

where
$$\delta_i = \sum_{j=1}^n \mathbf{w}_{ij}$$

(degree of vertex *i*)

1 (1,3) 3 (3,q) (1,4) 4

Properties:

P.1
$$L = L(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z})$$

P.2 L is square
P.3 $L_{ii} = L_{ii}$ (symmetric)

$$L = \begin{pmatrix} \mathbf{w}_{12} + \mathbf{w}_{13} + \mathbf{w}_{14} & -\mathbf{w}_{12} & -\mathbf{w}_{13} & -\mathbf{w}_{14} \\ -\mathbf{w}_{12} & \mathbf{w}_{12} + \mathbf{w}_{23} & -\mathbf{w}_{23} & \mathbf{0} \\ -\mathbf{w}_{13} & -\mathbf{w}_{23} & \mathbf{w}_{13} + \mathbf{w}_{23} + \mathbf{w}_{34} & -\mathbf{w}_{34} \\ -\mathbf{w}_{14} & \mathbf{0} & -\mathbf{w}_{34} & \mathbf{w}_{14} + \mathbf{w}_{34} \end{pmatrix}$$

Connectivity

 ${\mathcal G}$ is connected if there is a path between every pair of vertices, i.e.,

 $\forall i \in \mathcal{V} \text{ and } j \in \mathcal{V} ackslash i, \quad \exists \text{ a path (sequence of adjacent edges) from } i \text{ to } j$

This is a combinatorial definition of connectivity

disconnected graph

connected graph

question: connectivity is a global property, what does it mean? and why it is global?

What connectivity can model?

- connected communication network
- connected **sensing** network
- connected **control** network
- connected **planning** roadmap

What connectivity is important for?

- pass a message from any robot to any other robot
- know the relative position between any two robots in a common frame
- converge to a common point
- share a common goal

Related concepts

- group, cohesiveness
- aggregation
- sharing

Additional properties of $L = \operatorname{diag}(\delta_i) - A$

• L is positive semi-definite, i.e., all the eigenvalues are real and non-negative

$$0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$$

• $\sum_{i=1}^{n} L_{ij} = 0$ $\forall i = 1 \dots N$, i.e., $L\mathbf{1} = \mathbf{0}$, therefore

 $\lambda_1 = 0$ and it is associated to the eigenvector $\mathbf{1} = \begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix}^T$

(Fiedler 1973)

 $\lambda_2 > 0$ if the graph ${\cal G}$ is connected and $\lambda_2 = 0$ otherwise

 λ_2 provides an algebraic definition of connectivity

 $\Rightarrow \lambda_2$ is called *algebraic connectivity, connectivity eigenvalue*, or Fiedler eigenvalue $\lambda_2 = \lambda_2(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z})$ is a global quantity

Example (if $\mathbf{w}_{ij} \in \{0,1\} \ \forall (i,j) \in \mathcal{V} \times \mathcal{V}$):

A framework of positions is a particular framework $(\mathcal{G}, \mathbf{v})$ in the special case in which $\mathbf{v} : \mathcal{V} \to \mathbb{R}^d$ maps each vertex to the position in \mathbb{R}^d of the *i*-th robot

• if
$$d = 2$$
, $\mathbf{v}_i = \mathbf{p}_i = \begin{pmatrix} p_i^x \\ p_i^y \end{pmatrix}$, 2D position of robot i
• if $d = 3$, $\mathbf{v}_i = \mathbf{p}_i = \begin{pmatrix} p_i^x \\ p_i^y \\ p_i^z \end{pmatrix}$, 3D position of robot i

In the following

- it will be (mainly) d = 3, similar results apply for d = 2
- · we refer only to framework of positions, called simply frameworks

Equivalent and Congruent Frameworks

Consider two frameworks $(\mathcal{G}, \boldsymbol{p}')$ and $(\mathcal{G}, \boldsymbol{p}'')$

- same graph ${\mathcal G}$
- different positions \boldsymbol{p}' and \boldsymbol{p}''

Frameworks $(\mathcal{G}, \mathbf{p}')$ and $(\mathcal{G}, \mathbf{p}'')$ are

- equivalent: if $\|\mathbf{p}'_i \mathbf{p}'_j\| = \|\mathbf{p}''_i \mathbf{p}''_j\|$ for all $(i, j) \in \mathcal{E}$, and
- congruent: if $\|\mathbf{p}'_i \mathbf{p}'_j\| = \|\mathbf{p}''_i \mathbf{p}''_j\|$ for all $(i, j) \in \mathcal{V} \times \mathcal{V}$

Global Rigidity

The framework (\mathcal{G},p') is globally rigid if every other framework (\mathcal{G},p'') which

- is equivalent to $(\mathcal{G}, \mathbf{p}'')$
- is also congruent to $(\mathcal{G},\mathbf{p}')$

This is, again, a combinatorial definition

Rigidity

Rigidity

The framework $(\mathcal{G}, \mathbf{p}')$ is **rigid** if $\exists \epsilon > 0$ such that every other framework $(\mathcal{G}, \mathbf{p}'')$ which

- is equivalent to $(\mathcal{G}, \boldsymbol{p}'')$ and
- satisfies $\|\mathbf{p}'_i \mathbf{p}''_i\| < \epsilon$ for all $i \in \mathcal{V}$,

is congruent to $(\mathcal{G}, \boldsymbol{p}')$

This is, again, a combinatorial definition

question: is rigidity a global property of the graph as well?

What rigidity can model?

• rigid mechanical structure made of bars

but also:

- rigid sensing network
- rigid control network

What rigidity is important for?

- **univocally** compute the arrangement (**shape**) of a group of robots only using **inter-distances**
- achieve (or track) a desired shape **only controlling** the **inter-distances** (formation control)

Related concepts

- parallel rigidity
- persistent graph
- tensegrity

question: do you know an example of use of rigidity in robotics?

question: do you know an example of use of rigidity in robotics?

6-DOF Stewart platform parallel robot

Credits: Robert L. Williams II

Let's give a definition of rigidity that is differential (\Leftrightarrow involves infinitesimal motions)

Consider a trajectory $\mathbf{p}(t)$ with $t \ge t_0$ and impose equivalence along the trajectory:

$$\left\|\mathbf{p}_i(t)-\mathbf{p}_j(t)
ight\|^2=\left\|\mathbf{p}_i(t_0)-\mathbf{p}_j(t_0)
ight\|^2= ext{const} \quad ext{for all} \quad (i,j)\in\mathcal{E}, \ orall t\geq t_0$$

Differentiating with respect to time the constraint above:

$$\left(\mathbf{p}_{i}(t)-\mathbf{p}_{j}(t)\right)^{T}\left(\dot{\mathbf{p}}_{i}(t)-\dot{\mathbf{p}}_{j}(t)
ight)=0 \quad \text{for all} \quad (i,j)\in\mathcal{E}, \ \forall t\geq t_{0} \tag{1}$$

Trivial Motion

A collective motion that consists of only **global roto-translations** of the whole set of positions in the framework

Infinitesimal Rigidity

The framework $(\mathcal{G}, \mathbf{p}(t_0))$ is **infinitesimally rigid** if every possible motion that satisfies (1) is **trivial**

question: is this framework rigid in $\mathbb{R}^2 ?$ is it infinitesimally rigid?

question: is this framework rigid in \mathbb{R}^2 ? is it infinitesimally rigid?

- infinitesimal rigidity \Rightarrow rigidity
- rigidity \Rightarrow infinitesimal rigidity

Let us write the infinitesimal rigidity constraint in a matricial form

$$0 = \mathbf{w}_{ij} \left(\mathbf{p}_{i}(t) - \mathbf{p}_{j}(t) \right)^{T} \left(\dot{\mathbf{p}}_{i}(t) - \dot{\mathbf{p}}_{j}(t) \right) =$$

$$= \mathbf{w}_{ij} \left(\mathbf{p}_{i}(t) - \mathbf{p}_{j}(t) \right)^{T} \dot{\mathbf{p}}_{i}(t) - \left(\mathbf{p}_{i}(t) - \mathbf{p}_{j}(t) \right)^{T} \dot{\mathbf{p}}_{j}(t) =$$

$$= \mathbf{w}_{ij} \underbrace{ \left(-\mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{j}(t) \right)^{T}}_{\text{vertex } i} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{j}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\text{vertex } j} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} - \mathbf{0}^{T} - \underbrace{\left(\mathbf{p}_{i}(t) - \mathbf{p}_{i}(t) \right)^{T}}_{\mathbf{k}_{ij} \in \mathbb{R}^{1 \times 3N}} -$$

where
$$\mathbf{0} = \begin{pmatrix} 0 & 0 & \dots & 0 \end{pmatrix}^T$$

stacking the previous constraints for every $(i, j) \in \{e_1, e_2 \dots e_{N-1} \dots, e_{N(N-1)/2}\}$:

$$\underbrace{\begin{pmatrix} \mathbf{w}_{12} \\ \vdots \\ \mathbf{w}_{N(N-1)} \end{pmatrix}}_{W(\mathbf{w}) \in \mathbb{R}^{\frac{N(N-1)}{2} \times \frac{N(N-1)}{2}} \times \frac{N(N-1)}{2}} \underbrace{\begin{pmatrix} \mathbf{k}_{12} \\ \vdots \\ \mathbf{k}_{N(N-1)} \end{pmatrix}}_{K(\mathbf{p})} \underbrace{\begin{pmatrix} \dot{\mathbf{p}}_{1} \\ \vdots \\ \dot{\mathbf{p}}_{N} \end{pmatrix}}_{\dot{\mathbf{p}} \in \mathbb{R}^{3N}} = \underbrace{W(\mathbf{w}) K(\mathbf{p})}_{R(\mathbf{w},\mathbf{p}) \in \mathbb{R}^{\frac{N(N-1)}{2} \times 3N}} \dot{\mathbf{p}} = R(\mathbf{w},\mathbf{p}) \dot{\mathbf{p}} = \mathbf{0}$$

Rigidity Matrix

 $R(\mathbf{w}, \mathbf{p})$ is the (weighted) rigidity matrix

$$d = 2 (\mathbb{R}^2)$$

 $N = 4$
 $N(N-1)/2 = 6$

$$\begin{split} R(\mathbf{w},\mathbf{p}) = \\ & \left(\begin{array}{c} \mathsf{w}_{12}(p_1^x - p_2^x) \; \mathsf{w}_{12}(p_1^y - p_2^y) \; \; \mathsf{w}_{12}(p_2^x - p_1^x) \; \mathsf{w}_{12}(p_2^y - p_1^y) \; & 0 \; & 0 \; & 0 \; \\ \mathsf{w}_{13}(p_1^x - p_3^x) \; \mathsf{w}_{13}(p_1^y - p_3^y) \; & 0 \; & 0 \; & \mathsf{w}_{13}(p_3^x - p_1^x) \; \mathsf{w}_{13}(p_3^y - p_1^y) \; & 0 \; & 0 \; \\ \mathsf{w}_{14}(p_1^x - p_4^x) \; \mathsf{w}_{14}(p_1^y - p_4^y) \; & 0 \; & 0 \; & 0 \; & \mathsf{w}_{14}(p_3^x - p_1^x) \; \mathsf{w}_{14}(p_4^y - p_1^y) \; \\ \mathsf{0} \; & \mathsf{0} \; \; \mathsf{w}_{23}(p_2^x - p_3^x) \; \mathsf{w}_{23}(p_2^y - p_3^y) \; \mathsf{w}_{23}(p_3^x - p_2^x) \; \mathsf{w}_{23}(p_3^y - p_2^y) \; & \mathsf{0} \; & \mathsf{0} \; \\ \mathsf{0} \; \; \mathsf{0} \; \; \mathsf{0} \; \; \mathsf{0} \; \; \mathsf{0} \; \mathsf{0} \; & \mathsf{0} \; & \mathsf{0} \; \\ \mathsf{0} \; \; \mathsf{0} \; \; \mathsf{0} \; \; \mathsf{0} \; \\ \mathsf{0} \; \; \mathsf{0} \;$$

- rigidity is defined combinatorially ("...s.t. every other framework...")
- infinitesimal rigidity implies rigidity
- converse not true (degenerate cases) but...
- infinitesimal rigidity can be defined algebraically, in fact...

- collective roto-translations in \mathbb{R}^3 keep constant all the distances, by definition, i.e., if $\dot{\mathbf{p}}$ is trivial then $R(\mathbf{w}, \mathbf{p})\dot{\mathbf{p}} = 0$
- \Rightarrow Dim (ker[$R(\mathbf{w}, \mathbf{p})$]) \geq 6 always
- for infinitesimally rigid frameworks the motion that keep constant all the distances are only collective roto-translations in ℝ³
 i.e., if R(w, p)p = 0 then p is trivial
- infinitesimally rigidity \Rightarrow Dim (ker[$R(\mathbf{w}, \mathbf{p})$]) = 6

(Tay and Whiteley 1985) and (Zelazo et al. 2014)

A framework is infinitesimally rigid if and only if $rank[R(\mathbf{w}, \mathbf{p})] = 3N - 6$

• despite its name, the rigidity matrix is actually characterizing **infinitesimal rigidity** (rather than **rigidity**)

 $S(\mathbf{w}, \mathbf{p}) = R(\mathbf{w}, \mathbf{p})^T R(\mathbf{w}, \mathbf{p}) \in \mathbb{R}^{3N \times 3N}$ is the symmetric rigidity matrix

(Zelazo et al. 2014)

Properties:

- $\mathsf{P.1} \ S = S(\mathbf{w}, \mathbf{p}) = S(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z})$
- P.2 $S \in \mathbb{R}^{3N \times 3N}$ (square)
- P.3 $S_{ij} = S_{ji}$ (symmetric)
- P.4 Dim $(\ker[S(\mathbf{w}, \mathbf{p})]) \ge 6$

(Zelazo et al. 2014)

A framework is infinitesimally rigid if and only if $rank[S(\mathbf{w}, \mathbf{p})] = 3N - 6$

LAAS CNRS

Additional properties of $S = R^T R$

• S is positive semi-definite, i.e., all the eigenvalues are real and non-negative

 $0 \leq \varsigma_1 \leq \varsigma_2 \leq \ldots \leq \varsigma_6 \leq \varsigma_7 \leq \ldots \leq \varsigma_{3N}$

• $Dim(ker[S(\mathbf{w}, \mathbf{p})]) \ge 6$, therefore

$$\varsigma_1 = \varsigma_2 = \varsigma_3 = \varsigma_4 = \varsigma_5 = \varsigma_6 = 0$$

(Zelazo et al. 2014)

 $\varsigma_7>0$ if the framework is infinitesimally rigid and $\varsigma_7=0$ otherwise

 ς_7 provides an algebraic definition of infinitesimal rigidity $\Rightarrow \varsigma_7$ is called the **rigidity eigenvalue** (Zelazo et al. 2014) $\varsigma_7 = \varsigma_7(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z})$ is a global quantity

Connectivity vs Infinitesimal Rigidity

LAAS ENRS

Connectivity

 \exists a path between any pair of vertexes

- depends on x₁,..., x_N, z
 (global property)
- Laplacian matrix $L \in \mathbb{R}^{N \times N}$
- \Leftrightarrow Fidler eigenvalue $\lambda_2 > 0$

Infinitesimal rigidity

distance-preservation on the edges forces a trivial (roto-translational) movement

- depends on x₁,..., x_N, z
 (global property)
- symmetric rigidity matrix $S \in \mathbb{R}^{3N imes 3N}$
- \Leftrightarrow rigidity eigenvalue $\varsigma_7 > 0$

(Infinitesimal) Rigidity \Rightarrow Connectivity, i.e., $\varsigma_7 > 0 \Rightarrow \lambda_2 > 0$

In fact, e.g., by contradiction:

- not connected implies at least two connected components
- **distance** between the two connected components **can change** still preserving equivalence
- \Rightarrow by enforcing infinitesimal rigidity one enforces connectivity as well

Connectivity

- applicable to any graph
- depends only on w
- \Rightarrow infinitesimal rigidity

Infinitesimal rigidity

- applicable only to frameworks (graphs + positions)
- depends both on w and v=p
- \Rightarrow connectivity

Infinitesimal rigidity is a stronger property and applies to a more particular structure (framework)

Maintenance Problems and Methods

Assume each robot $i = 1, \ldots, N$

- can control $\mathbf{x}_i(t)$, $\forall t \geq t_0$ (with $\mathbf{x}_i(t)$ smooth enough)
- has some objectives (mission)

Maintenance problem(s)

Maintenance \neq

- assume G is connected (or (G, \mathbf{p}) is infinitesimally rigid) for $t = t_0$
- control $\mathbf{x}_1(t), \ldots, \mathbf{x}_N(t)$ such that
 - 1. \mathcal{G} stays connected (or $(\mathcal{G}, \mathbf{p})$ stays infinitesimally rigid) $\forall t > t_0$
 - 2. the mission of each robot is accomplished
 - eventual achievement
 - periodical achievement

Using the algebraic formulation of connectivity and infinitesimal rigidity

Connectivity maintenance

- assume λ₂(t₀) > 0
- for *t* > *t*₀
 - maintain $\lambda_2(\mathbf{x}_1(t), \ldots, \mathbf{x}_N(t), \mathbf{z}) > 0$
 - o and accomplish the mission

Infinitesimal rigidity maintenance

- assume
 _{γ7}(t₀) > 0
- for $t > t_0$
 - maintain $\varsigma_7(\mathbf{x}_1(t), \dots, \mathbf{x}_N(t), \mathbf{z}) > 0$
 - and accomplish the mission

- 1. define potential function $V:(\mu_{\min},+\infty)
 ightarrow\mathbb{R}^+$, that
 - $\begin{array}{l} \circ \ \mbox{grows unbounded as } \mu \rightarrow^+ \mu^{\min} > 0 \\ \circ \ \mbox{vanishes (with vanishing derivatives) as} \\ \mu > \mu^0 > \mu^{\min} \\ \circ \ \mbox{is, at least, } C^1, \ \mbox{i.e., it exists } \frac{dV}{d\mu}, \ \forall \mu > \mu^{\min} \end{array}$

2. let each robot command

$$\mathbf{x}_{i}^{(h)} = \left. \frac{\mathrm{d}V}{\mathrm{d}\mu} \right|_{\lambda_{2}(t)} \left. \frac{\partial\lambda_{2}}{\partial\mathbf{x}_{i}} \right|_{(\mathbf{x}_{1},\ldots,\mathbf{x}_{N},\mathbf{z})} + u_{i}$$

(for connectivity maintenance)

$$\mathbf{x}_{i}^{(h)} = \left. \frac{\mathrm{d}V}{\mathrm{d}\mu} \right|_{\varsigma_{7}(t)} \left. \frac{\partial\varsigma_{7}}{\partial \mathbf{x}_{i}} \right|_{(\mathbf{x}_{1},\ldots,\mathbf{x}_{N},\mathbf{z})} + u_{i}$$

(for infinitesimal rigidity maintenance)

where u_i is a properly designed additional control input accounting for

- accomplishment of mission
- stability

connectivity maintenance

$$\frac{\mathrm{d}V}{\mathrm{d}\mu}\bigg|_{\lambda_2(t)} \left.\frac{\partial\lambda_2}{\partial\mathbf{x}_i}\right|_{(\mathbf{x}_1,\ldots,\mathbf{x}_N,\mathbf{z}_N)}$$

infinitesimal rigidity maintenance

$$\frac{\mathrm{d}\boldsymbol{V}}{\mathrm{d}\boldsymbol{\mu}}\bigg|_{\varsigma_{7}(t)}\left.\frac{\partial\varsigma_{7}}{\partial\mathbf{x}_{i}}\right|_{(\mathbf{x}_{1},\ldots,\mathbf{x}_{N},\mathbf{z})}$$

Gradient computation is composed by two parts

First part: computation of
$$\frac{\mathrm{d}V}{\mathrm{d}\mu}\Big|_{\lambda_2(t)}$$
 (or $\frac{\mathrm{d}V}{\mathrm{d}\mu}\Big|_{\varsigma_7(t)}$)

requires that each robot knows:

- \bullet the function V
- λ₂(t) (or ς₇(t))

Second part: Computation of $\left. \frac{\partial \lambda_2}{\partial \mathbf{x}_i} \right|_{(\mathbf{x}_1,...,\mathbf{x}_N,\mathbf{z})}$ (or $\left. \frac{\partial \varsigma_7}{\partial \mathbf{x}_i} \right|_{(\mathbf{x}_1,...,\mathbf{x}_N,\mathbf{z})}$)

requires in general

• the analytic expression of the gradient of λ_2 (or ς_7) with respect to \mathbf{x}_i

Gradient of λ_2 and ς_7

Given a matrix M, any eigenvalue can be written as $\mu = \mathbf{u}^T M \mathbf{u}$, where

• **u** is a normalized eigenvector associated to μ (i.e., $M\mathbf{u} = \mu\mathbf{u}$ and $\mathbf{u}^T\mathbf{u} = 1$)

Connectivity

$$\lambda_2 = \mathbf{u}^T L \mathbf{u}$$

differentiating, we obtain (Yang et al. 2010)

$$\frac{\partial \lambda_2}{\partial \mathbf{x}_i} = \sum_{(j,h) \in \mathcal{E}} \frac{\partial \mathbf{w}_{jh}}{\partial \mathbf{x}_i} (\mathbf{u}_j - \mathbf{u}_h)^2$$

Infinitesimal rigidity

$$\varsigma_7 = \mathbf{u}^T S \mathbf{u}$$

differentiating, we obtain (Zelazo et al. 2014)

$$\begin{aligned} \frac{\partial \varsigma_7}{\partial \mathbf{x}_i} &= \sum_{(j,h)\in\mathcal{E}} \frac{\partial \mathbf{w}_{jh}}{\partial \mathbf{x}_i} \mathbf{s}_{jh} + \frac{\partial \mathbf{s}_{jh}}{\partial \mathbf{x}_i} \mathbf{w}_{jh} \\ \mathbf{s}_{jh} &= \left((p_j^x - p_h^x)^2 (\mathbf{u}_j^x - \mathbf{u}_h^x)^2 + (p_j^y - p_h^y)^2 (\mathbf{u}_j^y - \mathbf{u}_h^y)^2 + (p_j^z - p_h^z)^2 (\mathbf{u}_j^z - \mathbf{u}_h^z)^2 + 2(p_j^x - p_h^z) (p_j^y - p_h^y) (\mathbf{u}_j^x - \mathbf{u}_h^z) (\mathbf{u}_j^y - \mathbf{u}_h^y) + 2(p_j^x - p_h^z) (p_j^z - p_h^z) (\mathbf{u}_j^x - \mathbf{u}_h^z) (\mathbf{u}_j^z - \mathbf{u}_h^z) + 2(p_j^y - p_h^y) (p_j^z - p_h^z) (\mathbf{u}_j^x - \mathbf{u}_h^z) (\mathbf{u}_j^z - \mathbf{u}_h^z) + 2(p_j^y - p_h^y) (p_j^z - p_h^z) (\mathbf{u}_j^y - \mathbf{u}_h^y) (\mathbf{u}_j^z - \mathbf{u}_h^z) (\mathbf{u}_j^z - \mathbf{u}_h^z) \end{aligned}$$

Decentralized control law

Consider a network of robots performing a control law

The control law is decentralized if, for each robot *i*, the size of the

- communication bandwidth
- computation time (per step)
- memory used (inputs, outputs, local variables)

depends only on $|\mathcal{N}_i|$ and not on N

• a control law that is not decentralized is not scalable

Example of decentralized control law: consensus

$$\dot{\mathbf{x}}_i = \sum_{j \in \mathcal{N}_i} (\mathbf{x}_j - \mathbf{x}_i) \quad \forall i$$

The two control laws shown so far, i.e.,

connectivity maintenance

$$\frac{\mathrm{d}V}{\mathrm{d}\mu}\bigg|_{\mu=\lambda_2}\sum_{(j,h)\in\mathcal{E}}\frac{\partial\mathbf{w}_{jh}}{\partial\mathbf{x}_i}(\mathbf{u}_j-\mathbf{u}_h)^2$$

infinitesimal rigidity maintenance

$$\frac{\mathrm{d}V}{\mathrm{d}\mu}\bigg|_{\mu=\varsigma_{7}}\sum_{(j,h)\in\mathcal{E}}\frac{\partial\mathbf{w}_{jh}}{\partial\mathbf{x}_{i}}\mathbf{s}_{jh}+\frac{\partial\mathbf{s}_{jh}}{\partial\mathbf{x}_{i}}\mathbf{w}_{jh}$$

are they decentralized control law?

The two control laws shown so far, i.e.,

connectivity maintenance

$$\frac{\mathrm{d}V}{\mathrm{d}\mu}\bigg|_{\mu=\lambda_2}\sum_{(j,h)\in\mathcal{E}}\frac{\partial \mathbf{w}_{jh}}{\partial \mathbf{x}_i}(\mathbf{u}_j-\mathbf{u}_h)^2\bigg|$$

infinitesimal rigidity maintenance

$$\frac{\mathrm{d}V}{\mathrm{d}\mu}\bigg|_{\mu=\varsigma_{7}}\sum_{(j,h)\in\mathcal{E}}\frac{\partial\mathbf{w}_{jh}}{\partial\mathbf{x}_{i}}\mathbf{s}_{jh}+\frac{\partial\mathbf{s}_{jh}}{\partial\mathbf{x}_{i}}\mathbf{w}_{jh}$$

They are not decentralized control law because

- each robot must know λ_2 (or ς_7) that depends on $\mathbf{x}_1(t), \ldots, \mathbf{x}_N(t), \mathbf{z}$
- each robot must know \mathbf{w}_{jh} and \mathbf{s}_{jh} , $\forall (j, h) \in \mathcal{E}$, and $\mathbf{u}_1, \ldots, \mathbf{u}_N$ that also depend on $\mathbf{x}_1(t), \ldots, \mathbf{x}_N(t), \mathbf{z}$

Goal: make the control law decentralized

LAAS CNRS

Locality assumption for the connection map w

$$\forall i \in \mathcal{V}, \forall (j, h) \in \mathcal{E} \quad \frac{\partial \mathbf{w}_{jh}}{\partial \mathbf{x}_i} = 0 \text{ if neither } j = i \text{ nor } h = i$$

Consequence for connectivity gradient

$$\begin{split} \frac{\partial \lambda_2}{\partial \mathbf{x}_i} &= \sum_{(j,h) \in \mathcal{E}} \frac{\partial \mathbf{w}_{jh}}{\partial \mathbf{x}_i} (\mathbf{u}_j - \mathbf{u}_h)^2 = \sum_{j \in \mathcal{N}_i} \frac{\partial \mathbf{w}_{ij}}{\partial \mathbf{x}_i} (\mathbf{u}_i - \mathbf{u}_j)^2 \\ \frac{\partial \lambda_2}{\partial \mathbf{x}_i} &= \sum_{j \in \mathcal{N}_i} \mathbf{f}_\lambda \left(\frac{\partial \mathbf{w}_{ij}}{\partial \mathbf{x}_i}, \mathbf{w}_{ij}, \mathbf{x}_i, \mathbf{x}_j, \mathbf{u}_i, \mathbf{u}_j \right) \end{split}$$

Locality assumption for the connection map w

$$\forall i \in \mathcal{V}, \forall (j, h) \in \mathcal{E} \quad \frac{\partial \mathbf{w}_{jh}}{\partial \mathbf{x}_i} = 0 \text{ if neither } j = i \text{ nor } h = i$$

Consequence for infinitesimal rigidity gradient

 $\overline{j \in \mathcal{N}_i}$

where $p_{ii} = p_i - p_i$

Antonio Franchi - http://homepages.laas.fr/afranchi/

AAS

CNR

Locality assumption for the connection map w

 $\forall i \in \mathcal{V}, \forall (j, h) \in \mathcal{E} \quad \frac{\partial \mathbf{w}_{jh}}{\partial \mathbf{x}_i} = 0 \text{ if neither } j = i \text{ nor } h = i$

The two gradient-based control laws with locality assumption

connectivity maintenance

infinitesimal rigidity maintenance

$$V'(\lambda_2)\sum_{j\in\mathcal{N}_i}\mathbf{f}_{\lambda}\left(\frac{\partial\mathbf{w}_{ij}}{\partial\mathbf{x}_i},\mathbf{w}_{ij},\mathbf{x}_i,\mathbf{x}_j,\mathbf{u}_i,\mathbf{u}_j\right) \qquad V'(\varsigma_7)\sum_{j\in\mathcal{N}_i}\mathbf{f}_{\varsigma}\left(\frac{\partial\mathbf{w}_{ij}}{\partial\mathbf{x}_i},\mathbf{w}_{ij},\mathbf{x}_i,\mathbf{x}_j,\mathbf{u}_i,\mathbf{u}_j\right)$$

become **partially decentralized** control law, each robot must know:

• λ_2 (or ς_7) that depends on $\mathbf{x}_1(t), \ldots, \mathbf{x}_N(t), \mathbf{z}$ (not decentralized)

•
$$\mathbf{x}_i$$
, \mathbf{w}_{ij} , $\frac{\partial \mathbf{w}_{ij}}{\partial \mathbf{x}_i}$, and \mathbf{x}_j , $\forall j \in \mathcal{N}_i$, and \mathbf{z} , (decentralized)

• \mathbf{u}_i and \mathbf{u}_j , $\forall j \in \mathcal{N}_i$ that depend on $\mathbf{x}_1(t), \dots, \mathbf{x}_N(t), \mathbf{z}$ (not decentralized)

Goal: compute λ_2 (or ς_7), \mathbf{u}_i and $\mathbf{u}_j \ \forall j \in \mathcal{N}_i$ in a decentralized way

Continuous power iteration method (Yang et al. 2010; Zelazo et al. 2014)

An iterative algorithm to get an estimate $\hat{\mu}$ and $\hat{\mathbf{u}}$ of the the *I*-th eigenvalue μ and the associated eigenvector \mathbf{u} of a positive semidefinite matrix $M \in \mathbb{R}^n$

Denote with $T \in \mathbb{R}^{n \times l - 1}$ the image matrix of the first l - 1 eigenvectors

$$\dot{\hat{\mathbf{u}}} = -k_1 T T^T \hat{\mathbf{u}} - k_2 M \hat{\mathbf{u}} - k_3 \left(\frac{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}{n} - 1 \right)$$

- $-k_1 T T^T \hat{\mathbf{u}}$: deflation: to remove the components spanned by the first l-1 eigenvectors
- $-k_2 M \hat{\mathbf{u}}$: direction update, to move towards \mathbf{u}
- $-k_3\left(\frac{\hat{\mathbf{u}}^T\hat{\mathbf{u}}}{n}-1\right)$: renormalization to stay away from the null vector

The eigenvalue is estimated as

$$\hat{\mu} = \frac{k_3}{k_2} \left(1 - \|\hat{\mathbf{u}}\|^2 \right)$$

Decentralized power iteration method (Yang et al. 2010; Zelazo et al. 2014)

$$\dot{\hat{\mathbf{u}}} = -k_1 T T^T \hat{\mathbf{u}} - k_2 M \hat{\mathbf{u}} - k_3 \left(\frac{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}{n} - 1 \right)$$

connectivity maintenance

infinitesimal rigidity maintenance

The only remaining global quantities

- $T^T \hat{\mathbf{u}}$
- $\hat{\mathbf{u}}^T \hat{\mathbf{u}}$

can be estimated using the proportional/integral-average consensus estimator (PI-ACE) (Yang et al. 2010)

Possible limits of the gradient-based methods

- the robot could be unable to follow the gradient because of, e.g, input saturation
- possibility of local minima (depending on the environment complexity)

Possible **limits** of the decentralized methods:

- need for time-scale separation: decentralized estimator dynamics must be faster than motion control dynamics
- the gains of the decentralized estimator must be carefully tuned depending on N
- decentralized power iteration does not work for eigenvalues with multiplicity > 1
- (decentralized) power iteration has a relatively slow convergence

Possible destabilization due to non-perfect estimation can be mitigated using **passivity theory** (Robuffo Giordano et al. 2013)

Handling Multiple Objectives in Maintenance Problems

Connectivity in a network of robots is typically associated to

Inter-robot

- communication
- relative sensing

Quality of inter-robot sensing/communication modeled by a sufficiently smooth non-negative scalar function

$$\gamma_{ij} = \gamma(\mathbf{x}_i, \mathbf{x}_j, \mathbf{z}) \geq 0$$

Measures the quality of the mutual information exchange

- $\gamma_{ij} = 0$ if no exchange is possible and
- $\gamma_{ij} > 0$ otherwise
- the larger γ_{ij} the better the quality

Straightforward use:

$$\mathbf{w}_{ij} = \gamma_{ij}$$

In order to handle multiple objectives define

 $\mathbf{w}_{ij} = \alpha_{ij}\beta_{ij}\gamma_{ij}$

where

- $\alpha_{ij} \ge 0$ encodes hard constraints
- $\beta_{ij} \ge 0$ encodes soft requirements
- $\gamma_{ij} \ge 0$ encodes the communication/sensing objectives (defined before)

this defines the

- generalized connectivity, and a
- generalized infinitesimal rigidity

Hard constraints: conditions HD_1, HD_2, \ldots that must be true $\forall t \ge 0$

Maintenance methods automatically keep true a hard constraint: $HD_0 \equiv$ connectivity

Idea: define α_{ij} such that

• not HD_h for some $h \Rightarrow not HD_0$

How? Just define α_{ii} s.t.

• not HD_h for some $h \Rightarrow \alpha_{ij} = 0$, $\forall j = 1, \dots, N$

Why only $\alpha_{ij} = 0, \forall j = 1, \dots, N$?

- it is enough for non-connectivity $(\alpha_{ij} = 0, \forall j = 1, ..., N \text{ implies robot } i \text{ becomes disconnected from the rest})$
- is intrinsically decentralized

 α_{ij} must be smooth enough to allow for gradient computation

• the more $\alpha_{ij} \rightarrow 0$ the closer to not HD_h

Soft requirements: should be **preferably** realized by the individual pair (i, j)

Notes:

- gradient-based maintenance methods tend to maximize the maintenance eigenvalues (e.g., λ₂ or ς₇)
- maintenance eigenvalues monotonically increase w.r.t. $\mathbf{w}_{ij} \; orall (i,j) \in \mathcal{E}$

Idea: define β_{ij} such that

- has a unique maximum when the soft constraints are realized
- monotonically decreases down to $\beta_{ij} = 0$ otherwise

Non-perfect compliance with a soft requirement leads to

• corresponding decrease of maintenance eigenvalue

$$\downarrow \beta_{ij} \Rightarrow \downarrow \mathbf{w}_{ij} \Rightarrow \downarrow \lambda_2 \text{ (or } \downarrow \varsigma_7\text{)}$$

Complete violation of soft requirement

- leads to disconnected edge (i, j), but
- does not (in general) result in a global loss of connectivity for the graph

Applications

LAAS CNRS

Communication/sensing objectives $\rightarrow \gamma_{ij}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{z})$

Proximity sensing model:

- D > 0 is a suitable sensing/communication maximum range (e.g., radio signal)
- robot *i* and *j* able to interact iff $\|\mathbf{x}_i \mathbf{x}_j\| < D$,

Proximity-visibility sensing model (e.g., onboard cameras):

- S_{ij} line-of-sight segment joining x_i and x_j
- robot *i* and *j* able to interact iff $\|\mathbf{x}_i \mathbf{x}_j\| < D$, and dist $(S_{ij(\mathbf{x}_i, \mathbf{x}_j)}, \text{obst}(\mathbf{z})) > D_{\text{vis}}$

Hard constraints $\rightarrow \alpha_{ij}$

e.g., inter-robot collision avoidance: $\|\mathbf{x}_i - \mathbf{x}_j\| > d_0$

Soft requirements $\rightarrow \beta_{ij}$

e.g., formation control, e.g., $\| \bm{x}_i - \bm{x}_j \| \simeq \textit{d}_{\rm des}$

Mission: **concurrent exploration** of a **sequence** of **targets** While maintaining "generalized" **connectivity**, i.e., including

- proximity/visibility sensing model
- collision avoidance
- preferred inter-distance

Connectivity maintenance in case of, e.g., second order systems:

$$\ddot{\mathbf{x}}_i = \left. \frac{\mathrm{d}V}{\mathrm{d}\mu} \right|_{\lambda_2(t)} \left. \frac{\partial\lambda_2}{\partial\mathbf{x}_i} \right|_{(\mathbf{x}_1,\dots,\mathbf{x}_N,\mathbf{z})} + u_i$$

$$u_i = -B\dot{\mathbf{x}}_i + f_i^{\mathrm{expl}}$$

- -Bx_i stabilizing damping
- f_i^{expl} multi-target exploration force (Nestmeyer et al. 2016)

Multi-Target Exploration with Connectivity

Multi-Target Exploration with Connectivity

Mission: **unilateral multi-user teleoperation** of some robots in the team While maintaining "generalized" **infinitesimal rigidity**, i.e., including

- proximity/visibility sensing model
- collision avoidance
- preferred inter-distance

Infinitesimal rigidity maintenance in case of, e.g., first order systems:

$$\begin{split} \dot{\mathbf{x}}_{i} &= \left. \frac{\mathrm{d}V}{\mathrm{d}\mu} \right|_{\varsigma_{7}(t)} \left. \frac{\partial\varsigma_{7}}{\partial \mathbf{x}_{i}} \right|_{(\mathbf{x}_{1},...,\mathbf{x}_{N},\mathbf{z})} + u_{i} \\ u_{i} &= \begin{cases} v_{i}^{h} & \text{if connected to a human} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

• v_i^h desired velocity commanded by a human

Short summary

- Single scalars can define fundamental global properties
 - λ_2 Fiedler eigenvalue (Fiedler 1973)
 - ο _{\$7} rigidity eigenvalue (Zelazo et al. 2014)
- Distributed computation of the gradient is possible
 - + smooth
 - + online computation (fast)
 - presence of local minima

Some open problems

- coinciding eigenvalues
- local minima (using decentralized global planning?)

Bearing rigidity (from SE(3) to SE(3))

- D. Zelazo, Franchi, A., and Robuffo Giordano, P., "Rigidity Theory in SE(2) for Unscaled Relative Position Estimation using only Bearing", in 2014 European Control Conference, Strasbourg, France, 2014, pp. 2703-2708.
- D. Zelazo, Robuffo Giordano, P., and Franchi, A., "Bearing-Only Formation Control Using an SE(2) Rigidity Theory", in 54rd IEEE Conference on Decision and Control, Osaka, Japan, 2015
- F. Schiano, Franchi A, Zelazo D, Robuffo Giordano P., "A Rigidity-Based Decentralized Bearing Formation Controller for Groups of Quadrotor UAVs", in 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and System, Daejeon, South Korea, 2016.
- G. Michieletto, Cenedese A, Franchi A. "Bearing Rigidity Theory in SE(3)", in 55th IEEE Conference on Decision and Control, Las Vegas, NV, 2016.

References

Questions?

Decentralized Estimation and Control Methods for Cooperative Robot Motion

Antonio Franchi

CNRS, LAAS, France, Europe

Seoul National University, Engineering Seoul, South Korea 25th October, 2016

IEEE RAS Technical Committee on Multi-Robot Systems:

http://multirobotsystems.org/

- recently founded (Fall 2014)
- 330 members
- identifying and constantly tracking the common characteristics, problems, and achievements of multi-robot systems research in its several and diverse domains
 - robotics
 - automatic control
 - telecommunications
 - o computer science / AI
 - optimization
 - o ...

If you work/are interested on multi-robot/agent systems then **become a member**! http://multirobotsystems.org/?q=user/register