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A Novel Robust Hexarotor Capable of Static
Hovering in Presence of Propeller Failure

Elgiz Baskaya1?, Mahmoud Hamandi2?, Murat Bronz1, Antonio Franchi3,2

Abstract—This paper presents a novel open source design of
the Y-shaped hexarotor Unammend Aerial Vehicle (UAV), and
proves both in theory and real experiments its robustness to the
failure of any of its propellers. An intuitive geometrical interpre-
tation of UAV static hovering ability is presented, through which
the robustness of different coplanar/collinear hexarotor designs is
analyzed. Following the presented geometrical interpretation, we
also show the conditions that allow the Star-shaped hexarotor to
be robust to the failure of some of its propellers, while showing its
incapability to static hover in the case of the failure of any of its
propellers. Finally, the efficiency of the Y-shaped and Star-shaped
hexarotors are tested experimentally, and conclusions on the
advantages and disadvantages of the two designs are drawn.

Index Terms—Aerial Systems: Mechanics and Control, Aerial
Systems: Applications, Failure Detection and Recovery

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAV)s are now widely
used in research and industry thanks to their versatility

and large field of applications, such as aerial physical inter-
action [1], [2] and human-robot collaboration [3], [4]. Among
the variety of UAV designs discussed in the literature [5], it
seems that in the above applications, quadrotors, hexarotors,
and octorotors are the most commonly used; this is most
commonly due to their flight efficiency as compared to more
compex UAVs, in addition to the ease and low cost of their
production.

For the above applications, and any similar application that
requires UAVs to hover near other objects or humans, it is of
paramount importance, for safety and reliability, that the multi-
rotor is designed to withstand at least a single propeller failure,
and precisely land after the fault. It has been shown that it is
possible to still fly multi-rotors with less than six propellers
(e.g., quadrotors) after the loss of one or more propellers [6].
In such cases, however, the platform is no longer able to
statically hover, i.e., to keep a zero translational and angular
velocity, where these platforms start to loiter and spin at an
uncontrolled speed, while only their average location can be
controlled in practice (referred to as dynamic hovering). This
is an acceptable compromise if the multirotor flies in an open
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space and if its exteroceptive perception system can still work
in such highly dynamic conditions. However, in the previously
mentioned working conditions, dynamic hovering is not an
acceptable fall-back solution.

Recently [7] have introduced a stronger notion of robustness
to propeller failure, as the capability to statically hover after
the loss of any of the multi-rotor propellers. In order to meet
an acceptable safety standard, this property is a required one
for any platform flying in a critical environment. It has been
shown that, in order to achieve static hovering robustness for
a platform with alternating propeller rotation direction, six
propellers are minimally required [7]. Furthermore, surpris-
ingly, it has been shown that the standard and widespread
Star-shaped hexarotors (see Fig. 1-right) are not robust in
such sense. This counterintuitive phenomenon can be seen for
example in [8], [9] where simulations and experiments show
that the best a model predictive controller is able to achieve
in such case is dynamic hovering, even if five propellers
are still available.1 Similar outcomes are obtained from other
commercially available platforms2.

The mathematical reasons for such vulnerability have been
deeply analyzed in [7], where it is explained that in order
to achieve robust hexarotor platforms one possibility is to
use a Star-shaped platform with tilted propellers [10], [11].
Exploiting this fact, two new prototypes have been built. One
prototype in [12] is a Star-shaped hexarotor platform where
one of the propellers can be quickly titled via a servomotor
in case of the loss of any of its propellers in order to recover
static hoverability. Another prototype, built and experimentally
demonstrated in [7], is a Star-shaped platform with constantly
tilted propellers. The robustness of both prototypes have been
shown in real experiments.

Another way to obtain robustness, also illustrated theoreti-
cally in [7] is to use a non-Star-shaped hexarotor, like, e.g., the
Y-shaped hexarotor [7] depicted in Fig. 1-left. Such solution is
mechanically simpler than the above mentioned designs, where
it does not need neither the tilting of the propellers nor the
addition of servomotors or other mechanisms; in addition, such
servomotors affect the platform efficiency due to the ensuing
control latency. At the best of our knowledge, the robustness
of the Y-shaped hexarotor design against propeller failure has
never been experimentally tested in the static hovering sense.

Following the above discussion, the goal of the work
presented in this paper is to fill this experimental gap and at the
same time to provide an extensive corollary of contributions in

1https://youtu.be/cocvUrPfyfo
2https://youtu.be/HQ7wa5cBT w?t=45
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this field. In particular the main contributions are summarized
as follows:

1) provide a novel open source design and building of the
Y-shaped hexarotor theoretical concept which has been
only abstractly introduced in [7];

2) demonstrate for the first time in the literature via real
experiments that the Y-shaped hexarotor is a robust
platform in the static hovering sense, and therefore it
could be used in safety critical environments (e.g., close
to buildings and humans);

3) provide an intuitive way to understand why the collinear
Y-shaped hexarotor design is robust while the collinear
Star-shaped hexarotor design is not based on geometrical
intuition; to provide also an intuition about the influence
of parametric uncertainties on the robustness of the pre-
sented platforms;

4) carry out a systematic and extensive set of real ex-
periments that compare the Y-shaped and Star-shaped
hexarotor designs (also built in house) in the fairest way
possible, both from the point of view of robustness and
energy efficiency.

The rest of this paper is organized as follows: sec. II models
a generic hexarotor and defines formally the Star-shaped and
Y-shaped hexarotors. Sec. III defines the feasible moment set
at hover of the hexarotor platform, and studies the platform’s
hovering and propeller robustness. Sec. IV describes the built
hardware, and sec. V describes the ensuing experimental
campaign. Finally, sec. VI concludes the paper.

II. MODELING

We consider Multi-Rotor Aerial Vehicles (MRAV) with
six fixed propellers having collinear orientations. The world
frame is denoted with FW , its origin with OW and its
axes with {xW ,yW , zW } (see Fig. 1). The moving frame is
denoted with FR, its origin OR coincides with the Center of
Mass (CoM) of the platform, and its axes are denoted with
{xR,yR, zR}. We denote with pR ∈ R3 and RR ∈ SO(3)
the position of OR in FW and the rotation matrix describing
the orientation of FR with respect to (w.r.t.) FW , respectively;
we further denote by vR = ṗR ∈ R3 the linear velocity of
OR in FW , and by ωR the angular velocity of FR w.r.t. FW ,
expressed in FR. It is noted that ṘR = RR[ωR]×, where
[·]× denotes the map from a vector in R3 to its corresponding
skew-symmetric matrix in SO(3).

The platform is actuated by the set of six fixed propellers.
The frame Fpi is attached to the stator of the motor spinning
the propeller and its origin Opi coincides with the center of the
propeller. The axes of Fpi are denoted with {xpI .ypi , zpI},
and pi ∈ R3 denotes the position of Opi in FR. The i-th
propeller rotates with a spinning rate ωi ∈ R about the zpi
axis, creating a thrust force fi ∈ R3 applied at Opi and a drag
moment τ di ∈ R3, defined as follows:

fi = cfi‖ωi‖ωizpi , (1)

τ di = cτi‖ωi‖ωizpi , (2)
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Fig. 1: System model and defined frames for Y-shaped (left)
and Star-shaped (right) hexarotors.

where cfi ∈ R>0 and cτi ∈ R are the corresponding lift and
drag coefficients of the corresponding propeller. The control
input of the i-th propeller is the quantity ui = ‖ωi‖ωi.

The total resulting force fR applied at OR and moment τR
with center OR are expressed in FR as follows:

fR =

n∑
i=1

cfiuizpi , (3)

τR =

n∑
i=1

(τ ti + τ
d
i ) =

n∑
i=1

(cfipi × zpi + cτizpi)ui. (4)

We assume all propellers to be identical, with three pro-
pellers rotating in one direction and the remaining three in
the opposite direction; as such, cfi = cf and cτi = κicτ ,
where cτ ∈ R>0 and κi = −1(+1) denoting respectively a
CCW(CW) direction of rotation w.r.t. zpi . The position of Opi
in FR is given by

pi = Rz

(
π
6 + (i− 1) 2πn −

1
2 (−1)

iγ
)︸ ︷︷ ︸

Rγ(i)

[
l
0
0

]
, (5)

with i = 1, . . . , 6, where Rz is the canonical rotation matrix
about the z-axis. The selection of two different values for the
parameter γ allows modeling both designs considered in this
work, and presented in Fig. 1, as follows:

1) Star-shape hexarotor (Fig. 1, right): is a hexarotor
platform with γ = 0. In this configuration, the propellers are
the furthest away form each other, and thus do not overlap.

2) Y-shape hexarotor (Fig. 1, left): is a hexarotor platform
with γ = π

3 . In this configuration, each pair of propellers share
a single rotation axis and are placed on top of each other. In
order to make such design physically realizable, the pairs of
coinciding propellers have to be displaced along their rotation
axis. Such displacement does not affect the computation of the
total force and moment because it is done along the direction
of the thrust forces.

For any intermediate value of γ ∈ (0, π3 ) one obtains a
platform that is ‘in between’ the two mentioned above.

III. FEASIBLE MOMENT SET

In this paragrpah we aim to introduce the feasible moment
set for a MAV, find their corresponding form for the Y-shaped
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and Star-shaped hexarotors, and study the robustness of each
to propeller failure.
To start, let us use (3) and plug (5) in (4), then we can write
fR = F1u and τR = F2u, where u = [u1 · · · u6]> ∈
Rn and the force allocation matrix F1 and moment allocation
matrix F2 are defined as

F1 = cf

0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

 (6)

F2(γ) =

cτ
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(7)

where r = (cf/cτ)l, s(·) = sin(·), and c(·) = cos(·).
Specializing (7) for the Y-shaped (γ = π

3 ) and Star-shaped
(γ = 0) hexarotors one obtains:

F Y2 = F2(
π
3 ) = cτ

 0 +r
√
3
2 +r

√
3
2 −r

√
3
2 −r

√
3
2 0

−r +r 12 +r 12 +r 12 +r 12 −r
−1 1 −1 1 −1 1


(8)

F S2 = F2(0) = cτ

 +r 12 +r +r 12 −r 12 −r −r
1
2

−r
√
3
2 0 +r

√
3
2 +r

√
3
2 0 −r

√
3
2

−1 1 −1 1 −1 1

 .
(9)

Let us assume that each entry of the input u is lim-
ited between 0 and a maximum value umax, i.e., u ∈
U =×n

i=1
[0, umax], where U is the set of feasible inputs.

Consequently we define the set F2 as the feasible moment
set, i.e., the image set of U through the linear map F2:

F2(γ) = {τ ∈ R3 | ∃u ∈ U : τ = F2(γ)u}. (10)

Following the above definition, we define the set of feasible
inputs at hover U+ as the set of control inputs that allow the
compensation of the platform gravity:

U+ = {u ∈ R3|u ∈ U, ‖F1u‖ ≥ mg}, (11)

where g ∈ R3 is the gravity vector w.r.t. FR; and we define
the corresponding feasible moment set at hover F2+ as the
image set of U+ through the linear map F2. Since U+ ⊂ U,
then F2+ ⊂ F2.

The specialized feasible moment sets at hover for the
Y-shaped and Star-shaped hexarotors are noted as FY2+ =
F2+(

π
3 ) and FS2+ = F2+(0), respectively.

The plots in the first column of Figure 2 show the feasible
moment sets of the Y-shaped and Star-shaped hexarotors.

A. Static Hovering

The platform is capable of static hovering when it can reach
and maintain a constant orientation and position, i.e.

ṗR → 0, ωR → 0, (12)

As was explained in [7] the following conditions are needed
for a platform to posses the static hovering ability

rank{F2} = 3 (13)

∃u ∈ int(U) s.t.
{
‖F1u‖ ≥ mg
F2u = 0

. (14)

Where int(U) denotes the interior of U.
Conditions (13) and (14) can be understood geometrically

from the feasible moment set F2+ as follows:

Proposition 1. any platform for which 0 ∈ int(F2+) possesses
the static hovering ability.

Proof. It is a straightforward consequence of the continuity of
the map F2. Full proof omitted for the sake of brevity.
Corollary 1. Following Prop. 1, a platform is deemed unable
of static hovering if the origin is a boundary of F2+ or an
external point of the set.

Lemma 1. It is easy to show that both the Y-shaped and
Star-shaped hexarotors can achieve static hoverability as
shown below.

Proof. rank{F Y2 } = 3 and rank{F S2 } = 3, and any input
of the form u = λ1 = λ[1 · · · 1]> ∈ Rn with λ ∈ (0, umax)
belongs to int(U) and satisfies (14).

The static hovering ability of both platforms can also be
seen from the feasible moment set at hover of each (Figure 2),
where the origin is indeed an interior point of both FS2+ and
FY2+.

B. Rotor Failure

In this section we highlight the effect of propeller loss on
the static hovering capability of the two hexarotors in exam.
We denote by kF2(γ) the moment allocation matrix F2(γ)
in which the k-th column has been zeroed (or, equivalently,
removed). Such matrix represents the moment allocation ma-
trix of a platform in which the k-th propeller does not spin
anymore after a fault, i.e., uk = 0. We denote by kF2+(γ) the
feasible moment set at hover associated to kF2(γ). The same
specializations for the Y-shaped and Star-shaped platform
apply, thus obtaining kFY2+, kF Y2 , kFS2+, kF S2 .

Remark 1. The feasible moment set at hover kFS2+ for dif-
ferent k is a rotation about the z-axis of k−1FS2+, with a flip
about the (x, y)-plane.

Proof. It is easy to see following (5) that

kF S2 =
[
1 0 0
0 1 0
0 0 −1

]
Rz(

π

3
)k−1F S2 (15)

Since all propellers are identical, then the transformation
between kFS2+ and k−1FS2+ is the same as between kF S2 and
k−1F S2 .
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Healthy Platform 3D moment set
with propellers 1 or 4 failed

cross section of moment set
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with propellers 1 or 4 failed
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Fig. 2: Visualization of the platform feasible moment sets at hover.

It was proved in [7] that the Y-shaped hexarotor – or
any collinear coplanar hexarotor with γ ∈ (0, 2π3 ) – is still
capable of static hovering after the single loss of anyone of its
propellers. On the other hand, [7] proved that the Star-shaped
hexarotor (γ = 0) loses its ability to perform static hovering
as it loses any of its propellers.

The static hovering ability of the two platforms can be easily
understood from the geometrical viewpoint presented earlier.
The vulnerability of the Star-shaped hexarotor can be seen
from the corresponding feasible moment set at hover 1FS2+
shown in Figure 2, where it is clear that the origin is a point
on the boundary of the presented set ; this result is similar for
any kFS2+ thanks to remark 1. Figure 2 also shows that for
any kFY2+, the origin of the feasible moment set at hover is
an interior point, where 0 ∈ int{

⋂
k
kFY2+}.

C. Effect of Disturbance Moment

For any platform where static hovering is not feasible after
the loss of any of its propellers, it is possible to shift the origin
of the feasible moment set at hover into the interior of kF2+,
as long as (13) and the first part of (14) are still satisfied. This
can be done by adding a disturbance moment τdistR such that
the control moment τ cR = −τdistR ∈ int(kF2+).

For the Star-shaped hexarotor, for example, a disturbance
moment can be obtained by shifting the CoM of the platform.

Proposition 2.

@τ cR ∈ int(kFS2+) ∀k ∈ n (16)

i.e., it does not exist a single disturbance moment that allows
to shift the origin in the interior of the feasible moment set at
hover of the Star-shaped hexarotor in the case of the loss of
any of the propellers.

Proof. This result is a consequence of the fact that
int(
⋂
k
kFS2+) = ∅. Let us consider a moment

τ1,4R ∈ 1FS2 ∩ 4FS2 .

τ1,4R = cτ

+r +r 12 −r 12 −r −r
1
2

0 +r
√
3
2 +r

√
3
2 0 −r

√
3
2

1 −1 1 −1 1



u12
u13
u14
u15
u16

 (17)

= cτ

 +r 12 +r +r 12 −r −r
1
2

−r
√
3
2 0 +r

√
3
2 0 −r

√
3
2

−1 1 −1 −1 1



u41
u42
u43
u45
u46

 (18)

By simplifying then adding the first and second rows we find
u14 + u41 = −(u14 + u41) to be a necessary condition for the
intersection between the two sets. The only solution for the
above equality is to set u1 = u4 = 0; as such

@u > 0 s.t. τ1,4R ∈ int(1FS2 ∩ 4FS2 ) (19)

and as such, int(1FS2 ∩ 4FS2 ) = ∅, and int(
⋂
k
kFS2 ) = ∅.

Since each kFS2+ ⊂ kFS2 , then int(
⋂
k
kFS2+) = ∅ as a

consequence.

The reasoning behind the above proof is also visible from
the figure 2, where it can be seen clearly that int(1FS2+ ∩
4FS2+) = ∅.

D. Effect of Model Uncertainty

While the above modeling considers the nominal geometry
of the system, manufacturing uncertainty can slightly change
the actuation capabilities of the platform. More specifically, in
the nominal model we consider propellers to be mounted with
no tilt, i.e., α, β = 0. As detailed in [7], any modification in
the mounting tilt can induce a stabilization of the platform.
Moreover, while we consider lift and drag coefficients cf , cτ
to be constant, they are a linear fit of the underlying nonlinear
model. In addition, different propellers might have varying
aerodynamic properties. Finally, in the above formulation
the arm length l between the CoM and each propeller is
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Fig. 3: The Y-shaped (top) and Star-shaped (bottom) hexarotor
platforms built in-house for the fair comparison.

assumed constant, and the CoM is assumed to coincide with
the Geometric Center (GC).

In a static hovering condition, the uncertainties mentioned
above can be approximated by a lumped disturbance moment
τdistR ; this disturbance has to be compensated so as the
resultant moment applied to the platform is equal to zero.This
implies that the input moment τR required for static hovering
is equal to τR = −τdistR instead of zero as it would have been
in the nominal case.

The presence of such disturbance τdistR will practically
make possible the static hovering of the Star-shaped hexarotor
during the loss of some of its propellers; in particular, for any
propeller loss whose feasible moment set at hover still contains
the origin following the translation by τdistR . More formally,
the platform can hover upon the loss of any propeller k for
which the following condition is verified

− τdistR ∈ int(kFS2+). (20)

However, and as suggested in Prop. 2, for any τdistR there
will always exist some propellers whose loss precludes static
hovering for the Star-shaped platform.
Remark 2. In the case of the Y-shaped hexarotor, let us assume
that there exists a threshold moment τ thresholdR such that

∀τdistR ≤ τ thresholdR ;−τdistR ∈ int(FY2+). (21)

It is safe to assume that within the manufacturing and operat-
ing conditions of our platforms, τdistR ≤ τ thresholdR ; a similar
analogy can be applied to the Y-shaped hexarotor after the
failure of any of its propellers.

IV. EXPERIMENTAL PLATFORM

A. Hardware: Y-shaped and Star-shaped Hexarotors

To be able to systematically compare the Star-shaped and
Y-shaped hexarotors, we design two platforms with identical
components and similar properties, with the corresponding
specifications shown in Table I. The two platforms, shown
in Fig. 3, are built via 3D printing technology with Onyx ma-
terial, and similar off-the shelf components for the propulsion

system, telemetry and safety link communication. Finally, the
two platforms are flown with the same autopilot and flight
controller. The design of both platforms is available to the
public via the following link:https://mrtbrnz.github.io/RoBust/.

TABLE I: Hexarotor Specifications

Specification Star-Shape Y-Shape Units
Center-Motor Distance 0.143 0.130 [m]
Total Mass 0.745 [kg]
Battery Capacity 23.0 [Wh]
Flight time 569 344 [s]
Maximum thrust 60 45 [N]
Structure material 3D printed (Onyx composite)
Structure components 9 pieces 7 pieces
Motor & Propeller T-Motor F40(Kv 2400) & 5T-5147 Prop
Electronic Speed Ctrl T-Motor F45A V2.0
Autopilot Paparazzi Tawaki v1.1
Communication Xbee modem & Futaba SBus Receiver

B. Software: Paparazzi Autopilot and INDI Controller
Throughout the flight tests, we have used the Paparazzi

Autopilot system [13], an open-source autopilot that covers
all three segments of the system: ground control, airborne
platform control, and the communication link between the
two. Paparazzi has its own flight plan language that allows the
platform to follow different reference trajectories; moreover,
its middle-ware allows the implementation of the desired
controller on-board the platform.

The autopilot implements the INDI controller based on [14];
the controller is a robust sensor-based (measurement-based)
controller which revolves around the control of the angular
accelerations in an incremental way. As illustrated in [14],
INDI is a robust and reliable controller, capable of dealing
with strong wind perturbations and modeling inaccuracies. We
refer the interested reader to the corresponding paper for more
details on the control law.
While we rely on the INDI as a Fault Tolerant Control System
(FTCS), we do not aim to study its advantage over other FTCS
from the literature; however, we refer the curious reader to the
following literature [15]–[17] for an overview of such systems
and their applications.

Throughout our experimental campaign, the INDI controller
runs at 500 [Hz] while the trajectory generation is updated at
a 16 [Hz] rate.

V. EXPERIMENTAL RESULTS

To test the robustness and efficiency of the built platforms,
an experimental campaign has been carried out at the VTO
flight arena3. The position and orientation of the vehicles are
captured by the motion capture system installed in the arena.

To assess the robustness of the platforms, we introduce the
following two metrics

1

2
m (e>p ep + v>RvR) (translation motion error) (22)

1

2
mω2

φ (rotational kinetic energy), (23)

3https://www.enac.fr/en/drone-flight-arena-toulouse-occitanie-0
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(a) Y-shaped hexarotor flights

(b) Star-shaped hexarotor flight with the controller not informed of the fault

(c) Star-shaped hexarotor flight with the controller informed of the fault

Fig. 4: Each of the subfigures shows (top) the North-East projection of the flight trajectory onto the (xW , yW ) plane, and
(bottom) the translation motion error and the rotation kinetic energy of the platform during the corresponding flight.

where ep = pdR−pR ∈ R3 is the positional error and ωφ is the
yaw rate. It is easy to show from the underactuated dynamics
and differential flatness of both vehicles that such metrics
reflect the platform hovering, where each converges to zero
if the platform is in static hovering, and diverges otherwise.

A. Static Hovering Experimental Campaign

To test the robustness of each platform, we synthetically
induce a propeller failure while the platform is in static
hovering, and assess the platform’s robustness in the wake
of the failure.

We note that during these experiments, and unless otherwise
specified, the controller was not informed about the rotor

failure, and rather attempts to fly the platform solemnly based
on its measurements.

1) Static Hovering of the Y-shaped Design: First, we test
the Y-shaped hexarotor to verify its robustness to propeller
failures as theoretically proven in Sec. III.

Fig. 4a shows (top) the position of the Y-shaped hexarotor
and (bottom) the hovering metrics of the Y-shaped hexarotor
while flying with all propellers working properly and in the
wake of the failure of one of each of its six propellers. As
expected, the platform recovers its position after the failure of
any of its propellers, with the two metrics converging to zero
a few seconds after the failure.

2) Static Hovering of the Star-shaped Design: A similar
experiment was conducted to test the static hovering ability of
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Fig. 5: Circular path following of Y-shaped hexarotor in healthy and failed rotor conditions. (Top) shows the North-East
projection of the flight trajectory onto the (xW , yW ) plane, (bottom) shows the norm of the positional error.

the Star-shaped hexarotor.
Fig. 4b shows (top) the position of the Star-shaped hexarotor

and (bottom) the hovering metrics of the Star-shaped hexarotor
while flying with all propellers working properly and in the
wake of the failure of one of each of its six propellers. It
can be seen from Fig. 4b that while the healthy platform can
hover normally, the Star-shaped hexarotor crashes after the
failure of propellers 4-5-6. On the other hand, after the loss
of propellers 1-2-3 the platform does not crash, however, it
oscillates about the desired position, which can be observed
in the large value of the translation motion error. The propeller
failures 2 and 3, is shown in paranthesis, as they have shown
different behaviour during repeatability tests, at worst ending
up by crashing.

While the vulnerability of the Star-shaped hexarotor is
expected (Sec. III), we repeated the above experiment for
the Star-shaped hexarotor while informing the controller of
the propeller fault. This is done by providing an updated
actuator efficiency matrix to the controller, where the column
corresponding to the failed propeller has been zeroed; this
provides the controller the knowledge that the corresponding
propeller has no effect on the angular rotation of the vehicle.

Fig. 4c shows the results of this experiment, where we
can see that the Star-shaped hexarotor crashes right after
the failure of propellers 4-5-6, while it is capable of static
hovering following the failure of propellers 1-2-3. Looking
deeper at the control inputs in the cases where static hovering
was still possible, we can see that the informed controller
was already able to generate required moments without using
the corresponding propellers, and as such, the platform’s
performance was not affected by the corresponding failures.

These experimental results confirm the theoretical derivation
presented in III-D, according to which a nominal Star-shaped
hexarotor should become unstable following the failure of
all its propeller, while a real Star-shaped hexarotor should
become unstable following the failure of some, but not all,
of its propellers, due to the manufacturing uncertainties.

Finally, we test the effect of adding a disturbance moment
to the Star-shaped hexarotor on the platform’s static hovering
ability. The disturbance moment is induced by shifting the
location of one of the platform’s components in order to shift
its CoM. Table II shows the static hovering ability of the

Star-shaped hexarotor following the failure of one of each of
its propellers while the CoM is placed in the center of the
platform, or shifted along xR or yR. It can be seen that for
each of the applied disturbance moments, and as suggested
in Sec. III, the platform is vulnerable to the loss of some of
its propellers, while it can successfully hover following the
loss of others. Further analysis of the moment sets at hover of
the platform in each of the configurations shown in Table II
is presented in the attached technical report. This analysis
suggests that the nominally built Star-shaped hexarotor has
a manufacturing uncertainty equivalent to a shift in its CoM
in the Front-Left direction.

B. Path following after propeller failure
To further assess the level of robustness of the Y-shaped

hexarotor after propeller failure, the platform was requested
to follow a circular path after the recovery from the failure of
each of its six propellers. This is essential to show that the
Y-shaped hexarotor is not only able to remain still but also to
follow a trajectory after a failure. Figure 5 shows the results
of these experiments, where it can be seen that the tracking
error after propeller failure is bounded and comparable to the
corresponding error of the healthy platform.

We omit the plots of the Star-shaped hexarotor circular path
tracking following propeller failure, as none of the propeller
failures could even satisfy the statically hovering condition.

C. Energy consumption in healthy condition
To assess the efficiency of the two designs, we compare the

power consumption of each platform at hover. To do so, each

TABLE II: Effect of CoM shift on the robustness of the
Star-shaped hexarotor

Weight position Controller No crash
when failed

Crash when
failed

Front Not Informed 1-2-(3) 4-5-6
Back Not Informed 1-2-6 3-4-5
Right Not Informed 4-5-6 1-2-3
Left Not Informed 1-2-3 4-5-6
Centered Not Informed 1-(2)-(3) 4-5-6
Centered Informed 1-2-3 4-5-6
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Fig. 6: Measured battery voltage during flight of Star-shaped
and Y-shaped hexarotor at hover. Total flight time was recorded
twice for each platform as the time for the voltage to drop from
12.6[V] (fully charged battery) to 9.8[V].

platform is flown with a fully charged battery (12.6[V]) until
the battery voltage reduces to 9.8[V], after which the platform
flight becomes unstable due to the battery’s current drop. Fig. 6
shows the voltage throughout the test flights, where the flight
of each platform was repeated twice. It can be seen from this
figure that the flight time of the Y-shaped hexarotor is 60%
of the corresponding Star-shaped flight time. In addition, the
initial voltage drop of the Y-shaped hexarotor (i.e., the voltage
drop required for take off) is higher than the corresponding
drop in the case of the Star-shaped hexarotor, which suggests
a higher drawn current at hover.

The reduction in efficiency is expected to be caused in part
to the interaction between the co-axial propellers and in part
to the increased interaction between the flow of the propellers
with the arms connecting the propellers to the platform, given
that the arms of the Y-shaped hexarotor are made wider
than those of the Star-shaped hexarotor to gain the required
structural robustness.

VI. CONCLUSIONS

In this work we introduced an open source design of a
Y-shaped and Star-shaped hexarotor. The two designs are
built with identical components and similar properties to
systematically compare the abilities of each. The two platforms
reply on the INDI controller to fly robustly even after the
failure of any(some) of their propellers respectively.

In addition, we introduce an intuitive geometrical inter-
pretation of the platforms’ static hovering ability. Following
this geometric interpretation, we show the vulnerability of
the Star-shaped hexarotor to the single failure of some of its
propellers and the robustness of the Y-shaped hexarotor to the
single failure of any of its propellers.

The static hovering of the two designs is further studied
via an extensive experimental campaign that validates the
theoretical hypotheses. In addition, their respective efficiency
was tested comparing the power consumption of each.

Following the above analysis, we can clearly see that while
the Y-shaped hexarotor is robust to the failure of any propeller,
it is less efficient than the Star-shaped design. On the other

hand, the Star-shaped design is a more efficient design, while
it is vulnerable to the failure of some of its propellers.

The study of a platform that can benefit from the efficiency
and robustness of each of the two designs is an interesting
research line that is left as a future work.
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APPENDIX A
DETAILED MOMENT SET ANALYSIS DURING FAILURE AND

MODIFIED CENTER OF MASS

This technical report analyzes the moment set at hover of
the Star-shaped hexarotor platform following the failure of
each propeller, with different CoM configurations, in an aim
to understand the underlying causes of the ensuing platform
crashes.

As was discussed in [18], the behaviour of the Star-shaped
hexarotor is a peculiar one following the failure of different
propellers as illustrated theoretically in III-C and III-D, and
experimentally in V-A2 from [18]. Due to uncertainties in
manufacturing and component placement, it is very difficult
to have a perfectly symmetric experimental platform, making
it a hard job to predict which propeller failure will lead to an
inability of static hovering. As such, the main investigation in
the conducted experiments was to observe if there will be at
least one propeller failure leading to an incapability of static
hovering, for different platform configurations (different CoM
configurations, controller informed or not).

As proven in [7] and discussed in III-B (from [18]), for
a perfectly manufactured Star-Shaped hexarotor, failure of
any of its propellers will result in the loss of static hovering
capability since the origin resides at the boundary of the fea-
sible moment set as shown in Figure 2 (from [18]). However
during our experiments, we have observed that for some of
the rotor failures, the Star-Shaped hexarotor is capable of
static hovering, while other propeller failures lead to crashes.
This discrepancy is expected to be due to the aforementioned
manufacturing uncertainties (III-D from [18]). In fact, even
small construction inaccuracies may cause the origin to be
inside or outside the moment set depending on the failed
propeller.

In order to point out this effect and further analyze the
experimental results given in Table II (from [18]), additional
numerical calculations are shown in Figure 7 for each propeller
failure while changing CoM location systematically to right,
left, front and back positions (1 cm in each direction).

Figure 7 shows the expected moment set at hover for
different CoM positions at τz = 0 plane for each rotor failure
case. In the case of no external disturbance, and no maneuver
requirement, statically hovering condition requires the origin
point to be an interior point of the moment set (purple area).

The projection of the origin on τz = 0 plane is shown in all
plots i) in green for experimental flights where the platform
was capable of static hovering, and ii) in red for experimental
flights where the platform crashed following the propeller
failure. It can be seen from the corresponding moment sets
that for flights where the platform crashed, the origin is at best
a boundary point of the moment set at hover, while it is an
interior point in the case of flights where static hovering was
still possible after the corresponding propeller failure. The only
exception is the Front Heavy - Rotor-1 failure case, where the
platform managed to fly after the propeller failure, despite the
fact that the origin slightly surpasses the moment set boundary.
While in the presented moment sets, we are assuming that the
disturbance caused by the placement of the CoM to be the only

source of disturbance, manufacturing imperfections are still
present, and could in some cases have a larger effect than the
former disturbance. As such, we believe these imperfections,
as mentioned in III-D (from [18]), to be the source of this
discrepancy.

In the case of centered CoM, shown in Figure 8, the origin
is a boundary point of each of the corresponding moment
sets at hover. While this should lead the vehicle to fail static
hovering for any of the rotor failures, it can be seen from the
experiments that the first three rotor failures did not induce a
platform crash, while the other failures did.

As such, and following the two experiments, we can esti-
mate that our experimental platform has a slight CoM shift
towards front and left as it presents the same crash patterns as
the platform with the corresponding CoM shift.
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[5] M. Hamandi, F. Usai, Q. Sablé, N. Staub, M. Tognon, and A. Franchi,
“Survey on Aerial Multirotor Design: a Taxonomy Based on Input
Allocation,” Jan. 2020, working paper or preprint. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02433405

[6] M. W. Mueller and R. D’Andrea, “Relaxed hover solutions for multi-
copters: Application to algorithmic redundancy and novel vehicles,” The
International Journal of Robotics Research, vol. 35, no. 8, pp. 873–889,
2016.

[7] G. Michieletto, M. Ryll, and A. Franchi, “Fundamental actuation proper-
ties of multi-rotors: Force-moment decoupling and fail-safe robustness,”
IEEE Trans. on Robotics, vol. 34, no. 3, pp. 702–715, 2018.

[8] M. Kamel, K. Alexis, M. Achtelik, and R. Siegwart, “Fast nonlinear
model predictive control for multicopter attitude tracking on SO(3),” in
IEEE Conf. on Control Applications, Sydney, Australia, Sep. 2015.

[9] D. Bicego, J. Mazzetto, M. Farina, R. Carli, and A. Franchi, “Nonlinear
model predictive control with enhanced actuator model for multi-rotor
aerial vehicles with generic designs,” Journal of Intelligent & Robotics
Systems, 2020.

[10] J. I. Giribet, R. S. Sanchez-Pena, and A. S. Ghersin, “Analysis and
design of a tilted rotor hexacopter for fault tolerance,” IEEE Trans. on
Aerospace and Electronic System, vol. 52, no. 4, pp. 1555–1567, 2016.

[11] G. Michieletto, M. Ryll, and A. Franchi, “Control of statically hoverable
multi-rotor aerial vehicles and application to rotor-failure robustness
for hexarotors,” in 2017 IEEE Int. Conf. on Robotics and Automation,
Singapore, May 2017, pp. 2747–2752.

[12] C. Pose, J. Giribet, and I. Mas, “Fault tolerance analysis for a class of
reconfigurable aerial hexarotor vehicles,” IEEE/ASME Transactions on
Mechatronics, 2020.

[13] G. Hattenberger, M. Bronz, and M. Gorraz, “Using the paparazzi uav
system for scientific research,” 2014.

[14] J. Smeur, G. de Croon, and Q. Chu, “Cascaded incremental nonlinear
dynamic inversion for mav disturbance rejection,” Control Engineering
Practice, vol. 73, pp. 79–90, 2018.

[15] Y. Zhang, A. Chamseddine, C. A. Rabbath, B. W. Gordon, C.-Y. Su,
S. Rakheja, C. Fulford, J. Apkarian, and P. Gosselin, “Development
of advanced fdd and ftc techniques with application to an unmanned
quadrotor helicopter testbed,” Journal of the Franklin Institute, vol. 350,
no. 9, pp. 2396–2422, 2013.

[16] M. W. Mueller and R. D’Andrea, “Stability and control of a quadro-
copter despite the complete loss of one, two, or three propellers,” in
2014 IEEE international conference on robotics and automation (ICRA).
IEEE, 2014, pp. 45–52.

9

https://hal.archives-ouvertes.fr/hal-02433405


Preprint version

Fig. 7: Visualization of the cross sections at the τz = 0 plane of the platform’s feasible moment sets at hover for different
propeller failures, and different CoM configurations. The origin of the feasible moment sets at hover is shown in green for
flights where the platform was capable of static hovering after the propeller failure, and in red when the platform crashed
following the propeller failure in experiments.

Fig. 8: Visualization of the cross sections at the τz = 0 plane of the platform’s feasible moment sets at hover for different
propeller failures when the CoM is perfectly centered. The origin of the feasible moment sets at hover is shown in green for
flights where the platform was capable of static hovering after the propeller failure, and in red when the platform crashed
following the propeller failure in experiments.

[17] D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Friedrich, E. Kos-
matopoulos, A. Martinelli, M. W. Achtelik, M. Chli, S. Chatzichristofis,
L. Kneip et al., “Vision-controlled micro flying robots: from system
design to autonomous navigation and mapping in gps-denied environ-
ments,” IEEE Robotics & Automation Magazine, vol. 21, no. 3, pp.
26–40, 2014.

[18] E. Baskaya, M. Hamandi, M. Bronz, and A. Franchi, “A novel robust
hexarotor capable of static hovering in presence of propeller failure,” In
revision to IEEE Robotics and Automation Letters, 2021.

10


	INTRODUCTION
	Modeling
	Star-shape hexarotor (Fig. 1, right)
	Y-shape hexarotor (Fig. 1, left)


	Feasible Moment Set
	Static Hovering
	Rotor Failure
	Effect of Disturbance Moment
	Effect of Model Uncertainty

	Experimental Platform
	Hardware: Y-shaped and Star-shaped Hexarotors
	Software: Paparazzi Autopilot and INDI Controller

	Experimental Results
	Static Hovering Experimental Campaign
	Static Hovering of the Y-shaped Design
	Static Hovering of the Star-shaped Design

	Path following after propeller failure
	Energy consumption in healthy condition

	CONCLUSIONS
	Appendix A: Detailed Moment Set Analysis During Failure and Modified Center of Mass
	References

