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Motor and Perception Constrained NMPC for
Torque-controlled Generic Aerial Vehicles

Martin Jacquet1 and Antonio Franchi2,1

Abstract—This letter presents a perception-aware and motor-
level non-linear model predictive control scheme for multi-rotor
aerial vehicles. Our formulation considers both real actuation
limitations of the platform, and realistic perception objectives
for the visibility coverage of an environmental feature while
performing a reference task. It directly produces the rotor-level
(torque) inputs of the platform motors at high frequency, hence
it does not require an intermediate unconstrained controller
to work. It is also meant to be generic, by covering standard
coplanar quadrotors as well as tilted-propeller multi-rotors. We
propose an open-source fully onboard implementation of the
method, capable of running at 500 Hz under the intermittent and
noisy measurements of one or more cameras. The implementation
is extensively tested both in simulation and in real experi-
ments with two substantially different multi-rotor platforms, an
underactuated and a fully actuated one, both equipped with
two cameras, clearly demonstrating the practicability and high
performance of the method.

Index Terms—Aerial Systems: Mechanics and Control; Aerial
Systems: Perception and Autonomy

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) are increasingly
used in a large range of applications, from search and

rescue tasks to aerial monitoring or exploration, as well as
work in high-risk places or human-denied areas. To achieve
autonomy in such tasks, perception-awareness of the environ-
ment is a mandatory feature. In this regard, in a large number
of applications, it is fundamental to prevent a potential loss of
visibility of a feature or an area of interest, which may lead
to the inability to fulfill the task, or to an immediate danger
for the people around.

To comply with this imperative, the control schemes of
the UAVs must consider constraints coming both from the
perception and the actuation domains. Optimization-based
control techniques such as Model Predictive Control (MPC)
or Quadratic Programming (QP) have the property to express
in a common way constraints with different semantics. In
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particular, MPC, a control policy that uses the dynamic model
of the system to predict its behavior over a finite receding
horizon, has gained popularity in aerial robotics over the recent
years where robust MPC formulations for UAVs have been
proposed – see, e.g., [1], [2].

In fact, some recent works push toward incorporating
perception-based constraints in MPC formulations [3]–[7]. The
objective in all these works is to maintain visibility on a feature
while moving for a given task. While [3] proposes a minimum
time trajectory generation under visibility constraints, [4], [5],
[8] propose an optimal-control based low-level trajectory gen-
eration with similar constraints. More recently, [6] proposed
to include the feature pixel in the system dynamic model.

However, these works are using MPC as a global or local
trajectory planner, while the low-level control is delegated to
unconstrained trackers, which do not guarantee the fulfillment
of the constraints while the system is tracking the computed
trajectories. Such unconstrained tracker may jeopardize the
feasibility and correctness of the task execution. In addition
to this crucial limitation, the MPC planners proposed in such
works do not consider the real constraints of the platform
induced by the actuators, but rather simplify the problem intro-
ducing fictitious constraints on the system state which do not
exist on the real platform, such as constant bounds on linear
and angular velocities and sum of propeller thrusts [4] and/or
maximum attitude (i.e., pitch and roll) angles. The angular
velocity is indeed not bounded by any physical constraint, the
bound on the sum of propeller thrusts is not constant because
it depends on the current total moment applied. Similarly, no
actual bound is present in the attitude of a real platform.

In previous works [9], [10], we defined a non-linear
perception-aware MPC framework for a Generically Tilted
Multi-Rotor (GTMR) vehicle – a model that includes both the
standard underactuated collinear quadrotors and the more re-
cent fully actuated platforms with non-collinear propellers [9],
[11]. This model does not rely on any assumption of flatness
– as it is often done in other optimization-based approaches,
e.g., [3]–[5]), which is a powerful theoretical tool but does
not capture the real nature of the input space of a multi-rotor
system, which corresponds, ultimately, to the torques applied
by the propeller motors. Our model instead includes both
realistic (i.e., torque level) actuator constraints and perception
constraints. Furthermore, the solver computes the motor torque
inputs – at a sufficiently high rate – which is directly fed to
the motor, thus removing any unconstrained low-level tracker.

However, even if [9], [10] demonstrate experimental vali-
dations of the proposed controller, they suffered the absence
of an onboard implementation. All the computation was done
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offboard using Matlab and Simulink [12], and the rotor inputs
were passed to the UAV using cables, which was adding
artificial and non-modeled limitations to the motion. Also, the
validation in [10] relied on a simulated sensor, using geo-
metrical projection of a given feature position, thus emulating
a perfect sensor measurements. Finally, the framework was
mostly tested in simulations and had few real experiments.

In this work, we propose an improved and more accom-
plished version of the controller previously introduced in [10],
using an onboard real-time implementation. This new version
integrates a real sensor instead of a simulated [5], [10], and has
a more realistic sensing model, with a pyramidal field of view
and uncertainty estimation of intermittent measurements. All
these improvements allowed an extensive experimental vali-
dation with quantitative metrics (control frequency, deviation
from reference, or feature reprojection error).

The letter is organized as follows. In Sec. II, we detail the
modeling of the multi-rotor and the sensor, we then introduce,
in Sec. III, the complete optimal control problem formulation,
including the equality and inequality constrains and the objec-
tive function, while in Sec. IV we present the detection process
and its uncertainty model. Finally, we present the experimental
results in Sec. V, before concluding about the pertinence and
applicability of such a framework.

II. MODELING

In this section we detail the dynamic model of the multi-
rotor along with the equality and inequality constraints from
the actuators and the perception sensors.

A. Generically Tilted Multi-rotorDynamics

A Generically Tilted Multi-Rotor (introduced, e.g., in [13])
is modeled as a rigid body of mass m with n ≥ 4 actuators.
The actuators can either be in collinear or tilted configurations.
The tilted configuration is defined by two angles αa and βa,
as depicted in Figure 1.

The world inertial frame and the body frame are respectively
denoted by FW and FB . The position of the origin OB of
FB with respect to (w.r.t.) FW is denoted by WpB and the
unit quaternion representing the rotation from FB to FW is
denoted with WqB ; and similarly for all the other frame pairs.

The robot state x is expressed as the concatenation of the
body state xb and actuator state xa, which are defined as

xb = [p>q>v>ω>]> ∈ R13, (1a)
xa = γ ∈ Rn, (1b)

where p = WpB , q = [qw qx qy qz]
> is a shorthand for

WqB , v is the velocity of OB expressed in FW , ω is the
angular velocity of FB w.r.t. FW , expressed in FB , and γ is
a vector containing the n forces produced by the n propellers,
which are directly linked by a change of coordinates to the
propeller rotational speeds [13]. The quaternion representation
of the attitude is relevant in order to be resilient to orientation
singularities that would arise with a minimal representation,
such e.g., Euler angles.

Similar to [9], we choose to define the system input as
the motor torque of each actuator, which are the real control

Fig. 1: Scheme of the multi-rotor, depicting the presented frames and
angles, illustrated with a camera and two of the n propellers, i and
j, with their respective tilting angles.

variables of the motors, thus the most physically meaningful,
and allow to avoid an intermediate low-level controller. Doing
a simple change of coordinates, the motor dynamics becomes

γ̇ = u, (2)

where u are the real inputs of the system, see [9] for the
details. Equation 2 completes the dynamic equations of the
multi-rotor, which are recapped hereafter:

ṗ = v (3a)

q̇ =
1

2

[
0
ω

]
⊗ q (3b)[

v̇
ω̇

]
=
[
mI3 O3

O3 J

]−1 ([−mgzW
−ω×Jω

]
+
[
q ⊗ Gfγ ⊗ q∗

Gτγ

])
(3c)

where ⊗ denotes the Hamilton product of two quaternions,
q∗ is the conjugate quaternion of q, J ∈ R3×3 is the
positive definite body inertia matrix, O3 and I3 ∈ R3×3 are
respectively the zero and identity matrices, g and −zW are
the intensity and the unit vector direction of the gravity force
in FW . Finally, Gf and Gτ ∈ R3×n are respectively the
force and moment allocation matrices [13], mapping the forces
produced by each propeller to the total force and moment
acting on the body. This model includes and goes way beyond
the standard quadrotor models.

B. Generic sensor model

For the sake of generality, we abstract a generic onboard
sensor as a punctual device centered in OS , with a principal
axis zS , able to retrieve the 3D-pose – in its own frame FS
– of a feature M , as long as it falls inside its field of view
(FoV), defined as a pyramidal shape around the principal axis.
We denote αv and αh the vertical and horizontal angles of the
FoV. We assume the sensor rigidly attached to the multi-rotor
body such that the pose transformation between FS and FB
is constant and known.

This model can be applied to various types of sensors often
equipped on mobile robots, such as some lidars, depth cameras
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(stereo or infrared), or monocular cameras. For the latter, the
capability of extracting the 3D-pose of the detected feature
requires an extra assumption regarding the knowledge of the
size of the feature, which can typically be given using a
geometrical a priori information on the feature [8], structure-
from-motion [14] or a machine learning-based algorithm [15].
The pose detection then induces some processing of the
sensors data, but comes with a lighter hardware burden, since
such cameras are often very lightweight and have large FoV
compared to other sensors.

Finally, we note that only the angular measurement of the
feature will be needed to express the visibility constraint and
objectives, but the depth information is crucial in a MPC
framework since it allows the prediction of relative motion
of the feature w.r.t. the GTMR.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The problem tackled by the proposed framework is ex-
pressed as follows: a GTMR equipped with a generic sensor
has to execute a given motion task while maintaining visibility
on a feature. The computed control has to comply with
the platform actuation constraints, as well as the visibility
constraints, while achieving the task at best.

The proposed formulation is stated for one sensor and
feature, yet the extension to several sensors and features is
straightforward. This scalability is illustrated in Sec. V.

In the following, we detail all the constraints applied to the
system and the objective function, and finally formalize the
optimal control problem.

A. Actuators Constraints

The physical limitations of the system come from the
limitations of the actuators themselves. The motors can receive
a limited amount of current, hence have a minimum and
maximum torque, which implies, due to friction, a bounded
rotational speed for the motor. It also has a bounded acceler-
ation since it undergoes the inertia of a rotating body. These
limitations are equivalently recast as constraints on γ and γ̇:

γ ≤ xa ≤ γ (4a)

γ̇(γ) ≤ u ≤ γ̇(γ) (4b)

where γ, γ, γ̇(γ) and γ̇(γ) can be obtained through an
identification campaign, as shown in [9].

We note that these are the only real physical constraints
applied to the system. Other potential constraints, such as lim-
itations on the linear or angular velocities, can only artificially
limit the range of capabilities of the platform, and would be
contingent to a more specific task or context.

B. Perception Constraints

Keeping the visibility is of paramount importance, therefore,
to prevent its loss, we introduce a corresponding hard con-
straint in the system. For a sensor S we can define a visibility
constraint on a feature M that we want to maintain in the
field of view. With a pyramidal FoV, the visibility is typically
decoupled into horizontal and vertical constraints [16].

Writing the position of M in FS as SpM = [xM yM zM ]>,
such constraints can be written in the virtual image plane as:

|xM/zM | ≤ tanαh, |yM/zM | ≤ tanαv. (5)

C. Objective Function
The motion task is achieved by minimizing the distance

to a reference motion. This task is expressed as a reference
trajectory in position and attitude, denoted with (pr,qr),
usually provided together with its time derivatives, up to the
second order, provided for all the sampling points over the
receding horizon by an external trajectory planner.

The error w.r.t. the reference is defined as a weighted
squared Euclidean norm of the difference denoted ‖·‖2Q, where
Q is the diagonal weight matrix, which acts as the tunable
controller gains. The Euclidean distance between two unit
quaternions is not suitable to represent the dissimilarity be-
tween two orientations, mainly because q and−q represent the
same orientation in SO(3). Following [17] we rather consider
the geodesic distance in the manifold of unit quaternions,
written as d(q1,q2) = ‖log(q1 ⊗ q∗2)‖. In the following, for
the sake of readability, we will keep the notation ‖q−qr‖2Q to
refer to the weighted attitude error associated to this distance.

The perception task is also considered in the cost function.
To achieve a robust tracking, the angular distance β between
SpM and the sensor principal axis zS is minimized; which
is equivalent to maximizing its cosine, denoted cβ, whose
evaluation is more efficient since it can be done by normalizing
and projecting SpM on zS [5]. To reduce the motion blur
and improve the predictability of the feature motion, we also
minimize the corresponding time derivative ˙cβ.

Finally, we write the output map y and its reference yr as:

y = [p> q> ṗ> ω> p̈> ω̇> cβ ˙cβ]> (6a)

yr = [p>r q>r ṗ>r ω
>
r p̈>r ω̇

>
r 1 0]>. (6b)

D. Optimal Control Problem
We express the discrete-time optimization problem over the

receding horizon T , sampled in N shooting points, at a given
instant t, as

min
x0...xN

u0...uN−1
pM0

...pMN

N∑
k=0

‖yk − yr,k‖2Q (7a)

s.t. x0 = x(t) (7b)
xk+1 = f(xk,uk), k∈{0,N−1} (7c)
yk = h(xk,uk,pMk

), k∈{0,N} (7d)
γ ≤ γk ≤ γ, k∈{0,N} (7e)

γ̇
k
≤ uk ≤ γ̇k, k∈{0,N−1} (7f)

|xM/zM |k ≤ tanαh, k∈{0,N} (7g)
|yM/zM |k ≤ tanαv, k∈{0,N} (7h)

where x is the state vector, u the input vector, x(t) is the
measurement of the current state, f synthetically denotes the
dynamics of the multi-rotor expressed in (2) and (3), and h
denotes the system output map defined in (6).
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IV. FEATURE DETECTION UNDER INTERMITTENT
MEASUREMENTS

As a particular implementation of the proposed model,
we choose to use calibrated monocular cameras to detect
AruCo fiducial markers [18]. These sensors are among the
most widely spread on UAVs, because of their accessibility
and lightness. The choice of using fiducial markers also
comes from the emphasis of this work on designing a generic
perception-aware control framework, where the software bur-
den of feature extraction, which is task-related, can be suitably
abstracted. In this specific case, the feature M is defined as
the geometrical center of the fiducial marker. In the following
we present the measurement filtering process used to make
the proposed framework cope with intermittent noisy mea-
surements.

A. Temporal data association

In order to filter the intermittent measurements (since the
detection runs at, e.g., 30Hz, while the control loop frequency
is typically 500Hz to 1kHz), we use an Extended Kalman
Filter (EKF). The state vector of the EKF is defined as the
position in FS of the feature M :

Sp
M

= [SxM
SyM

SzM ]>. (8)

We express the transition model of the EKF as a first order
integration of the feature motion relative to the camera. We
consider a zero velocity model for the target, in FW . This
assumption is pertinent even for a mobile target with a small
velocity in FW , since the relative motion of the feature w.r.t.
the camera between two successive measurements will be
mainly induced by the camera motion (in particular, its angular
speed, since the relative distance from the feature to the camera
is typically a couple of meters). A similar model for faster
feature motion could be proposed assuming constant speed or
constant acceleration.

The time-continuous transition model is then writen as:

SpM (t) = pM (t− dt) + 1

dt
B(t− dt)uEKF(t), (9a)

where dt is the filter period, while uEKF and B are given by:

uEKF = [ṗ> ω>]> ∈ R6, (9b)

B =
[
I3 [SpM ]×

]
∈ R3×6, (9c)

where [·]× is the skew operator. Note that uEKF is expressed
in camera frame. Finally, the uncertainty estimation of uEKF ,
denoted Σu, is usually provided by the external state estimator
of the UAV.

B. Uncertainty estimation

In addition to the measurements of M , we provide the
EKF with an uncertainty estimation, denoted ΣM ∈ R3×3.
This aims at improving the reprojection of the feature in the
camera frame. Quantitative results of this improvement are
discussed in Sec. V-C. Since the 6D-pose STM of M in FS
is retrieved from the pixel measurements ci ∈ R2, i ∈ 1 . . . 4,
of the four corners of the fiducial marker, ΣM should be

expressed as a function of the pixel uncertainty. We assume an
isotropic Gaussian pixel noise on the measurements. Hence,
we define the covariance matrix Σc of the stacked four corner
measurements cM = [c>1 . . . c

>
4 ]
> ∈ R8 as:

Σc = σ2I8 ∈ R8×8. (10)

Then, ΣM is obtained from Σc using a first order covari-
ance approximation scheme [19], by computing the Jacobian
matrix of a mapping function f : cM 7→ STM .

However, such a mapping function, is typically algorithmic,
e.g., PnP, and thus is hard to differentiate. Instead, we rather
consider its inverse, which is the perspective projection of the
four corner:

f−1 : R3 × SO(3) → R8

STM 7→ cM .
(11)

Note that f as the mapping from the 6D-pose to the
pixel vector, since the rotational part of the transformation is
needed for the computation of the Jacobian, even if only the
translational part is of interest to compute ΣM . We denote
Jf−1 ∈ R8×6 the Jacobian of f−1, and JM ∈ R8×3 the
Jacobian of the translational part, corresponding to the first
three columns of Jf−1 .

The propagation formula is then obtained using the relation:

Σc = JMΣMJ>M , (12)

which is inverted and further simplified using (10) as:

ΣM = σ2(J>MJM )−1. (13)

To compute Jf−1 , we use the known four corners coordi-
nates in the marker frame FM : xi = [±l/2 ±l/2 0 ]

>, l being
the marker size. For each corner, we have the relation:

ci = pix(hi) = pix(K(SRMxi +
SpM )), (14)

where SRM is the rotation from FM to FS , K is the intrinsic
camera matrix, hi ∈ R3 are the homogeneous coordinates
obtained from the perspective projection of the camera, and
pix : R3 → R2 is the pixelization of hi into the pixel
coordinates, defined as:

pix : [x y z]> 7→ [ x/z y/z ]
>
. (15)

The derivation of (14) gives, using the chain rule, the
Jacobian:

Jci
T (xi) = Jci

hi
Jhi
T (xi) ∈ R2×6, (16a)

with:

Jhi
T (xi) = K

[
I3 − SRM [xi]×

]
∈ R3×6, (16b)

Jci
hi

=
[
1/z 0 −x/z2

0 1/z −y/z2

]
. (16c)

Finally, the four Jacobian matrices Jci
T computed for the four

corners are stacked into the full Jacobian Jf−1 .

V. EXPERIMENTAL VALIDATION

In this section, we present the experimental validation of
this framework. The proposed experiments aims to underline
the main contributions of this framework, while demonstrating
its applicability on a real platform.
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Fig. 2: The quadrotor used in the presented experiments, along with
the onboard view of the two embedded cameras.

A. Experimental Setup

The framework is implemented in C++, using GenoM [20]
which is a middleware-independent component generator, that
can then be compiled for a given middleware, e.g., ROS.
The NMPC component is based on CPPMPC, the C++ im-
plementation of the MATMPC software [12]. The dynamic
equations are translated to C code using CasADi [21], and
the discretization is done using a 4th order explicit Runge-
Kutta integrator. The hardware interface as well as the state
estimation and path planning are done using the TeleKyb3
softwares, available on the OpenRobots platform1. Note that
the UAV state estimation is done using a combination of
external motion capture and internal IMU.

The software framework can later be connected to the actual
platform, or to a Gazebo simulated system that emulates the
platform interface. Details on how to use this software can be
found in the provided git.

The validations presented in this section are obtained using
UAVs equipped with an onboard Intel NUC, with an Intel
Core i7-8565U and 8GB of DDR3 RAM, on Ubuntu 18.04.
The onboard sensor are the Intel RealSense T265 and D435
cameras. They were chosen for their easy onboard implemen-
tation, light weight, and because they cover two distinct types
of cameras: a common 16/9 color camera, and a grayscale
fisheye camera (undistorted into a 90◦ square image to allow
the feature reprojection). Both cameras run at 30Hz. Figure 2
shows the platform used for the experiments, with the two
cameras: one down-looking and one front-looking.

Videos of the proposed experiments and simulations can be
found in the attached multimedia file.

1https://git.openrobots.org/projects/telekyb3
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Fig. 3: (x, y) position of the UAV. The two black dots are the target
position; the dashed line is the time-varying reference while the solid
black line is the UAV path. The color dots represent the UAV position
every 0.3 seconds, and the color represents the UAV altitude. The blue
segments are the front camera principal axis orientation.
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Fig. 4: The measured cβ and corresponding lower bound cosαβ

for the two pairs camera/marker (front-looking in yellow and down-
looking in blue).

B. Hover-to-hover Under Visibility Constraints

This experiment aims at demonstrating the capability of the
proposed framework to modulate a reference task in order to
maintain visibility over a set of features. In particular, the two
cameras have to maintain visibility over a marker on a wall
and on the ground,respectively. The two markers are fixed in
FW , and the UAV is given a position reference trajectory that
is not feasible under the visibility constraints.

Results of this experiment are presented in Figure 3, which
depicts the (x, y) coordinates of the UAV, the feature posi-
tions and the reference trajectory. The color dots indicate the
distance between the UAV altitude and the reference altitude,
which is constant and set to z = 1. As the (x, y) distance
between the reference and the feature increases, the deviation
from the reference increases in order to accomodate for the
objective and the constraints at best. Figure 3 also shows the
z coordinates increasing or decreasing with depending on the
UAV (x, y) position. Figure 4 shows the measured cβ for the
two cameras with their respective lower bounds, i.e., the cosine
angular FoV cosαβ . The subscript β recalls that since we
consider a pyramidal FoV, the minimum value of cβ depends
on its position in the image plane. In particular, αβ is minimum
when the feature is on the central vertical line of the image,
and maximum when it is on the image diagonal. It is a compact
and visual representation of the perception constraints (5).

The deviation from the reference trajectory is dependent on
the MPC weights Q, and has to be tuned for a given task. In

https://git.openrobots.org/projects/telekyb3
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Fig. 5: Top: x coordinate of the position of the UAV (solid blue) vs
the board measured marker coordinate (dashed red), and its ground
truth (dotted black). Bottom: the measured cosβ and its bound cosαβ

for the two pairs camera/marker (front- and down-looking).

this case we imposed a better tracking on the (x, y) position
than on z, which has a smaller impact in the cost function.

Finally, we want to remark that the actuation constraints (7e)
and (7f) are largely satisfied during the whole experiment. We
omit the plots to avoid an unnecessary information overload.

C. Mobile Feature Tracking

The setup for this experiment is the same as the one pre-
sented in V-B with the exception of the fact that the feature on
the ground is mobile and the reference task given to the UAV
is to stay on top of the ground detected feature at a constant
altitude (z = 1 [m]), while the visibility on both markers
must be maintained. The rotation around the zB axis is left
free (this is achieved by setting the reference yaw as the last
measured one, which adds just a little bit of a ‘damping-like’
effect). As a consequence, the controller heavily exploit such
rotation to fulfill the perception constraints and objectives.
This allows a smooth rotation without adding perturbations to
the other tasks. It also illustrates that the controller is able to
autonomously satisfy the perception constraints and objectives
without the need of any additional user inputs. Results are
reported in Figure 5, which shows the position tracking of the
UAV along the coordinate that is mostly affected by feature
motion (x axis) and the perception constraint fulfillment. As
it can be seen from the plot the tracking is satisfactory and
the constraints are always satisfied. The maximum speed and
acceleration allowed for the feature in order for the UAV to
fulfill the constraints is dependent on the sensor FoV and the
requested altitude z. In the presented experiment, the average
target speed is 0.5 [m/s].

Similar to Figure 3, Figure 6 depicts the (x, y) motion of
the platform during one way of the maneuver. We see the yaw
orientation changing during the motion in order to keep the
visibility of the feature on the wall.

Table I presents the mean and standard deviation of the
reprojection error between the measured feature poses and the
ground truth (obtained using motion capture), with and without
the uncertainty propagation method proposed in Sec. IV-B.
These data are aggregated over several experiments covering

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
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2

Fig. 6: (x, y) position of the UAV. The two black dots are the feature
position; the dashed black line if the mobile feature path. The blue
segments are the front camera principal axis orientation.

three minutes of flight in each case, and in similar conditions.
We note the disparity between the metrics for the two mark-
ers, which is caused by the design of the experiment. The
front feature is often seen from the side, which worsen the
camera measurements. For both features, the proposed method
increases the reprojection precision reducing the average error
by 30% to 40% and standard deviation by 15% to 60%.

Uncertainty Down feature Front feature
estimation mean std mean std
without 0.084 0.158 0.349 0.091

with 0.058 0.065 0.215 0.077

TABLE I: Reprojection error (mean and standard deviation (std), both
in meters) with and without uncertainty estimation, for both the front
and down features.

Finally, similarily to the previous experiment, the actuation
constraints (7e) and (7f) are largely satisfied during the whole
experiment.

D. Computation Time

Figure 7 presents the histogram of the percentage distribu-
tion of the computation time per control step of the NMPC
controller in a sequence of experiments such as the ones
presented in V-B and V-C, covering a total flight time of 5
minutes. During these flights, 95% of the control steps are
faster than 1.7 [ms], and 99% are faster than 4.5 [ms]. There
are outliers: about 1 solving step out of 1000 takes more than
10 [ms], among which the maximum is of 22 [ms]. However,
the analysis of the recorded data shows that these outliers are
sparse and immediately followed by fast computation times,
and do not jeopardize the stability of the UAV. These outliers
do not seem correlated with any particular UAV state and are
most likely caused by numerical issues. We empirically tested
that a control period artificially downgraded to 40 [ms] still
allows the platform to fly and perform simple maneuvers. The
observed outliers are still far below this value.

This illustrates the capability of the proposed framework to
compute the torque-level inputs of the UAV, onboard and in
real-time.
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Fig. 7: Histogram of the percentage distribution of computation time
per control step for a total flight time of 5 minutes.

Fig. 8: Simulation of a fully actuated hexarotor with tilted propellers
(top left), simultaneously tracking two static targets and a moving
one in using two cameras and its 6D motion capability. Right: the
two cameras views.

E. Simulation with tilted-propeller hexarotor

Finally, we present simulations with the fully-actuated
tilted-propeller hexarotor shown in Figure 8 executed using
the Gazebo simulator. Given the additional motion capabilty
of a fully actuated platform, e.g., the ability to control in-
dependently its translation and orientation, we asked a more
challenging task to the UAV. In particular visibility has to be
maintained of a fixed marker on a wall with a front-looking
camera, and of two markers on the ground with a down-
looking camera; of which one is fixed and one is mobile.

This simulation aims at demonstrating the capability of the
controller to exploit the full action span of the platform to
fulfill both the perceptive constraints while obeying also the
actuator constraints. In particular, the tilted-propeller hexarotor
is able to hover with nonzero roll and pitch, as long as the
motor velocities are within their bounds. Figure 9 shows that
at some time, e.g., in the phase between 22 and 40 seconds,
the platform takes advantage of this extra-actuation to hover
while tilted, up to about 20◦. The actuators thrusts and system
inputs, presented in Figure 9 and 10, reach their lower and
upper bounds during this phase, showing that the actuation
constraints are active and the platform is exploited at the
maximum of its capability by the proposed controller.

A video of the simulation is contained in the multimedia
material attached to this work.
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Fig. 9: Top: Thrusts generated by the 6 propellers. Bottom: and the
roll and pitch orientations of the UAV.
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Fig. 10: System inputs for the 6 propellers, reaching their respective
bounds.

VI. CONCLUSIONS

In this work, we extended previous formulations of
perception-aware NMPC to a more realistic modeling, includ-
ing real actuation constraints as well as perceptive constraints,
while including a wider range of UAVs and sensors. We then
proposed a simple yet efficient method to cope with inter-
mittent and noisy measurements from a standard monocular
camera. The proposed open-source implementation is able to
run, at 500Hz, onboard UAVs with standard computation ca-
pabilities. This allowed an extensive testing of the software in
real conditions, directly commanding the motors without any
intermediate unconstrained tracker. The reported experiments
propose a quantitative evaluation of the framework in typical
scenarios where it would be beneficial.

Such a model-based approach does not come without draw-
backs. The modeling of the system has to be done according to
each scenario (characteristics of the UAV, number and type of
sensors and features, etc.), and the same goes for the tuning
of the cost function weights. Also, model-based approaches
are more sensitive to variations between the real physical
parameters of the platform and the ideal ones. Finally, the
optimal solver is unable to find a solution when the requested
task is not achievable under the constraints, as it can be the
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case with perception. This requires the implementation of
some failure-handling strategies.

However, the proposed framework and the increasing avail-
ability of numerical tools (such as, e.g., CasADi, MATMPC,
and Acado) allows a greater usability of NMPC frameworks.
Optimal control and NMPC in particular are a very efficient
way to condense several constraints from various semantics,
while performing maneuvers. A framework such as the one
proposed in this work could be applied to a wide variety
of tasks from aerial manipulation to the coverage of an
environmental phenomenon.

Possible continuations of this work include the extension
to multi-robots systems where the perception load is shared
among the agents. Another criticality to be addressed is the
failure handling, in the cases where either the platform needs
to recover, e.g., under the effect of strong disturbances, by
relaxing the perception constraints; or where the perception
constraints cannot be satisfied because of the actuation limi-
tations. In both cases, a policy could be implemented to try
to recover visibility from the last known measurements and
return to the nominal case. Finally, the possibility to integrate
the feature tracking capabilities of the framework in a visual
state estimation process is also under consideration.
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