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Preface

This book focuses on the study of autonomous aerial robots interacting with the
surrounding environment, and in particular on the design of new control and motion
planning methods for such systems. Nowadays, autonomous aerial vehicles are ex-
tensively employed inmany fields of application but mostly as autonomously moving
sensors used only to sense the environment. On the other hand, in the recent field of
aerial physical interaction, the goal is to go beyond sensing-only applications and
to fully exploit aerial robots capabilities in order to interact with the environment,
exchanging forces for pushing/pulling/sliding, and manipulating objects. However,
due to the different nature of the problems, new control methods are needed. These
methods have to preserve the system stability during the interaction and to be robust
against external disturbances, finally enabling the robot to perform a given task.
Moreover, researchers and engineers need to face other challenges generated by the
high complexity of aerial manipulators, e.g., a large number of degrees of freedom,
strong nonlinearities, and actuation limits. Furthermore, trajectories of the aerial
robots have to be carefully computed using motion planning techniques. To perform
the sough task in a safe way, the planned trajectory must avoid obstacles and has to
be suitable for the dynamics of the system and its actuation limits.

With the aim of achieving the previously mentioned general goals, this book
considers the analysis of a particular class of aerial robots interacting with the envi-
ronment: tethered aerial vehicles. The study of particular systems, still encapsulating
all the challenges of the general problem, helps on acquiring the knowledge and the
expertise for a subsequent development of more general methods applicable to aerial
physical interaction. This work focuses on the thorough formal analysis of tethered
aerial vehicles ranging from control and state estimation to motion planning. In
particular, the differential flatness property of the system is investigated, finding two
possible sets of flat outputs that reveal new capabilities of such a system.One contains
the position of the vehicle and the link internal force (equivalently the interaction
force with the environment), while the second contains the position and a variable
linked to the attitude of the vehicle. This shows new control and physical interaction
capabilities different from standard aerial robots in contact-free flight. In particular,
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the first set of flat outputs allows realizing one of the first “free-floating” versions of
the classical hybrid force-motion control for standard grounded manipulators.

Based on these results we designed two types of controllers. The first is an easy-
to-implement controller based on a hierarchical approach. Although it shows good
performance in quasi-static conditions, actually the tracking error increases when
tracking a dynamic trajectory. Thus, a second controller more suited for tracking
problems has been designed based on the dynamic feedback linearization technique.
Two observers, for the 3D and 2D environments, respectively, have been designed
in order to close the control loop using a minimal sensorial setup. We showed that
the tether makes possible to retrieve an estimation of the full state from only an
IMU plus three encoders for the 3D case, while from just an IMU for the 2D case.
Parts of those results were extended to a novel and original multi-robots case as
well. We considered a multi-tethered system composed of two aerial robots linked
to the ground and to each other by two links. The theoretical results on generic
tethered aerial vehicles were finally employed to solve the practical and challenging
problem of landing and takeoff on/from a sloped surface, enhancing the robustness
and reliability of the maneuvers with respect to the contact-free flight solution.

This work has been supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 644271 AEROARMS.
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with a dashed yellow line and a solid blue line, respectively. . . . . . . . . 142
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Chapter 1
Introduction

Abstract This chapter provides a global overview of the topic treated in this book.
In particular, we shall firstly contextualize the work in the wide panorama of aerial
robotics, and more precisely, of aerial physical interaction. Afterword, we will focus
our attention to the topic of this work, i.e., tethered aerial vehicles. We shall cover the
scientific and practical motivations that brought us analyzing these kind of systems,
listing the several objectives and challenges at which we aim in this work. We finally
provide a reader’s guide describing in a detailed way the organization and content
of the book.

1.1 Aerial physical interaction

One of the robotic fields in constant growth in the last decade is aerial robotics.
According to [19], the definition of aerial robotics can be twofold: i) robotic flying
machines, putting the emphasis on the platform, or ii) robotics that use flying ma-
chines, putting the emphasis on the mission instead. In both cases, the main goal of
aerial robotics is to study and conceive aerial systems that can perform work fully
or partially autonomously. In the related literature, such robotic aerial platforms are
often called Unmanned Aerial Vehicles (UAVs).

Although it is only recently that UAVs gained the interest of a very big and still
increasing community, the study and design of such systems started already in the
early 1900s. These vehicles were firstly used as prototypes to test new aircraft con-
cepts before being produced and piloted by human pilots, decreasing the costs and
the risks. The design of UAVs continued during the two World Wars for military
purposes. However, the technology level was not enough to produce aerial robots
able to autonomously navigate in a reliable way. It is only relatively recently, with
the advent of lightweight and performing processors, accurate sensors and global
navigation satellite systems, that aerial robots started to progressively gain better
sensing and navigation capabilities. Although firstly employed in the military area,
UAVs got a lot of interest from the civil area as well. Given the exponential appear-
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18 1 Introduction

ance of new aerial vehicles and new applicative fields, the Economist compared the
“drone boom” like the one happened to personal computers in the 1980s [17].

Themotivation of the great popularity of UAVsmainly comes from the downscale
of the size, weight, and cost of the sensing and computing technology. The latter
made UAVs lighter, muchmore powerful and less expensive too. In turn, this allowed
UAVs being accessible by a very wide community, both from the research and indus-
trial areas. The low cost, the theoretically infinite workspace and the great versatility
of these platforms allow employing them for several applications. In particular, they
find their greatest use in dangerous and hazard environments, preventing humans
from getting harmed. Some examples of application where UAVs are nowadays
employed are agriculture, construction, security, rescue, response to disasters, en-
tertainment, photography and movie making, archeology and geographic mapping,
wildlife monitoring/poaching, and many others can be mentioned. Other near-future
interesting applications, currently under study, are personal and goods transportation
(e.g., Volocopter1 and Amazon2, respectively).

Several types of aerial vehicles are available in the market:
1) Rotary wings UAVs, like multirotors, small-scale helicopters, and ducted fan;
2) Convertible UAVs, like tail sitter aircrafts, that combine cruising flight and

Vertical Takeoff and Landing (VTOL) capabilities [60];
3) Flapping wings UAVs, inspired by the flight of birds, bats, and insects;
4) Fixed wings UAVs, very popular for their long flight time.
According to the particular application, one could choose the vehicle that better fits
the sought task, finding the best trade-off between flight endurance and maneuver-
ability.

Particular attention is given toVTOLvehicles thanks to their highmaneuverability
and the ability to hover in place and to take off and land from/on confined spaces,
without the need of a runway or other devices. These facts make VTOL vehicles
applicable also in indoor and cluttered environments such as forests, industrial plants,
and urban environments. A brief review of these type of vehicles is given in Sec. 3.2.
Beyond the mentioned nice features of VTOL UAVs, they suffer from a major
drawback. Standard VTOL vehicles, like collinear multirotors, can produce a total
thrust force only along one fixed direction with respect to the body frame (they can
also be called unidirectional-thrust aerial vehicles). This makes them underactuated.
Itmeans thatwe cannot fully control the vehicle state. In particular, one cannot control
the attitude independently from the position. Starting from a hovering configuration
(horizontal attitude), in order tomove toward a certain direction the vehicle has firstly
to rotate such that the thrust generates a horizontal acceleration toward the desired
direction. This underactuation introduces several challenges for the stabilization of
the system and the tracking of the desired trajectory. It also implies that an external
disturbance cannot be immediately rejected. The platform has firstly to tilt. For these
reasons, several works have been done to design controllers of increasing complexity
to improve the performance of such vehicles, e.g., in [33, 74, 18, 41]. Additionally,

1 www.volocopter.com

2 www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
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1.1 Aerial physical interaction 19

many state observers have been conceived to close the control loop to autonomously
fly in different conditions and with different sensory setups. For more details on
control, localization andmotion planningmethods for the navigation ofVTOLUAVs,
we refer the reader to themain surveys and books in the literature [69, 114, 47, 32, 31]

One can notice that in all the application mentioned so far, the robot is used as a
simple remote sensor. The vehicle gathers data, e.g., with a camera, without inter-
acting with the environment. Although the use of UAVs for applications concerning
only the sensing of the environment is already an interesting and challenging topic,
it is actually limited with respect to the real potentiality of these aerial robots. The
paramount scope of robots is to perform physical work, namely to act and interact
with the environment exchanging forces. Aerial Physical Interaction (APhI) would
lead to new very interesting applications. Some examples are assistance robotics in
industrial or domestic environments, assembly and construction, decommissioning,
inspection and maintenance by contact, removal of debris after natural disasters,
delivery and transportation, stringing of power lines, and many others. Nowadays,
these tasks are performed by human operators in very dangerous conditions, like on
top of scaffolds or suspended by climbing ropes. The use of aerial robots would allow
reducing the risk for the human operators and, at the same time, to reduce the cost
associated with such operations. Given the relevance of the problem, many research
labs and companies have been attracted to it. As a result, we can find many European
projects with the scope of advancing in the aerial robotic field. In the following, we
list some concluded and ongoing projects with corresponding goals:

• ARCAS3: conceive aerial robots for assembly and construction of structures;
• AEROARMS4: design and build UAVs with high manipulation capabilities for
industrial inspection and maintenance;

• AEROWORKS5: provide heterogeneous and collaborative aerial robotic workers
for inspection and maintenance tasks in infrastructure environments;

• ARCOW 6: design aerial co-workers helping humans inmanufacturing processes;
• AEROBI7: conceive aerial vehicles for in-depth structural inspection of concrete
bridges;

• AIROBOTS8: design aerial robots for remote inspection by contact;
• HYFLIERS9: conceive a robot with hybrid air and ground mobility with a long-
reach hyper-redundant manipulator.
For the aimed goals, aerial vehicles need new manipulation capabilities to safely

and reliably interact with the environment. This opens the door to new challenges
in aerial robotics. An aerial manipulator, being a floating body, has to actively
react to interaction forces with the environment, that have to be carefully taken into

3 http://www.arcas-project.eu/

4 https://aeroarms-project.eu/

5 http://www.aeroworks2020.eu/

6 http://www.euroc-project.eu/index.php?id=grvc-catec

7 http://www.aerobi.eu/

8 http://airobots.dei.unibo.it/

9 http://www.oulu.fi/hyfliers/
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account. Indeed they could eventually destabilize the system. This is different for
a grounded manipulator which passively reacts to interaction forces thanks to the
ground constraint. Furthermore, for grounded manipulators, we can usually directly
and accurately control the torque that each motor applies to the corresponding
joint. For an aerial vehicle, we instead control (in first approximation) the spinning
velocity of a rotating propeller that, by the aerodynamic effects, produces a force.
Due to the complexity of the aerodynamic effects and to disturbances, it is not
easy to precisely control these forces. these actuation errors drastically impact the
performance of the robot while interacting with the environment. Finally, in order to
improve the dexterity and the manipulation capability of aerial robots, the latter are
usually endowed with interactive tools such as grippers or articulated arms. The final
aerial manipulator results to be a complex system characterized by a complicated
and in general highly nonlinear dynamics. The latter has to be carefully considered
because the couplings between the aerial robot and the interacting tool, if not properly
addressed, can easily bring the system into instability. As a consequence, new control
methods have to be conceived considering the full dynamics of the system, in order
to preserve the stability during the interaction phases as well.

The most simple tool that one can use is a rigid tool rigidly attached to the
robot. This allows exchanging forces with the environment, e.g., by pushing or
sliding. Although the tool is very simple in itself, the underactuation of the vehicle
makes the physical interaction very challenging. To address the problem, the works
in [65, 5, 25] designed a hybrid force/position control. The tool can be then equipped
with a gripper in order to allow pick and place operations [55]. To further increase
the manipulation and the payload capabilities, several aerial robots endowed with a
simple rigid link or a gripper can manipulate an object in a coordinated fashion, as
a sort of “flying-hand” [57, 27, 97].

Another very used and still simple interaction tool is a cable. The use of a cable
allows partially decoupling the rotational dynamics of the vehicle with respect to
the one of the load. However, the control authority on the load positioning is re-
duced and a particular attention has to be given to undesired load oscillations that
might destabilize the system. Several works addressed the problems from the control
point of view proposing, for example, adaptive controllers [13, 71], a hierarchical
controller [6], a flatness-based geometric controller [95] and even a reinforcement
learning based approach [72]. Other works instead, addressed the problem from a
motion planning point of view proposing algorithms that generate optimal trajec-
tories that minimize the load swing [96, 22]. Also, in this case, the multi-robot
approach can be beneficial to increase the payload of the system and the control
authority on the load [94, 48, 53, 24, 110, 83]. Furthermore, cables are not only used
for the transportation of goods but also to tether aerial vehicles to fixed or moving
platforms in order to enhance the flight stability during strong wind conditions or
during dangerous maneuvers like takeoff and landing on moving vehicles [85, 44].
An introduction on the tethered aerial vehicle is provided in the following Sec. 1.2.

Finally, one can endow the aerial vehicle with one or even more articulated arms.
The employ of a so-called aerial manipulator (AM) allows reaching high levels
of dexterity. Depending on the number of degrees of freedom, an object can be
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locally manipulated independently from the motion of the platform. If the system
is over-actuated, one can exploit the robot redundancy to achieve secondary tasks
or to better compensate for external disturbances or tracking errors of the aerial
vehicle. Nevertheless, the system results to be very complex and the underactuation
of the vehicle makes its control even more complex. The easiest way to control such
AM is with a decentralized approach. It consists of assuming the aerial vehicle and
the robotic arm as two independent systems, considering the interaction forces as
disturbances that have to be rejected. Indeed, the controller used for both subsystems
is often a robust control [91, 81]. these methods can be also applied to robotic arms
with kinematically controlledmotors. However, they best perform only in quasi-static
motions, i.e., when the couplings effects between the aerial vehicle and the articulated
arm are practically negligible. As soon as the motion is more demanding in terms
of accelerations, decentralized control methods fail, or in the best case show large
tracking errors. In these cases is more advisable to use a centralized control method
that considers the system as a unique entity. The centralized controllers proposed
in the state of the art are strongly model-based and consider the full dynamics of
the system [115, 116, 58]. If the kinematic and dynamic model is very well known,
then centralized controllers can lead to very good performance. However, since they
are strongly model based, as soon as there are some parameter uncertainties, the
performance degrades. Furthermore, they often require torque controlled motors
that are in general unfeasible for aerial manipulators due to the limited payload. A
complete survey on the topic has also been recently published [80].

The previously mentioned examples address the aerial physical interaction prob-
lem using underactuated unidirectional-thrust vehicles. As already said this makes
physical interaction tasks very challenging and prone to instability. However, a
very recent and promising trend is to use multidirectional-thrust aerial vehicles
instead [77]. As the name says, these vehicles can produce a thrust force in many
directions with respect to the body frame. This means that they can independently
control both position and orientation and can react to external disturbances almost
instantaneously, when far from input saturation. These two great features make
multidirectional-thrust aerial vehicles perfectly suited for physical interaction tasks
since they are more robust to interaction forces and have more dexterity as well [82].
However, such benefit comes with the cost of a higher power consumption. In order
to produce the thrust in several directions, the propellers are tilted or can be actively
turned, toward different directions producing internal forces that waste energy. On
the other hand, unidirectional-aerial vehicles are the most efficient in terms of en-
ergy. That is why it is still interesting to study aerial physical interaction by means
of unidirectional-thrust vehicles.

Another important aspect of aerial physical interaction is related to motion plan-
ning. Even if we can control very well our robot, the trajectory for the execution of
a certain task has to be carefully computed using motion planning techniques. To
perform the task in a safe way, the planned trajectory must avoid obstacles and has
to satisfy the intrinsic constraints of the considered robot. In particular, it has to be
suitable for the dynamics of the system and its actuation limits. Classical motion
planning methods rely on quasi-static assumptions and are based only on geometric
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and kinematic models of the system. Hence they are inadequate to achieve manipu-
lation tasks involving physical interaction. In fact, when the robot is in contact with
the environment and exchanges forces with it, the dynamics of the system cannot
be neglected. This requires the use of a kinodynamic motion planning approach
(e.g., [7]). However, kinodynamic planners developed so far are suitable only for
simple systems, characterized by a small number of degrees of freedom and a rel-
atively simple dynamic model, like car-like vehicles or quadrotors. Instead, in the
context of aerial physical interaction, robots have usually a large number of degrees
of freedom to increase the dexterity of the system. This, in turn, makes the motion
planning problem very challenging, requiring the design of new kinodynamic mo-
tion planning methods. these have to cope with the nonlinear dynamics of the robot,
its redundancy and the forces exchanged with the environment during manipulation
tasks. Finally, the problem has to be solved very rapidly in order to use the planner
online and to re-plan the trajectory in case of unforeseen events or moving obstacles.
Some attempts to solve the motion planning problem for some specific cases can be
found in [39, 20]

1.2 Tethered aerial vehicles

In the vast domain of UAVs, cables are not only used for single and cooperative
transportation of goods. They are also used to tether the aerial vehicle to a ground
station. Especially in the industrial sector, the link is mainly used as an umbilical
device to provide power to the robot [11], and a high bandwidth communication
channel with the base station. The possibility to power the robot directly from the
ground station makes the aerial vehicle flight time theoretically infinite, overcoming
one of the major limits of aerial robots. As a result, tethered aerial vehicles becomes
suitable for many applications that require long operation time like monitoring [64],
surveillance, aerial photography, communication reinforcement [73] and so on. The
time flight provided by a single on-board battery would not be enough to fully
accomplish the previous mentioned tasks. The great potentials of tethered aerial
systems and their obtained big interest, is proven by the increasing number of private
companies appeared in the market proposing tethered UAVs or power tether systems
for standard commercial UAVs. Figure 1.1 gathers some of the many examples that
one can find on-line.

Another interesting use of the tether is to bring to the robot some sort of fluid for
various type of applications, e.g., cleaning, painting or applying chemical products.
Indeed, often there is the need of cleaning some part of a civil or industrial structure
at high altitude, e.g. the windows of a skyscraper, the blades of a wind turbine,
or the chimney of a refinery. Normally, these operations are conducted by human
operators reaching the working spot by the use of climbing cords or by bulky and
expensive scaffolds. Firstly, the use of an aerial robot in these applications would
allow to perform the operation in an fully or semi autonomous mode reducing the
risks for the human operators. Secondly, it would decrease the time and the costs
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(a) Courtesy of: Atlanta Instru-
mentation and Measurement,
www.aimatlanta.com; and
Guided Systems Technologies,
http://guidedsys.com/.

(b) Courtesy of: Drone
Aviation Corp, www.
droneaviationcorp.com.

(c) Courtesy of: Elistair
www.elistair.com.

Fig. 1.1: Examples of companies proposing tethered aerial robots for long flight time
operations.

(a) Courtesy of: Apellix, http:
//www.apellix.com/

(b) Courtesy of: Aerones, www.
aerones.com

Fig. 1.2: Examples of tethered aerial robots for cleaning applications.

related to the construction and deployment of scaffolds or climbing gears. However,
due to the limited payload of standard aerial vehicles, it is practically unfeasible to
carry on-board all the tools needed for these kind of tasks, e.g., a spying tool and
a tank of detergent liquid. On the other hand, the tether could be made such that to
provide to the robot not only the power to fly indefinitely, but the cleaning liquid as
well. Figure 1.2 shows the tethered aerial vehicles proposed by two companies for
the cleaning of a facade of an industrial structure, and the blades of a wind turbine,
respectively.

In the previous mentioned cases, the cable is slack, i.e., there is not tension along
the link. Therefore, except for its weight and inertia, the cable does not influence the
motion of the aerial vehicle. In these cases, complex control strategy are not really
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(a) EC-SAFEMOBIL [16, 3, 87]. (b) Courtesy of FotoKite, www.
fotokite.com

Fig. 1.3: Examples of applications of tethered aerial vehicles when the cable is taut.
In particular, starting from the top-left image, landing/takeoff on/from a moving
platform, inspection in indoor environments and stringing of a power transmission
line on the right.

needed and a standard position controller (or a tele-operation framework) can be
used to perform the sought task.

The case in which the cable is taut is definitely more interesting from a scientific
point of view. In this case there is a clear physical interaction between the aerial
vehicle, the link itself, and the other end of the link. A taut cable can provide
advantages that go beyond the ones already mentioned, such as: i) improved flight
stability and reliability, especially during dangerous maneuver or in the presence of
strong wind [85], ii) physical interaction with a ground object and iii) stabilization
with a minimal set of sensors, even in a GPS-denied environment [84, 44]. Examples
of application fields related to this kind of robotic systems exploiting the tautness
of the cable are landing/taking-off from/on moving or sloped platforms [103, 111,
68, 85], inspection in GPS-denied environments, human-robot interaction [44] and
stringing of power transmission lines (see Fig. 1.3 for some examples).

Notice that, since the link is taut, the dynamics of the aerial vehicles changes.
Indeed the interaction force consisting in the internal force along the link has to
be considered. Control and estimation for an aerial system that is connected by a
taut cable to the ground is not an easy task. In fact, standard flight-control and
estimation methods either cannot be applied straightforwardly to this case or, if
applicable, provide only sub-optimal performance, because they do not exploit the
full dynamics and capabilities available to the new interconnected system. Therefore,
the only way to cope with the difficulties of the new robotic system and to exploit
at best its capabilities is to design new control and estimation methods that consider
the new system as whole. However this is hard to accomplish, due to the nonlinear
dynamics and the dynamic coupling between the aerial vehicle and the link.
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For a complete understanding of these type of robotic systems, this book aims
at providing a deep and thorough theoretical analysis which is the basis for solving
practical problems related to real applications. In particular, we shall consider the
most generic tethered aerial system, i.e., a generic unidirectional-thrust aerial vehicle
flying in the 3D space and tethered to a freely moving platform by a generic link (not
only by a cable), togetherwith a link actuator able to change its length. For this system,
we shall investigate its dynamics and its intrinsic properties, such as the differential
flatness. This property is very useful both for control and motion planning. Indeed
the analysis of such property allows understanding which are the outputs, called flat
outputs, that can be independently controlled and which is their required degree of
smoothness. Furthermore, it provides the tools to analytically compute the nominal
state and input required to track a desired trajectory of the flat output. This turns out
to be very helpful in the motion planning phase to simplify the planning method and
to check for the feasibility of the desired trajectory. These results will be the base
to design different types of controllers for tracking the outputs of interest. To close
the control loop, the full state of the system is required. Practically, having a direct
measurement of the state is often unfeasible. In this work we shall then considered
the problem of closing the control loop with a minimal set of sensors, investigating
the observability, and designing a global nonlinear observer.

Finally, we will try to apply the presented theoretical results to a real application
problem. In particular we shall consider the practical problem of takeoff and landing
from/on a sloped surface. For a standard unidirectional-thrust vehicle in a free-
flight configuration, this is a very challenging problem. On the other hand, we will
theoretically and experimentally show that the use of the tether makes the execution
of these maneuvers much safer, reliable and robust to tracking errors and parameters
uncertainties.

1.3 Organization of the book

In this section, we provide a reader’s guide describing the organization of the book
and summarizing the content of each chapter.

The first three chapters provide the preliminaries to better contextualize this work
in the field of aerial physical interaction, and the mathematical methodologies to
better understand the core part. In particular,

Chap. 2 recalls in a synthetic way the mathematical methodologies used as back-
ground for the theoretical analysis of tethered aerial vehicles. In particular, we
revise the two most used modeling methods, i.e., Lagrangian and Newton-Euler
formalisms, the differential flatness property, the dynamic feedback linearization
control, and the nonlinear high gain observer.

Chap. 3 provides the models of the subsystems, actuators, and sensors composing
the studied generic tethered aerial vehicle. We provide the generic model of an
unidirectional-thrust aerial vehicle in free-flight, the model for its propellers and
onboard sensors. A model of a generic link and of an encoder are also provided.
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Chapters from4 to 6 represent themain body of the book, namely the complete and
exhaustive study of aerial tethered vehicles. This analysis starts with the modeling
of the system and passes through the characterization of its dynamic properties such
as the differential flatness, controllability, and observability using a minimal sensory
setup. The results of an experimental and simulation campaign are presented to
validate the proposed methods. These are also used as a base for solving the more
applicative problem of landing and takeoff on/from a sloped surface. In particular,
we shall show that the use of a tether makes the execution of such dangerous
maneuvers much more safe, reliable and robust to model uncertainties and tracking
errors. Finally, a multi-robot extension is considered for which we performed a
thorough theoretical analysis similar to the one for the single-tethered case. This part
gathers the work of several articles and some unpublished results as well. For the
sake of homogeneity, completeness, and clarity, in this book we present a complete
dissertation of the topic based on a very detailed reworking of the content of the
several publications.

Chap. 4 contains the complete and thorough theoretical study of a single tethered
aerial vehicle. We provide the model of a generic system. For such a system we
investigate the differential flatness and which are the flat outputs. For the latter,
we design a hierarchical controller and another controller based on dynamic
feedback linearization for the tracking of any desired trajectory. Finally, we
investigate the problem of closing the control loop with a minimal sensory
setup.

Chap. 5 presents all the results obtained from an extensive experimental and nu-
merical campaign apt to validate the proposed methods.

Chap. 6 shows the study of the challenging and application-oriented problem of
landing and takeoff on/from a sloped surface. For this problem, we theoretically
and experimentally show that the use of the tether is advisable, when possible.
Indeed, it allows executing these maneuvers in a much more robust and reliable
way.

Chap. 7 analyzes an interesting multi-robot extension of the single tethered system.
This system is similar to a 2-links planar manipulator where the actuators are
aerial vehicles connected in a chain-like configuration. For this system, similarly
to the single-robot system, we analyze the differential flatness, the controllability
by dynamic feedback linearization and the observability using a minimal set of
sensors.

The book concludes with chapter 8:

Chap. 8 provides a global overview of the book, together with some discussions
about the obtained results. Potential future applications and extensions of this
work are considered as well.
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Chapter 2
Theoretical background

Abstract In this chapter we provide a brief review of the theoretical methodolo-
gies employed in this book for the analytical study of tethered aerial vehicles. In
particular, this review covers fundamental methods to i) model the system; ii) an-
alyze its dynamic properties; iii) design nonlinear control methods to accomplish
the sought autonomous behavior; and finally iv) design state estimation methods
to retrieve the state from the available sensors to close the control loop. For the
modeling of the analyzed tethered aerial systems we used mainly two equivalent
yet different approaches, namely the Lagrangian and the Newton-Euler formalisms
(see Sec. 2.1). The combination of the two allowed us to obtain the best represen-
tation of the dynamics for our control objectives. A particular attention is given to
the modeling of a rigid body. Indeed, most of the aerial vehicles are modeled as
floating rigid bodies. The obtained formal description of the dynamics was firstly
used to determine whether the system is differentially flat or not, and if yes, with
respect to which flat outputs. The analysis of this property results very useful for
both control and motion planning (see Sec. 2.2). Since there exists a strong relation
between differential flatness and feedback linearization [35], we then applied the
latter method, described in Sec. 2.3, to solve the tracking problem of the flat outputs
previously discovered. Finally, in order to practically implement the control action
based on feasible measurements, we investigated the minimal sensory configuration
that makes the state observable. The applicability of a globally exponentially stable
nonlinear High Gain Observer (described in Sec. 2.4) has been studied. In order to
facilitate the reader understating of the theoretical results proposed in this book, in
the following, we shall describe the previously mentioned methodologies.

2.1 Modeling

The major two methodologies normally employed to compute the dynamic model of
a mechanical system are the Lagrangian and the Newton-Euler formalisms. The two
methods are equivalent and obviously lead to the same outcome, but the practical
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procedure is quite different. Furthermore, they could give different insights about
the system and its properties.

The first, the Lagrangian formalism, is a systematic and elegant approach to derive
the analytical dynamic equations describing the model of the system, independently
from the reference frame. In particular, choosing a proper set of generalized coordi-
nates and simply computing the kinematics and potential energies, the Lagrangian
formalism allows to compute the dynamic equations, naturally including system
constraints and reaction forces. Nevertheless, notice that it becomes unpractical for
complex system with many degrees of freedom.

On the other hand, the Newton-Euler method is an efficient and recursive method,
especially suited for manipulators with an open kinematic chain and complex sys-
tems. It treats each joint of a robot as an independent part, and then computes the
coupling between them using the so called forward-backward recursive algorithm.
However, a particular attention has to be taken for constrained systems. Indeed one
has to explicitly consider reaction forces related to system constraints.

In the following we recall the basis of the two methods, mostly from a practical
point of view, and the particular remarks and considerations made during this thesis.
Fore more details we refer the interested reader to [91, 90, 93, 45].

2.1.1 Lagrange formalism

Thefist step consists on choosing a set of independent coordinatesq = [q1 . . . qn]> ∈
Rn, called generalized coordinates. Those fully describe the configuration of the
system and its n ∈ N>0 degrees of freedom. Accordingly to the chosen generalized
coordinates, we can then compute the generalized forces acting on the system. Con-
sider a set of forces f = [f>1 . . . f>m]> ∈ R3m, where the generic force fi ∈ R3 is
applied on the system at point ri ∈ R3, with i = 1, . . . ,m and m ∈ N

≥0. We can then
compute the generalized force ξj(f,q) ∈ R w.r.t. the j-th generalized coordinate qj

as:

ξj(f,q) =
m∑
i=1

f>i
∂ri
∂qj

, j = 1, . . . ,n. (2.1)

We can now define the Lagrangian function, L(q, Ûq), equal to the difference of
total kinetic energy,K(q, Ûq), and potential energy,U(q, Ûq), i.e., L(q, Ûq) = K(q, Ûq) −
U(q, Ûq). Finally, the equation of motions of the system are given by the following
Lagrange equations:

d
dt
∂L(q, Ûq)
∂ Ûqj

−
∂L(q, Ûq)
∂qj

= ξj(f,q), j = 1, . . . ,n. (2.2)

For the type of mechanical systems under exam, the potential energy usually
corresponds to the sole gravitational potential energy, and the kinematic energy can
be computed as a quadratic form, K(q, Ûq) = 1

2 Ûq
>M(q) Ûq, where M(q) ∈ Rn×n is the
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inertia matrix of the system. The equations of motion in (2.2) can be then rewritten
in the more usual form:

M(q)Üq + C(q, Ûq) Ûq + g(q) = ξ(f,q), (2.3)

where C(q, Ûq) Ûq contains the centrifugal and Coriolis terms, while g(q) contains the
gravitational terms, and ξ(f,q) = [ξ1(f,q) . . . ξn(f,q)]> ∈ Rn.

Remark: The inverse dynamics problem consists into computing the generalized
forces ξ(f,q) given a certain motion expressed in terms of Üq, Ûq and q. Considering
the generalized forces as inputs and the motion as output, this problem is equivalent
to the control problem, i.e., compute certain inputs to obtain certain desired outputs.
Given the analytic expression of the dynamic model (2.3), the Lagrangian formalism
is often used to solve the inverse dynamics problem, and thus the control problem.�

2.1.2 Newton-Euler formalism

The Newton-Euler formalism is based on two recursive steps: i) forward recursion,
and ii) backward recursion.

The first forward recursion is done to propagate the links velocities and accelera-
tions from the first link to the final one. The translational and rotational velocities and
acceleration of the i-th link are computed based on the one of the previous (i − 1)-th
link and on the i-th joint, according to its type (either prismatic or revolute). The
method is repeated for all the links starting from the base link, of which we know
velocities and accelerations, up to the last one.

The second backward recursion propagates forces and moments from the last
link to the first one. Knowing the force and moment applied to the (i + 1)-th link,
we compute the one applied to the i-th link resolving the Newton-Euler equations.
Defining fi ∈ R3 and τi ∈ R3 the force and moment acting on the i-th link at position
ri ∈ R3 (analogously for the (i + 1)-th link), we have to solve the balance equations
of forces and moments at the i-link w.r.t. the i-th link frame:

fi = fi+1 + miai + migi (2.4a)
τi = τi − fi × ri + fi+1 × ri+1 + Ji Ûωi + ωi × Jiωi, (2.4b)

where mi ∈ R>0 and Ji ∈ R3×3
>0 are the mass and inertia1 of the i-th link, ai ∈ R3 is its

linear acceleration, ωi ∈ R
3 and Ûωi ∈ R

3 are its angular velocity and acceleration,
respectively, and gi ∈ R3 is the gravity vector. Notice that all the previous quantities
are defined w.r.t. the i-th link frame. The method is repeated for all the links starting
from the final one, whose external forces and moments are known, back to the first
one.

1 The notation Rn×n
>0 denotes the set of positive-definite real matrices, i.e., Rn×n

>0 = {A ∈

Rn×n | x>Ax > 0 ∀ x ∈ Rn }

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



30 2 Theoretical background

Finally one could retrieve a closed form dynamic model, like the one in (2.3),
resolving all together the forward and backward equations. However, doing it an-
alytically might not be an easy task. We skip the detailed equations because of
their complexity. Nevertheless, we refer the interested reader to the well known
books [91, 90, 93, 45].

2.1.3 Rigid body dynamics

In view of the fact that an aerial vehicle is often modeled as a rigid body, it is
convenient here to review the dynamic model of such a basic element. A free rigid
body, i.e., not subjected to constraints, has six degrees of freedom: three translational
and three rotational. Let us assign an inertial word frame, FW with arbitrary center
OW and axes {xW ,yW ,zW }, and a body frame, FB, rigidly attached to the object,
with center OB centered on the body center of mass (CoM), and axes {xB,yB,zB}.
It is useful to notice here that xWW = e1 = [1 0 0]>, yWW = e2 = [0 1 0]> and2
zWW = e3 = [0 0 1]>. The three translational degrees of freedom are described by
the position of OB with respect to FW , in turn described by the vector3 pW

B ∈ R
3.

The description of the remaining three orientation degrees of freedom is a bit more
delicate because there are several possible representations [12, 90, 93]. The most
popular and used are:

• The exponential coordinates are a minimal three-parameter representation of
rotationswhich define an axis of rotation and the corresponding angle of rotation.
However, combinations of rotations is not straightforward and the axis of rotation
is undetermined when the angle of rotation goes to zero.

• TheEuler-angles is anotherminimal three-parameter representation of rotations.
It is also very intuitive, since it is based on three successive rotations about
the main axes of the body frame. One of the most popular convention in the
aeronautic field consists in successive rotations along themoving axes zB, yB and
xB (in this order) about the angles ψ, θ and φ (Yaw-Pitch-Roll) respectively4.
However, this representation has a singularity. To avoid singularities at the
control level, we will use this convention only to represent rotations in plots.

• The rotation matrix5, RW
B ∈ SO(3), unequivocally describes the rotation of FB

w.r.t. FW . Although this representation has no singularities, it is actually redun-
dant since nine elements describe only three degrees of freedom. Nevertheless,
it eases the operations to rotate vectors and to combine rotations. These facts

2 More in general, ei ∈ R3 is the canonical vector with 1 in position i-th and zero otherwise.
3 In this thesis, the superscript is used to indicate the frame of references. When not present, FW
has to be intended as the reference frame, if not otherwise specified.
4 Notice that this representation is equivalent to the classical Roll-Pitch-Yaw representation. The
latter consists in successive rotations along the fixed axes xB , yB and zB (in this order) about the
angles φ, θ and ψ respectively
5 SO(3) = {R ∈ R3×3 | R>R = I3 } where In is the identity matrix of dimension n. SO(3) is also
called special orthogonal group.
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together with the absence of singularities make this representation the preferable
for the design of controllers for aerial vehicles. This is why, in this thesis, we
will always describes rotations by rotation matrices.

• The quaternions represent rotations by a normalized four-dimensional vector,
i.e., , four variables subjected to one constraint. In this way, the quaternion
parametrization does not have singularities. This parametrization is also very
popular for it efficiency in terms of computational cost. However, in this thesis
we still prefer rotation matrices for their simplicity. This will clearly appear in
Chap. 4.
Choosing pW

B and RW
B to describe the rigid body configuration, we can write the

dynamics as in (2.4), using the Newton-Euler approach:

mÜpW
B = −mge3 + f (2.5a)

J ÛωB
B = −ω

B
B × JωB

B + τ, (2.5b)

where m ∈ R>0 and J ∈ R3×3
>0 are the mass and inertia of the rigid body w.r.t. FB,

ÜpW
B ∈ R

3 is its linear acceleration,ωB
B ∈ R

3 and ÛωB
B ∈ R

3 are its angular velocity and
acceleration w.r.t. FW expressed in FB, respectively, g ≈ 9.81 is the gravitational
constant, f ∈ R3 and τ ∈ R3 are the sum of forces and moments applied to the
body CoM, respectively. Furthermore we recall the differential kinematic relation
ÛRW
B = RW

B Ω
B
B, where Ω? is the skew symmetric matrix associated to ω?.

As seen before, when it comes to model a floating vehicle, the use of rotation
matrix representation and Newton-Euler method is really convenient. The Lagrange
method would have instead required the use of minimal representation for the orien-
tation. Nevertheless, as previously said, Newton-Euler method is not favorable in the
presence of constraints and reaction forces. Therefore, the approach employed in this
thesis tries to exploit the good features of both Lagrangian and Newton-Euler meth-
ods. In particular, in order to model a tethered aerial vehicle, in Sec. 4.3 we firstly use
the Lagrangian formalism to identify the most convenient generalized coordinates
describing the translational dynamics of the vehicle subjected to the constraint given
by the link. We instead used a rotation matrix for the description of the attitude.
Afterwards, we applied the Newton-Euler method to retrieve the dynamics of the
system and the analytical expression of the internal force. Since one of the control
objectives is the precise control of the internal force, the analytical expression will
be useful to design a tracking controller based on dynamic feedback linearization.

2.2 Differential flatness

For the analysis of nonlinear dynamic systems, one important property to verify is
the differential flatness. This property was firstly introduced by Michel Fliess in the
late 1980’s, and then exploited in many other works for the control of nonlinear
systems [21, 63, 78]. The formal definition of a differentially flat systems follows:

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)
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Definition: A system Ûx = f(x,u) with state vector x ∈ Rn and input vector u ∈ Rm,
where f is a smooth vector field, is differentially flat if it exists an output vector
y ∈ Rm, called flat output, in the form:

y = h(x,u, Ûu, . . . ,u(q)) (2.6)

such that

x = gx(y, Ûy, . . . ,y(r)) (2.7)

u = gu(y, Ûy, . . . ,y(r)) (2.8)

where6 h, gx and gu are smooth functions, for some finite r ∈ N
≥0. �

The previous definition means that for a differentially flat system, we can express
the state and the input vectors as an algebraic function of the flat output vector and
its derivatives, up to a finite order.

The implications of differential flatness are favorable for both motion planning
and control. Thanks to differential flatness, one can simplify trajectory planning
problems both from a theoretical and practical point of view [79, 10, 15]. The
capacity to obtain the nominal state and input from the output (and its derivatives)
allows to plan directly for the flat output, using simple algebraicmethods and efficient
algorithm. Indeed, the flat output equations of motion are simpler, and in the case of
bounds and constraints on the state or input, those can be transformed into constraints
on the flat outputs and its derivatives. Although thismight produce complex nonlinear
constraints on the flat output, one can approximate them with simpler functions with
the cost of obtaining a sub-optimal solution, but solving the planning problem in a
more efficient way. For example, this method has been successfully employed for the
design of a kinodynamic motion planner for an unidirectional-thrust aerial vehicle
in a cluttered environment [7].

Furthermore, the knowledge of the nominal state and control input required to
follow a certain desired flat output trajectory, can be exploited to design robust con-
trollers [78, 98]. For example, this approach was also used to design a decentralized
controller for an aerial manipulator [112].

2.3 Dynamic feedback linearizing control

One very common control method for nonlinear systems to solve tracking control
problem is the feedback linearization [70, 14, 50]. The concept of this method
consists on finding a particular output, called linearizing output and a control law
that linearizes the input-output relation, providing a linear system equivalent to the
original one. A standard linear controller can be then applied to the latter equivalent
linear system in order to track the desired output trajectory. In the following we shall

6 The notation x(r ) represents the r-th time derivative of x, i.e., x(r ) = drx/dtr

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



2.3 Dynamic feedback linearizing control 33

briefly recall how to practically apply this control method. For more details we refer
the reader to more specific books on nonlinear systems as [92, 36, 34]

Let us consider the nonlinear system

Ûx = f(x) + g(x)u (2.9a)
y = h(x), (2.9b)

with state vector x ∈ Rn, input vector u ∈ Rm, output vector y = [y1 . . . ym]
> ∈

Rm, where f, g and h are smooth functions. From a practical point of view, in order
to feedback linearize the system, one has to differentiate every entry of the output
until the input appears, i.e., until we can write[

y
(r1)
1 . . . y

(rm)
m

]>
= b(x) + E(x)u, (2.10)

whereb(x) ∈ Rm collects all the terms that do not depend on the input, andE ∈ Rm×m
is called decoupling matrix. If the decoupling matrix is invertible over a certain
region, the control law

u = E(x)−1(−b(x) + v), (2.11)

where v ∈ Rm is a new virtual input, yields to the simpler linear system[
y
(r1)
1 . . . y

(rm)
m

]>
= v. (2.12)

ri is called the relative degree of the i-th output entry, and we define r =
∑m

i=1 ri as
the total relative degree. If the total relative degree is equal to the dimension of the
system, i.e., r = n, then the system is exactly feedback linearizable, i.e., (2.12) is
equivalent to the original nonlinear system (2.9) and there is no internal dynamics.

Without loss of generality, let us assume that E is always not invertible because
some of its columns are zero7. In particular, let the j-th column of E equal to zero. In
other words, this means that the input u j appears in none output entry. In these cases,
in order to make u j appear, one can apply a dynamic extension to the other inputs
to delay their appearance in the output derivatives. In details, one can consider the
new control input ū ∈ Rm such that ūi = Ûui if i , j, and ūi = u j for i = j. Now the
output has to be differentiated one more time to see the input appear:[

y
(r1+1)
1 . . . y

(rm+1)
m

]>
= b̄(x) + Ē(x)ū. (2.13)

If the new decoupling matrix is invertible and the total relative degree is equal to
the system dimension plus the new controller states, then the system is said dynamic
feedback linearizable. If so, ū can be designed similarly to (2.11) to obtain an
equivalent linear dynamics as in (2.12). The original inputs ui can be obtained by

7 If E is not invertible one can always apply an invertible, state-dependent, input transformation
that zeroes the maximum number of columns in E.
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integration of ūi , for i , j. Notice that the presence of the integrals makes the
controller “dynamic”.

The tracking of any given desired trajectory, ydi (t) for i = 1, . . . ,m can be achieved
applying any linear control technique to the equivalent linear system (2.12). E.g.,
it is sufficient to use as outer loop a simple controller based on the pole placing
technique. Setting the virtual control inputs as

vi = y
d(ri )
i +

ri−1∑
j=0

ki jξi j, (2.14)

where ξi j = y
d(j)
i − y

(j)
i . One can set the poles of the error dynamics through the

gains ki j ∈ R>0 and for j = 0, . . . ,ri and i = 1, . . . ,m to obtain a sufficiently fast
exponentially tracking of the desired trajectories. Notice that an explicit measurement
of the output and its derivatives is not needed at all, since they are algebraic functions
of the state and input.

We remark that this method is strongly model based. For this reason, according to
the specific system, it might result not robust to model uncertainties. Nevertheless,
the additional linear controller helps in reducing those negative effects. Furthermore,
for some complex systems, the control law (2.11) might result very complicate to
implement due to the inversion of Ē and the possible presence of dynamic extensions.

2.4 High gain observer

As shown in the previous section, in order to implement the control action, the
knowledge of the state of the system is needed. However, measuring the whole state
x usingmany sensors is often practically unfeasible due to, e.g., the costs and payload
limitations, in particular for aerial robots. Furthermore, possible sensor failures call
for the ability to still control the platform with a forcedly limited number of sensors.

In order to solve nonlinear observation problems there are mainly two classes of
methods: approximate nonlinear observers and exact nonlinear observers. The first
class relies on approximating the nonlinearities with linear or almost-linear maps
around the current estimate, the main disadvantage being the local approximative
nature of the methods. The second class of methods consists in nonlinear systems
whose state is analytically proven to converge to the real state of the original system.
Designing such observers is in general much more difficult since it is often hard
to prove the asymptotic stability of a nonlinear system. However the observers of
this class may guarantee (almost) global convergence. This is why in this thesis we
decided to search for an observer in the second class.

In the literature of exact nonlinear observers an important role is played by a
particular class of systems known as in the canonical form. This is the class of
nonlinear systems (2.9) that can be transformed in a triangular form, as:
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Ûx =



0 1 · · · · · · 0
0 0 1 · · · 0
...

...

0 · · · · · · 0 1
0 · · · · · · · · · 0

︸              ︷︷              ︸
A

x +



0
0
...

0
1

︸︷︷︸
B

φ(x,u) + λ(u) (2.15a)

w =
[
1 0 · · · · · · 0

]
︸            ︷︷            ︸

C

x, (2.15b)

where w ∈ R is the measurement and φ : Rn × Rm → R, λ : Rm → Rn are any
nonlinear map. For this class of nonlinear systems, in order to estimate the state one
can use the nonlinear High Gain Observer (HGO) [36]:

Û̂x = Ax̂ + Bφ(x̂,u) + λ(u) +H(w − Cx̂), (2.16)

with H = [α1
ε

α2
ε2 . . . αn

εn ]
> and ε ∈ R>0. If αi ∈ R>0 are set such that the roots of

pn + α1pn−1 + . . . + αn−1p + αn have negative real part, then (2.16) ensures almost
global convergence of the estimated state to the real one.

Furthermore, let us assume that an output feedback controller u = Γ(x,v)
(as (2.11) or its dynamic version) is applied to the system. Then one can show
that there exists ε? > 0 such that, for every 0 < ε < ε?, the closed loop system with
controller u = Γ(x̂,v) and observer (2.16) is exponentially convergent.

However, we recall that, due to the possibly high values of the gains, this observer
might suffer from peaking phenomenon during the transient and noise sensitivity. To
mitigate those problems, many common practical solutions have been presented in
the literature, see e.g., [36, 2]. For example, to overcome the peaking phenomenon,
it is sufficient to saturate the estimated state on a bounded region that defines the
operative state space bounds for the system in exam. In the presence of measurement
noise, the use of a switching-gain approach can guarantee a quick convergence to
the real state during the first phase while reducing the noise effects at steady state.
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Chapter 3
Model of the robotic elements

Abstract In Chap. 2 we presented the fundamental methods employed for the
analytical study of tethered aerial vehicles. However, in order to practically apply
the presented control and estimation methods to the real robotic platform, we need a
good understanding of the underlying subsystems, such as actuators and sensors, and
the corresponding mathematical models. Therefore, in the following we shall closely
analyze the robotic systems under exam, namely aerial vehicles connected by links,
looking at their subsystems, actuators and sensors. We firstly characterize a generic
link and a generic unidirectional-thrust aerial vehicle in a free-flight condition,
deriving their dynamic models. Afterwards, looking at the robotic system from an
actuation point of view, we closely analyze the thrusters, composed by brushless
motor plus propeller, and servo/torque motors employed to actively change the link
length. Finally, this time looking at the robotic system from a sensing point of
view, we review the standard sensory setup that one can find on aerial vehicles,
and the additional sensors that we intend to use to measure the configuration of the
link. The following does not claim to be a deep and through discussion on aerial
vehicles and their actuators and sensors. On the contrary, the intent is to introduce the
mathematical models of the subsystems composing a tethered aerial vehicle, in order
to better understand the relative theoretical results. For a more detailed discussion
on aerial vehicles we will refer the reader to appropriate references.

3.1 Tethering link

In this book we address the control problem of tethered aerial vehicles from the
most generic point of view, deriving general and fundamental theoretical results that
can be then easily applied to several practical cases. For this reason, in Sec. 4.3 we
consider the aerial vehicle tethered to a moving platform by a generic link, either a
cable, a chain, a rope, a bar or a strut. All the considered links can be divided into
three major categories, schematically represented in Fig. 3.1:
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(a) Links that can be only stretched, i.e., that can support only tensions. To this
category fall all the types of cable-like link, e.g., a chain, a rope, etc.

(b) Links that can be only compressed, i.e., that can support only compressions. To
this category fall all the types of strut-like link, such as a pneumatic suspension.

(c) Links that can be both stretched and compressed, i.e., that can support both
tensions and compressions. To this category fall all the types of bar-like link,
such as a beam, a pole, etc.

zW

xWOW

xB

zB
OB

(a) Cable-like link can be
only stretched.

zW

xWOW

xB

zB
OB

(b) Strut-like link can be
only compressed

zW

xWOW

xB

zB
OB

zW

xWOW

xB

zB
OB

(c) Bar-like link can be compressed (left) and
stretched (right)

Fig. 3.1: Three type of considered link. The red arrows indicate the external forces
(or reaction forces) that stretch or compress the link, according to the category.

The main variables that describe a generic link are: the position of the edges given
by the vectors p1 ∈ R

3 and p2 ∈ R
3, the unstressed length l0 ∈ R>0 and the intensity

of the internal force fL ∈ R. Other equivalent but still meaningful variables can be
defined: the length of the link l = ‖p1 − p2‖ ∈ R and the normalized axis of the link
d = (p1 − p2)/l ∈ R3. Fig. 3.2 shows the main variables describing a link.

When the link is pulled the internal force is called tension and fL > 0, whereas
when it is compressed the internal force is called compression and fL < 0. When
fL = 0 the link is slack. The easiest way to model the link is as a hybrid system
with two states: slack or non-slack, i.e., taut/compressed. When the link is slack and
fL = 0, the length of the link can be: (a) l ≤ l0 for a cable-like link; (b) l ≥ l0 for a
strut-like link; and (c) l = l0 for a bar-like link. In this condition the two ends of the
cable are treated as two independent systems, as done in [94, 96]. However, we are
not interested in this case since we shall design a controller that will keep away the
system from the slack state for the cable and strut-like link cases.

On the other hand, when the cable is taut or compressed, i.e., fL , 0, we assume
that the length of the link remain constant independently from the internal force,
l = l0. This is equivalent to assume that, in the domain of interest, a non-slack link
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p2p1 l

d

f1 −f1fL1 = fLd fL2 = −fLd

Fig. 3.2: Schematic representation of a general link and its main variables.

is a rigid element whose elasticity and deformations are negligible. This assumption
is very common in the related literature review [44, 67], and is valid as soon as the
maximum internal force of interest is much smaller than the stiffness coefficient of
the link. Under this assumption we have that the internal force at the two ends are
opposite, and always along the link axis, fL2 = −fL1 = − fLd.

As also commonly done in the related state of the art, we assume negligible
mass and inertia of the link with respect to the one of the aerial vehicle. Also
this assumption is easily met using very lightweight links like kite cables or link
structures based on carbon fiber.

Nevertheless, one could use more complex models to describes all the previously
neglected effects. For example a spring-damper system can be used to better describe
the deformations of the link subjected to external forces. According to the particular
type of link, even more complex and accurate models could be employed. For
example, in the case of a cable-like link, one can use a Standard Linear Solid model
(SLS) [85, 43, 117] consisting of a series of a spring and a parallel of spring-damper.
This model better describes the response delay due to the relatively slowmicroscopic
deformation process acting in the rope when some external forces are stretching it.
Furthermore, in order to also model flexibility of cables and the bending due to
gravity, one could model it by a finite element approximation [117]. It consists on
modeling the link as a chain of elements, i.e., as a finite number of smaller links
connected in series, as done in [40, 28].

Although the previously mentioned models better describe the real behaviors of
the considered links, actually, the effects that they additionally describe with respect
to the simple mass-less rigid body model, are negligible in the domain of interest.
Furthermore, they are specific only for certain type of links. On the other hand, the
mass-less rigid body model is a general model that can be applied to the several
classes of link previously presented. Thus it is more suitable for the aimed control
objectives. This is why, for the sake of designing control and observer methods, we
choose this model to derive the equations of motion of the considered tethered aerial
vehicle (see Sec. 4.3). Nevertheless, in Sec. 5.4.2 we shall show that the proposed
methods based on the mass-less rigid bodymodel are robust enough also considering
more accurate non-ideal models.
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Fig. 3.3: Schematic representation of a collinear multirotor and its main quantitites.
Although the vehicle is represented as a quadrotor, actually it can be any collinear
multirotor, such as an hexarotor, octorotor, etc.

3.2 Unidirectional thrust vehicles

As usual, we start by defining an inertial world frame FW = {OW ,xW ,yW ,zW }
where OW is its origin, placed arbitrarily, and (xW ,yW ,zW ) are the orthogonal unit
vectors. We consider zW parallel and opposite to the gravity vector. Then we define
the body frame FR = {OR,xR,yR,zR} rigidly attached to the vehicle and centered
in OR, the vehicle CoM. We consider zR parallel and opposite to the total thrust
vector. The position of OR and orientation of FR w.r.t. FW are described by the
vector pR ∈ R

3 and the rotation matrix RR ∈ SO(3), respectively. Then we denote
by the vector ωR ∈ R

3 the angular velocity of FR w.r.t. FW and expressed in FR.
The variables describing the vehicle are depicted in Fig. 3.3.

As already announced in Sec. 2.1.3, the vehicle is modeled as a rigid body with
mass mR ∈ R>0 and moment of inertia about OR, defined w.r.t. FR, described by the
positive definite matrix JR ∈ R

3×3
>0 [47, 31]. The motion of the vehicle is controlled

by the coordinated action of four control inputs: i) fR ∈ R≥0 is the intensity of
the total thrust applied in OR such that fR = − fRzR, which generates translational
motion, and ii) τR = [τRx τRy τRz]

> ∈ R3 is the total moment applied to FR and
expressed in FR, which generates rotational motion.

Similarly to Sec. 2.1.3, the dynamics of the system is computed applying the
Newton-Euler equations, thus obtaining ÛRR = RRΩR, and

mR ÜpR = −mRge3 − fRRRe3 (3.1a)
JR ÛωR = −ωR × JRωR + τR . (3.1b)

This model is general and well describes the dynamics of the majority of unidirec-
tional thrust aerial vehicles as ducted fan and multirotors vehicles with four or more
rotors. Indeed, (3.1) encapsulates all the nonlinearities and the underactuation of
unidirectional-thrust aerial vehicles. One can notice how, in order to apply a certain
acceleration, the vehicle has to be oriented such that the total thrust vector is ori-
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ented such to ensure an acceleration that is equal to the given acceleration plus the
gravity compensation. This shows the coupling between translational and rotational
dynamics.

Thanks to its generality, we will use this model to describe the dynamics of the
aerial vehicles considered in the following. However, how to practically generate the
total thrust and the torque will be treated in the following section.

3.3 Actuators

3.3.1 Thrusters

In this thesiswe consider a particular class of unidirectional-thrust aerial vehicles.We
consider aerial vehicles that generate the total thrust and torque by the aerodynamic
forces and moments in turn generated by multiple collinear propellers. In practice, a
model for those systems is needed to map total thrust and torque into the real control
inputs.

Let us assume that the vehicle is endowed with n ∈ N
≥4 thrusters. The generic

i-th thruster is rigidly attached to the main frame oriented as −zR, and its position is
given by the vector bi ∈ R

3 with respect to FR. It is composed by a pair of brushless-
motor plus propeller. Making the propeller spin at a certain velocity wi ∈ R≥0, it
can produce a force fizR, whose intensity is equal to fi = cfw2

i , where cf ∈ R>0
is called lift factor and depends on the aerodynamic properties of the propeller
blades [47, 29, 75, 113, 76]. When a propeller is spinning, the resistance of the air
generates some horizontal forces on the blade, as well. Those drag forces, multiplied
by the momentum arm and integrated over the rotor, generate a moment about the
rotor shaft, that in the aerial robotics community is normally called drag moment. A
reaction torque acts on the rotor in the opposite direction of rotation of the propeller.
The latter in turn generates a torque on the main frame of the vehicle that results to
be proportional to the square of the propeller angular velocity, i.e., τi = cicτw2

i e3,
where i) ci = 1 (ci = −1) if the i-th propeller angular velocity vector has the same
direction of zR (−zR), i.e., the propeller spins CCW (CW) when watched from its
top; ii) cτ ∈ R>0 also depends on the aerodynamic properties of the propeller.

Finally the total thrust and torque applied to the vehicle frame are given by:

fR =
n∑
i=1

cfw2
i (3.2a)

τR =
n∑
i=1
(cf bi × e3 + cicτe3)w

2
i . (3.2b)

In particular, for a quadrotor-like vehicle where, n = 4, bi = b[cαi sαi 0]> with
b ∈ R>0 and α = (i − 1)π/2, ci = (−1)i and i = 1, . . . ,4, we have that
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[
fR
τR

]
=


cf cf cf cf
0 −cf b 0 cf b

cf b 0 −cf b 0
−cτ cτ −cτ cτ

︸                       ︷︷                       ︸
F


w2

1
w2

2
w2

3
w2

4


. (3.3)

Notice that the allocation matrix F is square and full rank, thus always invertible.
Once the desired total thrust and torque are computed, we can compute the spinning
velocity of each propeller that should be actuated to generate the desired control
action just by inverting (3.3).

In particular conditions such as strong wind or at a very high speed, other gyro-
scopic and aerodynamic effects such as drag and blade flapping should be consid-
ered [29, 47, 18]. Additional aerodynamic effects are the ground and ceiling effects
that arise whenever the vehicle flies close to a surface. However, as normally done
in the related literature, we do not consider those effects since they are negligible in
the domain of interest.

Furthermore, notice that the actuation model presented in (3.2) assumes that
the motors can actuate the desired spinning velocity instantaneously. Nevertheless,
changing the spinning velocity instantaneously would require an infinite torque that
is obviously practically unfeasible. One should instead add to (3.2) the dynamics
of the motor, both from a mechanic and electronic point of view [4], together
with the dynamics of the electronic speed controller (ESC). A system identification
of the overall closed loop system can be done to estimate the model parameters.
Nevertheless, for control design purposes, we can assume that the spinning velocity
variations are limited in the domain of interest. Under this assumption and thanks
to the employed brushless controller [23] that guarantees minimal response times,
model (3.2) results a good approximation of the real behavior. On the other hand,
more complex and realistic models, such as the ones mentioned before, can be used
for the validation of the theoretical results in a more realistic condition (see Chap. 5).

3.3.2 Link actuator

In this thesis the link actuator is modeled as a cylinder that transform the rotational
motion of a motor to a translational motion, namely the variation of the link length.
In particular, in the case of a cable-like link, the cable is rolled on the cylinder, while
in the case of a bar-like link, the cylinder is a gear mechanism that moves back and
forward the link changing its length. The cylinder is moved by a motor that exerts
an input torque τW ∈ R about the longitudinal axis of the cylinder. We assume
that the rotational inertia and radius of the link actuator, denoted by JW ∈ R>0 and
rW ∈ R>0, respectively, are constant in the domain of interest. The dynamic of the
link actuator is
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JW ÜϑW = τW + fLrW , (3.4)

where ÜϑW is the angular acceleration of the actuator. Since we are more interested
in the dynamics of the link length, we can easily describe it from 3.4. Assuming no
backlash we can write l = rWϑW , thus

J̄W Ül = τ̄W + fL, (3.5)

where J̄W = JW/r2
W and τ̄W = τW/rW .

According to the real implementation some assumptions, like the constant inertia
and radius might not hold anymore. However the model can be easily changed
accordingly.

3.4 Sensory setup

To control the previous modeled aerial vehicles the knowledge of the state is needed
in most of the cases. In other words, the position, the linear velocity, the attitude and
the angular velocity of the vehicle have to be estimated from the available sensors,
in order to then compute the control action.

The most basic sensor available on practically all vehicles is the inertial measure-
ment unit (IMU) [1, 52, 47]. It normally consists of an 3-axes accelerometer and a
3-axes gyroscope. The first measures the so call “specific acceleration”, namely the
acceleration of the vehicle with respect to the body frame minus the gravity vector.
Defining wacc ∈ R

3 the measure coming from the accelerometer, and assuming that
the IMU is calibrated, centered at OR and its axes are aligned with the ones of FR,
we have that:

wacc = R>R(ÜpR + ge3). (3.6)

On the other hand, the gyroscope, whose measurements are defined by the vector
wgyr ∈ R

3, directly measures, under the same assumptions, the angular velocity of
FR with respect to FW expressed in FR:

wgyr = ωR . (3.7)

These twoquantities are not enough to estimate the full time-varying attitude, because
the rotation along zR, is not observable in hovering conditions [42, 47]. This is why
the IMU is often equipped with a magnetomer that measures the ambient magnetic
field with respect to the body frame. In the absence of disturbances, the latter
corresponds to the known Earth’s magnetic field defined by the vector hW ∈ R3.
Under this assumption, the magnetometer measurement, wmag ∈ R

3, is equal to:

wmag = R>RhW . (3.8)
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The combination of the previous three sensors is in principle sufficient to estimate
the rotational part of the state [46, 38, 89, 88], i.e., the attitude and the angular
velocity.

For estimating the rest of the state, i.e., the position and the translational velocity,
some other exteroceptive sensors are usually needed. Some examples are motion
capture system (MoCap) for precise indoor localization, GPS and differential GPS
for outdoor environments, and various type of cameras for outdoor GPS-denied
environments. Since the design of new localization methods using those kind of
exteroceptive sensors is not the focus of this thesis, we will model them as a direct
measurement of the configuration of the robot. Thus, defining wext the output
measurement, we have that:

wext = (pR,RR). (3.9)

The authors of [47] present the most popular methods to fuse all the mentioned
sensors in order to finally obtain a precise estimation of the full state.

However, in Chap. 4 (see Sec. 4.7 and Sec. 4.8) we shall show that for a tethered
aerial vehicle, those exteroceptive sensors are not needed to estimate the full state of
the system. Indeed, we found that, thanks to the link constraint, in a 2D environment
only an IMU is enough to retrieve an estimation of the fulls state (see Sec. 4.8).
On the other hand, in the 3D environment, we found that the minimal sensory setup
consists of a standard IMU and magnetometer, plus only some encoders to measure
the attitude of the link and its length (if not constant).

In order to model the measurement of an encoder let us define two frames
F1 = {O1,x1,y1,z1} and F2 = {O2,x2,y2,z2} such that O1 = O2 and x1 = x2.
Then we have that:

wenc = θ, (3.10)

where θ ∈ R is the angle to make F2 coincide with F1 rotating it about y1.
The models presented so far are the ideal ones and they will be used in the fol-

lowing to design deterministic and almost globally convergent nonlinear observers.
However, in practice every sensor is affected by noise and biases. We will then rely
on the proven robustness of the designed observer to deal with those non-idealities
(see Chap. 5). Another approach would be to design a stochastic estimators that deals
with noisy measurements. However they are normally based on linear approximation
of the models and therefore they are not globally convergent.
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Chapter 4
Theory of tethered aerial vehicles

Abstract This chapter is the core of the theoretical investigation of tethered aerial
vehicles. In the first part, we provide an overview of the state of the art on the related
topic. Here we highlight the drawbacks and the gaps of the proposed methods. We
then define the objectives and thus the contribution of this book which aim at filling
these gaps. Our complete analysis starts deriving a generic model for tethered aerial
vehicles, which also includes particular instances of the system. Leveraging on this
dynamic model, we investigate the differential flatness of the system, finding two
different set of flat output. These reveals new and interesting properties of tethered
aerial vehicles with respect to standard vehicles in contact-free flight. Exploiting this
useful dynamic property, we derive two different types of controllers. One is simple
to implement and suitable for quasi-static maneuvers. The other has been instead
designed for the tracking of more dynamic trajectories. Finally, in order to close
the control loop with real sensors, we investigate the observability of the system’s
state trying to find the minimal set of sensors that makes the state observable. This
analysis identifies two sensors setups, one for the 3D and one for the 2D cases. In
both cases, we derive an High Gain Observe to obtain an estimation of the state from
the available measurements.

4.1 Related works and problem statement

Driven by the relevance of this topic, several control and estimation schemes have
been presented in the robotic literature. For the case in which the aerial vehicle is
an helicopter, the authors of [68] presented a method to land it on the deck of a
ship in rough sea using a cable. The controller is based on a time-scale separation
technique between the rotational and translational dynamics. In the context of [16],
the authors of [85] presented a control scheme based on a PID scheme together with
partial model inversion, to stabilize the flight to a constant vertical elevation with the
goal of both improving hovering in windy conditions and land on a mobile platform.
Notice that a force sensor (load cell) is used to measure the tension along the cable
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and to compensate its effect on the vehicle. The latter work has been then extended
to a tether aerial vehicle together with a winch, in order to perform the landing of a
small unmanned helicopter, without the use of GPS sensors but relying on simpler
magnetic encoders [84]. Furthermore, in [86] the authors proposed a square-root
unscented Kalman filter for the estimation of the attitude and the relative position of
the vehicle with respect to the ground anchoring point.

For the case of cable-tethered underactuated multi-rotor system moving on a
restricted 2D vertical plane, [44] presents a controller that, under a quasi-static
assumption, stabilizes the elevation (angle) of the cable to a constant value using
only inertial onboard sensors. In particular, the controller is based on the separation
of the translational and rotational dynamics, and on a partial inversion of the elevation
dynamics where they fix the total thrust to a value sufficiently high to preserve the
tautness of the cable. The state estimator is instead based on a UKF. The authors
of [66, 67] also present a controller to stabilize the elevation of a tethered multi-
rotor to a constant value while also ensuring the positivity of the cable tension. The
controller is based on the combination of a hierarchical cascade approach to stabilize
the system and a reference governor to ensure a positive internal tension.

The presented approaches provide a good basis for observation and control of such
systems. However, to improve those methods, overcoming some of their drawbacks,
and to extends the results to a more general system, some problems have to to be
addressed:

i) study a more generic system in order to enlarge the validity of the results.
In particular one could think about three extensions of the classical tethered
aerial vehicle: i) Develop a method that can cope with any kind of link (i.e.,
a cable, a strut or a bar), differently from the state-of-the-art methods, which
have been designed only for cable links. Indeed the use of rigid link can be
beneficial for, e.g., sustain part of the platform weight, or allow a full-bilateral
physical interactionwith a ground object. ii) Furthermore, instead of considering
a static anchoring point, one could consider a generic platform moving in the
3D environment, without particular constraints. This allows to consider a very
wide class of possible vehicles. iii) Finally one could consider a link actuator
in order to be able to also change the length of the link, thus controlling the full
3D position of the aerial vehicle with respect to the moving platform.

ii) track a time varying trajectory. While the methods in the literature are based on
a quasi-static assumption aiming to a stabilization problem, in many practical
cases it is important to track a time-varying trajectory to, e.g., let the aerial robot
track a moving target.

iii) track a desired link force profile. In many cases it is important to precisely
regulate the force link to any desired value, possibly including negative link
force (pushing) if the link is a bar. For example, if the link is a cable, one may
want to keep it always taut while at the same time avoiding peaks on the tension
that can damage the cable or its attaching mechanisms. If the link is a bar, then
one may want to push against it with an appropriate force to perform physical
interaction with the environment. However, the methods in the literature are
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[85] [84] [86] [44] [66] [67] This book
Stabilization of
the position

X X X X

Taut cable ensured X X

Control of tension
and compression

X

Independent
tracking of
position and
internal force

X

Independent
tracking of
position and
partial attitude

X

2D state
estimation with

IMU only

X X

3D state
estimation with

IMU plus
encoders

X X

Global state
estimation

X

Table 4.1: Features of the methods proposed by the state of the art and of the ones
proposed in this book.

able, in the best case [66], to keep the force link positive, but not at a prescribed
value, possibly time-varying.

iv) observe the state from a minimal set of sensors in any dynamic condition.
Instead, in the state-of-the-art this is done at best in a quasi-static assumption or
with a linearized method [84, 44].

Table 4.1 shows the features of the methods proposed in the state of the art and of
the ones proposed in this book.

In order to achieve the previous objectives, a throughly analysis of the system
from a theoretical point of view is needed. This is why, one of the goal of this book
is to provide a fundamental study of the tethered aerial vehicle system, in order to
have a clear understanding of its dynamics and the corresponding properties related
to control, planning and estimation. Our formal analysis is focused on three main
objectives along the axes of control, planning and localization:

1) Find the output for which it is possible to compute analytically and offline the
state of the system while exactly tracking the desired output trajectory, and
the nominal inputs required to do so. This option is very useful for control,
to compute the feed-forward terms, and in a possible pre-planning strategy. To
achieve this objective we investigate which are the flat outputs and we explicit
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the algebraic relations that demonstrate the differential flatness of the system
(see Sec. 4.4).

2) For each of the found set of flat outputs, given any desired sufficiently smooth
trajectory, we aim at designing a control strategy to obtain the exact trajectory
tracking (see Sec. 4.6). The control methodwill be based on the static or dynamic
(if needed) feedback linearization method presented in Sec. 2.3.

3) Provide the mathematical tools to implement the control strategy in a real world
using a minimal set of typically available on-board sensors. For this goal, we
propose a minimal standard sensory equipment and we show how to design an
almost global nonlinear observer in order to estimate the state from the available
measurements only. This enables the possibility to close the control loop with
standard and minimal measurements (see Sec. 4.7 and Sec. 4.8).

Based on these results, practical problems coming from applicative scenarios can
be solved more easily. An example can be found in Chap. 6 where we exploited
the theoretical results to solve the practical but challenging problem of landing and
takeoff on/from highly sloped surfaces.

4.2 Contribution

This part of the book provides a thorough analysis of a generic tethered system in
which we formally study the dynamics of the system and its intrinsic properties,
along the three major axes of control, planning and estimation.

Firstly we consider a much more generic tethered system that extends the previ-
ously considered system by four major points. Indeed, we analyze a system firstly
composed by an unidirectional-thrust aerial vehicle flying in the 3D space (not only
in a 2D plane as some of the related publications). The vehicle is attached by a
generic link to an independently moving platform. Differently from the state of the
art where only the cable case is considered, here the generic link can be either a
cable, a strut or a bar. In this way we can consider links that can be:
i) only stretched, like cables, that allow only positive internal forces called tensions;
ii) only compressed, like strut, that allow only negative internal forces called com-

pression;
iii) both compressed and stretched, like bars, that allow both positive and negative

internal forces.
At the other end, the link is attached to a platform that can independently move

in the 3D space. Differently from the related literature where the link is anchored to
a fixed point, in this book we consider a much generic case in which the link could
be attached to a car, a sheep, another aircraft, or even to a human operator.

Finally, for the sake of generality, we consider that a link actuator is capable of
changing the length of the link applying a certain controllable force. This device can
be a winch in the case of a cable-link, or an actuated telescopic mechanism in the
case of a bar-link. The modeling of this generic system is provided in Sec. 4.3.
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We started our analysis with the investigation of the differential flatness property,
looking for the sets of flat outputs (if more then one). We proved that the system is
differentially flat with respect to two outputs ya and yb .

a) ya is a force-related output. It contains the position of the vehicle with respect to
themoving platform (expressed in spherical coordinates), the internal force along
the link, and the rotation of the vehicle along the thrust axis (see Sec. 4.6.1). This
shows that the position and the internal force along the link can be controlled
independently. Notice the parallel with hybrid motion/force control of ground
manipulators in the presence of kinematic constraints [90].

b) yb is an attitude-related output. It contains the position of the vehicle with
respect to the moving platform, a particular angle related to the attitude of the
vehicle with respect to the one of the link, and the rotation of the vehicle along
the thrust axis (see Sec. 4.6.2). This shows that the position and this particularly
defined angle can be controlled independently.

These are in turn flat outputs for the system. This property fulfills the planning related
objective, and allows to know in advance the nominal state and inputs while exactly
tracking a desired output trajectory.

For the two sets of flat outputs we then designed a hierarchical controller based
on the separation between the rotational and translational dynamics controllers (see
Sec. 4.5). We designed this controller with the aim of stabilizing the flat outputs
to a desired value, keeping it simple to implement also for commercially available
aerial vehicle for which one can control only the attitude or, at best, the angular
velocity. However, after the experimental validation, we noticed that this controller
cannot provide good tracking performance when the desired trajectory requires
high velocities and acceleration. In particular, this is due the separation assumption
between translational and rotation dynamics.

To fulfill the tracking control objective, we then studied the feedback linearizabil-
ity of the system with respect to ya and yb . Once we proved that ya and yb are flat
output for the considered system, we know that they are also feedback linearizing out-
puts. Indeed, it exists a feedback control law that linearizes the relation input-output.
Then a controller based on the Dynamic Feedback Linearization (DFL) method has
been conceived for the tracking of the two sets of outputs, highlighting the related
singularities, extended relative degree and the required dynamic extension . Notice
that the works in the state of the art considered only the problem of regulating the
position of the vehicle (mostly in the 2D case), at most ensuring the positivity of the
internal force. On the other hand, in this work we derived a control for the precise
tracking of any time-varying desired position and internal force trajectories. Further-
more, we also designed a controller for the precise tracking of a different and never
considered output: position plus attitude-related variable.

Finally, for the estimation objective, we showed that if the motion of the moving
platform is known, then the state of the system can be estimated using only the on-
board IMU and three encoders placed at the other end of the link in order to measure
its attitude and length. We then found some nonlinear measurements transformations
that allowed us to employ the nonlinear High Gain Observer (presented in Sec. 2.4)

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



50 4 Theory of tethered aerial vehicles

to get an estimation of the state and close the control loop preserving the stability of
the overall system (see Sec. 4.7).

This theoretical and fundamental results have been extensively validated either
experimentally or through numerical simulations. The first implemented hierarchical
controller has been validated experimentally and employed for the execution of
landing and takeoff on/from a sloped surface as well. The corresponding results are
presented in Chap. 5.

The rest of the theoretical results has been instead validated by a deep simulation
campaign. We also analyzed the limits of the methods under non ideal conditions
such as noisymeasurements, parameter uncertainties, etc.Only the dynamic feedback
linearizing controller for the output yb has not been validated yet. Indeed, we proved
the feedback linearizability of the system with respect to yb only very recently,
without having the possibility to conduct a validating campaign. This will be done in
the near future. For the same reason, notice that this results has not been published
neither. On the other hand, all the other results related to the control of ya and the
state estimation problems has been published in [103]. The proof of the differential
flatness with respect to yb and the design of a hierarchical control to track a desired
trajectory of yb have been partially presented in [111].

All the previous mentioned results are obviously still valid if there is not a link
actuator and the link length is fixed, if the platform is still, and even if the system
motion is constrained on a 2D vertical plane. On the other hand, in this particular
constrained case, we proved a very interesting result. We showed that only the on-
board IMU is needed to retrieve the estimation of the state. Also in this case, we
found some non linear measurements and state transformations that bring the system
in a canonical form for which the High Gain Observer can be applied. These results
have been published in [107, 105].

We also considered another interesting particular case, i.e., when the link actuator
is not active but passive. In this case the force produced by the link actuator is constant
and cannot be controlled. One could made this mechanism with simple springs, like
in a retractable leash. This solution simplifies the complexity of the system and
reduces the weight as well, thus its could be preferable in some cases, e.g., to make
the system easily portable by a human operator. The only controllable actuation is
then given by the orientable thrust generated by the underactuated aerial vehicle.
Having one controllable actuator less, it appears that the internal force along the
link is not controllable anymore, and the attitude angle neither. We proved that only
the output yc , containing the position of the vehicle and its rotation about the thrust
axis, is a differentially flat/dynamic feedback linearizable output (see Sec. 4.4.3 and
Sec. 4.6.3). These results have been published in [109].

All the previous theoretical results constitute the base to solve practical and more
application oriented problems. With a good understanding of the system in exam,
one can then better exploit its properties for the accomplishment of particular tasks
related to a specific applications. For example, considering the challenging problem
of landing and takeoff on/from a sloped surface, e.g., in mountains for search and
rescue operations, we showed that a tethered aerial vehicle could be very useful to
accomplish the task in a very robust and reliable way. In Chap. 6 we theoretically
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and experimentally show how we exploited the theoretical results, and in particular
the ones related to the controllability of yb , to solve the problem in a more robust
way with respect to the case of a free-flying vehicle. The corresponding methods
and results have been published in [111, 108]. For a more detailed introduction and
state of the art relative to the problem, we refer the reader to Chap. 6.

Finally, starting from the results obtained on control and state estimation of a
single tethered aerial vehicle, we performed the same type of rigorous analysis on
a multi-robot system (see Chap. 7). Indeed, since the single tethered aerial vehicle
is constrained to fly around the anchoring point, the working space (a simple circle
in the planar case) can result very limited for some applications, such as pick and
place or inspection in cluttered environments. One possible solution is given by
adding a second vehicle attached to the first by a second link. In particular, we
considered a system composed by two aerial vehicles laying on a vertical 2D plane,
where the first one is attached to the ground and to the second one by two links,
in the way of forming a chain of two elements. Considering the second robot as an
end-effector, the system appears similar to a two-link planar manipulator where the
aerial vehicles are the actuators. It is then clear the increased dexterity of the system.
Although it might appear not feasible from a practical point of view using cable-
links, actually, it could be easily implemented using bar-links. Furthermore, due to
the peculiarity of the system, the control of such a system is a very interesting and
challenging theoretical problem. As for the single tethered case, we proved that the
output composed by the elevation and the internal force of the two links is differential
flat/dynamic feedback linearizable. Thus we designed a nonlinear controller based
on the dynamic feedback linearization technique to achieve the independent tracking
of the output entries [104]. Furthermore, we proved that the IMU on-board of the
two vehicles together with two encoders, one at the base and one on the first vehicle,
measuring the relative link angles, are enough to make the state observable. We
then found some nonlinear measurement transformations to bring the system in the
canonical form that allows to apply the High Gain Observer [106]. The validity of
the method has been proven by numerical simulations. For all the related results we
refer the reader to Chap. 7.

Table 4.2 schematically gathers all the contributions of this book on the field of
tethered aerial vehicles. For each contribution we report the corresponding chapter
or section and the papers in which the results have been published.

4.3 Modeling

In this section we provide the model of a generic tethered aerial system consisting
of an unidirectional-thrust aerial vehicle that is tethered by a generic link (e.g., a
cable, a rope, a chain, a bar or a strut) whose length can be changed by an active link
actuator. If the link is a cable-like link, then the link actuator is a winch that can roll
up or unroll the link. On the other hand, if the link is a telescopic bar-like link, then
the link actuator is a prismatic actuator that can extend or shorten the bar. A brief
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System 3D environment Only 2D env.
One link - Active link
actuator

General modeling,
State estimation with
IMU plus three
encoders, [103],
Sects. 4.3 and 4.7

Differential flatness and
DFL w.r.t. ya , [103],
Sec. 4.6.1, and Differ-
ential flatness w.r.t. yb

[111], DFL w.r.t. yb ,
Sec. 4.6.2

State estimation with
IMU only, [107, 105],
Sec. 4.8

One link - Passive link
actuator

DFL and differential
flatness w.r.t. yc ,
Sec. 4.6.3, [109]

Application to the prob-
lemof landing and take-
off on/from a sloped
surface

Problem formulation, condition for robust land-
ing, comparison between free-flight and tethered
solutions, Chap. 6, [111, 108]

Trajectory planning
for robust maneuvers,
Sec. 6.5

Multi robot extension:
two linked robots in a
chain configuration

Differential flatness and
DFL w.r.t. ya

2 , Sec. 7.3
[104], state estimation
with IMUs plus two en-
coders, Sec. 7.4, [106]

Table 4.2: Summary of the contributions on tethered aerial vehicles.

modeling of the link and of the link actuator was presented in Sects. 3.1 and 3.3.2,
respectively. Although the bar-link case is not very common, it is still mechanically
feasible and allows us to derive a very general model for which we can consider both
positive and negative link internal forces (tensions and compressions, respectively).
Doing so we expand the validity of the theoretical results. The link actuator is in
turn fixed on a moving platform by a passive 3D spherical joint. The platform moves
generically in the 3D space and can be, e.g., a ground vehicle moving on any kind of
terrain, a marine vessel, or even another aerial vehicle. Fig. 4.1 depicts the systems
and its main definitions.

Consider a fixed world frame, FW with axes {xW ,yW ,zW } and origin OW . In
particular, zW is opposite to the gravity vector. Two body frames, FC and FR with
axes {xC,yC,zC} and {xR,yR,zR}, and originsOC andOR, are rigidly attached to the
platform and to the aerial vehicle, respectively. The position ofOC inFW is described
by the vector pW

C
= [xC yC zC]> ∈ R3. Similarly, OR is set on the CoM of the aerial

vehicle, whose position in FW is described by the vector pW
R = [xR yR zR]> ∈ R3.

Although already done in Sec. 3.2, we recall one more time the main modeling
assumptions and definitions for a generic aerial vehicle. The aerial vehicle is modeled
as a rigid bodywithmassmR ∈ R>0 and positive definite diagonal inertiamatrix JR ∈

R3×3
>0 expressed in FR and relative to OR. The angular velocity of FR with respect

to FW , expressed in FR, is denoted by ωR ∈ R
3. The aerial vehicle configuration

is fully described by pW
R and by the rotation matrix RR ∈ SO(3), representing the

position and orientation of FR w.r.t. FW . The aerial vehicle motion can be controlled
acting on four inputs: fR ∈ R and τR = [τRx τRy τRz]

> ∈ R3, where fR is the
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xC

zC

xR
zRyR

dW

fR τR

τW

−mRgzW

−fLd
W

OC

OR

l

OW

yW

zW

xW

xC

zC yC
ϕ

δ

OC

ldC

yC

Fig. 4.1: Left: representation of the system and its main variables. Top right cor-
ner: parametrization of the unit vector dC . The red line shows the singularities of
the parametrization, avoidable in the planning phase. © 2020 IEEE. Reprinted, with
permission, from [103].

magnitude of the thrust force1 fR = − fRzR applied at OR and parallel to zR, and τR
is the control moment vector expressed in FR.

The moving platform configuration is described by pW
C

and RC ∈ SO(3), repre-
senting the rotation from FC to FW . The angular velocity of FC w.r.t. FW , expressed
in FC , is denoted by ωC ∈ R

3. The platform is an independent sub-system whose
motion i) is not influenced by the aerial vehicle dynamics and ii) can only be mea-
sured online. In this way, the results can be applied to a broader class of moving
platforms including, e.g., human controlled vehicles.

The link connects the aerial vehicle to the moving platform. One end of the link is
attached to the aerial vehicle atOR through a passive 3D spherical joint and the other
end is attached to the platform at OC , through a second passive 3D spherical joint.
Having the link directly attached to the CoM of the aerial vehicle allows to decouple
the rotational dynamics to the translational one. This assumption is very common in
the literature of aerial physical interaction, and is practically easy to meet. Indeed,
with a wise mechanical design one can minimize the distance between the CoM and
the link attaching point. As explained in Sec. 3.1, we assume negligible link mass
and inertia with respect to the ones of the aerial vehicle and negligible deformations
and elasticity.

1 For generality we consider both positive and negative thrust. Although aerial vehicles can usually
provide only positive thrust, actually, the variable pitch solution can provide negative thrust as well.
However, if only positive thrust is allowed, our controller is still valid, since this constraint can be
meet in the planning phase as explained later in the paper.
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The direction of the link is described by the unit vector2 dC ∈ S2 expressed in FC
thus allowing to express the aerial vehicle position relative to the moving platform3.
Nevertheless, known pW

C
and RC , one can still control pW

R by inverse kinematics.
The unit vector dC can be parametrized with the elevation angle, ϕ ∈ [0,2π], and
the azimuth angle, δ ∈ [− π2 ,

π
2 ], as

dC =
[
cos δ cos ϕ − sin δ cos δ sin ϕ

]>
, (4.1)

where δ is the angle between dC and the vertical plane {xC,zC}, whereas ϕ is the
angle between the projection of dC on {xC,zC} and xC , see Fig. 4.1. This particular
choice lets the singularity of the parametrization correspond to the points along yC ,
whereas the classical spherical parametrization has the singularity along zC , which
corresponds to the common vertical link orientation (when, e.g., the vehicle has to
fly above the moving platform).

The link length and the intensity of the internal force are denoted by l ∈ R≥0
and fL ∈ R≥0, respectively. The link actuator is fixed to the moving platform in the
proximity of OC and is used to control l and fL in a coordinated action with the
aerial vehicle thrust force. We recall from Sec. 3.3.2 that the link actuator exerts an
input torque τW ∈ R that controls the link length. The constant rotational inertia
and constant radius of the link actuator are denoted by JW ∈ R>0 and rW ∈ R>0,
respectively.

Since the link is attached to the aerial vehicle center ofmass by a passive rotational
joint, the aerial vehicle rotational dynamics is independent from the translational
dynamics and it is equal to the one derived in Sec. 3.2:

ÛRR = RRΩR (4.2)
JR ÛωR = JRωR × ωR + τR . (4.3)

The linear velocity of the aerial vehicle is obtained differentiatingpW
R = pW

C
+lRCdC :

ÛpW
R = RC

(
ÛpC
C + lΩCdC + ÛldC + l ÛdC

)
. (4.4)

To derive the dynamic equations of the generalized coordinates q = [l ϕ δ]> we
use the Newton-Euler approach4, solving the balance of the forces acting on OR in
FW , and the balance of momenta about the axis of the link actuator (see Sec. 3.3.2):

2 S2 = {v ∈ R3 | ‖v‖ = 1}
3 We express the link orientation in FC because the goal is to control the aerial vehicle position
relative to the moving platform rather than to FW .
4 Since one of our goal is the one of controlling the internal force along the link, it results helpful
to have its analytical expression. Newton-Euler is then the proper method to use as explained in
Sec. 2.1. Indeed, using the Lagrangian formalism, we would not have obtained the sought internal
force expression.
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mR ÜpW
R = − fLRCdC − fRzWR − mRgzWW (4.5)

J̄W Ül = τ̄W + fL, (4.6)

where J̄W = JW/r2
W , τ̄W = τW/rW . The acceleration ÜpW

R is obtained by further
differentiating (4.4), i.e.,

ÜpW
R = RC[āx + Jq Üq], (4.7)

where āx = ΩC( ÛpC
C
+ lΩCdC + 2Jq Ûq) + ÜpC

C
+ l ÛΩCdC + ÛJq Ûq and

Jq =


cos δ cos ϕ −l cos δ sin ϕ −l cos ϕ sin δ
− sin δ 0 −l cos δ

cos δ sin ϕ l cos δ cos ϕ −l sin δ sin ϕ

 . (4.8)

Replacing (4.7) into (4.5) and after some algebra we get

mRJq Üq + fLdC = −mRāx︸︷︷︸
ax

−mRgR>Ce3︸      ︷︷      ︸
ag

− fRR>CRRe3︸        ︷︷        ︸
a fR

, (4.9)

Finally, gathering (4.9) and (4.6) we obtain a square system[
mRJq dC

JWq −1

]
︸        ︷︷        ︸

W

[
Üq
fL

]
=

[
−ax − ag

0

]
︸        ︷︷        ︸

a

+

[
−a fR

τ̄W

]
︸  ︷︷  ︸

au

, (4.10)

where JWq = [J̄W 0 0] ∈ R1×3 and W ∈ R4×4 is invertible if and only if l , 0 and
δ , ±π/2, that correspond to the singularities of the pseudo-spherical coordinates
of OR. Inverting equation (4.10) out of these singularities, we obtain

Üq =
[
I3 03×1

]
W−1(a + au) = σ(x,X2

C,u) (4.11)

fL =
[
01×3 1

]
W−1(a + au), (4.12)

where x = (q, Ûq,RR,ωR) is the system state,u = [ fR τ>R τ̄W ]
> = [u1 u2 u3 u4 u5]

>

is the vector of inputs, and

Xj
C
= (x0

C,x
1
C, . . . ,x

j
C
) for j ∈ N>0, (4.13)

with

xiC = (v
C
C

(i−1)
,ω(i−1)

C
) for i = 1,2, . . .

x0
C = (p

W
C ,RC)

(4.14)
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where vC
C
= R>C

dpC

dt . Xj
C
in (4.13) gathers the terms related to the motion of the

platform.
Gathering equations (4.2), (4.3) and (4.11) we have a complete description of the

system dynamics:

Üq =
[
I3 03×1

]
W−1(a + au) = σ(x,X2

C,u) (4.15a)

ÛRR = RRΩR (4.15b)
JR ÛωR = JRωR × ωR + τR . (4.15c)

In the following we show some results that apply to simpler and yet relevant
cases of the generic system considered so far. It is then useful to show how we can
particularize (4.15) for those cases:

• Fixed platform: one can simply set xi
C
= (pC(i)

C
,ω(i−1)

C
) = (0,0) for all i ≥ 1.

• Fixed link length: this represents the case in which there is no link actuator and
the aerial vehicle is tethered directly to the platform by a link with a constant
length, l. The model can be easily adapted considering all the time derivatives
of l equal to zero, i.e., Ûl = Ül = . . . = 0. In this case l becomes a parameter and
the generalized coordinates reduce to q = [ϕ δ]>. The dynamics can be easily
derived from (4.10) considering only the first three row and Ül = 0. The last row
is always verified since τ̄W represents the reaction force of the anchoring point.

• Passive link actuator: The link actuator is considered passive because a non-
controllable constant torque τ′W ∈ R is applied along the longitudinal axis of
the cylinder (τW (t) = τ′W for all t ∈ R

≥0), e.g., generated by a simple constant
torque spring. The length l can be then controlled only by the action of the thrust
provided by the aerial vehicle. The choice of a passive link actuator instead of
a controllable one makes the system simpler and easily portable by a human
operator. On the other hand, as it will be clear in Sec. 4.6.3, the price to pay will
be a reduced control authority on the variables of the system. In particular, the
internal force of the link cannot be regulated to an arbitrary valuewhile following
a position trajectory. However it can be maintained within a desired bound, if
the desired trajectory is well planned. For the sake of studying the feedback
linearizability it is convenient to rewrite the model of the system (4.15) in the
following Lagrangian form:

MÜq + c + g + n + w = QuR, (4.16)

where, uR = [u1 u>2 ]
> = [ fR τ>R]

> ∈ R4 is the reduce input vector, M(q) ∈
R3×3 is the positive definite inertia matrix, c(q, Ûq, ÛpC

C
,ωC) ∈ R

3 contains all
the centrifugal/Coriolis terms, g(q,RC) ∈ R

3 contains all the gravity terms,
n(q, ÜpC

C
, ÛωC) ∈ R

3 contains the terms depending on the acceleration of the
moving platform, w(τW ) ∈ R3 contains the terms depending on the constant
torque winch, and Q(q,RR,RC) ∈ R

3×4 is related to the generalized forces,
referred as au, performing work on q, such that
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Particular cases Dynamics
Static platform (4.15) with xi

C
= (pC(i)

C
,ω(i−1)

C
) = (0, 0) for all i ≥ 1

No link actuator (4.10) with Ûl = Ül = . . . = 0 and τ̄W = fL

Passive link actuator (4.15) with τW = τ′W constantly
Reduced model (4.18) with q′ = [ϕ θ]> and u′ = [u1 u3]

> = [ fR τRy ]
>

Table 4.3: Particular cases of the general tethered aerial system and corresponding
dynamics.

au = Q(q,RR,RC)u = [−J>q R>CRRe3 03×3]uR, (4.17)

For sake of brevity we do not report here the full expression of each term. Notice
that in Lagrangian representation of the dynamics the internal force of the link
does not appear, differently from (4.11) and (4.12). This is useful since, as it
will be clear in Sec. 4.6.3, the internal force along the link is not part of the
differential flat/feedback linearizing output for the tethered system with passive
link actuator.

• Reduced model: in the following Sec. 4.8 we shall show some particular results
proven only in the particular case in which the link length and the ground
platform are fixed, and the vehicle is restricted to move on a 2D vertical plane
(for simplicity let us consider the plane (xW ,zW )). To write the dynamics of
the system in this particular conditions starting from the previous model, we
first parametrize the vehicle attitude by the Euler-angles roll, pitch and yaw,
(φ, θ,ψ), being the angles of rotation about the major axes (xR,yR,zR). We
then impose φ,ψ = 0 that implies yR = yW . Furthermore we can consider
the azimuth constantly to zero, i.e., δ = Ûδ = Üδ = 0. Under this conditions
the system degrees of freedom reduce to two, described by the new vector
q′ = [ϕ θ]> ∈ R2, actuated by the total thrust and the torque about yR,
u′ = [u1 u3]

> = [ fR τRy]
> ∈ R2. Under those assumptions and definitions, we

can rewrite (4.15) as:

M′(q′)Üq′ + g′(q′) = Q′(q′)u′, (4.18)

where

M′ =

[
mRl2 0

0 JR22

]
, g′ =

[
mRlgd⊥ · e3

0

]
,

Q′ =

[
−lRRe3 · d⊥ 0

0 1

]
, u′ =

[
fR
τRy

]
=

[
u1

u3

]
,

and JRkm with k,m ∈ {1,2,3} corresponds to the element of the matrix JR in
position k,m, d = [cos (ϕ) 0 sin (ϕ)]>, d⊥ = [− sin (ϕ) 0 cos (ϕ)]>.

Table 4.3 gathers all the previous particular cases and the corresponding dynamics.
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4.4 Differential flatness

We recall from Sec. 2.2 that a system is differentially flat when it exists (at least)
an output, called flat output, such that the states and the inputs can be expressed as
an algebraic function of the flat output and its derivatives, up to a finite order [21].
Thus the flatness property would fulfill our first objective, i.e., compute analytically
and offline the nominal state and input of the system required to exactly track a
desired output trajectory. In fact, this property is commonly used for control to com-
pute the feed-forward terms, and for planning and optimization to generate feasible
trajectories, especially for nonholonomic and underactuated systems, considering
the input limitations. Furthermore, the differential flatness property tells a lot about
which are the independently controllable outputs and which is the required degree
of smoothness for the corresponding desired trajectories.

For an unidirectional-thrust aerial vehicle, it is well known that the position of its
CoM, pR, and the rotation along the zR axis, ψ, (called yaw angle when using the
Euler-angles parametrization, see Sec. 2.1.3) are differentially flat outputs5 [54, 18].

If we tether the aerial vehicle to a fixed point by a link with constant length, the
link constraints the vehicle to fly on a sphere. Intuitively, the vehicle can still control
the position on the sphere (two d.o.f.) and the yaw angle, but not the position along
the longitudinal axis of the link. Indeed, every force component applied along this
axis will not produce motion due to the kinematic constraint. On the other hand, it
will stretch or compress the link, according to its direction. In other words, the vehicle
cannot change the distance from the anchoring point but it can control the intensity of
the internal force along the link. If then the link length is actuated, the link actuator can
control its length and in thus the distance of the vehicle from the anchoring point. This
intuition tell us that the output ya = [ya1 ya2 ya3 ya4 ya5 ]

> = [l ϕ δ fL ηi]
> ∈ R5,

where ηi is a more “generalized” yaw angle (see the following) is a differentially flat
output. We shall prove this result in Sec. 4.4.1.

Furthermore, let us consider for simplicity the system constrained to move on
a 2D vertical plane. It is easy to notice that the link internal force and the angle
between the thrust and the horizon, defined by ϑA ∈ R (see later for the formal
definition), are directly connected. Indeed the higher the internal force, the more the
thrust tends to be parallel to the link axis, i.e., ϑA tends to ϕ. This second intuition
makes us believe that the output yb = [yb1 yb2 yb3 yb4 yb5 ]

> = [l ϕ δ ϑA ηi]
> ∈ R5

is a differentially flat output as well. We shall prove this result in Sec. 4.4.2.
To prove the differential flatness we show how to express x and u as function of

ya or yb and some of their relative derivatives, in the standard case in which ηi is the
yaw angle. We recall that the state consists of the parametrization of dC , its velocity,
the attitude of the aerial vehicle and its angular velocity, while the inputs are the
thrust, the total torque provided by the robot and the winch torque. As we already
said, we suppose X0

C
and its derivatives known (see (4.13)).

5 And thus also dynamic feedback linearizing outputs.
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4.4.1 Stress-related flat output

Let us define ya1 = [y
a
1 ya2 ya3 ]

> = [l ϕ δ]> such that ya = [ya1
> ya4 ya5 ]

> =

[q> fL ηi]
>. We have directly that

q = ya1 , Ûq = Ûya1 . (4.19)

Then, from (4.6) we obtain the expression of τ̄W

τ̄W = J̄W Üya1 − ya4 = f1( Üya1 , y
a
4 ). (4.20)

In order to find the expression of the missing states and inputs, one can notice that
from (4.7) the linear acceleration of the aerial vehicle can be written as function of
ya1 , Ûy

a
1 , Üy

a
1 , the linear velocity of the platform, its rotation and their time derivatives,

i.e., ÜpW
R = Üp

W
R (y

a
1 , Ûy

a
1 , Üy

a
1 ,X

2
C). Then, from (4.5), we can write the thrust vector as

function of only the outputs, their derivatives and known quantities related to the
trajectory of the moving platform, indeed:

fRRRe3 = −mR ÜpW
R (y

a
1 , Ûy

a
1 , Üy

a
1 ,X

2
C) − y4RCdC(y1) − mRge3

= f2(ya1 , Ûy
a
1 , Üy

a
1 , y4,X2

C).
(4.21)

Then, exploiting y5, one can apply the same method presented in [18] in order to
obtain the attitude of the aerial vehicle, its angular velocity and the total provided
torque. For the sake of brevity we omit here the full re-derivation of all these
functions.

Proposition: The model (4.15), is differentially flat with respect to the flat output
ya = [l ϕ δ fL ηi]

> where ηi is the yaw angle of RR. In other words, the state
and the inputs can be written as algebraic function of ya and a finite number of its
derivatives:

x = fax (ya, . . . ,ya
(4),X2

C) (4.22)

u = fau (ya, . . . ,ya
(4),X2

C). (4.23)

4.4.2 Attitude-related flat output

Firstly, we have to properly define ϑA in the 3D environment. Let us define a new
reference frame, FL centered in pC and with axes {xL,yL,zL} such that:

zL = zW , yL =
zL × d
‖zL × d‖

, xL = yL × zL . (4.24)
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xR

zR
yR

−zR

Fig. 4.2: Visual description of the angle ϑA.

If d is parallel to zW , one can choose any arbitrary yL . For example, if the aerial
vehicle is moving such that d is parallel to zW at a certain time ti , during that instant
we can simply keep yL constant. Practically, starting from a non singular condition,
one would define a certain threshold ε ∈ R>0 such that if ‖zW × d‖ < ε , yL is
kept constant. In particular we can define the vertical plane PL that includes d, i.e.,
PL = {v ∈ R3 | ∃ λ1, λ2 ∈ R : v = λ1xL + λ2zL}; and the projection of −zR into
PL defined by:

α = [α1 α2 α3]
> = −PLzR, (4.25)

where PL = [xL 0 zL]> ∈ R3×3 is the projector on PL , with respect to FL . Finally
we define ϑA as the angle between α and zL:

ϑA = atan2 (α1, α3) = atan2
(
−e>1 PLzR,−e>3 PLzR

)
. (4.26)

Figure 4.2 shows how ϑA is graphically defined.
In order to demonstrate that yb is also a flat output we show that there exists a

bijective map between yb and ya. Considering X2
C (see 4.13) as a known input, the

map from ya to yb and their derivatives, i.e., (yb, . . . ,yb (4)) = gb(ya, . . . ,ya(4),X2
C)

is simply given by the flatness of the system w.r.t. ya. In fact, given ya and its
derivatives, one can compute the nominal state and inputs with (4.22) and (4.23).
Then, from equation (4.26), it is easy to compute yb and the relative derivatives.

Regarding the opposite sense of the map, i.e., from yb to ya:
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(ya, . . . ,ya(4)) = ga(yb, . . . ,yb
(4)
,X2

C), (4.27)

the map is immediate for q and ψ. Let us define yb1 = [y
b
1 yb2 yb3 ]

> = [l ϕ δ]>

such that yb = [yb1
> yb4 yb5 ]

> = [q> ϑA ηi]
>. We have that ya1 = yb1 and ya5 = yb5 .

Then we can retrieve fL , and so ya4 , from yb and its derivatives projecting both sides
of (4.5) on the plane PL . Not considering the second equations (always zero), after
some algebra we can obtain:

ya4 = fL = −mR[0 1]>T−1[e1 e3]
>PL(ÜpR + gzW ), (4.28)

whereT(yb) = [e1 e3]
>[PLzR PLd] is invertible if and only if zR 6⊥ PL and PLzR ∦

PLd. Finally, to retrieve the derivatives of fL one can simply differentiate (4.28) w.r.t.
time. This proves that between ya and yb , and their derivatives, there is a bijective
map.

Combining (4.22), (4.23) and (4.27), state and inputs of the system can be written
as an algebraic function of yb its derivatives, and the known quantity X2

C , proving
that yb is a flat output:

x = fax (ga(yb, . . . ,yb
(4)
,X2

C),X
2
C) = fbx (yb, . . . ,yb

(4)
,X2

C) (4.29)

u = fau (ga(yb, . . . ,yb
(4)
,X2

C),X
2
C) = fbu (yb, . . . ,yb

(4)
,X2

C). (4.30)

Proposition: The model (4.15), is differentially flat with respect to the flat output
yb = [l ϕ δ ϑA ηi]

> where ηi is the yaw angle of RR. In other words, the state
and the inputs can be written as algebraic function of yb and a finite number of its
derivatives, i.e., equations (4.29) and (4.30). �

4.4.3 Differential flatness for passive link actuator

Let us define yc = [yc1
> yc4 ]

> = [q> ηi]
> ∈ R4. Part of the state is directly given by

yc1 , i.e., q = yc1 , Ûq = Ûy
c
1 . Only the part of the state related to the rotational dynamics

and the inputs have still to be derived. From (4.6) we can write the internal force as
function of Üyc1 :

fL = J̄W Ül − τ̄W = fL(Üyc1 ). (4.31)

Then, it is exactly the same procedure as in Sec. 4.4.1. One can write ya1 = yc1 ,
ya4 = fL(Üyc1 ), y

a
5 = yc5 , and then use (4.22) and (4.23) to compute nominal state and

input.

Proposition: The model (4.2), (4.3) and (4.16), is differentially flat with respect to
the flat output yc = [l ϕ δ ηi]

> where ηi is the yaw angle of RR. In other words the
state and the inputs can be written as algebraic function of yc and a finite number of
its derivatives.
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x = fcx (yc, . . . ,yc
(4),X2

C) (4.32)

u = fcu (yc, . . . ,yc
(4),X2

C). (4.33)

Discussion on link internal force regulation

We already remarked that, differently from the active link actuator case, the internal
force along the link is not part of the flat output for this system. This means that its
value cannot be directly controlled. On the contrary, from (4.31), it is a byproduct of
the desired output trajectory, and in particular of the desired link length acceleration.
Nevertheless, in order to keep the internal force always within a desired bound
BfL = [ fL, fL] where fL, fL ∈ R, we can exploit the flatness of the system to design
suitable desired trajectories of yc . In particular, from equation (4.31) we have that
fL ∈ BfL if and only if Ül ∈ BÜl = [Ül, Ül]where Ül = (τ̄′W + fL)/J̄W and Ül = (τ̄′W + fL)/J̄W .
In other words the constraint on the internal force can be translated using the flatness
into a constraint on the desired trajectory of l.

Notice that the steady configuration, Ül = 0, belongs to BÜl if and only if Ül ≤ 0 ≤ Ül
that in turn means − fL ≤ τ̄′W ≤ − fL . In particular, if for Ül = 0 we want a desired
internal force value fL? ∈ BfL , we have to design the passive link actuator such that
τ̄′W = τ

′
W/rW = − fL?. Another parameter of the link actuator that can be optimized

is its inertia J̄W . Indeed it affects how BfL is mapped on BÜl , e.g., if we make J̄W
small enough, big variations of Ül imply small variations of the internal force and thus
an almost constant internal force, fL ≈ fL?.

4.5 Hierarchical control

In this section we exploit the previously proven flatness in order to design a controller
based on a hierarchical method. This is very common for the control of aerial vehicles
because it allows to separate the control of the attitude from the one of the transla-
tional dynamics. This is convenient especially for commercial available platforms
for which one cannot directly control the spinning velocity of the propellers. Often,
one can only control the angular velocity or the attitude of the vehicle, sending the
desired Euler angles. Then, internally to the platform, a closed low level controller
track the desired references.

To cope with these problems, we propose a simpler control strategy, based on
hierarchical techniques, that can be easily implemented in every platform. Indeed,
thanks to the separation between outer loop (normally position control) and inner
loop (attitude control) controls, one can easily adapt the proposed controller to the
specific platform functionalities. Similar techniques were successfully implemented
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and tested in, e.g., [86, 44], to only stabilize the position of the vehicle. However,
those methods cannot be directly applied to solve our problem because they are
designed for different systems, although similar.

The validity of the method has been proven experimentally. The related results
are shown in Sec. 5.2.

4.5.1 Force-related hierarchical control

In the following we design a hierarchical controller for controlling the output ya,
namely the position of the aerial vehicle and the internal force along the link. The
controller is based on the cascaded structure between the translational and rotational
dynamics.

Given a desired position trajectory pC
R (t), defined in terms of the generalized

coordinates ya1
d(t) = q(t)d we define

Üq? = Üqd +KD
q ( Ûqd − Ûq) +KP

q ( Ûqd − Ûq), (4.34)

where KP
q ,KD

q ∈ R
3×3
>0 are diagonal matrices. The vector Üq? could be seen as the

desired acceleration that lets q follow the desired trajectory qd(t) using a PD strategy.
In case of model uncertainties or disturbances one can add an integral term as well.

Then, given a desired trajectory for the internal force of the link ya4 = fL(t)d , and
inverting the balance of momenta on the link actuator (4.6), we compute the link
actuator torque as

τ̄W = J̄W Ül? − fLd . (4.35)

To finally implement Üq?we compute the desired thrust vector inverting the balance
force equation on OR (4.5), like for the flatness computation in (4.21)

f?R = fRR?
Re3 = RC(−ax − ag − fLddC − mRJq Üq?). (4.36)

From the desired thrust vector we derive the input fR as

fR =
−ax − ag − fLddC − mRJq Üq?

 , (4.37)

and the desired z-axis of FR, i.e., z?R = R?
Re3 = f?R/ fR.

The desired yaw angle ψd together with z?R define the desired attitude of the
vehicle described by R?

R. In fact, given ψd we define x′R = Rz(ψ
d)e1 where Rz(ψ

d)

is the rotationmatrix describing the rotation ofψd around zW . The axis x′R represents
the desired heading of the aerial vehicle. The desired attitude is computed creating
an orthonormal basis using the vectors x′R and z?R that is given by R?

R = [x
?
R y?R z?R]

where,
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y?R =
z?R × x′Rz?R × x′R

 , x?R =
y?R × zR?y?R × zR?

 . (4.38)

This concludes the design of the outer loop control. Given the tracking error it
computes the desired link actuator torque τ̄W , the desired thrust intensity fR and the
desired attitude R?

R.
If the considered platform accept as input the desired attitude and thrust, we can

simply send the previous quantities as control commands. If instead the platform is
controlled in thrust/angular velocity or thrust/torque, we shall show the design of
an inner loop control that computes the desired angular velocity, ω?R, or the desired
torque, τR, respectively, in order to track the desired attitude computed by the outer
loop control.

Let us define the attitude error [8] by the vector eR ∈ R3, computed as

[eR]× = −
1
2
(R?

R
>RR − R>RR?

R), (4.39)

where [eR]× corresponds to the skew symmetric matrix relative to eR. In order to
steer eR to zero, if the vehicle is controlled in angular velocity, we compute the
desired angular velocity based on a P controller,

ω?R = ω
d
R +KP

ωeR, (4.40)

where KP
ω ∈ R

3×3
>0 is a diagonal matrix. If instead the vehicle is controlled in torque

we first define the desired angular acceleration based on a PD controller,

Ûω?R = Ûω
d
R +KD

ω (ω
d
R − ωR) +KP

ωeR, (4.41)

where KD
ω ∈ R

3×3
>0 is a diagonal matrix, and ωd

R and Ûωd
R are the nominal angular

velocity and acceleration, respectively, computed by the flatness from the desired
output trajectory as in Sec. 4.4.1. Inverting the rotational dynamics we can finally
find the input torque τR,

τR = −JRωR × ωR + JR Ûω
?
R . (4.42)

If the inner loop is sufficiently faster than the outer loop, the asymptotic conver-
gence of q to qd is guaranteed. Figure 4.3a shows a schematic representation of the
controller u = ΓaHC(x,X

2
C,y

ad(t)) given by (4.35), (4.37) and (4.42).
Notice that it is easy to rewrite the controller ΓaHC for the particular cases men-

tioned in Sec. 4.3. For the case of a passive link actuator one can use the same
controller once the nominal internal force is computed by (4.31).
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(b) Controller for yb

Fig. 4.3: Schematic representation of the two hierarchical controllers.

4.5.2 Attitude-related hierarchical control

For the control of yb we exploit the bijection function between yb and ya, and
the previously presented hierarchical controller for the tracking of ya. In particular,
from the desired trajectory ybd(t), we can compute the equivalent trajectory of
ya, i.e., (yad, . . . ,yad(4)) = ga(ybd, . . . ,ybd(4),X2

C). Then we apply the hierarchical
controller shown before to effectively track yad(t). The hierarchical controller to
track ybd(t) defined by ΓbHC, is equal to:

u = ΓbHC(x,X
2
C,y

bd(t)) = ΓaHC(x,X
2
C,ga(y

bd(t),X2
C)). (4.43)

Thanks to the fact that ga and gb are bijective maps, if the closed loop system is
able to track yad(t), it will implicitly track ybd(t). Figure 4.3b shows a schematic
representation of the controller.

4.6 Dynamic feedback linearization

From the theory we know that a flat output is also an exactly dynamical feedback
linearizing output on an open and dense set of the state space [63]. In this section
we shall design a controller based on the dynamic feedback linearization technique
the problem of the exact tracking of the outputs ya, yb , and yc . For the problem of
the exact tracking of such output we will design a controller based on the dynamic
feedback linearization technique. We recall that in the following x = (q, Ûq,RR,ωR)
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is the system state, u = [ fR τ>R τ̄W ]
> = [u1 u2 u3 u4 u5]

> is the input vector and
the outputs are

i) ya = [ya1 ya2 ya3 ya4 ya5 ]
> = [l ϕ δ fL ηi]

> ∈ R5,
ii) yb = [yb1 yb2 yb3 yb4 yb5 ]

> = [l ϕ δ ϑA ηi]
> ∈ R5 and

iii) yc = [yc1 yc2 yc3 yc4 ]
> = [l ϕ δ ηi]

> ∈ R4.

4.6.1 Force-related feedback linearizing output

In the previous sections we considered ηi as the yaw angle when the rotation of FR is
parametrized by the Euler angles. However, in the following we consider any generic
parametrization η = [η1 η3 η3]

> ∈ R3 of RR, such that RR = RR(η) and Ûη = TηωR

where Tη(η) ∈ R3×3 is given by the particular parametrization [62]. From (4.3) the
dynamics of η is

Üη = ÛTηωR + TηJ−1
R (JRωR × ωR)︸                                ︷︷                                ︸

bη(η, Ûη)

+ [ 03×1 TηJ−1
R 03×1 ]︸                     ︷︷                     ︸

Eη(η)

u. (4.44)

Then we consider ηi as any entry of η such that, in the domain of interest, it holds

eηi =
∂ Üηi
∂τRz

= e>i TηJ−1
R e3 , 0. (4.45)

For example, taking η = [φ θ ψ]> as the classical Roll-Pitch-Yaw parametrization
of RR and ηi = ψ, we have that

Tη(η) =


1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ sec θ cos φ sec θ

 and eηi =
1

JR33
cos φ sec θ, (4.46)

Notice that for this choice (4.45) holds always except for φ = π/2 and θ = π/2.
Intuitively, only τ̄W and fR play a role in the control of l, ϕ, δ and fL (see (4.10))

and they are not affected by τRz . Indeed fR is not influenced by rotations along
zR and therefore not even by the torque τRz acting about it. Then it is necessary
to complete the set of outputs with a quantity dynamically dependent on τRz to
have a well-posed tracking problem. Thus, we recall that the output of interest is
ya = [ya1 ya2 ya3 ya4 ya5 ]

> = [l ϕ δ fL ηi]
> ∈ R5

Applying the feedback linearization technique (see Sec. 2.3), and recalling equa-
tions (4.10) and (4.44), we immediately see that (ya1 , y

a
2 , y

a
3 ) have to be differentiated

twice until fR and τ̄W appear. Also ya5 has to be differentiated twice until τR ap-
pears, while ya4 directly depends on fR and τ̄W . Defining ȳa1 = [ Üy

a
1 Üy

a
2 Üy

a
3 ya4 ]

> and
rearranging (4.10) and (4.44), we can write
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ȳa1
Üya5

]
=

[
W̄a
bηi

]
+

[
W̄U
eηi

]
u = b(x,X2

C) + E(x,X0
C)u, (4.47)

where W̄ =W−1, bηi = e>i bη , eηi = e>i Eη , the vector b(x,X2
C) gathers all the terms

that do not depend on the inputs and

U =

[
−R>CRRe3 03×3 03×1

0 01×3 1

]
4×5

(4.48)

E =

[
W̄ 04×1

01×4 1

] 
−R>CRRe3 03×3 03×1

0 01×3 1
0 e>i TηJ−1

R 0

5×5

. (4.49)

We recall that Rearranging the rows of the decoupling matrix E one can notice that
it is clearly singular because τR does not appear in the expression of ȳa1 .

As explained in Sec. 2.3, to obtain a full rank matrix we insert a dynamic com-
pensator considering as new input ū = [ Üu1 u2 u3 u4 Üu5]

>, where Üu1 and Üu5 are the
second derivative of fR and τ̄W , respectively. Under this definition ȳa1 and ya5 have
to be differentiated twice to see the new inputs appear:[

ȳa1
Üya5

]
=

[
ǕW(a + au) + 2 Û̄W(Ûa + Ûau) + W̄(Üa + Üau)

bi + eηi ū

]
, (4.50)

where Üau, after replacing the system dynamics, results:

Üau = Ǖau +

[
−u1R>CRR

[
J−1
R τR

]
×

e3 − Üu1R>CRRe3

Üu5

]
. (4.51)

Since JR is diagonal, i.e., JRkm = 0 for k , m and k,m ∈ {1,2,3}, writing the skew
symmetric matrix relative to J−1

R τR and doing some algebra we obtain[
J−1
R τR

]
×

e3 =
[
−

e2
JR11

e1
JR22

03×1

]
τR . (4.52)

Replacing equations (4.52) and (4.51) into (4.50) we obtain[
Ǖya

1
Üya

5

]
=

[
ǕW(a + au) + 2 Û̄W(Ûa + Ûau) + W̄(Üa + Ǖau)

bi

]
︸                                                ︷︷                                                ︸

b̄(x̄,X4
C )

+

[
W̄Ū
eηi

]
︸ ︷︷ ︸

Ē(x̄,X0
C
)

ū,
(4.53)

where Ū =
[
−R>

C
RRT 03×1

01×4 1

]
, x̄ = (q, Ûq,RR,ωR, fR, ÛfR, τ̄W , Û̄τW ) is the extended state,

and T = [e3 −
u1
JR11

e2
u1
JR22

e1 03×1] ∈ R
3×4. Changing the order of the inputs as
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Fig. 4.4: Block diagram representation of the control strategy. © 2020 IEEE. Reprinted,
with permission, from [103].

in ũ = [u1 u2 u3 u5 u4]
>, the decoupling matrix becomes Ẽ =

[
Ẽ1 01×3

ẽ3 eηi

]
, where

Ẽ1 = W̄

[
Ũ1 03×1

01×3 1

]
, ẽ3 =

[
0 e>i TηJ−1

R e1 e>i TηJ−1
R e2 0

]
,

Ũ1 = −R>CRR

[
e3 −

u1
JR11

e2
u1

JR22
e1

]
= −R>CRRT̃.

The original decoupling matrix Ē is invertible if Ẽ is invertible, or equivalently,
due to its canonical form, if Ẽ1 is invertible and eηi is nonzero. Since the matrices
RC , RR and W̄ are always full rank (except in the model singularities, i.e., l = 0
and δ = ±π/2), then Ũ1 is invertible whenever T̃ is full rank, i.e., if u1 , 0, indeed
det(T̃) = u2

1/(JR11JR22).
In the cases in which the thrust u1 is not zero and with the opportune parametriza-

tion of RR, using the control law

ū = Ē(x̄,X0
C)
−1 [
−b̄(x̄,X4

C) + va
]
, (4.54)

where va = [va1 va2 va3 va4 va5 ]
> ∈ R5 are virtual inputs, we obtain

ya1
(4) = va1 , ya2

(4) = va2 , ya3
(4) = va3 , ya4

(2) = va4 , ya5
(2) = va5 . (4.55)

Furthermore, the total relative degree with respect to ya is ra = 16 that corre-
sponds to the dimension of the extended state x̄ that is n̄ = 16. Indeed it is composed
by x (of dimension 12) plus the four states of the dynamic compensator. Therefore
the system is exactly dynamic feedback linearizable and the linearized system (4.55)
does not have an internal dynamics [36].

Outer linear controller

In the following we will omit the subscript ·a since the same outer-loop control can
be applied to track both ya and yb , after the application of the opportune linearizing
control law.
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The tracking of any given desired trajectory, ydi (t) ∈ C3 for i = 1,2,3 and
ydj (t) ∈ C1 for j = 4,5 can be achieved applying any linear control technique to the
equivalent linear system (4.55), as depicted in Fig. 4.4. As explained in Sec. 2.3,
it is sufficient to use as outer loop a simple controller based on the pole placing
technique. Setting the virtual control inputs as

vi = y
d(4)
i + k>i ξi, vj = y

d(2)
j + k>j ξ j, (4.56)

where ξi = [ξ(3)i
Üξi Ûξi ξi]

> ∈ R4, ξ j = [ Ûξj ξj]> ∈ R2, ξi = ydi − yi and ξj = ydj − yj
are the tracking errors, one can set the poles of the error dynamics through the gains
ki ∈ R

4
>0 and kj ∈ R

2
>0, for i = 1,2,3 and j = 4,5, to obtain a sufficiently fast

exponentially tracking of the desired trajectories.
All the previous results are summarized in the following

Proposition: For the analyzed system it exists at least one parametrization η of RR

and one of its elements ηi such that ya = [l ϕ δ fL ηi]
> is an exact feedback

linearizing output for each state, except if l = 0, δ = ±π/2 and u1 = 0 (zero thrust
case). Furthermore, considering as input ū = [ Üu1 u2 u3 u4 Üu5]

>, the control law
ū = ΓaDFL(x̄,X

4
C,y

ad(t)) defined by (4.54) and (4.56) exponentially steers ya along
the desired trajectories yai

d(t) ∈ C3 for i = 1,2,3, and yaj
d(t) ∈ C1 for j = 4,5. �

Remark: In order to implement the exact tracking control laws (4.54)–(4.56) the
only needed quantities are

• the desired output trajectory and its derivatives y?di , Ûy?di , Üy?di ,
...
y?di ,

....
y ?di for

i = 1,2,3, and y?dj , Ûy?dj , Üydj for j = 4,5, where y?i is either yai or ybi
• a measurement of system state, i.e., x = (q, Ûq,RR,ωR)

• the internal state of the compensators fR, ÛfR, τ̄W , Û̄τW
• the position and orientation of the moving platform and their derivatives X4

C . �

We recall that an explicit measurement of the output and its derivatives is not
needed at all, since they are algebraic functions of the state and input.

4.6.2 Attitude-related feedback linearizing output

Nowwe are ready to show that yb = [yb1 yb2 yb3 yb4 yb5 ]
> = [l ϕ δ ϑA ηi]

> ∈ R5 is
a feedback linearizing output. Similarly to Sec. 4.4.2, we firstly show that yb and its
derivatives can be written as a function of ya and its derivatives, and Xi

C
with i > 0.

In particular, we shall show that [yb1
(4)
Üyb4 Üy

b
5 ]
>, linearly depends on [ya1

(4) Üya4 Üy
a
5 ]
>,

i.e., there exists the functions byb (ya1 , . . . ,y
a
1
(3),X4

C) and Eyb (ya1 ,X
0
C
) such that

yb1
(4)

Üyb4
Üyb5

 = byb (ya1 , . . . ,y
a
1
(3),X4

C) + Eyb (ya1 ,X
0
C)


ya1
(4)

Üya4
Üya5

 . (4.57)
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Let us first extract fR from (4.9), and differentiate it twice, showing the dependence
on ya and its derivatives:

fR = −RC(ax + ag)︸           ︷︷           ︸
b′fR (y

a
1 , Ûy

a
1 ,X

2
C)

+
[
mRRCJq d

]
︸          ︷︷          ︸

EfR (ya1 ,X
0
C
) = [E′fRe′′fR ]

ȳa (4.58)

ÜfR = bfR (y
a
1 , . . . ,y

a
1
(3),X4

C) + EfR (y
a
1 ,X

0
C)
Ǖya, (4.59)

where bfR gathers all the terms that do not depend on Ǖya. Similarly, can write zR
and its derivatives as function of fR and its derivatives, and thus as function of ya
and its derivatives:

zR = fR/‖fR ‖ (4.60)
ÛzR = 1/‖fR ‖ (I3 − zRz>R)ÛfR = EzR (y

a
1 , Ûy

a
1 ,X

2
C)
ÛfR (4.61)

ÛzR = bzR (y
a
1 , . . . ,y

a
1
(3),X4

C) + EzREfR Ǖy
a, (4.62)

where bzR gathers all the terms that do not depend on Ǖya.
Let us now compute the second derivative of α, expressing it as function of ya

and its derivatives, replacing the previous equations where necessary.

Üα = bα(ya1 , . . . ,y
a
1
(3),X4

C) − PLEzREfR Ǖy
a, (4.63)

where bα gathers all the terms that do not depend on Ǖya.
Finally, we can compute the derivatives of yb4 = ϑA in order to obtain the form

in (4.57)

Ûyb4 =
1

α2
1 + α

2
3

[
−α3 α1

] [
Ûα1

Ûα3

]
=

1
‖α‖2

α>
[
−e3 0 e1

]
︸                    ︷︷                    ︸

eyb4 (y
a
1 , . . . ,y

a
1
(3),X4

C)

Ûα (4.64)

Üyb4 = b′
yb4
− eyb4 Üα = byb4

− eyb4 PLEzREfR Ǖy
a (4.65)

where b′
yb4

and byb4
gather all the terms that do not depend on Üα and Ǖya, respectively.

Finally, noticing that yb1 = ya1 and yb5 = ya5 we can write the following equation,
equal to the sought form (4.57)


yb1
(4)

Üyb4
Üyb5

 =


0
byb4

0

︸︷︷︸
byb (ya1 , . . . ,y

a
1
(3),X4

C)

+


I3 0 0

e′
yb4

e′′
yb4

0

0 0 1

︸        ︷︷        ︸
Eyb (ya1 ,X

0
C
)


ya1
(4)

Üya4
Üya5

 , (4.66)
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where e′
yb4
= −eyb4 PLEzRE′fR and e′′

yb4
= −eyb4 PLEzRe′′fR . Now we are ready to prove

that the system is dynamic feedback linearizable with respect to yb . From Sec. 4.6.1,
notice that (ya1 , Ûy

a
1 , Üy

a
1 ,y

a
1
(3)) is a function of (x̄,X4

C). Furthermore, replacing (4.53)
into (4.66) we obtain:

yb1
(4)

Üyb4
Üyb5

 = byb + Eyb b̄ + Eyb Ēū = b̄yb (x̄,X2
C) + Ēyb (x̄,X0

C)ū. (4.67)

Therefore, we can conclude that yb is a dynamic feedback linearizing output for all
x̄ such that the decoupling matrix Ēyb is invertible, i.e., such that Eyb and Ē are full
rank. From Sec. 4.6.1, Ē is full rank if l , 0, δ , ±π/2 and u1 , 0. On the other
hand, Eyb is invertible if e′′

yb4
, 0. Recalling the expression of e′′

yb4
, Eyb is invertible

if

(PLzR)>
[
−e3 0 e1

]
PL(I3 − zRz>R)d , 0. (4.68)

In order to simplify the notation, let us define v1 = PLzR and v2 = PL(I3 − zRz>R)d.
Noticing that [−e3 0 e1] is the skew symmetric matrix relative to e2, we have
that the previous inequality is equal to v>1 (e2 × v2) , 0, that we can also write as
e>2 (v2×v1) , 0. Since v1 and v2 belong to the same plane PL , (v2×v1) is orthogonal
to PL and thus parallel to yL . Notice that yL is equal to e2 in frame FL . Therefore
e>2 (v2 × v1) , 0 if and only if (v2 × v1) , 0.

In order to study the conditions for which PL(I3 − zRz>R)d × PLzR , 0, we can
show that PL(I3 − zRz>R)d × PLzR = PLd × PLzR. Indeed,

PL(I3 − zRz>R)d × PLzR − PLd × PLzR = 0 (4.69a)(
PL(I3 − zRz>R)d − PLd

)
× PLzR = 0 (4.69b)

PLzRz>Rd × PLzR = 0. (4.69c)

The previous equivalent conditions always hold since zRz>R is the projector on zR
and therefore zRz>Rd is always parallel to PLzR (or zero).

Finally, we have that Eyb is invertible if PLd × PLzR , 0, and therefore if zR
is not perpendicular to the plane PL and if PLzR and PLd are not parallel, i.e., if
zR 6⊥ PL and PLzR ∦ PLd. Summarizing, the decoupling matrix Ēyb is invertible,
and thus yb is a feedback linearizing output, for all the states except if l = 0 and
δ = ±π/2 (singularity of the spherical coordinates), u1 = 0 (singularity of the
feedback linearization with respect to ya), zR ⊥ PL and PLzR ‖ PLd.

In the cases in which Ēyb is invertible, using the control law

ū = Ēyb (x̄,X0
C)
−1 [
−b̄yb (x̄,X2

C) + vb
]
, (4.70)

where vb = [vb1 vb2 vb3 vb4 vb5 ]
> ∈ R5 are virtual inputs, we obtain
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yb1
(4)
= vb1 , yb2

(4)
= vb2 , yb3

(4)
= vb3 , yb4

(2)
= vb4 , yb5

(2)
= vb5 . (4.71)

Furthermore, the total relative degree with respect to yb is rb = 16 that corre-
sponds to the dimension of the extended state x̄ that is n̄ = 16. Therefore the system
is exactly dynamic feedback linearizable and the linearized system (4.71) does not
have an internal dynamics.

As done in Sec. 4.6.1, to track a desired trajectory ybd(t), we can apply to the
linearized system (4.71) a linear controller, as the one in (4.56) obtaining a control
strategy similar to the one represented in Fig. 4.4.

Proposition: For the analyzed system it exists at least one parametrization η of RR

and one of its elements ηi such that yb = [l ϕ δ ϑA ηi]
> is an exact feedback

linearizing output for each state, except if l = 0, δ = ±π/2, u1 = 0, zR ⊥ PL

and PLzR ‖ PLd. Furthermore, considering as input ū = [ Üu1 u2 u3 u4 Üu5]
>, the

control law ū = ΓbDFL(x̄,X
4
C,y

bd(t)) defined by (4.70) and (4.56) (properly adapted),
exponentially steers yb along the desired trajectories ybi

d(t) ∈ C3 for i = 1,2,3, and
ybj

d(t) ∈ C1 for j = 4,5. �

4.6.3 Dynamic feedback linearization for passive link actuator

Considering yc as output of interest and applying the feedback linearization tech-
nique, we need to differentiate each entry of yc until the input appears. From (4.16)
and (4.44), yc has to be differentiated twice to see the input appear:[

Üyc1
Üyc4

]
=

[
M̄a
bηi

]
+

[
M̄Q
eηi

]
u =

[
M̄a′

bηi

]
︸ ︷︷ ︸

byc (x,X2
C)

+

[
−J>q R>CRRe3 03×3

0 e>i TηJ−1
R

]
︸                          ︷︷                          ︸

Eyc (x,X0
C
)

u′,
(4.72)

where M̄ = M′−1 and a′ = −c′ − g′ − n′ − w′. Similarly to the previous cases, the
decoupling matrix Eyc is singular for every conditions because τR does not appear
on Üyc1 . This means that the system is not statically feedback linearizable.

As done before, we can apply a dynamic feedback inserting a dynamic compen-
sator in the control u1. Consider as new input the second derivative of the thrust and
the torque, i.e., ū′ = [ Üu1 u>2 ]

>. Now Üyc1 has to be differentiated four times to see ū′
appear, while for yc4 everything remains the same, indeed:[

Üyc1
(4)

yc4

]
=

[
ǕM(a′ + au′) + 2 Û̄M(Ûa′ + Ûau′) + M̄(Üa′ + Üau′)

bi + eηi ū

]
, (4.73)

where Üau′ , after replacing the system dynamics, results:

Üau′ = Ǖau′ + J>q R>CRR(− Üu1e3 − u1
[
J−1
R τR

]
×

e3), (4.74)
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where Ǖau′ gathers all the terms that do not depend on ū′. Replacing equations (4.52)
and (4.74) into (4.73) we obtain[

y(4)q

Üy4

]
= b̄yc (x̄,X4

C) +

[
M̄J>q R>CRRT 03×1

ẽ3 ẽ2

]
︸                     ︷︷                     ︸

Ēyc (x̄,X0
C
)

ū′, (4.75)

where b̄(x̄,X4
C) collects all the terms that do not depend on ū′, ẽ2 = e>i TηJ−1

R e3, and
ẽ3 = e>i TηJ−1

R [03×1 e1 e2]. Similar to Sec. 4.6.1, the decoupling matrix Ēyc results
to be invertible if u1 , 0 and if the parametrization η of RR and one of its elements
ηi are chosen such that ẽ2 , 0, i.e., if (4.45) is verified in the domain of interest.
Then, in the case in which Ēyc is invertible, defining vc = [vc1 vc2 vc3 vc4 ]

> ∈ R4 as
virtual inputs, the control law

ū′ = Ēyc (x̄,X0
C)
−1 [
−b̄yc (x̄,X4

C) + vc
]
, (4.76)

brings the original system in the equivalent linear one:

yc1
(4) = vc1 , yc2

(4) = vc2 , yc3
(4) = vc3 , yc4

(2) = vc4 . (4.77)

This means that the system results to be exactly linearizable through dynamic feed-
back and the linearized system (4.77) does not have an internal dynamics. Indeed,
the total relative degree with respect to yc is rc = 4 + 4 + 4 + 2 = 14 = n̄, where n̄
is dimension of the extended state x̄.

As done in Sec. 4.6.1, to track a desired trajectory ycd(t), we can apply to the
linearized system (4.77) a linear controller as the one in (4.56) obtaining a control
strategy similar to the one represented in Fig. 4.4.

Proposition: For the analyzed system it exists at least one parametrization η of RR

and one of its elements ηi such that yc = [l ϕ δ ηi]
> is an exact feedback linearizing

output for each state, except if l = 0, δ = ±π/2, u1 = 0. Furthermore, considering
as input ū′ = [ Üu1 u2 u3 u4]

>, the control law ū′ = ΓcDFL(x̄,X
4
C,y

cd(t)) defined
by (4.76) and (4.56) (properly adapted), exponentially steers yc along the desired
trajectories yci

d(t) ∈ C3 for i = 1,2,3, and yc4
d(t) ∈ C1. �

4.6.4 Dynamic feedback linearization for the reduced model

It is easy to recast all the controllers presented so far for the reduced model presented
in Sec. 4.3. Indeed this is a sub-case of the general system.However, we found out that
for this reduced morel, the tracking of the output ybr = [ϕ ϑA]

> can be obtained with
a simpler static-feedback linearizing controller, ΓbSFLr . For the corresponding details
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Ctrl. Cont. outputs Goal Method Type Singularities

ΓaHC (l, ϕ, δ, fL , ηi ) stabilization hierarchical static fR = 0

ΓbHC (l, ϕ, δ, ϑA, ηi ) stabilization hierarchical static
fR = 0, zR ⊥

PL , PLzR ‖

PLd

ΓcHC (l, ϕ, δ, ηi )
stabilization
(passive link
actuator)

hierarchical static fR = 0

ΓaDFL (l, ϕ, δ, fL , ηi ) tracking DFL dynamic fR = 0, l = 0,
δ = ±π/2

ΓbDFL (l, ϕ, δ, ϑA, ηi ) tracking DFL dynamic

fR = 0, l = 0,
δ = ±π/2,
zR ⊥ PL ,
PLzR ‖ PLd

ΓcDFL (l, ϕ, δ, ηi )
tracking (pas-
sive link actu-
ator)

DFL dynamic fR = 0, l = 0,
δ = ±π/2

ΓbSFLr (ϕ, ϑA)
tracking (re-
duced model) SFL static ϑA = 0

Table 4.4: List of designed controllers with the corresponding main features and
characteristics.

we refer the interested reader to6 [107]. Notice that the control actions required by
this controller may be discontinuous due to, e.g., desired trajectories possessing a
discontinuity in the second derivative or simply, in the real case, due to some noise in
the measurements. This has to be taken into account in case one would like, e.g., to
minimize mechanical vibrations of the link. Furthermore, as recalled in Sec. 3.3.1,
one has to keep in mind that discontinuous inputs cannot be performed by the
physical system in exam because the acceleration of both propeller rotation and the
corresponding air flow cannot be infinite. However, if one needs to enforce smoother
inputs it possible to apply a dynamic compensator in order to get a sufficiently smooth
control signal.

Table 4.4 summarizes all the controllers designed so far for the general and
particular systems.

4.7 State estimation

In Remark 2 we already highlighted the fact that in order to compute the control
action, only the system state and the knowledge of the trajectory of the platform
are needed. Assuming that w1 = X4

C (we recall that X4
C is defined in (4.13)) is a

6 Notice that in [107] we considered θ as part of the output instead of ϑA. However, in the 2D
plane, ϑA = θ so the results are still valid.
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priori known or it is estimated/measured on-line by a set of sensors, then only the
knowledge of x is need to close the control loop. One could directly measure x by
using a collection of sensors such as a GPS, cameras, tracking systems etc. In this
section we shall demonstrate that exploiting the tautness of the cable (i.e., when
fL , 0) it is possible to retrieve x from a standard set of sensors summarized in
Tab. 4.5. In particular, from the moving platform side, we assume to have an encoder
that measures the absolute rotation of the link actuator. Assuming no backlash
and constant radius rW , this is equivalent to measure the length of the link, i.e.,
w2 = rWϑW = l. Furthermore, using a gimbal-like system based on two encoders
(see [84] for a similar mechanism), we can measure the direction of the link, i.e.,
w3 = ϕ and w4 = δ.

The aerial vehicle is instead equipped with a standard sensory configuration
composed by a 3-axis accelerometer, gyroscope and magnetometer mounted on OR

and aligned along the axis of FR. Recalling the sensor models provided in Sec. 3.4,
the accelerometer measures the specific acceleration of OR in FR, i.e.:

w5 = R>R(Üp
W
R + ge3). (4.78)

The gyroscope measures the angular velocity of FR with respect to FW , expressed
in FR, i.e., w6 = ωR. Finally the magnetometer measures the known unit vector
hW ∈ S2 describing the magnetic field direction expressed in FR:

w7 = R>RhW . (4.79)

Using this sensory configuration, part of the state is already measured, though it
remains to estimate RR and Ûq. From the accelerometer, replacing (4.5) into (4.78),
we obtain

fLR>RRC(w1)dC(w3,w4) = −mRw5 − fRe3. (4.80)

We define w8 = ‖−mRw5 − fRe3‖. Notice that, since the controller guarantees a
taut/compressed link, it must be that fL , 0, thus w8 = fL . Defining sR1 = (−mRw5−

fRe3)/w8 and sW1 = RC(w1)dC(w3,w4) we have that RRsR1 = sW1 . Using also the

# Type Position Reference Measurement

w1 - OC FW X4
C

w2 absolute encoder OC FC ϑW ≈ l

w3 absolute encoder OC FC ϕ

w4 absolute encoder OC FC δ

w5 accelerometer OR FR RR (ÜpW
R − ge3)

w6 gyroscope OR FR ωR

w7 magnetometer OR FR RRhW

Table 4.5: List of sensors.
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magnetometer we obtain a direct measurement ofRR in the following way. Under the
assumption that sR1 and w7 are not parallel, let us define sR2 = (s

R
1 × w7)/

sR1 × w7


and sR3 = sR1 × sR2 . We then get

RRsR2 = RR(sR1 × w7) = sW1 × hW = sW2 (4.81)
RRsR3 = RR(sR1 × sR2 ) = sW1 × sW2 = sW3 , (4.82)

where {sR1 , s
R
2 , s

R
3 } is an orthonormal basis and SR = [sR1 sR2 sR3 ] ∈ SO(3). Then,

defining SW = [sW1 sW2 sW3 ], we obtain a direct measurements of RR from the
sensors (w1,w3,w4,w5,w7) as:

RR = SWSR> =WR(w1,w3,w4,w5,w7). (4.83)

Notice that we can find RR only if dW and hW are not parallel (otherwise
sW1 ×hW = 03) and if fL , 0. Indeed, if fL = 0 the link becomes slack and the aerial
vehicle results decoupled from the rest of the system. In this condition is then not
possible to estimate the attitude of the vehicle in a direct way. Nevertheless, this is
not a practical issue since the proposed controller guarantees any non zero internal
force7. Regarding the special case in which we ask a zero internal force for just an
instant, e.g., passing from tension to compression, we provide a short discussion in
Sec. 4.9. Furthermore, the magnetometer can be replaced with any sensor able to
measure a known vector in FW expressed in FR not parallel to dW . In the presence
of noisy measurements one can exploit WR and w6 designing a filter to obtain a
better estimation of RR and ωR [46].

After having shown how to estimate RR from the measurements, it remains to
estimate Ûq. Defining z = [l Ûl ϕ Ûϕ δ Ûδ] ∈ R6 we can write its dynamics (see (4.11))
and the respective measurements as

Ûz = Az + Bσ(z,ut,RR,X2
C)

wz = [w2 w3 w4]
> = Cz,

(4.84)

where8 A = diag(A′,A′,A′), B = diag(B′,B′,B′), C = diag(C′,C′,C′), A′ =
[ 0 1

0 0
]
,

B′ =
[ 0

1
]
, C′ = [ 1 0 ]. Thanks to the particular canonical form of (4.84), in order

to get an estimation of z, it is possible to apply the following nonlinear high gain
observer (HGO) (see Sec. 2.4 )

Û̂z = Aẑ + Bσ(ẑ,ut,WR,w1) +H(wz − Cẑ), (4.85)

7 As already said, in a preliminary phase one can bring the cable in a taut condition using a near
hovering control [26]. Then it can be replaced with our controller to maintain the desired tension
or compression.
8 diag(X1, . . . ,Xn) is a block matrix having on the main block diagonal the matrices Xi , whereas
the off-diagonal blocks are zero matrices.
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where H = diag(H′,H′,H′) and H′ = [α1
ε

α2
ε2 ]
>, with ε ∈ R>0, and the gains

(α1, α2) ∈ R>0 are set such that the roots of s2 + α1s + α2 have negative real part.
The gains (α1, α2) influence the convergence rate of the estimation.

Summarizing, using the standard sensory configuration of Tab. 4.5, we were able
to achieve the third goal obtaining an estimation of the whole state:

l̂ = ẑ1 ϕ̂ = ẑ3 δ̂ = ẑ5 R̂R =WR

Û̂l = ẑ2 Û̂ϕ = ẑ4 Û̂δ = ẑ6 ω̂R = w6.
(4.86)

Closed Loop Stability

In Sec. 4.6 we saw that the control law ΓaDFL, Γ
b
DFL and Γ

c
DFL need only the knowledge

of the state and of the trajectory of the platform in order to close the loop. Thus we
can use the state estimation provided by the proposed observer as feedback for the
controller. Though, since the system is nonlinear, one cannot apply the separation
principle like in the linear case. Nevertheless, thanks to the direct measurements
of some entry of the state and to the particular kind of translational dynamics, i.e.,
triangular block dynamics with a direct measurement of the first state of each block,
it can be shown that a strong property holds [36]. In fact, since the closed loop system
by the state feedback controller is exponentially stable for every state except the its
singularities (see Tab. 4.4), there exist a ε̄ such that, for every 0 < ε ≤ ε̄ in (4.85),
the closed loop system with the observer is exponentially stable, except for the zero
stress case and for the controller singularities [36] (see Sec. 2.4).

Discussion on platform state measurement

To obtain a perfect tracking one has to know the derivatives of pC
C
(t) up to the fourth

order and of ωC(t) up to the third order (see Sec. 4.6). Although any controller (not
only the one proposed here) needs to know (implicitly or explicitly) those variables
to obtain a zero tracking error, it is difficult in practice to directly measure the
higher-order derivatives.

In order to overcome such issue, some practical techniques could be applied
which are here shortly mentioned. If the model and control input of the system are
known (e.g., in the case of an autonomous vehicle), an observer can be designed to
retrieve the needed derivatives of pC

C
and ωC . Without the dynamic model but with

a set of measurements of some derivatives, one can use standard tracking technique
or, if the trajectory of the vehicle is sufficiently ‘low frequency’, the missing higher
derivatives could be simply assumed negligible and equal to zero. For the last case,
in Sec. 5.3 we show that the tracking error remains small and bounded.
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4.8 State estimation for the reduced model

As said in the previous section, finding the minimal sensory setup that still allows to
retrieve the full state estimation is a very important problem, for safety but also for
technical and cost-related problems. Driven by these practical reasons and also by the
intrinsic theoretical appeal of solving control problems with minimal sensing, in this
sectionwe show that the standard on-board inertial sensor (i.e., an accelerometer plus
a gyroscope) is sufficient to estimate the full state of the reduced system presented
at the end of Sec. 4.3. We recall that the latter consists of a tethered aerial vehicles
constrained to move on a 2D vertical plane, with the link fixed to the ground and
characterized by a constant length. Its dynamics is given by (4.18). We then show the
design of an exact nonlinear observer for that purpose. Of course the state estimator
designed in Sec. 4.7 can be still applied for the 2D case, but the corresponding sensory
setup results non minimal. Indeed, the encoder directly measuring the elevation is
not needed in this case.

Under the 2D constraints we can redefine the state vector as x = [ϕ Ûϕ θ Ûθ]> =
[x1 x2 x3 x4]

> ∈ R4 and the input vector as u = [ fR τRy]
> = [u1 u2]

>. In view of
those definitions we can rewrite the 2D dynamic model (4.18) in a more convenient
state space form:

Ûx =


x2

a1cx1

x4

0


+


0 0

a2cx1+x3 0
0 0
0 a3


u, (4.87)

where a1 = −g/l, a2 = 1/(mRl), a3 = 1/JR22 are the constant parameters of the
dynamical model. As normal in the literature we define s? = sin (?) and c? = cos (?).
Again, the on-board inertial sensor provides the following measurements:

ω = x4 (4.88)

a = R>R(ÜpR + gzW ) =
[
ax ay az

]>
. (4.89)

From now on we omit the second row which is zero by construction, i.e., we assume
a = [ax az]>.

Observing the full state of system (4.87) using the partial measurements (4.88),
and (4.89) is a nontrivial nonlinear observation problem, where the nonlinearities
appear both in the system dynamics and in the measurements. We show in the
following how this problem can be successfully tackled. Fist of all exploiting (4.88)
we can define the gyroscope measurement as a new input u3 = ω that lets us
reduce the system dimension from four to three. Then, substituting (4.7) and (4.87)
into (4.89) and performing some simple algebraic manipulation on the accelerometer
measurement we obtain
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Ûx1

Ûx2

Ûx3

 =

0 1 0
0 0 0
0 0 0



x1

x2

x3

 +


0
a1cx1 + a2cx1+x3 u1

u3

 (4.90)

a =

[
lcx1+x3

(
x2

2 + a1sx1 + a2sx1+x3 u1
)

lsx1+x3

(
x2

2 + a1sx1 + a2sx1+x3 u1
)
− a2u1

]
. (4.91)

The problem is then ‘reduced’ to the observation of the state [x1 x2 x3]
> from the

knowledge of the measurements a and the inputs [u1 u3]
>. However this problem is

still nonlinear both in the system dynamics and in the measurement map.
Trying to apply the exact nonlinear high gain observer also in this case, the system

should be in the canonical form (2.15). Although at first view system (4.90–4.91) does
not resemble to a system in canonical form, we shall demonstrate in the following
that it can be put in that form using a few appropriate nonlinear transformations.

4.8.1 State/output transformations and HGO design

In the following we prove that there exist a change of coordinates from the original
state x to a new state z = [z1 z2 z3]

> and from the original measurements a to a
new measurement w such that the system (4.90–4.91) appears in the canonical form
presented in Sec. 2.4. While doing so we highlight also the intuitions that led us to
discover this particular change of coordinates.

First, since the term x1 + x3 occurs frequently in (4.90–4.91) a simplifying choice
is to assume z1 = x1 + x3. With this choice we have Ûz1 = Ûx1 + Ûx3 = x2 + u3 and
therefore it is natural to choose z2 = x2 to obtain Ûz1 = z2 + u3, thus matching with
the first row of the sought canonical form (2.15).

Now, if we compare the second and third rows of (4.90), with the corresponding
rows of the sought canonical form (2.15) we see that: i) in the canonical form (2.15)
the state-dependent nonlinearity φ appears only in the last row of the dynamics, but,
on the other hand ii) in (4.90) the nonlinearity appears already in the second row.
Therefore, in order to push this ‘undesired’ nonlinearity down from the second to
the third row we can define z3 = Ûz2 = Ûx2 = a1cx1 + a2cx1+x3 u1. Summarizing, we
propose the following change of variables

z1 = x1 + x3, z2 = x2, z3 = Ûx2 = a1cx1 + a2cx1+x3 u1, (4.92)

that transforms the system (4.90 – 4.91) in the following form
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Ûz =


0 1 0
0 0 1
0 0 0

︸  ︷︷  ︸
A

z +


0
0
1

︸︷︷︸
B

σ′(z, sx1,u1, Ûu1,u3) +


u3

0
0

︸︷︷︸
λ(u3)

(4.93)

a =

[
lcz1

(
z2

2 + a1sx1 + a2sz1 u1
)

lsz1

(
z2

2 + a1sx1 + a2sz1 u1
)
− a2u1

]
, (4.94)

where the sole state-dependent nonlinearityσ′ = a1z2sx1+a2cz1 Ûu1−a2sz1 (z2+u3)u1
is now appearing in the third row, as desired. Notice that we have, on purpose, left
the term sx1 untransformed. In the following we show why this choice is convenient
instead of directly computing sx1 from (4.92) .

To reach the form of (2.15) it remains to extract a measurement of z1 from the
accelerometer reading. From (4.94), defining

η =

√
a2
x + (az + a2u1)

2 = ±l
(
z2

2 + a1sx1 + a2sz1 u1

)
, (4.95)

we can obtain a direct measure of z1 writing

w = atan2 (±ax/η, ±(az + a2u1)/η) = z1 + kπ, (4.96)

where k ∈ {0,1}. Notice that the transformation is possible only if η , 0. From (4.12),
the internal forces expression for the reduced system (4.87) results:

fL =
1
a2

x2
2 +

a1
a2

sx1 + sx1+x3 u1. (4.97)

Then, from equations (4.97) and (4.95) it results that

η = ±
1

mR

(
1
a2

z2
2 +

a1
a2

sx1 + sz1 u1

)
= ±

fL
mR

, (4.98)

thus the transformation (4.96) requires non zero force along the link, fL , 0, as in the
previous section. Another time, this correspondence highlights, that the condition
fL , 0 it is not just related to our particular transformation choice but is a structural
observability requirement. Indeed, if the force along the link is zero, the aerial vehicle
and the link become two independent systems9 and the onboard inertial sensor is not
enough to estimate the entire state. In the design of the observer we need to consider
this singularity especially for the cases where the desired link force passes from a
tension ( fL > 0) to a compression ( fL < 0).

The accelerometer is also used to replace sx1 into (4.93) obtaining the sought
canonical form(2.15). In particular from (4.95) we can write

9 In fact, due to the assumption that the mass and rotational inertia of the link are negligible, the
link force represents the only coupling force between the two sub-systems.
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sx1 =
(
±η/l − z2

2 − a2sz1 u1

)
/a1. (4.99)

With reference to (4.93) we can then write σ′ = σ(z, µ), i.e., in terms of only z
and known quantities µ = [u1 Ûu1 u3 ± η]

>. Notice that the time derivative of the
thrust is needed. This can be computed numerically from u1 in an approximate way.
However, if one of the previous presented dynamic feedback linearizing controllers
is used (see Sec. 4.6), Ûu1 is an internal state of the controller and so known precisely.

Observe that, the sign to be put in front of η is ambiguous. It is convenient to
recast this ambiguity putting always a positive sign and considering two possible
values: η+ = +η and η− = −η. Corresponding to these quantities we then get two
different dynamicmodels, the onewith (σ(z, µ+),w+) and the onewith (σ(z, µ−),w−)
corresponding to the use of η+ and η−, respectively. At each time instant only one
choice for η is correct, i.e., η = fL/mR, to which corresponds the correct measure
w = z1 and the correct dynamics. It is not possible, however, to discriminate the
correct choice instantaneously from the measurements only. In Sec. 4.8.4 we propose
a discriminating solution based on the prediction error.

Although less intuitive, the computation of sx1 into (4.93) exploiting the ac-
celerometer readings, allows to concentrate the ambiguity only on the sign of η
obtaining two possible dynamic models. Whereas with the more canonical tech-
nique, i.e., inverting the state transformation, we would have four different dynamic
models. Indeed from (4.92) we would get sx1 = ±

√
1 − (z3 − a2cz1 u1)2/a2

1 that
presents another ambiguity on the sign thus generating four possible combinations
of the dynamics and measurement equations.

For the design of the observer let us assume that the correct choice between η+ and
η− is known. In Sec. 4.8.4 we shall propose a method to gain this knowledge. Under
this assumption, the described transformation of the state and the measurements
have finally transformed the original system (4.90–4.91) in an equivalent one in a
canonical form, i.e., Ûz = Az + Bσ(z, µ) + λ(µ) and w = [1 0 0]z = Cz, for which
we can use the following high gain observer [36]

Û̂z = Aẑ + Bσ(ẑ, µ) + λ(µ) +H(w − Cẑ), (4.100)

where H =
[
α1
ε

α2
ε2

α3
ε3

]>
, ε ∈ R>0, and αi ∈ R>0 are set such that the roots of

p3 + α1p2 + α2p + α3 have negative real part10.

4.8.2 Observation of the original state

From the estimation of z, in order to obtain the estimation of the original state x, we
note that the state transformation (4.92) is not directly invertible. One can notice that

10 The difference (w−Cζ̂) stands here for the unique angle β ∈ (−π, π] such that β+Cζ̂ = w+k2π
for a certain k ∈ Z.
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w

η

fR, ḟR
HGO

x̂1 = ∠h(ẑ, fR, η)
x̂2 = ẑ2
x̂3 = ẑ1 − ∠h(ẑ, fR, η)
x̂4 = ω

ẑ

η

fR

x̂

Fig. 4.5: Observer. © 2020 IEEE. Reprinted, with permission, from [107].

the only knowledge of z is not enough to retrieve x1, indeed from (4.92) one can ex-
tract only cx1 . Nevertheless, exploiting also the accelerometer measurements (4.99),
we can write [

cx1

sx1

]
=


1
a1
(z3 − a2cz1 u1)

1
a1

( η
l − z2

2 − a2sz1 u1
) = h(z,u1, η). (4.101)

The state x1 can then be computed as the phase of the unit vector h(z,u1, η) denoted
by ∠ h(z,u1, η). Thus the estimation of the original state is given by

x̂ = x̂(ẑ,u1, η) =


∠ h(ẑ,u1, η)

ẑ2

ẑ1 − ∠ h(ẑ,u1, η)

u3


. (4.102)

The full observer chain is then depicted in Fig. 4.5.

4.8.3 Closed-loop system stability with state observation

To prove the stability of the closed loop system when the control action is computed
from the estimated state, a similar reasoning to the one in Sec. 4.7 can be done.
In particular, for each of the state feedback linearizing controllers, since they are
stable out of some singularities (see Tab. 4.4) there exists ε? > 0 such that, for every
0 < ε < ε?, the global closed loop system is exponentially convergent for every
state except for the zero internal link force and the for the controller singularities.
Although the convergence of the observer is almost global, an initialization phase of
the estimation can be useful in order to minimize the transient duration, e.g., using
the method proposed in [44] for a quasi static initial condition.

Furthermore notice that this observer cannot be directly employed with the static
controllers of Tab. 4.4. Indeed a measure of the derivative of the thrust is needed.
Nevertheless one can compute it numerically or applying a dynamic compensator to
such controllers. this last option is omitted in this book since it is a trivial extension.
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4.8.4 Disambiguation of η and observability discussion

As explained before, the transformation of the measurements presents an ambiguity
on the sign of η, that can be considered positive, η+, or negative, η−. We show in this
section how the correct choice can be easily made. Refer to Fig. 4.6 for a graphical
representation.

For each of the two possible choices let us implement an HGO equal to (4.100)

Û̂z+ = Aẑ+ + Bσ(ẑ+, µ+) + λ(µ+) +H(w+ − Cẑ+) (4.103)
Û̂z− = Aẑ− + Bσ(ẑ−, µ−) + λ(µ−) +H(w− − Cẑ−), (4.104)

obtaining two different estimations of the state (ẑ+, ẑ−), and therefore two different
estimations of the original state (x̂+, x̂−) of which only one is correct. In order to
select the correct state we propose a discrimination method based on the comparison
of the measurement prediction errors. At the first observer we assign a prediction
error ẽ+ smoothed with an exponential discount factor: Û̃e+ = λ (‖a − â+‖ − ẽ+),
where λ ∈ R>0 sets the discount rate, and â+ is defined as

â+ =

[
lcx̂1++x̂3+

(
x̂2

2+ + a1sx̂1+ + a2sx̂1++x̂3+u1
)

lsx̂1++x̂3+

(
x̂2

2+ + a1sx̂1+ + a2sx̂1++x̂3+u1
)
− a2u1

]
. (4.105)

The other prediction error ẽ− is defined similarly. Then we select the estimation
provided by the observer implementation which produces the prediction error closer
to zero, i.e., x̂ = x̂+ if ẽ+ ≤ ẽ− and x̂ = x̂− otherwise.

In Fig. 4.6 we represent the full observer with the discrimination chain. Notice that
the disambiguation of the two observers is not done directly using ẑ because is not
possible to write the predictedmeasure â as function of ẑwithout introducing another
ambiguity. Indeed, as we saw in Sec. 4.8.1, trying to replace x̂ with ẑ into (4.105)
inverting the state transformation (4.92), we introduce an ambiguity on the sign of
sx1 . Whereas the problem does not hold if we apply this discrimination technique on
the original state estimation (x̂+, x̂−).

Notice that for the motions that implies a constant elevation (x2 = 0), it is
not possible to discriminate the correct observer. Indeed, with x2 = 0 and since
w± = z1+ kπ, after a transient the two observers converge to (ẑ1± = z1+ kπ, ẑ2± = 0,

Measures

transform.

a

ω

fR, ḟR

Observer

+

Observer

−
η−, w− Selector

x̂+

x̂−

ẽ+

ẽ−

x̂

η+, w+

Fig. 4.6: Global observer with disambiguation of η. © 2020 IEEE. Reprinted, with
permission, from [107].

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



84 4 Theory of tethered aerial vehicles

Model Method
External
measure-
ments

Internal
mea-
sure-
ments

Transfor-
mations

Singu-
larities Degree Ambiguities

general HGO IMU, three
encoders - measures fL = 0 2 no

reduced HGO IMU ÛfR
measures,
state fL = 0 2 2

Table 4.6: List of designed observers with corresponding main features and charac-
teristics.

ẑ3± = 0), and, using (4.102), we obtain (x̂1± = x1+ kπ, x̂2± = 0, x̂3± = x3, x̂4± = x4).
Under this condition, from equation (4.105) it results that the prediction errors
of the two observers converge both to zero thus making ineffective the proposed
discrimination strategy. Nevertheless, in practice this is not a problem. Indeed, if the
controller loop is closed with the wrong observer then the wrong estimation will let
the control implement a law that is different from the sole that keeps x2 = 0 causing
x2 , 0 and thus the predictions errors will become discriminant.

Finally, notice that the ambiguity issue discussed in this section is present only in
the initial phases. Whenever the good observer is selected with sufficient certainty,
one can switch off the other. For this purpose one can set a confidence threshold
on the tracking error of the desired output. If an observer reaches the confidence
threshold then this is identified as the correct one and the other one is switched off.

4.9 Discussion on the proposed observers

In this book we proposed two observers for the state estimation of a tethered aerial
vehicle. One for the general system and one for the reduced one presented in Sec. 4.3.
The main features and characteristics of such observers are summarized in Tab. 4.6.
Some discussions about the applicability and the robustness of the proposed ob-
servers follow.

Applicability

If the link force fL is zero then some of the measurement transformation shown for
both the general and reduced model cannot be determined. In the very special case
that the link force has to be constantly equal to zero, the proposed observers are
not applicable11 (while the controller would still work). Nevertheless, the proposed

11 The static observer in [44] requires a nonzero link force as well to work.
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controller ΓaDFL can guarantee a nonzero link internal force. In the particular case
in which the desired link force is passing through zero for a sufficiently short time
interval, then the proposed observer can be still used in practice by updating the
filter without the correction term in that time instants. For example, for the reduced
model we can impose

Û̂z = Aẑ + Bσ(ẑ, µ) + λ(µ) if η = 0. (4.106)

In this way the error dynamics becomes non strictly stable for a short moment but the
dynamics returns asymptotically stable as soon as the link force returns to a non-zero
value.

Robustness

In order to deal with known drawbacks of the HGO, such as peaking phenomenon
and noise sensitivity, many common practical solutions have been presented in the
literature, see e.g., [36]. For example, to overcome the peaking phenomenon, it is
sufficient to saturate the estimated state on a bounded region that defines the operative
regions of the state for the system in exam. In the presence of measurement noise,
the use a switched-gain approach can guarantee a quick convergence to the real state
during the first phase while reducing the noise effects at steady state.
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Chapter 5
Simulation and experimental results

Abstract In this chapter we shall present the results obtained by the experimental
and numerical campaign, apt to validate the proposed control and estimationmethods
presented in Chap. 4. In particular, we recall that we designed:

• two hierarchical controllers for the outputs ya, yb;
• three dynamic feedback linearizing controllers for the output ya, yb , and yc;
• a nonlinear observer based on IMU and three encoders readings;
• a nonlinear observer based on the IMU readings only, valid for the reduced
model.

The first hierarchical controller has been mainly tested experimentally and has been
successfully employed to perform the landing and takeoff on/from a sloped surface
(see Chap. 6). The successive dynamic feedback linearizing controllers designed
for the tracking problem, and the nonlinear observers have been tested together by
a careful simulation campaign. We performed a thorough simulation analysis in
non ideal conditions as well, like with noisy measurements, parameter uncertainties
and so on. With this we assessed the robustness of the proposed methods and the
corresponding limits, beyond which the system turns out to be unstable. Due to
the limited available time, the implementation and the experimental test of those
controllers and observers are left as future work. We also remark the fact that the
dynamic feedback linearizing controller for yb has been tested by simulations only
for the reduced model. This because the dynamic feedback linearizability of the
system w.r.t. yb for the generic model, and the corresponding tracking controller
have been found only very recently. Thus, we had not the time to run exhaustive
simulations to test it. This and the corresponding experimental validation is also left
as future work.

5.1 Testbed

In the following we shall present the simulation and hardware setups used for the
validation of the proposed methods.
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(a) Quadrotor tethered by a bar-link. (b) Quadrotor tethered by a cable-link.

Fig. 5.1: Test bed used for testing the hierarchical controller for a tethered aerial
vehicle. On the left the robot is compressing the bar with a force equal to −12 [N],
being in an inclined hovering with ϑA = −80◦. On the right the robot is pulling the
cable with a force equal to 7 [N], being in an inclined hovering with ϑA = 30◦.

5.1.1 Simulation setup

All the simulations are carried out using Matlab Simulink and considering an aerial
vehicle with mass mR = 1[Kg] and inertia JR = 0.25I3[Kg m2]. We assume constant
link actuator radius and inertia equal to rW = 0.2[m] and JW = 0.15[Kg m2],
respectively. The values of the gains and of the desired trajectories are specified in
the following, since they are different for each controller.

5.1.2 Hardware setup

The unidirectional-thrust aerial vehicle used for the experiments consists of aQuadro-
tor VTOL (see Fig. 5.1), weighting about 1[Kg]. The hardware of the vehicle is the
one of a Mikrokopter1 quadrotor. It is endowed with an IMU, and four brushless
motor controllers (BLDC ESC) regulating the propeller speed using an in-house
developed closed-loop speed controller [23].

We tested our controller with two different setups:

a) In the first, the quadrotor is linked to a fixed point on the ground by a rigid
structure made by carbon-fiber bars and 3D printed parts (see Fig. 5.1a). The
system implements the reduced model described in Sec. 4.3. In fact, the bar

1 http://www.mikrokopter.de
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5.2 Hierarchical controllers: experimental validation 89

constraints the vehicle to fly on a 2D vertical plane, but, at the same time, does
not constrain the vehicle orientation along the yR axes. The structure has been
designed such that the quadrotor can freely rotate between the two lateral bars
without touching them with the propellers. Furthermore the axis of rotation has
been brought as close as possible to the vehicle center of mass. Although this
setup constraints the vehicle on a reduced space, actually it allows the aerial
vehicle to exert on the link both tension and compression.

b) In the second, the quadrotor is equipped with a light cable with fixed length,
ending with a triple hook that can be anchored to a platform (see Fig. 5.1b). The
other end of the link is attached to the vehicle as close as possible to its CoM.
Once the cable is made taut, the tethered quadrotor can fly on a sphere but can
exert only tension on the link.

In both cases the link has a length of 1[m] while a mass of 0.13[Kg] and less than
0.01[Kg] for the first and second setup, respectively, thus negligible w.r.t. the vehicle
one.

The control law, implemented in Matlab–Simulink, runs on a desktop PC sending
the commanded propeller velocities at 500 [Hz] through a serial communication.
The control loop is then closed based on the measurements of: i) the position and
attitude of the vehicle provided at 1 [kHz] by a UKF that fuses the Motion Capture
(Mo-Cap) systemmeasurements at 120 [Hz]with the IMUmeasurements at 1 [kHz];
ii) the linear and angular velocities of the vehicle provided by the same UKF filter
at 1 [KHz].

5.2 Hierarchical controllers: experimental validation

In order to validate and test the performance of the proposed hierarchical controllers
we tried to track some dynamical trajectories showing the ability to independently
track the entries of ya and yb . The validation has been done by real experiments
with the platform described in Sec. 5.1.2, where the other end of the link has been
anchored to a very heavy load (much more than the total lifting of the vehicle).
Figure 5.1 shows the corresponding test beds.

Table 5.1 gathers the executed experiments specifying the corresponding test bed,
controller and giving a short description. The reader can choose to go directly to the
section of a specific experiment or to the corresponding plots.

5.2.1 Hierarchical controller for ya

For these first tests we use the setup of Fig. 5.1a in order to show the ability of
the robot to apply forces to the link, and so to the ground, that go from tension
to compression and vice-versa, while changing its position. We shall show such
capability in two conditions:
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Test bed Controller Section # Description Figure

Bar-link
(Fig. 5.1a )

ΓaHC 5.2.1
1
Quasi static conditions, initial
tension to vertical compres-
sion

5.2

2 Dynamic trajectory with ver-
tical compression 5.3

Cable-link
(Fig. 5.1b )

ΓbHC 5.2.2

3 Time varying trajectory on ϕ 5.4

4 Time varying trajectory on
ϑA

5.5

5 Time varying trajectory on
both ϕ and ϑA

5.6

Table 5.1: Validating experiments.

1) The first is a quasi static condition. The robot is asked to follow a smooth
trajectory yad(t) = [ϕd(t) 0 0 fLd(t)]> with t ∈ [0,T] where T is the final time
and ϕd(0) = 20 [◦], ϕd(T) = 90◦, fLd(0) = 5 [N], fLd(T) = −20N . Figure 5.2
shows the corresponding results and performed motion. One can notice how
the robot is able to keep the bar vertical while pushing it. Since the desired
compression is grater then the gravitational one, the robot has to turn and push
the bar with an upside down orientation. Even in this unusual configuration for
a standard qudrotor, the controlled system remains stable.

2) The second is a more dynamic trajectory. Like before, yad(t) = [ϕd(t) 0 0
fLd(t)]> is such that ϕd(0) = 40 [◦], ϕd(T/2) = 90◦, ϕd(T/2) = 140◦, and
fLd(0) = 5 [N], fLd(T/2) = −20N , fLd(T) = 5 [N]. Figure 5.3 shows the
corresponding results and performed motion. In Fig. 5.3b one can notice that
to follow the desired trajectory the robot has to flip performing a turn of more
than 380 [◦] along yR. We remark that this is not something pre-planned but it
is a by-product of the desired internal force trajectory. Although the trajectory
is really acrobatic, the controlled vehicle is able to track the trajectory with
sufficient precision.

5.2.2 Hierarchical controller for yb

Since our control methods works only for the tethered system (nonzero internal
force), a pre-tensioning phase is needed. During this phase, the robot is controlled
with a standard position controller trying to reach a position outside of the feasible
sphere. As soon as, at time t0 the link is taut (detectable using a threshold in the
position error) the controller is activated.

In the following we shall show the results of the control action for three different
sinusoidal trajectories:
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(a) Outputs, state and inputs evolution. Only the variables along the axes of motions are shown.

(b) Sequence of snapshots of the experiment.

Fig. 5.2: Results of the the experiment 1) with the hierarchical controller for ya.

1) sinusoidal trajectory with time varying frequency on ϕ while keeping ϑA con-
stant,

2) sinusoidal trajectory with time varying frequency on ϑA while keeping ϕ con-
stant, and

3) sinusoidal trajectory with fixed frequency on both ϕ and ϑA,
while δ and ψ are kept constantly to zero. We recall that since there is not a link
actuator the length of the link cannot be controlled. The first two tests are done

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



92 5 Simulation and experimental results

50

100

150

200

-20

0

20

-400

-200

0

200

-5

0

5

0 0.5 1 1.5 2

12

14

16

18

0 0.5 1 1.5 2
-0.5

0

0.5

1

(a) Outputs, state and inputs evolution. Only the variables along the axes of motions are shown.

(b) Sequence of snapshots of the experiment.

Fig. 5.3: Results of the the experiment 2) with the hierarchical controller for ya.

firstly to see that the proposed controller can track a desired trajectory on ϕ or ϑA,
independently. Secondly we want to show which is the maximum feasible frequency
for both dynamics. Notice that with the validation of controller ΓbHC for the tracking
of yb , we indirectly validate the controller ΓaHC for the tracking of ya, as well.
Indeed, given the structure of ΓbHC, it internally uses Γ

a
HC (see (4.43)). We recall that

the desired trajectory ybd(t) is transformed into a new desired trajectory yad(t) =
ga(ybd(t),X2

C) that is tracked by ΓaHC. Checking the tracking errors of both yb and
ya, we can evaluate both controllers.
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Fig. 5.4: Experimental results: tracking of a sinusoidal input on elevation with
varying period with fixed attitude. fLn is the nominal internal force computed by the
flatness from ϑd

A
. ( f1, . . . , f4) are the forces produced by each thruster.

In the first experiment we fixed the desired ϑd
A
at 15[◦]. In this way we assure a

sufficiently high tension in order to avoid nominal negative tension values during the
experiment. The desired sinusoidal trajectory ϕd(t) starts with a frequency equal to
ωϕ =

2π
4 [rad/s] and it increases linearly until the value of about ωϕ = 4π

5 [rad/s]
after which the system becomes unstable. From Fig. 5.4 one can see that the tracking
of ϕ and ϑA, thus of ϕ and fL , degrades with the increasing of the frequency of the
sinusoidal trajectory. We remark that the internal force on the link shown in the plots
is an estimation, computed using the model and the knowledge of the state and the
input.

The second experiment is the dual, indeed we propose a sinusoidal desired trajec-
tory with varying frequency on ϑA while keeping a desired constant ϕd = 45[◦]. For
what concerns the frequency of the sinusoidal desired trajectory ϑd

A
(t), it starts from

a value of ωϑA =
2π
6 [rad/s] and increase up to a value of about ωϑA =

8π
9 [rad/s].

After that, as it is possible to see from the plots in Fig. 5.5, the tracking error becomes
very high. However, the system remains always stable.

Finally, for the third experiment, we gave as reference a sinusoidal trajectory on
both ϕ and ϑA. The two signals have different frequency and phases, in particular
ωϕ =

2π
4 [rad/s] and ωϑA =

2π
6 [rad/s], respectively. The results can be seen in

Fig. 5.6. As one can see, the trajectories are both tracked with a sufficiently small
error. This analysis finally shows that the proposed controller is able to independently

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



94 5 Simulation and experimental results

43

44

45

46

47

[d
eg

]

'd '

0

5

10

[d
eg

=s
] _'d _'

-1

0

1

2

[d
eg

]

/d /

-2

0

2

4

6

[d
eg

=s
] _/d _/

0

5

10

15

[d
eg

]

#d
A #d

A

-0.2

0

0.2

0.4

0.6

0.8

[d
eg

=s
] !x !y !z

0

5

10

[d
eg

]

? #

45

50

55

[d
eg

]

A Ad

0 2 4 6 8 10 12 14 16 18 20

2.5

3

3.5

4

[N
]

[s]

f1 f2 f3 f4

0 2 4 6 8 10 12 14 16 18 20

0

2

4

[N
]

[s]

fn
L f̂L

Fig. 5.5: Tracking of a desired sinusoidal trajectory of ϑA with varying frequency
and fixed ϕ.

track sufficiently slow time varying desired trajectories of yb with small tracking
errors. On the other hand, as expected, the controller shows increasing tracking errors
when asked to follow more dynamic trajectories, revealing its limitations. Anyway,
a time varying reference governor (see [37] and references therein) could be applied
to improve tracking performance. We did not report the results of the tracking of δ
because they are analogous to the ones related to ϕ. We also encourage the reader to
watch the first part of [99] where some static inclined hovering for a tethered aerial
vehicle are shown.

5.3 DFL-controller for ya with observer

In this section we consider the generic system described in Sec. 4.3 with a cable-like
link (only positive internal forces are allowed.). Like in a real patrolling task, the
platform follows a certain trajectory in the 3D space mimicking, e.g., a ground robot
following a road. We require the aerial vehicle at time t0 to takeoff from the moving
platform, at time tcirc to circle above the platform at a certain altitude, and at time
tland to land on the moving platform. The yaw angle of the aerial vehicle has to
follow the one of the platform. Notice that takeoff and landing are performed while
the platform is moving, making these standard maneuvers non trivial.
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Fig. 5.6: Experimental results: tracking of a desired sinusoidal trajectory on both ϕ
and ϑA with fixed period.

We firstly test the controller ΓaDFL for the tracking of ya, together with the observer
designed for the generic system (see Tab. 4.6). We set ki and kj such that the
error dynamics ξi and ξ j have poles in (−1,−2,−3,−4) and (−1,−2) respectively.
For the observer we choose ε = 0.1 and (α1, α2) such that s2 + α1s + α2 has
roots (−3,−4). Those values guarantee the stability and ensure a sufficiently fast
exponential tracking. During the takeoff the desired tension must go from a small
initial tension of 0.5[N] to a steady-state value of 3[N], that is kept for the whole of
the circling phase, and then has to go back to the initial value during the landing.

To fully validate our method for real applications we test the convergence and the
robustness for different non ideal cases commented in the following. Fig. 5.7 gathers
the main results.

a) With an initial position and estimation errors, after the convergence of the
observer (less than one second) the outputs follow the desired trajectories with
high fidelity. An animation of this simulation is available at [100].

b) With a parametric variation of 5% we notice a small constant error in the
estimation of the state, but we obtain a monotonically decreasing tracking error
thanks to the addition of an integral term in the outer loop (4.56), e.g., v1 =

y
d(4)
1 + k>1 ξ1 + kI1

∫ >
0 ξ1(τ)dτ.

c) For a moving platform a standard sensory set (e.g., optical flow, IMU and
magnetometer) usually is sufficient to measure its trajectory variables up to ÜpC

C
and ωC . In this case, in which we have a partial knowledge of the platform
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Fig. 5.7: Simulation results: plausible task trajectory. The performance for each
non-ideal case are compared. © 2020 IEEE. Reprinted, with permission, from [103]..

motion, we can consider as zero the higher derivatives. We observe that the
estimation and tracking errors are very small and remain always bounded under
a reasonable threshold.

d) In the presence of Gaussian noise in the measurements with typical variance
values, we notice that the state estimate becomes slightly noisy but the error
remains bounded within small values. The non zero estimation error implies a
non zero but bounded tracking error as well.

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



5.3 DFL-controller for ya with observer 97

e) Since in practice one cannot assume the link attached exactly to OR, we tested
the method for a vertical offset of 5[cm] with respect to FR. In this case the
tracking error does not go to zero but remains bounded below a small threshold.

f) We also compared the dynamic feedback linearizing controller with the hierar-
chical one.We noticed that to obtain good tracking performance, the hierarchical
controller requires very high gains that cause instability in the presence of the
same noisy measurements of case d). Therefore we lowered the gains until we
obtained a stable behavior. However these gains are not enough to obtain good
tracking performance anymore. Moreover notice that the cable becomes even
slack ( fL f < 0). Further discussions about the hierarchical control will follow
in the next section.

In the following section we provide additional plots and discussions for the
previous non ideal cases. We also consider other additional non idealities such as
non diagonal inertia matrix, saturation of the inputs and non ideal motors.

For each case we show the control performances plotting the tracking of each
output of interest, the global tracking error ξtrack computed as the sum of each
errors, and the inputs. Concerning fR and τW we also show the nominal input coming
from the flatness, fRn and τnW , that should be applied to obtain the desired output
tracking in the nominal case. We also show the observer performances comparing
the estimated state and the actual one. The estimation error eestimation is simply
calculated as the sum of the estimation error for each entry of the state. Finally we
display the trajectories of the aerial vehicle and of the moving platform in the world
frame and with respect to FC . In the 3D plots the position of the moving platform
and of the aerial vehicle in some particular instants are represented with a triangle
and a square respectively.

5.3.1 Initial errors

In this section we want to show the closed loop stability of the system in dynamic
condition even with some initialization error. The system starts with an error on l of
0.1[m], on ϕ and δ of 2[◦] and on fL of 0.5[N]. Similarly the initialization of the
observer is done with an error of 0.2[m] on l̂, of 5[◦] on ϕ̂ and δ̂, while their velocity
are initialized to zero.

In Fig. 5.8 one can see that after the convergence of the observer, that takes less
than one second, the controller exponentially steers the outputs along the desired
trajectories, while the moving platform is following its own dynamic trajectory.

5.3.2 Parametric variations

The purpose of the next sections is to investigate the robustness of the proposed
method. In particular in this one, we consider some parameter variation between the
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Fig. 5.8: Simulation: initial errors.

real model and controller/observer. Indeed in a real scenario we can not know exactly
each parameter of the system, thus the controller and observer would be based on
some parameter value different from the real one.

Fig. 5.9 displays the results of the simulation with a parametric variation of the
5% for each entry, i.e., mR, JR, JW and rW . In order to partially compensate the
effects of the uncertainties we added in the controller an integral term with gain
kI = 3.

We can notice that due to the uncertainty of the model we have some nonzero
errors in the tracking and in the estimation of the state. Nevertheless the error system
remains stable and thanks to the integrator terms, during the landing maneuver we
obtained a decreasing tracking error that allows a correct landing of the aerial vehicle.
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Fig. 5.9: Simulation: parametric variations.

We performed additional extensive simulations in which we observed that the
system remains stable up to a parametric variation of the 20%, after this value the
system results unstable. However notice that in reality those parameters are very well
measurable with small errors, certainly lower than the 20%.

5.3.3 Limited knowledge of pW
C
(t)

In Sec. 4.6.1 we saw that the knowledge of X4
C is needed in order to compute

the control action. In other words, to obtain a perfect tracking one has to know the
derivative of pC

C
(t) up to the fourth order and ofωC(t) up to the third order. Although

those variables have to be known to obtain zero tracking error, actually, without a
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Fig. 5.10: Simulation: limited measurements of the moving platform trajectory.

posteriori knowledge of the trajectory or the model and control inputs of the system,
it is difficult to measure the higher-order derivatives. Nevertheless, in this section
we want to show that even with only a partial measurement of X4

C the system stays
stable and the tracking error remains bounded.

Indeed, for a real moving platform, a standard onboard sensorial configuration,
such as optical flow, IMU and magnetometer, is sufficient to obtain ωC(t) and pC

C
(t)

up to its second derivative.
In Fig. 5.10b we can observe that the estimation error is almost constantly zero

even if ÛωC is assumed zero. While in Fig. 5.10a one can notice that the outputs
oscillates around the desired value and the tracking error does not go to zero but
remains bounded under a reasonable threshold. Nevertheless, with a more “aggres-
sive” platform trajectory the negative effects would be more significants. In Fig. 5.11
the entries of xi

C
for i = 1,2,3,4 are plotted. The last five entries are assumed zero

by the observer and the controller.
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Fig. 5.11: Plot of xi
C
, for i = 1,2,3,4. In Simulation c) all the variables in the last

five plots are considered zero by the controller and the observer.

5.3.4 Noise on the measurements

# Type Measurement Noise variance

w2 abs. encoder ϑW ≈ l 0.008[rad]
w3 abs. encoder ϕ 0.008[rad]
w4 abs. encoder δ 0.008[rad]
w5 accelerometer RR (ÜpW

R + ge3) -
w6 gyroscope ωR 0.01[rad/s]
w7 magnetometer RRhW -

WR complementary filter RR 0.001

Table 5.2: List of sensors.
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In this section we investigate the robustness of the proposed method with the
presence of noise in the measurements. Tab. 5.2 gathers the variance magnitude set
for each measurement. For the encoder and the gyroscope we set some reasonable
value found in the literature [84]. On the other hand, instead of adding noise on
w5 and w7 we preferred inserting the noise directly in the measure of the rotational
matrix RR, i.e., in WR. This is done because the direct measure of RR using the
accelerometer and the magnetometer is normally filtered with the gyroscope [46], in
order to obtain a less noisy estimation of both RR and ωR. The noise added directly
to RR is comparable to the one we would obtain after the filtering.

From Fig. 5.12 we can observe that the estimated state shows some noise but the
corresponding error remains limited. Due to the noisy component on the estimated
state the outputs presents some oscillation as well, especially on the stress that seams
to be the more sensitive output to the noise. Nevertheless the tracking error remains
small and always bounded.
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Fig. 5.12: Simulation: noisy measurements.
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5.3.5 Tethered offset

Exact attachment of the link to the center of mass of the aerial vehicle is practically
unfeasible. Therefore there will always be a non zero offset, although small, between
the tether attachment and the center of gravity. This offset makes the translational
and rotational dynamics of the aerial robot coupled and can potentially lead to the
instability of the controlled system. In this section we want to show the robustness of
the proposed method when the distance between the attaching point and the center
of gravity of the aerial vehicle is non zero. In particular in this simulation the link is
attached 5 [cm] vertically below OR with respect to FR. As expected, the tracking
error does not go to zero but however remains bounded, showing good tracking
performances. Notice that the error is higher during the circling phase since this
part of the global trajectory is very dynamical and the unmodeled effects due to the
offset are larger. However we remark that a good mechanical design could make the
tracking error almost negligible.

We tested the method with even larger offsets and we saw that the system remains
stable up to a vertical offset of 30[cm], that is an exaggerated value for the system
considered in the simulation (small-size quadrotor like vehicle). In fact, note that a
larger quadrotor means a larger inertia which actually reduces the negative effects
of the offset. In additional simulations, which are not reported here for the sake
of brevity, we also tested the robustness of the method with a more general offset
(not only vertical) noticing that, within some reasonable bounds, the system remains
stable and with acceptable tracking performances.

5.3.6 Nondiagonal inertia matrix

In the derivation of the model and of the controller as well, we assumed a diagonal
inertia matrix. In this section we check the robustness of the method if the aerial
vehicle has a non diagonal inertia matrix. In particular, in Fig. 5.14, we show the
results for a test in which the real inertia matrix is

JR =


0.25 0.05 0.05
0.05 0.25 0.05
0.05 0.05 0.25

 ,
while the controller still assumes a diagonal inertial matrix.

One can observe that the tracking error is not exactly zero but is kept limited
within a small bound. For the observer this does not constitute a non ideality, in fact
the estimation error is constantly zero.

With further simulations we observed that the system remains stable up to a value
of 0.15 in the off diagonal terms (60% of the values on the main diagonal). With
larger values the system becomes unstable.
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(c) Trajectories visualization.

Fig. 5.13: Simulation: non zero offset between tether attachment and center of gravity
of the aerial vehicle.

5.3.7 Input saturation

For how we planned the desired trajectory, the nominal input needed to track the
desired outputs is always within the limits of the considered system. Indeed, exploit-
ing the flatness, we are able to a priori check if the inputs exceed the minimum and
maximum values. Nevertheless, in this section we want to show that the system is
still stable if the inputs are hardly saturated for some instants. Thus we set some
very restrictive limits on the input, i.e., fR ≤ f̄R and τ ≤ τi ≤ τ̄, where i = x, y, z,
f̄R = 13[N], τ = −1[Nm] and τ̄ = 1[Nm]. In order to let the saturation show up
during execution we did not re-plan the desired trajectory.

In Fig. 5.15a it can be seen that the inputs are saturated for some time instants
during the execution of the task. When the inputs are saturated the tracking error in-
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(c) Trajectories visualization.

Fig. 5.14: Simulation: non-diagonal inertia matrix JR.

creases, but, as soon as the inputs come backwithin the limits, the error exponentially
decreases to zero.

We stress again the fact that the saturation of the inputs can be avoided exploiting
the flatness. Using the flatness one can check if the desired trajectory requires inputs
that are too large. In the worst case one can re-plan the trajectory such that the input
limits are respected.

5.3.8 Motor time constant

With this simulationwewant to further enlarge the set of non idealmodels considered
for the testing of the proposed control method. Considering an aerial vehicle actuated
by rotating propellers, in this simulation we add the dynamical model of the motors
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Fig. 5.15: Simulation: saturation of the input.

describedwith a first order system characterized by a time constant of τM = 0.1[s]. In
practice the propeller dynamics inserts a frequency dependent phase shift between the
commanded control input and the actuated one, whose amplitude depends on the time
constant. In other words, the models acts as a low pass filter on the commanded input,
cutting its high frequency components. Those effects could dramatically decrease the
performances or even make the system unstable. However, from Fig. 5.16, one can
notice that our method is robust to the unmodeled effects of the propellers dynamics.
Indeed, in some instant, where the trajectory is more dynamical and requires fast
varying inputs, the tracking error increases but it is always bounded and at steady
state converges to zero.

We remark that, if needed, one can increase the smoothness of the control inputs
considering an higher order in the dynamic feedback control. Indeed adding more
integrators on the control channels one can increase the degree of smoothness of the
control input thus guarantying that it is always below the cutting frequency proper of
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(c) Trajectories visualization.

Fig. 5.16: Simulation: system with motors dynamics.

the system, and in particular of the propellers. Another possible strategy is to exploit
the flatness to plan a trajectory that fulfills the system limitations.

5.3.9 Hierarchical control vs. DFL control for ya

As we noted in Sec. 5.2, the hierarchical controller guarantees sufficiently good
tracking performance in quasi static conditions. However the performance gets worse
when the desired velocities and accelerations increase. In this section we shall
compare the hierarchical controller tracking performance with respect to the one
provided by the dynamic feedback linearizing controller. In particular, we simulate
the system with ΓaHC together with the observer ΓaHC, tracking the same desired
trajectory yad(t) used in Sec. 5.3, with an initial tracking error and under noisy
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estimated state. We shall then compare the results with the ones obtained with ΓaDFL
tracking the same trajectory, and in particular under the non ideal cases a) and c) of
Sec. 5.3 (see Fig. 5.7).
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Fig. 5.17: Simulation results: hierarchical control in ideal conditions with initial
tracking error.

In Fig. 5.17 the results of the hierarchical controller in ideal conditions are
reported. The initial tracking and estimation errors are the ones of case a) in Sec. 5.3.
After a tuning phase we were able to get a good performance and a small bounded
tracking error, even if the error does not converge exactly to zero. On the other hand,
in the same conditions the controller based on dynamic feedback linearization is
able to steer the output along the desired trajectory with zero error (see Fig. 5.7
or Sec. 5.3.1 for more details). However, to obtain good tracking performance with
the hierarchical controller we had to set very high gains that make the system more
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reactive and thus able to follow the desired trajectory. Nevertheless this requirement
has two main drawbacks.

The first drawback is that, due to the large control gains, the control effort increases
thus possibly requiring an input that is out of the physical limits of the actuators.
Indeed with this configuration we reach a maximum thrust and a maximum torque
of about 15[N] and 2.5[Nm] respectively. This values are higher than the nominal
inputs required to track the desired trajectory.

The second extremely serious issue arises in the presence of noise in the mea-
surements and so in the estimated state. Indeed, the higher the gains, the larger the
noise in the commands and the closer the controlled system is to instability. In fact,
simulating the system with the same measurement noise described in Sec. 5.3 (see
Sec. 5.3.4 for more details) the closed loop system becomes unstable. In order to get
a stable behavior we had to significantly lower the gains, an action that, however,
clearly degrades the tracking performance. As we can see in Fig. 5.18 the perfor-
mance with noise is much worse than the one obtained using the dynamic feedback
linearizing controller in the same noisy condition.

Therefore, the hierarchical approach presents a strictly penalizing trade-off be-
tween applicability with noise and tracking performance. One cannot obtain both.
Attainment of both objectives is instead possible with the DFL controller ΓaDFL.
Nevertheless, we experimentally proven that, in standard conditions, with not too
dynamic desired trajectories, the hierarchical controller can still guarantees good
tracking performance with a minimum implementation effort. This controller al-
lowed us to perform the landing and takeoff maneuvers on surfaced inclined up to
60◦, in a very robust and reliable way. On the other hand, although the dynamic
feedback linearization control provide much better performance, even in non ideal
conditions, it comes with an higher computational cost, that makes it also more
difficult to be implemented on a real robot.

5.3.10 DFL-controller for yc in case of passive link actuator

Recalling the discussion in Sec. 4.4.3, in order to obtain a steady state internal force
fL? = 5 [N], we set the torque winch τW = −1 [N]. To obtain a sufficiently fast
exponentially tracking, we set the controller gains ki and k4 such that the error
dynamics ξi and ξ4 have poles in (−0.5,−1,−1.5,−2) and (−0.5,−1), respectively,
for i = 1,2,3. Since the observer has been already tested in the previous section, here
the control loop is closed with a direct measure of the state.

As before, we design the platform motion and the aerial vehicle desired trajectory
in order to simulate a patrol-like task of a delimited area. The platform simply follows
a certain trajectory shown in Fig. 5.19. The aerial vehicle, after the takeoffmaneuver,
at time tcirc has to loiter above the platform. Then, starting from time tland , the aerial
vehicle has to land on the platform.

To validate the control method and to test its robustness we performed several
simulations in different non ideal conditions:
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Fig. 5.18: Simulation results: hierarchical control in the noisy case. To preserve
stability lower gains have to be used with noise, therefore the performance is signif-
icantly degraded. The hierarchical controller presents a strictly penalizing trade off
between tracking performance and robustness to noise.

a) We initialized the systemwith an initial tracking error of 10 [◦] for the elevation,
of 5 [◦] for the azimuth and of 0.5 [m] for the link length. Looking at Fig. 5.19a
we can notice that after a transient, the controller steers the output of interest
along the desired trajectory. Notice that the internal force along the link remains
always positive and close to the desired steady state value fL?. Furthermore it
is exactly equal to fL? whenever Ül is zero.

b) We tested the robustness of the control method with a variation of the 5% on
all the model’s parameters (see Fig. 5.19b). Due to the mismatch between real
and nominal model, the feedback linearization is not exact and the error does
not go to zero. However it remains always bounded showing nicely degrading
and sufficiently good tracking performance. Moreover, in order to eliminate the
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(a) Initial tracking error.
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(b) Parameters uncertainties.
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(c) Additional noise on the state.
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Fig. 5.19: Simulation results: plausible task trajectory for the case of a passive link
actuator. The performance for each non-ideal case are shown.
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constant error at steady state we have seen that a simple integral term in the
linear control loop is sufficient. With further simulations we noticed that the
system remains stable showing acceptable tracking errors up to a parametric
variation of 50%, proving the robustness of the proposed method. Above the
system becomes unstable.

c) Although the control loop is not closedwith the observer,we tested the robustness
of the proposed method injecting Gaussian noise on the measured state used to
close the control loop. The power of the noise has the same value of the one
noticed in Sec. 5.3 out of the observer based on noisy sensors. From Fig. 5.19c
one can see that the error does not converge to zero but remains always bounded
showing good and practically viable tracking performance.

d) In this simulation we considered the thrust and the torque of the aerial vehicle
generated by non ideal motors modeled as a first order system characterized by
a time constant of 0.2 [s]. The results displayed in Fig. 5.19d show a very small
tracking error, validating the robustness of the control method to this additional
non ideality.

5.4 Observer based DFL-controllers for reduced model

In this section we validate the observer based on IMU only, together with the 2D
version of controllers ΓaDFL and Γ

b
DFL (see [107] for the corresponding details). In the

first subsection we show the capability of ΓaDFL of independently controlling ϕ and
fL , even when the desired internal force trajectory goes from tension to compression,
and vice versa. In the second subsection we instead provide a thorough analysis of
the robustness of the 2D version of ΓaDFL and ΓbDFL together with the observe against
non ideal conditions.

5.4.1 Controlling fL for both tension and compression

Figures 5.20a, 5.20b, 5.21a, 5.21b show the behavior of the system following smooth
trajectories from an initial to a final output configuration. The plots of the tracking
errors show that the proposed controller is able, after a short transient, to perfectly
follow the time varying smooth trajectories of class C3 and C1 for the elevation
and link internal force, respectively. An animation of the presented simulations is
available at [101]. Notice that in Fig. 5.21b, the pick of torque at around time 2.6[s],
arises due to the crossing of the control singularity, i.e., zero thrust. However, since
that singularity is crossed only for one instant, the system remains stable.

We also tested controller ΓaDFL to track a desired trajectory of fL that goes from an
initial tension to a final compression, while following a desired elevation motion as
well. In Fig. 5.21a it is interesting to notice that to pass from tension to compression
the vehicle turns upside-down keeping the thrust always positive. On the other side,
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Fig. 5.20: Simulation results: controlling ϕ and the tension (on the left) or the
compression (on the right).
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in the simulation of Fig. 5.21b the transition from tension to compression is obtained
with the thrust that passes through zero and inverts its sign in order to obtain the
same final compressing force of the simulation of Fig. 5.21a. This happens because
in the second case the desired trajectory requires zero thrust at a certain moment.
Then, since it is not possible to instantaneously turn the vehicle, the controller inverts
the sign of the thrust in order to provide compression. In the case of vehicles able
to provide also negative thrust this is not a problem. While, in the case of robots
providing only positive thrust a planning phase is needed in order to generate feasible
trajectories.

5.4.2 Robustness investigation against non ideal conditions

In this section we present a comprehensive analysis of the robustness of the designed
dynamic feedback linearizing controllers together with the observer based on IMU
only, against non-ideal conditions. This shows both their strengths and possible limits
when applied on a real system. In order to test the observer based only on the IMU
measurements, the following analysis is carried out for the reduced model presented
in Sec. 4.3, consisting of an aerial vehicle constrained on a 2D vertical plane tethered
to a fixed point on the ground by a link with a constant length l = 2[m].

For this system we tested the reduced version of ΓaDFL and ΓbDFL together with
the observer based only on the IMU measurement. We recall that the details of such
reduced version of the presented DFL controllers can be found in [107].

Concerning the controller ΓaDFL we set the gains of the linear outer control loop,
ka

1 and ka
2 , such that the error dynamics of ϕ and fL has poles in (−1,−1.5,−2,−2.5)

and (−1,−1.5) respectively. While for the controller ΓbDFL we set the gains kb
1 and kb

2 ,
such that the error dynamics of ϕ and ϑA has poles in (−0.5,−1,−1.5) and (−0.5,−1)
respectively. For the gains of the observer we set ε = 0.1 and (α1, α2, α3) such that the
root of s3 + α1s2 + α2s + α3 are (−6,−4.5,−3). Those values guarantee the stability
of the closed loop system and a sufficiently rapid convergence of the observer and
controller.

For the controller ΓaDFL, the desired trajectory is a smooth step, continuous up
to the fourth order for ϕ and up to the second order for fL , from the initial values
ϕd0 = 45◦, fLd

0 = 3[N], to the final values ϕd
f
= 135◦, fLd

f = 5[N], respectively.
Smooth step-like trajectories (see Fig. 5.22), as it will be clear later, have the benefit of
clearly showing the performance of the controllers under three important conditions:
the initial transient, the tracking of a fast time-varying signal, and the steady state.
For the controller ΓbDFL, the desired trajectory is a smooth step, continuous up to the
third order for ϕ and up to the second order for θ, from the initial values ϕd0 = 10◦,
ϑA

d
0 = 30◦ to the final values ϑA

d
f = 50◦, ϑA

d
f = 5◦, respectively. Notice that,

since the system is constrained to the 2D vertical plane with yR = yW , we have that
ϑA = ϑ, where we recall that ϑ is the pitch of the vehicle.

To obtain a complete validation, in the following we show a concise summary of
the results about the stability and robustness of the proposed method under different
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Fig. 5.21: Simulation results: controlling ϕ and fL going from tension to compres-
sion. In figure (b)
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(a) Results of ΓaDFL and of the observer, on the left and on the right, respectively.
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(b) Results of ΓbDFL and of the observer, on the left and on the right, respectively.

Fig. 5.22: Simulation results: nonzero initial tracking error.

non-ideal conditions, such as: a) nonzero initial tracking and estimation errors,
b) parametric variations, c) generic CoM position and non-negligible link mass,
d) noisy sensor measurements, and e) non-ideal motors.

Validation for nonzero initial tracking/estimation errors

In order to show the asymptotic convergence performance of both the controller
and the observer we initialize the control system with nonzero initial tracking and
estimation errors. One can see in Fig. 5.22 that, after the convergence of the observer,
which takes less than one second, the controller ΓaDFL is able to steer the outputs
along the desired trajectories with zero error. A similar behavior is obtained for the
controller ΓbDFL. We then performed many other similar simulations with different
initial errors and we observed always the same asymptotically convergent behavior,
as expected from the almost-global nature of the proposed observer and control laws.
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Fig. 5.23: Simulation results: parametric variation - Controller ΓaDFL (elevation and
link force). The subscript 1, 2, and 3 correspond to the three different trajectory
times. Outside of the displayed range of parametric variation the performance is
unacceptable or the closed loop system results to be even unstable. © 2020 IEEE.
Reprinted, with permission, from [107].

Parametric variations

We notice that in principle one could try to design an adaptive control law that is
able to compensate for parametric uncertainties. However, this is clearly a tough
objective, because the system is nonlinear and the available measurements are only
the (nonlinear) accelerometer and the gyroscope readings. Therefore this goal is
left as future work. Instead, we concentrate in this section on assessing the ranges
of parameter variations that causes a degradation of the performance that remains
within an acceptable bound. By doing so, we shall see in fact that the proposed
control scheme possesses a remarkable robustness even without the presence of an
adaptive design.

Considering l0, mR0 and JR0 the real parameters value and l, mR and JR the
nominal ones, we set l = (1 + ∆l)l0, mR = (1 + ∆mR)mR0 and JR = (1 + ∆JR)JR0,
where ∆mR, ∆l and ∆JR denote the corresponding parametric variations.

For obtaining a comprehensive analysis we tested the behavior for several different
parametric variation combinations. The results are plotted in Figs. 5.23 and 5.24,
where we show the mean tracking error, ētrack , and the corresponding standard
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Fig. 5.24: Simulation results: parametric variation - Controller ΓbDFL(elevation and
attitude). © 2020 IEEE. Reprinted, with permission, from [107].

deviation σētr ack
, defined as

etrack(t) =

yd1 (t) − y1(t)


yd1 (t)
+

yd2 (t) − y2(t)


yd2 (t)

ētrack =
1

t f − t0

∫ t f

t0

etrack(t)dt

σētr ack
=

√
1

t f − t0

∫ t f

t0

(etrack(t) − ētrack)2dt,

where t0 and t f are the initial and final time, respectively. Notice that for the reduced
model y1 = ϕ and y2 = fL or y2 = ϑA for ΓaDFL and Γ

b
DFL respectively. In the plots the

solid line corresponds at the mean tracking error while the dashed lines correspond
at the mean tracking error plus and minus its standard deviation.

The effect of an unknown parameter could also change with respect to the tra-
jectory and in particular with respect to the velocity and acceleration at which the
path is followed. Consequently we plotted the mean tracking error, ētrack1, ētrack2
and ētrack3, for the same type of desired path (smooth step) but executed with three
different durations (increasing velocity): 1) 7[s], 2) 5[s] and 3) 3[s] respectively. We
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also analyze the error behavior dividing the trajectory into three phases: in the Phase
1 (transient) the desired trajectory is constant and the analysis is more focused on
the convergence of the observer; Phase 2 constitutes the dynamic part where the
desired trajectory quickly goes from the initial value to the final one; the Phase 3, the
last, corresponds to the steady state condition where the desired trajectory is again
constant. We show the tracking error for each of the three phases to better understand
if a parameter variation affects more the transient, the dynamic phase, or the static
one.

From Fig. 5.23 and Fig. 5.24 one can notice that, as expected, the performance
gets worse increasing the parametric variation. Furthermore, the same variation has
more effect if the trajectory is more “aggressive” and it is followed with higher speed
(ētrack3). This is due to the fact that with higher speed and acceleration the inertial
and Coriolis/centripetal terms become larger, and thus also the error in the feedback
linearization increases, which in turn implies a worst tracking.

Comparing the performance between the two controllers, we notice that controller
ΓbDFL results to be more robust than controller ΓaDFL in term of mean tracking error.
This is due to the fact that for the controller ΓbDFL, the dynamics of one of the
controlled outputs, namely ϑA, is not influenced by the parameters such as mass
and length of the link. This means that any variation on these parameters does not
generates a worse tracking of ϑd

A
, which results in a lower tracking error.

One can also notice that the mean tracking error is not in general symmetric with
respect to the sign of the corresponding parametric variation. For example for the
controller ΓbDFL it is better to overestimate the mass, and the length of the link rather
than underestimating them, while for controller ΓaDFL it results to be the opposite,
even if these consideration are more relevant for the dynamic phase. Indeed, during
the steady state phase the behavior is almost symmetrical.

Another fact that appears clear from the plots is that the variation that most
influences the performance is the one on the mass of the aerial vehicle. Fortunately,
in practice this parameter can be easily measured with high precision.

Generic CoM position and non-negligible link mass

The controllers developed in this paper assume that the system can be represented
with the model given in Sec. 4.3, where the CoM of the aerial vehicle coincides with
the attachment point of the link to the vehicle and the link has a negligible mass.
Fig. 5.25 represents instead a more general model, for which the assumptions done
in Sec. 4.3 are not fulfilled. Taking into account the definitions made in Sec. 4.3
we then define a body frame, Fl , attached to the link, with axes {xl,yl,zl} and
origin Ol coinciding with the center of mass (CoM) of the link. The position of
Ol , defined in FW , is denoted with pl = [xl yl zl]>. As for FR we have that
yl ≡ yB ≡ yW and yl ≡ 0. For the validation we model the link as a rigid body
of mass mL ∈ R>0 and inertia JL ∈ R>0. Considering the inertia of the link as the
inertia of an infinitesimally thin rigid tie with uniform distributed mass, we have
also that JL = mL l2/12. Assuming links with high stiffness, the deformations and
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Fig. 5.25: Representation of the more general system and its variables, still con-
strained in the 2D vertical plane. © 2020 IEEE. Reprinted, with permission, from [107].

the elongations results negligible with respect to the length of the cable itself, in
the range of forces of our concern. Therefore the link length is fixed. The link is
connected at one end to a fixed point coinciding with OW and at the other end to a
point rigidly attached to the aerial vehicle whose constant position in FR is denoted
with rRl = [rx 0 rz]>. If ‖rRl ‖ = 0 then the link is directly attached to the CoM of
the aerial vehicle.

The mechanical model of the more general robotic system can be then derived
writing the dynamics as the one in (4.18) plus a disturbance due to the non idealities:

M′(q′)Üq′ + g′(q′) + δ(q′, Ûq′, Üq′,u′) = Q′(q′)u′,

where

δ(q′, Ûq′, Üq′,u′) = M̄(q′) Üq′ + c̄(q′, Ûq′) + ḡ(q′) − Q̄(q′)u′,

M̄ =

[
J̄ϕ Jϕθ
Jθϕ J̄θ

]
, c̄ =

[
c̄ Ûθ2

c̄ Ûϕ2

]
,

ḡ =

[
mL

2 lgd⊥ · e3

−mRlgR̄W
B rRl · e3

]
, Q̄ =

[
0 0

−rRl · e3 0

]
,

where R̄W
B = ∂RW

B /∂θ, J̄ϕ = mL l2/3, J̄θ = mR ‖rRl ‖2, Jϕθ = Jθϕ = −mRlR̄W
B rRl ·

d⊥, c̄ = mRlR̄W
B rRl · d.

For a plausible case in which the link consists of a cable of mass mL = 0.01mR

and inertia (during taut condition) JL = mL l2/12, and it is attached to the robot
in the position rBL = [0.03 0 0.03]>[m] with respect to FR, we noticed that the
controlled system is stable but the error does not converge exactly to zero. Indeed,
due to the nonzero ‖rRl ‖, the force along the link generates an extra torque on the
aerial vehicle that is not compensated and so a constant steady state error appears.

In order to understand how each parameter of the more general model affects the
tracking performance, as before, we show in Fig. 5.26 the mean tracking error and its
standard deviation for different parameter values and in the three phases described
before. In particular the mass of the link is taken as mL = ∆mLmR.
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Fig. 5.26: Simulation results: controller ΓaDFL. Mean tracking error when changing
the parameters of the general model. © 2020 IEEE. Reprinted, with permission, from [107].

We noticed that the negative effects due to a nonzero offset rBL reduce or increase
if the rotational inertia is increased or reduced, respectively. Indeed, looking at the
rotational dynamics in the case of non zero offset:

Üϑ = τR/JR − fLd · rBL/JR, (5.1)

one can notice that the effect of the link force on the angular acceleration decreases
if the inertia increases. Intuitively, a bigger inertia would mean a bigger mass or a
bigger dimension of the vehicle. In the second case, the bigger the vehicle the more
the effect of the offset becomes negligible. For this reason in Fig. 5.26 we plot the
mean tracking error with respect to rBL?/JR, thus normalizing this effect.

We did the same test for the controller ΓbDFL, which resulted to be much more
sensitive to link mass and to the offset than the controller ΓaDFL. This is due to
the fact that one of the output, namely the attitude of the aerial vehicle ϑA, is
directly influenced by the offset as it is shown in (5.1) (we recall the in the 2D case
ϑA = ϑ). Furthermore, even with a small offset the tracking error is such that the
actual trajectory passes through the singularity of the controller ΓbDFL (see Sec. 4.6.2)
causing an unstable behavior.

On the other hand, the controller ΓaDFL turned to be much more robust to these
sort of structural model variations. From Fig. 5.26 we can see that the parameters
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that mostly affect an increase of the error are the entries of rBL , i.e., rBLx and rBLz .
One can notice that it is more advisable to attach the link such that one is sure that
rBLz ≤ 0, especially if agile motions are required. The effect of the displacement
along xR is instead almost symmetric. The small asymmetry is due to the particular
trajectory passing from the first to the second quadrant. The mean tracking error
increases instead almost linearly with respect to the mass of the link. Nevertheless,
even with mL equal to the 20% of mR the closed loop system remains still perfectly
stable.

Noisy measurements

In this section we investigate the robustness of the proposed method in presence of
noisy measurements, which always exist in reality.We consider both the accelerome-
ter and the gyroscope measures being affected by a white Gaussian noise of variance
0.1[m/s2] and 0.01[rad/s] respectively.

From Fig. 5.27 we can observe that the estimated state shows some noise but the
corresponding error remains always bounded. Due to the noisy component on the
estimated state the control action presents some oscillations that imply a non exact
tracking of the desired trajectory. Nevertheless the tracking error remains small and
always bounded. Notice that to achieve these results we had to reduce the gains of
both the controller and observer. Indeed, high gain values increase the convergence
speed but also amplify the sensitivity to noisy measurements. In general the two
controllers does not show particularly different behaviors in face of the presence of
noise.

Non-ideal motors

In a real scenario, one motor cannot instantaneously change the spinning velocity of
the propeller, and in turn the thrust produced. Indeed, this discontinuous variation
of the speed would require the application of an infinite torque by the motor, that is
clearly not possible. Instead the dynamics of the motor is characterized by a certain
time constant, τM ∈ R, that quantifies the time needed to change the motor speed. In
this section we analyze this additional non ideality testing the proposed method with
different non ideal motors characterized by an increasing time constant. In Fig. 5.28
we show the relative mean and variance of the tracking error for the different time
constant values τM . The plots clearly shows that increasing the time constant the
tracking error increases as well, especially during the dynamic part of the desired
trajectory (Phase 2). Indeed, for motors with higher time constant, the error between
commanded and actuated thrust on each propeller increases causing a bigger tracking
error. However, the system remains stable up to a time constant of 0.08[s], which is
completely acceptable in real systems.

This analysis is important for the scalability of the system. Indeed, bigger vehicles
with higher mass imply the need of an higher lift that can be in general generated by
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(a) Results of ΓaDFL and of the observer, on the left and on the right, respectively.
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Fig. 5.27: Simulation results: noisy measurements. © 2020 IEEE. Reprinted, with permis-
sion, from [107].

bigger propellers. This in turn requires the use of bigger motors that are characterized
by a larger time constant. Finally, as shown in Fig 5.28, the larger mass of the system,
and so the larger time constant of the motors, reduces the tracking performance of the
system for dynamic trajectories. Therefore, when we increase the dimension and the
mass of the vehicle, in order to still obtain good tracking performance, it is necessary
to reduce the agility of the desired maneuver reducing the demanded accelerations.
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Fig. 5.28: Simulation results: non ideal motors. Mean tracking error when changing
the motor time constant.
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Chapter 6
Theory and experiments for a practical usecase

Abstract In many aerial robot applications such as search and rescue, the task
consists on providing assistance in hostile environments such as mountains or civil
areas after natural catastrophes. In this scenarios it is very likely that the terrain is not
flat, making the landing and takeoff maneuvers of the aerial robot very complicate
and unsafe. In contact-free conditions, the complexity of the task is increased by
the underactuation of standard unidirectional-thrust aerial vehicle. In this chapter we
shall show that the use of physical interaction, and in this case exploiting the tether,
a unidirectional-thrust aerial vehicle can perform the task in a much robust and
reliable way. In this chapter we will provide a formal study of the problem, proving
the superiority of the tethered system. We shall then how how the results of Chap. 4
have been exploited to perform the task. A simple but effective trajectory generator
is also derived for the particular task. Real experiments are presented validating the
proposed method.

6.1 The problem of landing and takeoff on/from sloped surface

In many aerial robot applications such as search and rescue, the task consists on
providing assistance in hostile environments such as mountains or civil areas after
natural catastrophes. In this scenarios it is very likely that the terrain is not flat,
making the landing and takeoff maneuvers of the aerial robot very complicate and
unsafe

The problem of landing on a sloped (not flat) surface is a very challenging problem
for an unidirectional-thrust aerial vehicle due to its underactuation. In fact, the task
requires to control both position and attitude since the vehicle has to be oriented
as the surface on which we want to land, but this is not possible. It is well known
that one can control the position of an unidirectional-thrust aerial vehicle, but not its
attitude. The latter is indeed a byproduct of the particular position trajectory that we
want to follow (given by the differential flatness). The classical approach for free-
flying vehicles is based on motion planning [9, 56, 61] (sometimes called perching
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126 6 Theory and experiments for a practical usecase

maneuver). It consists on exploiting the flatness of the system with respect to the
position [51] to plan a desired trajectory such that the vehicle ends the maneuver
with the proper position and orientation. Different controllers can be then applied
to track this trajectory. However, the success of the maneuver requires an almost
perfect tracking that implies an almost perfect state estimation and knowledge of the
model. Otherwise, small deviations from the nominal trajectory would lead to miss
the target or to crash on it.

On the other hand, we shall show that the use of a tether is very useful to solve the
faced problem of landing and takeoff on a sloped surface. As we saw in Chap. 4, for
a tethered aerial vehicle we have the great advantage to partially control the attitude
of the vehicle. Under certain conditions better stated in the following, this property
allows to perform the landing and takeoff maneuvers in a very reliable way, even in
the presence of model errors, and for almost any sloped surface.

In Chap. 4 and Chap. 5, we already showed the case of a tether aerial vehicle,
together with an actuated link, landing and taking off on/from a flat moving surfaces.
Nevertheless, this configuration requires to add an actuator that increases the com-
plexity of the system and reduces its already limited payload if placed on-board. For
these reasons, to increase the applicability of the method to solve the sought problem,
we instead consider the case of a passive tether that does not require extra actuation.
We remark that the results found in Chap. 4 are still valid. The only difference is that
the link length is now not controllable but remains constant.

One of the main contributions of our work is the definition of some general
conditions to perform a robust takeoff and landing.We then provide a careful analysis
and a comparison of the contact-free flight and passive-tethered methods, based on
these conditions. This study shows that, when an anchoring spot is available, the
tether solution is highly preferable with respect to the contact-free flight one since it
is the only one that allows to land on any sloped surface, and with good repeatability
and robustness to tracking inaccuracies. Focusing on the passive-tether solution,
in order to execute the maneuver respecting the inputs limits and to increase the
robustness and safety of the maneuver, we also design a planner to compute an
optimal reference trajectory. The latter is then followed by the hierarchical controller
ΓbHC for the output yb (see Sec. 4.5). We chose this controller rather then one based
on dynamic feedback linearization, ΓbDFL, because highly dynamic trajectory are not
required for the task (to increase the safety of the maneuver). The global method is
finally tested through exhaustive real experiments in which a quadrotor is able to
perform the landing and takeoff on/from a sloped surface tilted by an angle up to
60◦. Part of the following results have been published in [111, 108]

6.2 Modeling

The unidirectional-thrust aerial vehicle is modeled as in Sec. 4.3 (link attached to
a fixed platform and with a fixed length, i.e., no link actuator) and its states and
control inputs are described by the same variables. We assume the vehicle equipped
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Fig. 6.1: Representation of the system and its main variables. © 2020 IEEE. Reprinted,
with permission, from [111].

with at least three landers whose ending parts form the landers plane PRL . As in the
most common case in reality, we assume zR perpendicular to PRL 1. Then we define
pRL ∈ R

3 as the projection of pR on PRL and hR = ‖pR − pRL ‖ as the distance
between pR and PRL .

We assume that the landing/takeoff (LTO) surface is planar in the neighborhood of
the desired landing point and it is defined by PS := {p = [x y z]> ∈ R3 | ax+by+
cz + d = 0} where a, b, c, d ∈ R are the parameters of the plane. In particular, nS =

(1/
√

a2 + b2 + c2)[a b c]> are the coordinates inFW of the unit vector normal toPS .
Then we define a frame FS that is rigidly attached to PS , whose axes are {xS,yS,zS}.
If nS = zW , i.e., PS is horizontal, then we set {xS,yS,zS} = {xW ,yW ,zW }. In the
others (more interesting) cases, i.e., when PS is locally inclined, the axes of FS are
set as: zS = nS , yS = (zW × zS)/‖zW × zS ‖ and xS = (yS × zS)/‖yS × zS ‖. The
origin of FS , OS , is taken as any arbitrary position on PS . Fig. 6.1 gives a schematic
representation of the whole system.

Model in free (non-tethered) flight

Recalling the modeling of a unidirectional-thrust aerial vehicle in contact-free flight
done in Sec. 3.2, its configuration is described by pR and RR and its dynamic is
given by:

mR ÜpR = −mRgzW − fRzR (6.1)
JR ÛωR = JRωR × ωR + τR . (6.2)

1 The equal interesting but unusual case of an arbitrary PRL is left as future work.
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Model (6.1) holds as long as the aerial vehicle is not in contact with the surface.
In this last case, i.e., PRL ≡ PS , (6.1) has to be extended taking into account the
reaction force of the surface, denoted by fN ∈ R, and the static friction force, denoted
by fS ∈ R3, thus obtaining:

mR ÜpR = −mRgzW − fRzR + fNnS + fS, (6.3)

where fN ≥ fN , z>S fS = 0 and ‖fS ‖ ≤ fS . For a standard surface fN = 0 and
fS = µ fN where µ ∈ R

≥0 is the characteristic friction coefficient of the contact
between PRL and PS . If PRL and PS are equipped with an adhesive membrane
(e.g., a Velcro or a gecko inspired material) then fN ∈ R≤0 is the maximum negative
reaction force. In these cases both fN and fS depend on the adhesive membrane.

Model in tethered flight

Let us consider one of the particular tethered aerial cases considered in Sec. 4.3. In
particular we consider an aerial vehicle tethered to a fixed point through a constant-
length link, such as a cable or a chain. One end of the link is attached to the aerial
vehicle at OR through a passive 3D spherical joint and the other end is attached to
an anchor point OA rigidly attached to the surface. The position of OA is described
by pA ∈ R

3 in FW and its distance from PS is given by hA = z>S (pA − pL) ∈ R≥0, ∀
pL ∈ PS .

When the link is slack and the aerial vehicle is not in contact with the LTO surface
the dynamic model of the system is given by (6.1)–(6.2).

On the other hand, when the link is taut, the system model is the one presented
in Sec. 4.3 when the link length is constant. We recall that pR ∈ Sl(pA) = {p ∈
R3 | p = pA + ld, ∀d ∈ S2}, where Sl(pA) is a sphere of radius l centered on pA,
and d is the unit vector that represents the attitude of the link expressed in FW .

We introduce the frame FA = {OA,xA,yA,zA} defined as zA = zW , yA = yS
and xA = yA × zA/‖yA × zA‖. Recalling the modeling of Sec. 4.3 and assuming
FC = FA, we have that the dynamics of the system is equal to (4.3) and (4.11) for the
rotational and translational part, respectively. We recall that the model can be easily
derived from (4.10) considering only the first three row, Ûl = Ül = 0 and replacing the
notation C with the notation A where appropriate. For the reader convenience we
report here the main equations with the proper notation that will be useful also in
the following.

The vector dA denotes the expression of d in FA. It is parametrized by the
elevation angle, ϕ ∈ [0,2π], and the azimuth angle, δ ∈ [− π2 ,

π
2 ], such that dA =

[cos δ cos ϕ − sin δ cos δ sin ϕ]>. Since the link is attached to OR, the rotational
dynamics of the vehicle is independent of the translational one and it is equal to (6.2).
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We retrieve the dynamics of2 q = [ϕ δ]> with the Newton-Euler method applying
the balance of forces at OR:

mR ÜpR = −mRgzW − fRzR − fLd, (6.4)

where ÜpR is obtained differentiating twice pR = pA + lRAdA:

ÜpR = RA

(
ÛJq Ûq + Jq Üq

)
, Jq =


−l cos δ sin ϕ −l cos ϕ sin δ

0 −l cos δ
l cos δ cos ϕ −l sin δ sin ϕ

 ,
where RA ∈ R

3×3 is the rotation matrix from FA to FW . Equations (6.2) and (6.4)
fully describe the dynamics of the system when the link is taut.

Similarly to the non-tethered case, when the robot is tethered and in contact with
the surface, the model (6.4) is extended taking into account the reaction and friction
forces, fN ∈ R and fS ∈ R, respectively:

mR ÜpR = −mRgzW − fRzR − fLd + fNnS + fS . (6.5)

6.3 Conditions for robust landing and takeoff

In the following we define and analyze the problem of landing on PS at a desired
landing position p?L ∈ PS . Analogous conditions can be drawn for the takeoff
problem, which are omitted here for brevity. Denoting with tL ∈ R>0 the landing
time, a correct and robust landing is such if the following conditions are satisfied:

1) pRL converges to p?L , i.e., pRL(tL) = p?L ∈ PS;
2) the robot orientation has to be such that PRL and PS are parallel, i.e., zR(tL) =

z?R = −zS , in order to have the robot perfectly in contact with the surface;
3) the vehicle has to reach this configuration with almost zero kinetic energy in

order to avoid hard impacts, i.e., at time tL−, immediately before of touching the
surface, it has to be that ÛpR(tL−) = 0 and ωR(tL−) = 0;

4) all the accelerations should be also zero at tL−, i.e., ÜpR(tL−) = 0 and ÛωR(tL−) =
0, thus obtaining a smooth and gentle maneuver;

Definition (Inclined hovering): The system is said in inclined hovering if zR ,
−zW and Cond. 3), and 4) coexist. �

5) after the conclusion of the landing maneuver, at time tL+, when the robot is in
contact with the surface, p?L has to be a stable position, i.e., zero velocity and
acceleration. This condition prevents the robot to fly away from the surface or to
slide down on it when the motors are switched off after the landing maneuver.

2 In this chapter, since the length of the link is constant, l is not a generalized variable but becomes
a parameter of the system.
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Remark: At time tL− the robot is not yet in contact with the surface and the flying
model has to be used to describe the system (equations (6.1, 6.2) or (6.4, 6.2)). On
the contrary, at time tL+ the vehicle is in contact with the surface thus equations (6.3)
or (6.5) have to be used. �

Notice that the Cond. 4), although not strictly necessary, lets the vehicle approach
the surface in a static equilibrium condition, passing from flight to contact very
smoothly and in a more robust way with respect to model uncertainties.

If, due to the characteristics of the system, Cond. 4) is not attainable, the landing
can still be done but when at time tL+ the vehicle touches the surface, one has to
find the way (e.g., turning off the motors as quickly as possible and using a Velcro
system) to immediately pass in a stable condition in order to remain in contact with
the surface without flying away or sliding on it (Cond. 5)). Nevertheless, this could
be not possible for some surfaces without the use of a tether or a Velcro-like solution.

Remark: For the takeoff, only Cond. 5), that now is an initial condition, has to be
fulfilled. �

6.4 Analysis and comparison for landing and takeoff

In the following we analyze two different kind of approaches for the landing: the
free-flying and the tethered maneuvers. For both cases we define the conditions to
satisfy the landing objectives and illustrate the benefits of the tethered solution.

6.4.1 Contact-free flight method

Replacing the conditions zS = zW and ÜpR(tL−) = 0 in (6.1), it is clear that the
only case in which Cond. 4) holds is when PS is horizontal. In all the other cases
ÜpR(tL−) , 0, which means that the aerial vehicle cannot approach the surface in a
fully stable condition.

For the Cond. 5), imposing ÜpR(tL+) = 0 in (6.3) and projecting the two sides
of (6.3) on FS , we obtain

fN = mRgz>S zW + fR, x>S fS = mRgx>S zW , y>S fS = 0. (6.6)

The first two conditions of (6.6) let us determine which is the maximum thrust at
time tL+ and the maximum slope to have Cond. 5) fulfilled, i.e.:

fR(tL+) ≤ mRgz>S zW − fN and x>S zW ≤ fS/(mRg). (6.7)

Thus, one can land on any point of PS only if (6.7) holds, restricting the set of
admissible slopes.
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Assuming that the surface fulfills (6.7), we now investigate how to reach it, and
in particular, how to achieve the first three conditions. In the less interesting case
of a horizontal surface, one can simply follow a trajectory along zW in hovering
condition to reach p?L with zero velocities and accelerations. In the more interesting
case of a sloped surface, this is a very challenging problem due to the underactuation
of the vehicle. From the theory it is well known that the system is differentially flat
with respect to pR and the rotation around zR [51]. Therefore one can track any
desired position trajectory, pd

R(t), such that pRL(tL) = p?L and ÛpR(tL−) = 0, but the
orientation of the vehicle along the trajectory is exactely determined by pd

R(t) and
its derivatives. Thus it is not possible to control the attitude independently from the
position trajectory. The classical method to overcome this issue is to use a state-
to-state planner like, e.g., the ones presented in [61] slightly modified, that gives a
particular position trajectory pd

R(t) that satisfies Conds 1), 2) and 3).

Remark: Consider an aerial vehicle that has to land on a given surface PS , at any
desired point p?L ∈ PS . If the landing has to be performed using a contact-free flight
method then, in general:

• if PS is non-horizontal then Cond. 1), 2), 3) can only be achieved by a very
accurate tracking of a perfectly synchronized dynamicmaneuver generated using
a state-to-state kino-dynamic planner;

• Cond. 5) is fulfilled iff fR(tL+) and PS are such that the two conditions in (6.7)
hold;

• Cond. 4) is fulfilled iff PS is horizontal; �

Assuming that the non-easy motion planning problem is solved, one could use
different types of controllers, as the ones in [9, 18], to track the planned trajectory.
Nevertheless, these methods lack in general of robustness since small tracking errors
could lead, e.g., to miss the target or to crash on it if the velocity is not well tracked.
Furthermore, a precise model and an accurate and high-rate state estimation are
needed.

To partially solve those problems and the ones related to the sliding, a common
practical solution is to use a Velcro, as in [56, 59], to help the perching. However
these solutions are not feasible in a real environments. Velcro solution also does not
permit to easily takeoff after the perching.

6.4.2 Tethered method

In this section we show that the tethered method overcomes the limits of contact-free
flight (in particular the impossibility to satisfy Cond. 4) for sloped surfaces, which
guaranties a safer landing maneuver) thanks to the inclined equilibria.

For the tethered method the landing position must belong to Sl(pA) ∩ PS . We
then first investigate which are the points in this set that satisfy Cond. 4). Consider
a generic point pL ∈ Sl(pA) ∩ PS . From simple geometry we have
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d = (pL − pA + hRzS)/l . (6.8)

Since pA, l and hR are given parameters, finding the pL that satisfies Cond. 4)
is equivalent to find the d that satisfies the same condition. Projecting both sides
of (6.8) on z>S we obtain

z>Sd =
(
hR + z>S (pL − pA)

)
/l = (hR − hA)/l := c. (6.9)

Then, in order to fulfill Cond. 4), let us project both sides of (6.4) on the plane
{xS,yS}, and set ÜpR = 0, thus obtaining

fLPS
xyd = −mRgPS

xyzW , (6.10)

where PS
xy = [xS yS]>. Equation (6.10) implies that PS

xyd is parallel to PS
xyzW .

Since fL ≥ 0 and mRg > 0, we obtain

(PS
xyd)/

PS
xyd

 = −(PS
xyzW )/

PS
xyzW

 = [1 0]> =: zSxy

W . (6.11)

Notice that (6.11) requires3
PS

xyzW
 , 0 and

PS
xyd

 , 0. The latter inequality
implies also that (hR − hA) , l. From (6.9) and (6.11) and applying some simple
geometry we obtain

d = [xS yS zS]
[√

1 − c2 0 c
]>
=: d̃, (6.12)

where d̃ is defined as the (unique) d for which Cond. 4) is fulfilled. This proves
that, given the parameters of the system, pA, l and hR, it exists a (unique) p̃L =

pA + ld̃ − hRzS , for which Cond. 4) is respected.

Remark: The use of a tether creates the conditions to approach or depart from a
sloped surface in a stable equilibria condition (inclined hovering), i.e., in a more
robust and safer way. In fact, using the tether it exists a landing position in which
one can land in inclined hovering for any sloped surface (in contact-free flight this
position exists only for horizontal surfaces). Moreover, given any desired landing
position p?L ∈ PS , one can always fulfill Cond. 4) setting hA , hR − l and

pA = p?L + hRzS − ld̃ := p̃A. (6.13)

Compliance with Cond. 5)

If (x>S zW )(x>Sd) < 0, i.e., if the landing spot is below the projection of pA on PS ,
then a solution of (6.5) for ÜpR(tL+) = 0 is

3 When
PS

xyzW
 = 0 the surface is horizontal and any d such that (6.9) holds, satisfies Cond. 4).

In this condition, one can still land with the tethered configuration keeping fL = 0 and using the
same method for contact-free flight.

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



6.4 Analysis and comparison for landing and takeoff 133

fL = −
mRgx>S zW

x>
S
d

, fN = mRgz>S zW − fR + fLz>Sd,

y>S fS = fLy>Sd, x>S fS = 0.
(6.14)

In this case the tension is always positive and, from the conditions on fN and fS
in (6.14), we can determine which is the maximum thrust intensity at time tL+ and
the maximum slope of the surface to respect the Cond. 5), i.e.,

fR(tL+) ≤ mRgz>S zW
(
1 − (z>Sd/x>Sd)

)
− fN =: fR (6.15)��−mRgy>Sd(x>S zW/x>Sd)

�� ≤ fS . (6.16)

If d = d̃ then the condition (6.16) holds for any surface. In the opposite case of
(x>S zW )(x>Sd) ≥ 0, i.e., when the landing spot is above the projection of pA on PS ,
we have that fL = 0 and the conditions in (6.7) have to be respected.

Tab. 6.1 summarizes all the previous results. To accomplish Conds. 1), 2) and 3)
the controllers ΓbHC or ΓbDFL presented in Sec. 4.5.2 and Sec. 4.6.2, respectively, can
be used. Although not needed, to further improve the robustness and the reliability
of the maneuver, we designed a motion planning method presented in the following
Sec. 6.5 to optimize the motion during the landing and takeoff maneuvers. Notice
that with the tethered method we can achieve all the landing conditions for any
surface and any desired landing position by properly choosing the anchor point.
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6

Theory
and

experim
entsfora

practicalusecase

Method Contact-free Flight Tethered Flight

Fulfillment
of cond. All All but Cond. 4) (ÜpR (tL

−) , 0) All All but Cond. 4) (ÜpR (tL
−) , 0)

Surf. orien-
tations zS = zW x>SzW ≤ fS/(mRg) any

��−mRgy>Sd(x>SzW x>Sd)
�� ≤ fS

Anchor po-
sitions - - any any

Landing
positions any any pL = pA + ld̃ − hRzS pL ∈ Sl (pA) ∩ PS

Max. fR at
tL
+ fR ≤ mRg − fN fR ≤ mRgz>SzW − fN fR (tL

+) ≤ fR fR (tL
+) ≤ fR

fR
fN fR

fN fS fR
fN fL

fR
fN fL

fS

Pros Simple system Possibility to perform the maneuver reaching a stable equilibria condition; a
planner is not required; robustness to model uncertainties and tracking errors

Cons Not feasible for every slope; it requires: a planner, high tracking accuracy,
precise state estimation and knowledge of the model (very low robustness) Need of a method to pass from contact-free flight condition to tethered one

Table 6.1: Characteristics of contact-free flight and tethered configuration for the landing problem. Analogous conditions hold for the
take-off. © 2020 IEEE. Reprinted, with permission, from [111].
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6.5 Optimal trajectory planning

Given the tracking controllers of Sec. 4.5.2 and Sec. 4.6.2 for the output yb , we need
to design a feasible desired trajectory ybd(t) that fulfills the objectives of Sec. 6.3
to successfully perform the landing. From now on we focus on the landing problem,
since the trajectory for the takeoff can computed with the same method.

We assume that in a preliminary phase the vehicle has been tethered to the anchor
point pA such that p?L = p̃L , and the system has been steered to the state x0 for which
the link results taut. Then, the initial and final value of the trajectory, ybd(t), has to
be such that x(t0) = x0 and x(tL) = x?, where x? corresponds to the Conds. 1), 2),
3) and 4). In the following we define the final desired output value and an optimal
planner to design a feasible and optimal trajectory that fulfills all the objectives of
Sec. 6.3, and respects the input limits.

6.5.1 Final desired output

Since pRL and zR are independent from ψ, then ψ? can be chosen arbitrarily. Given
a desired landing position p?L ∈ Sl(pA) ∩ PS , one can compute the corresponding
desired link attitude d? from (6.8). Finally, from the parametrization of d and (4.26)
we can complete the remaining entries of the desired output yb?:

ϕ? = atan2
(
z>Ad?, x>Ad?

)
δ? = atan2

(
y>Ad?,

√
(z>

A
d?)2 + (x>

A
d?)2

)
ϑ?A = atan2

(
α?1 , α

?
3
)
,

where α? = P?LzS and P?L is computed as in Sec. 4.4.2 from d?.
Notice that the equality yb(tL) = yb? = [ϕ? δ? ϑ?

A
ψ?]>, does not necessarily

imply that zR(tL) = z?R. Indeed, controlling ϑA we control only the direction of the
projection of zR on the plane PL . Whereas, the remaining component y>LzR is not
directly controlled but, for the flatness, it is given by the particular trajectory yb(t)
and its derivatives. A possible solution consists on planning a proper trajectory yb(t)
such that yb(tL) = yb? and y>LzR(tL) = yL

>z?R = 0. Though, this technique based
on motion planning shows the same drawbacks saw in Sec. 6.4 for the contact-free
flight method.

However, for the case of interest when all the objectives of Sec. 6.3 are fulfilled and
in particular Cond. 4), a planner is not necessary. In this case, from equation (6.12)
and the parametrization of d, it is easy to see that d? = d̃ implies δ? = 0. Finally,
thanks to the flatness, we can demonstrate that if δ is stabilized to zero, i.e., [δ, Ûδ, Üδ] =
0, then y>LzR is stabilized to the desired value y>Lz?R = 0. Let us project (6.4) on yL

considering [δ, Ûδ, Üδ] = 0. We obtain:
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− fRy>LzR = y>LRA

[
lmR

( [ −cϕ
0
sϕ

]
Ûϕ −

[ sϕ
0
cϕ

]
Üϕ
)
+ fL

[ cϕ
0
sϕ

] ]
+ mRgy>LzW . (6.17)

Noticing that y>LRA = e>2 and y>LzW = 0, it is clear that y>LzR = 0.
This proves that, if pA is chosen such that p?L = p̃L , then steering yb to yb? is

sufficient to steer pRL and zR to p?L and z?R, respectively. In principle, we could
generate a simple sufficiently smooth trajectory (like a spline) ybd(t) from the initial
output value to yb? that fulfill all the objectives of Sec. 6.3, and then track it with one
of the controllers presented in Sec. 4.5.2 and Sec. 4.6.2, without the use of a planner.
This makes the method more robust to tracking errors since they can be recovered
by the controller avoiding the failure of the maneuver.

However, although not necessary, we still propose an optimal planner to more
intuitively generate a desired trajectory that fulfills the conditions in Sec. 6.3, re-
specting the dynamics of the system, its input limits and other additional features in
order to obtain an even more safe and reliable landing maneuver.

6.5.2 Optimal planner

The computation of an optimal desired trajectory that fulfills the conditions of
Sec. 6.3 can be formulated as an optimal control problem. Given the tethered system,
we face a challenging nonlinear optimal control problem in a five dimensional
configuration space. Even for a numerical solver it could be not easy to find a
solution of this problem and its computation could require a lot of time. A common
technique consists of simplifying the model of the system to make the problem
solvable in a reasonable amount of time.

According to this method we assume4 δ(t) = 0 for all t ∈ [t0, tL]. In practice this
fact limits themotion of the vehicle on the 2Dvertical planePM = {xA,zA}, reducing
the configuration space to two dimensions. This is not a problem since we showed
that if δ converges to zero then also y>LzR converges to yL

>z?R = 0. For simplicity
we also assume a constant rotation around zR, i.e., ψ(t) = ψ? for all t ∈ [t0, tL]. This
means that the system, while moving on PM , is fully described only by ϕ and ϑA,
equivalently to the reduced model presented in Sec. 4.3 (indeed, ϑA = θ). We define
xM = [xM1 xM2 xM3 xM4]

> = [ϕ ϑA Ûϕ ÛϑA]
> and uM = [ fR τARy]

> the state
and input of the 2D system, respectively. In particular τARy ∈ R is the torque applied
by the robot along the axis yA, i.e., τARy = y>ARRτR. Considering δ, y>A and their
derivatives to zero, the dynamics can be derived as done in Sec. 4.8[

Üϕ
ÜϑA

]
=

[
a1 cosϕ + a2 cos(ϕ + ϑA) fR

a3τ
A
Ry

]
=: fM (xM , uM ) (6.18)

where a1 = −g/l, a2 = 1/(mRl), a3 = 1/(y>ARRJR).

4 This can be guaranteed by the controllers proposed in Sec. 4.5.2 and Sec. 4.6.2.
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From now onwe focus on the generation of trajectories for a quadrotor-like VTOL
since this is the robot used for the real experiments5 described in Sec. 6.6. As recalled
in Sec. 3.2 and Sec. 3.3, this particular vehicle is equipped with four propellers,
placed in a symmetric configuration with respect to the center of gravity, each one
generating a thrust fi ∈ [ f

i
, f i]. All together the propellers generate the total thrust

fR and torque τR applied to the vehicle according the relation u = [ fR τR]
> = Γu f

where u f = [ f1 f2 f3 f4]> and Γ ∈ R4×4 is a matrix that maps u f into u (see
Sec. 3.3.1). The matrix Γ depends on the parameters of the vehicle. We can then
express uM as function of u f as

uM =

[
1 0
0 y>ARR

]
Γu f = ΓMu f . (6.19)

Notice that ΓM is constant since, given the constraint of moving on PM , the vehicle
body rotates only around yA. Then, replacing (6.19) into (6.18) we can define
fM f (xM ,u f ) = fM (xM ,ΓMu f ).

It is well known that the propellers of a real quadrotor can not immediately actuate
a commanded thrust and that the time response depends on the particular motors
and propellers. In order to obtain a feasible and smoother trajectory for the system
we decided to consider a double dynamic extension of the model assuming as new
input the second derivative of the thrust, ū f = [ Üf1 . . . Üf4]>. The new extended state
becomes x̄M = [ϕ ϑA Ûϕ ÛϑA Üϕ ÜϑA ϕ(3) ϑ

(3)
A

u>f Ûu
>
f ]
> . The dynamics becomes

Û̄xM =


0 I6 0 0
0 0 0 0
0 0 I4 0
0 0 0 0


x̄M +


0

ÜfM f (x̄M , ū f )

0
ū f


= f̄M f (x̄M , ū f ). (6.20)

We highlight the fact that for a very reactive vehicle characterized, e.g., by a low
mass and inertia, this dynamic extension could be avoided, since it would be able to
actuate fast varying inputs. Nevertheless, this allows us to generate a C3 trajectory
required by ΓbDFL.

Given the system dynamics (6.20), we are ready to formalize our optimal control
problem as

min
x̄M (t),ū f (t)

J(x̄M (t), ū f (t), t, tL)

subject to, ∀ t ∈ [t0, tL]

(a) Û̄xM = f̄M f (x̄M (t), ū f (t)) (b) x̄M (t0) = x̄M 0

(c) f
i
≤ fi(t) ≤ f i (d) fL(t) > 0

,

(6.21)

5 The method can be easily modified according to any VTOL.
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where J : x̄M , ū f → R is the cost function, (a) is the dynamics, (b) are the initial
conditions, (c) are the input limits, and (d) prevents the link to become slack. In
order to fulfill the objectives of Sec. 6.3, we define the cost function as:

J =
∫ tL

t0

(J1 + J2 + J3 + J4)dτ + J5

where

J1 = kϕ(ϕ − ϕ?)2 + kϑA(ϑA − ϑ
?
A)

2 + k Ûϕ Ûϕ2 + k ÛϑA
Ûϑ2
A + k Üϕ Üϕ2 + k ÜϑA

Üϑ2
A

J2 = kϑA2hϑA(ϕ)(ϑA − ϑ
?
A)

2

J3 = k Ûϕ ÛϑA
h Ûϕ ÛϑA

(ϕ)( Ûϕ2 + Ûϑ2
A)

J4 = kū f ū
2
f

J5 = ktLϑA
Ûϑ2
A + ktL Ûϕ Ûϕ

2

and k? ∈ R≥0, hϑA(ϕ) and h Ûϕ ÛϑA
(ϕ) are functions that tend to 1 when ϕ is near ϕ?,

and to zero otherwise. The cost terms 1,3,5 together, help to fulfill the conditions of
Sec. 6.3, i.e., to steer the vehicle on the surface approaching it with zero velocities and
accelerations. The cost term 2 enforces to approach PS with the proper attitude, such
that the landers touch the surface simultaneously. Finally, the cost term 4 avoids fast
variations on the commanded thrust that otherwise could not be actuated. Modifying
the gains of J one can adjust the trajectory to obtain different behaviors.

The solution of the optimal control problem, x̄dM (t) for t ∈ [t0, tL], is computed
using the ACADO [30] numerical optimizer. Finally, x̄dM (t) together with δ

d(t) = 0
and ψd(t) = ψ? give the desired output trajectory ybd(t) to be tracked in order to
perform the landing.

6.6 Experimental landing and takeoff

In this section we show the main results of the experiments that validate the efficacy
of our proposed method for the problem of landing (and takeoff) on a sloped surface.

In particular, we consider the plausible scenario where a quadrotor-like vehicle
has to deploy a smaller robot or a sensor on a sloped surface tilted by 50◦, shown
in Fig. 6.4. The robot, equipped with a cable ending with a hook, starts from a
non-tethered configuration on the ground. Therefore it has to anchor the other end
of the cable to the surface to then perform the landing in a tethered configuration.
Once the robot has landed on the desired spot and deployed the robot/sensor, it
can take-off from the surface again exploiting the tether. Finally it can go back to
the initial position after having detached the cable from the surface. The hardware
employed for the experiment is the one described in Sec. 5.1.2.
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Fig. 6.2: Zoom of the hook and the anchoring mechanism.

6.6.1 Anchoring tools and mechanisms

In order to pass from a contact-free flight configuration to a tethered one, a method
to fix the end of the cable to the surface has to be found. The mechanism to do
so strongly depends on the application scenario and in particular on the material
of the slope. For example, in the context of the European project Aeroarms6, an
aerial robot has to deploy a magnetic crawler or a sensor on industrial pipes that
are often non-horizontal. In this context the landing surface is mainly a pipe made
of iron/steel. Thus in this case, and whenever the surface is made of proper metal,
a magnetic anchor can be used to enhance the physical connection between surface
and the robot. In the case of a ground, snowed, or iced surface an harpoon-like
mechanism might be envisaged.

In our experimental testbed we instead used a simpler solution based on a com-
mercial fishing hook made of three tips, and an anchoring mechanism fixed to the
surface made by a horizontal cable. In this way the robot can be tethered to the
surface by sliding the vertical cable on the anchoring mechanism until the hook is
anchored to the horizontal cable, as shown in Fig. 6.2. The hook can be detached
from the anchoring mechanism doing the opposite operation.

6.6.2 Experimental phases

Considering the previous experimental scenario and the goal, we divided the overall
maneuver into several phases:
a) approach to the anchor point with the hook,
b) hooking of the anchoring system,
c) stretching of the cable,
d) tracking of the desired trajectory for tethered landing.
The phases from a) to c), described by the first row of images in Fig. 6.4, serve

to pass from the initial contact-free flight configuration to the tethered one. Using a

6 http://www.aeroarms-project.eu/
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standard contact-free flight position controller and following a straight-line trajectory,
the robot is able to anchor the anchoring system attached to the surface with the hook
(see Fig. 6.4.b.2). The trajectory is planned such that the cable attached to the robot
slides on the anchoring cable until the hook results attached to the last one.

Afterword, during phase c), the cable is stretched following a simple radial trajec-
tory whose ending point is slightly outside the reachable region limited by the cable
length. The robot, trying to reach this ending position, as explained in [26], will
apply an extra force to the cable that will make it taut. In particular, the farther the
desired ending position, the larger the internal force on the link. Using the dynamics
of the system, the estimated state, and the control inputs, the robot can estimate the
tension on the link. This estimation is then used to understand when the cable results
sufficiently taut. Once the tension exceeds a certain security threshold a supervisor
switches from the contact-free flight controller to the tethered one. We recall that
for this experiment we use the hierarchical controller ΓbHC presented in Sec. 4.5.2
whose validity has been experimentally demonstrated in Sec. 5.2. In fact, ΓbHC can
guarantees sufficiently small tracking errors for the slow trajectories needed for the
safety of the maneuvers. This additionally shows that the tethered solution does not
require a very precise tracker.

Finally the planned landing trajectory is tracked. In order to compute the desired
landing and takeoff trajectories using the planner presented in Sec. 6.5, the parameters
of the landing surface, such as slope angle and anchoring point, must be known. To
acquire those values we applied some markers on the surface to measure its pose
with a motion capture system. However, thanks to the robustness of the method,
those parameters does not have to be very precise.

Once the robot ends the landing maneuver the takeoff can start. The takeoff
maneuver is very similar to the play-back of the previous phases. Indeed, following
the previous trajectory in the opposite sense lets the hook be detached from the
anchoring mechanism to then go back to the starting point in a contact-free flight
configuration.

6.6.3 Controller switch

During the switching between the controllers, the continuity of the control input
has to be guaranteed in order to preserve the stability of the system and to avoid
undesired vibrations and jerks on the cable. This is obtained by setting as desired
output of the next controller, the value of the system output at the switching instant.
This is possible because, thanks to the flatness, there is a bijective relation between
state/input and output. Therefore, for a specific output, there exist a unique nominal
input and state to obtain it. Assume that the system is in a certain state with a certain
input, x0 and u0, respectively. Accordingly we have a particular output value y0.
Asking the next controller to keep the output value y0 we will obtain the same input
u0 and state x0, thus preserving the continuity of the control action and of the full
state.
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Fig. 6.3: Schematic representation of the software architecture. Pink blocks represent
the sensors. Green blocks represent the controllers and light yellow blocks represent
the observers. Starting from the left, p̃ and R̃ represent the measured robot position
and orientation, respectively; x̂ and f̂L represent the estimated state and link internal
force, respectively; qd(t) represents the desired output trajectory; fR and τR repre-
sents the input of the robot, i.e., thrust intensity and torque vector; w̃ represents the
desired spinning velocity of the propellers. Finally ã and ω̃ represent the readings
of the IMU, i.e., specific acceleration and angular velocity.

6.6.4 Software architecture

A schematic representation of the software architecture is represented in Fig. 6.3. The
overall controllers and observers run on a ground PC. The desired spinning velocities
of each propeller are sent at 500 [Hz] to the robot using a serial cable. The received
velocity commands are then actuated by a controller (presented in [23]) running on
the on-board ESC (Electronic Speed Control). The same serial communication is
used to read at 1 [KHz] the IMUmeasurements that are thenUKF-fused togetherwith
the motion capture system measurements (position and orientation of the quadrotor
at 120 [Hz]) to obtain an estimation of the state of the vehicle. The latter is then used
to close the control loop and to compute an estimation of the internal force along the
link when it is taut.

The controller for the contact-free flight and tethered cases run in parallel and
a supervisor, according to the state of the experiment, decides whose input has to
be applied to the real system. The user input in the supervisor is needed to trigger
situations of emergency.

6.6.5 Offset nonideality

Another practical aspect that has to be considered is the nonzero offset between
the cable attaching point and the vehicle center of mass. Indeed, the controller ΓbHC
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142 6 Theory and experiments for a practical usecase

presented in Sec. 4.5.2 assumes that this offset is equal to zero. In this way the
robot translational and rotational dynamics can be decoupled. However, this never
happens in a practical case. Then, due to this non-zero offset, the internal force along
the cable generates a torque on the vehicle that has to be carefully compensated. This
is done computing the extra torque from the estimated tension and the estimated
offset calculated with a mechanical analysis.

Finally we highlight the fact that the maximum tiling of the surface is bounded
by the input limits. Indeed the more inclined is the slope, the less it is the thrust
required to compensate the gravity close to the surface. Due to the impossibility of
producing negative thrust for the single propeller, the almost zero total thrust implies
a reduced control authority on the total input moment that may cause the instability
of the attitude dynamics and of the whole system in general.

6.6.6 Experimental results

Fig. 6.4: Sequence of images of a real experiment with a sloped surface tilted by 50◦.
The first row of images represents the experimental part in which the quadrotor is in
a contact-free flight condition. In this case a standard position controller is used to
track the desired position trajectory marked with a dashed red line. The second row
of images represents the experimental part in which the quadrotor is tethered to the
surface. In this case the controller proposed in Sec. 4.5.2 is used to track the desired
position and attitude trajectories marked with a dashed yellow line and a solid blue
line, respectively.

In Fig. 6.4 and 6.5 the experimental results are shown. In this particular case
the robot has to land and then takeoff on/from a planar surface that is tilted by 50◦.
Figure 6.4 shows the first half of the experiment, i.e., the landing, by a series of
images. In particular the first row shows the anchoring procedure done in a contact-
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Fig. 6.5: Experimental results: plots of the state, outputs and inputs of the system
during the tethered landing and takeoff. In particular ϕ and δ describe the attitude of
the cable and, given the link constraint, the position of the vehicle with respect to the
anchoring point. φ and ψ are the angles that together with ϑA describe the orientation
of the robot. f1, f2, f3, f4 are the forces produced by each propeller. Finally, fL is the
intensity of the internal force along the link. The super-script d and n represent the
desired and the nominal values of a variable, respectively.

free flight condition. On the other hand, the second row shows the actual execution
of the tethered landing. A video of the full experiment is available at [99]

Figure 6.5 shows the evolution of the state, outputs and inputs of the system
during the landing and takeoff maneuvers. At time zero the tethered controller is
activated and the landing maneuver starts. At time tL the landing is accomplished
and the surface is reached. At time tG the motors are stop to simulate the deploying
of a robot/sensor. Finally, at time tT the takeoff maneuver starts.

From those plots one can see that the desired trajectory is tracked precisely, with
only some small errors due to calibration inaccuracy. Furthermore, notice that the
intensity of the internal force is always positive. This shows that the cable is kept taut
for the whole execution of the maneuvers. Despite the presence of tracking errors the
landing and takeoff maneuver are accomplished successfully and in a very safe and
gentle way. This shows the big advantage of using a tether that makes the execution
on the task reliable and robust to tracking and modeling errors. Thanks to this we
were able to perform landing and takeoff on/from an even non-flat surface (a pipe)
tilted up to 60◦. We provide an image from such experiment in Fig. 6.6.
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144 6 Theory and experiments for a practical usecase

Fig. 6.6: Execution of a tethered landing on an inclined pipe tilted by 60◦.
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Chapter 7
Towards multiple tethered aerial vehicles

Abstract Here we consider a multi-agent extension of the original problem analyzed
in Chap. 4, by looking at a system composed by two underactuated flying vehicles
lying on a vertical plane that are connected to the ground and to each other through
two generic links, as depicted in Fig. 7.1. One can notice the similarity with a classic
two-link Cartesian robot where the end of the chain represents the end-effector, while
the aerial vehicles are the actuated joints of the robot.

For this singular system, never studied before according to our best knowledge,
we aim to extend part of the results found for the single tethered case. In particular,
we want to control not only the elevation but also the internal force of the two links.
Moreover we want to obtain the tracking of the output of interest along any desired
time-varying trajectory, instead of just achieving regulation to constant values. For
this goal we shall show that also in this case the elevations and internal force along
the links are differential flat/feedback linearizing outputs. Following the analysis
of Chap. 4, we will design a state feedback linearizing controller for the precise
tracking of the output of interest. Finally, we investigate which is the minimal set of
sensors needed to estimate the full state of the system. Based on such sensory setup
we will design a nonlinear observer based on the HGO in order to obtain the sough
estimation of the state. We remark that this topic is still a work in progress that will
be further developed in the future.

7.1 Modeling

In order to refer to the quantities of one component of the chain, we use the subscript
·i with i = 1 for the first link and i = 2 for the second. Similarly to Chap. 4 we
assume: i) negligible link masses and rotational inertias with respect to the ones
of the vehicles, ii) fixed link lengths li ∈ R>0 where i ∈ {1,2}, and iii) negligible
deformations and elasticities.

We define ϕi ∈ R the elevation angle of the i-th link. With fLi ∈ R we denote
the internal force that is exerted on the i-th link. Also in this case the link is generic
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146 7 Towards multiple tethered aerial vehicles

ϕ1

τR1

xB2

zW

xW

l1

OW

ϕ2

−θ1

θ2
−fR2zB2

τR2

zB2

OB2

−mR2gzW

−fL2d2

xB1

OB1

zB1

−mR1gzW−fL1d1

l2 −fR1zB1

Fig. 7.1: Representation of the system and its main variables. The system is depicted
in a scenario of example where the grey box represents a surface of manipulation
for, e.g., a pick and place task. © 2020 IEEE. Reprinted, with permission, from [106].

and both compressions and tensions are allowed. The first link is connected at one
end to the CoM of the first vehicle, and the other end to a fixed point. The two
ends of the second link are attached to the first and second vehicle center of masses,
respectively. No rotational constraints are present in the connections, e.g., by using
passive rotational joints. Finally, mRi ∈ R>0 and JRi ∈ R>0, with i = 1,2, denote
the mass and inertial, respectively, of the i-th vehicle.

It is convenient to define the frames of the system in 3D, even if we consider a 2D
problem, in order to, e.g., have a well defined angular velocity vector for the aerial
vehicles. Thus we define a world frame, FW , described by the unit vector along
its axes {xW ,yW ,zW } and origin set on a fixed point OW . Then, for every robot,
we define a body frame, FBi , rigidly attached to the i-th vehicle, described by the
unit vector along its axes {xBi,yBi,zBi} and origin OBi set on the vehicle CoM,
represented in FW by the coordinates pBi =

[
xBi yBi zBi

]>, where yBi = 0. The
axes yW , yB1 and yB2 are perpendicular to the vertical plane {xW ,zW } where motion
occurs, as depicted in Fig. 7.1. The system evolves on this vertical plane on the
effect of the four control inputs (two for each robot), i.e., the intensities fRi ∈ R and
τRi ∈ R of the thrust force − fRizBi ∈ R

3 and the torque −τRiyBi ∈ R
3, respectively,

with i = 1,2.
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7.1 Modeling 147

Given the constraints, the system is completely described by the generalized co-
ordinates q = [ϕ1 ϕ2 θ1 θ2]

> = [ϕ> θ>]> ∈ R4, where ϕi and θi are the elevation
of the i-th link (defined before) and the attitude of the i-th vehicle, respectively.

To derive the dynamic model of the system, as done in Sec. 4.3, we employ the
Newton-Euler methods, because also in this case we are interest in controlling the
internal force along the link and an analytical expression is thus needed. Since the
rotational dynamics of the generic i-th vehicle is decoupled by the translational one,
we have that

Üθ = J−1τR, (7.1)

where J = diag(JR1, JR2) ∈ R
2×2
>0 and τR = [τR1 τR2]

> ∈ R2. Since we are
considering the 2D problem, in the following, we will omit the lines full of zeros
relative to the yB1 and yB2 axes. Balancing the forces acting on the vehicle CoMs we
obtain [

m1 ÜpB1

m2 ÜpB2

]
︸    ︷︷    ︸

a

= −

[
d1 fL1 − d2 fL2

d2 fL2

]
︸               ︷︷               ︸

afL

−

[
fR1zB1

fR2zB2

]
︸     ︷︷     ︸

afR

−

[
mR1gzW
mR2gzW

]
︸       ︷︷       ︸

ag

, (7.2)

where di = [cos ϕi sin ϕi]> and d⊥i = [− sin ϕi cos ϕi]> are unit vectors in the ver-
tical plane parallel and perpendicular to the i-th link, respectively. The accelerations
of the vehicle CoMs expressed in FW are

ÜpB1 = −l1d1 Ûϕ
2
1 + l1d⊥1 Üϕ1

ÜpB2 = ÜpB1 − l2d2 Ûϕ
2
2 + l2d⊥2 Üϕ2.

(7.3)

Using (7.3) and (7.2) we have that

a =

[
−mR1l1d1 Ûϕ

2
1

−mR2(l1d1 Ûϕ
2
1 + l2d2 Ûϕ

2
2)

]
︸                            ︷︷                            ︸

a Ûϕ

+

[
mR1l1d⊥1 0
mR2l1d⊥1 mR2l2d⊥2

]
︸                     ︷︷                     ︸

A Üϕ

Üϕ

afL =

[
d1 −d2

0 d2

]
︸     ︷︷     ︸

D

fL,

where a Ûϕ ∈ R4, A Üϕ ∈ R4×2, D ∈ R4×2 and fL = [ fL1 fL2]
> ∈ R2. Therefore (7.2)

can be rewritten as:
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148 7 Towards multiple tethered aerial vehicles[
A Üϕ D

]
︸   ︷︷   ︸

W

[
Üϕ

fL

]
= −afR − ag − a Ûϕ . (7.4)

The matrix W ∈ R4×4, that can be explicitly written as

W =


−l1mR1 sinϕ1 0 cosϕ1 − cosϕ2

l1mR1 cosϕ1 0 sinϕ1 − sinϕ2

−l1mR2 sinϕ1 −l2mR2 sinϕ2 0 cosϕ2

l1mR2 cosϕ1 l2mR2 cosϕ2 0 sinϕ2

 ,
is full rank, in fact its determinant is det (W) = −l1l2mR2[mR1 +mR2(1 − cos2(ϕ1 −
ϕ2))],which is always nonzero.

The dynamics of the system is then described by the following equations:

Üϕ =
[
I2 0

]
W−1(−afR − ag − a Ûϕ). (7.5a)

Üθ = J−1τR (7.5b)

For the design of a state observer in Sec. 7.4 it is useful to rewrite (7.5) in a
Lagrangian format:

M(ϕ) Üϕ = −c(ϕ, Ûϕ) + Q̄ϕ(ϕ,θ)fR (7.6a)
J Üθ = τR, (7.6b)

where fR = [ fR1 fR2]
> and

M(ϕ) =

[
(mR1 + mR2)l2

1 mR2l1l2 cos (ϕ1 − ϕ2)

mR2l1l2 cos (ϕ1 − ϕ2) mR2l2
2

]
c(ϕ, Ûϕ) =

[
mR2l1l2 sin (ϕ1 − ϕ2) Ûϕ

2
2 + (mR1 + mR2)gl1 cos ϕ1

−mR2l1l2 sin (ϕ1 − ϕ2) Ûϕ
2
1 + mR2gl2 cos ϕ2

]
Q̄ϕ(ϕ,θ) =

[
l1 cos (ϕ1 + θ1) l1 cos (ϕ1 + θ2)

0 l2 cos (ϕ2 + θ2)

]

7.2 Differential flatness

For the single tethered aerial vehiclewe showed that it is differentially flatwith respect
to ya containing the position of the vehicle and the internal force along the link. In this
section we shall show that analogously, the multi-robot extension here considered
is differentially flat with respect to the output ya2 = [y

a
21
> ya22

>]> = [ϕ> f>L ]
>,
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containing the position of the vehicles (parametrized by the elevation angles) and
the internal force along the links.

We recall that to prove the differential flatness of the system, state, x =
[x1 x2 x3 x4 x5 x6 x7 x8]

> = [ϕ1 Ûϕ1 ϕ2 Ûϕ2 θ1 Ûθ1 θ2 Ûθ2]
> ∈ R8 and in-

put, u = [ fR1 fR2 τR1 τR2]
> = [fR> τR

>]> = [u>1 u>2 ]
> ∈ R4, have to be

expressed as an algebraic function of the output and its derivatives. We have that ϕ
is already part of the output, thus ϕ = ya21 and Ûϕ = Ûya21. To find the rest we firstly
compute the nominal thrust vectors from the output and its derivatives using (7.2):[

fR1zB1

fR2zB2

]
= a(ya21, Ûy

a
21, Üy

a
21) + afL (y

a
2 ) + ag. (7.7)

Similarly to Sec. 4.4.1, from the thrust vectors we can easily compute the inputs and
the missing part of the state as function of the output and its derivatives up to the
fourth derivative.

Proposition: The model (7.5), is differentially flat with respect to the flat output
ya2 = [ϕ

> f>L ]
>. In other words, the state and the inputs can be written as algebraic

function of ya2 and a finite number of its derivatives. �

7.3 Dynamic feedback linearization

As usual, to compute the feedback linearizing control law, we need to differentiate
the outputs until the input u appears. Inverting (7.4), and recalling that ya21

(2) = Üϕ
and ya22 = fL , we directly obtain[

ya21
(2)

ya22

]
= W−1(−ag − a Ûϕ)︸             ︷︷             ︸

b(x)

+
(
−W−1

[
ZR 0

] )
︸              ︷︷              ︸

E(x)

u, (7.8)

where b(x) gathers all the terms that do not depend on u and ZR ∈ R
4×2 is:

afR =

[
zB1 0 0 0
0 zB2 0 0

]
u =

[
ZR 0

]
u. (7.9)

From (7.8) we can see that the input appears directly in ya22 without need for differ-
entiation while ya21 has to be differentiated twice. Furthermore, we can immediately
notice that the decoupling matrix E(x) is always singular which means that it is not
possible to determine a static feedback that linearizes the system using ya2 .

As we saw in Sec. 4.6, the common technique is to delay the appearance of
the input in ya22 (i.e., increasing the relative degree of ya22) introducing a dynamic
compensator composed by one or more integrators in the input channel u1. To
this aim, we redefine the input as ū = [Üu>1 u>2 ]

> = [ū>1 ū>2 ]
>, considering the

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



150 7 Towards multiple tethered aerial vehicles

acceleration of the thrust intensity as new controllable input, Üu1 = ÜfR. The system
is now described by the extended state x̄ =

[
ϕ> Ûϕ> θ> Ûθ> u>1 Ûu

>
1
]>
∈ R12, that

contains also the thrusts and their derivatives. Considering the extended system and
the new input, ya21 and ya22 have to be differentiated four and two times, respectively,
in order to see the new input ū appear:[

ya
21
(4)

ya
22
(2)

]
= Ü(W−1)(−afR − ag − a Ûϕ ) + 2 Û(W−1)(−ÛafR − Ûa Ûϕ )+

+ (W−1)(−ÜafR − Üa Ûϕ ).

(7.10)

In the previous equation the inputs appear only in the term ÜafR that can be rewritten
as:

ÜafR = Üa
′
fR (x̄) + ÜA

′′
fR (x̄)ū, (7.11)

where

ÜA′′fR (x̄) =


− sin θ1 0 −

fR 1 cos θ1
JR 1

0
cos θ1 0 −

fR 1 sin θ1
JR 1

0
0 − sin θ2 0 −

fR 2 cos θ2
JR 2

0 cos θ2 0 −
fR 2 sin θ2

JR 2


. (7.12)

We can compactly rewrite (7.10) as:[
ya21
(4)

ya22
(2)

]
= b(x̄) +

(
−W−1 ÜA′′fR (x̄)

)
︸             ︷︷             ︸

Ē(x̄)

ū, (7.13)

where b(x̄), whose expression is omitted here for the sake of brevity, collects all the
terms in (7.10) that do not depend on the input. After some algebra, it is possible to
analytically compute the determinant of the new decoupling matrix Ē(x̄):

det
(
Ē(x̄)

)
= −

fR1 fR2

JR1JR2l1l2mR2
(
mR1 + mR2 sin2(ϕ1 − ϕ2)

) ,
which is zero iff fR1 = 0 or fR2 = 0 (same singularity of the single tether case).
Therefore Ē(x̄) is always invertible except for the cases in which one of the two
thrusts vanishes. Furthermore the total relative degree r = 8 + 4 = 12 is equal to
the dimension of the extended state x̄. This means that the system does not have
an internal dynamics, i.e., it is fully linearizable through dynamic feedback. In fact,
designing the control input as

ū = Ē−1(x̄) [−b(x̄) + v] , (7.14)

where v = [v>1 v>2 ]
> ∈ R4 is a virtual input, we obtain
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Fig. 7.2:Graphic representation of the controller.© 2020 IEEE.Reprinted,with permission,
from [104].

ya21
(4) = v1 ya22

(2) = v2,

i.e., through the state feedback transformation (7.14) we transform the original non
linear system (7.5) in a fully-equivalent linear and decoupled dynamical system.

Proposition: Consider the system composed by two aerial vehicles connected in
series to the ground by two links with passive joints, whose dynamic model is
described by (7.5). Consider as outputs the elevation and the internal force of the two
links, ya2 = [ϕ

> f>L ]
>. Then the system is fully linearizable via dynamic feedback

for every state configuration, iff both thrusts fR1 and fR2 are nonzero. �

As a consequence of the previous Proposition 8, as done in Sec. 4.6 we can design
a standard linear controller to obtain the tracking of a desired trajectory. The overall
controller design is depicted in Fig. 7.2.

Corollary: Let be given any desired trajectory ya21
d(t) of class C3 for the two links

elevation ya21, and any desired trajectory ya22
d(t) of class C1 for the two links internal

force ya22. Consider as input the second derivative of the two thrusts and the torques
provided by the aerial vehicles, ū = [Üf>R τR

>]>. Consider the control law described
by (7.14) and set the virtual inputs as:

v1 = ya21
d (4) +K11e1 +K12e

(1)
1 +K13e

(2)
1 +K14e

(3)
1

v2 = ya22
d (2) +K21e2 +K22e

(1)
2 ,

(7.15)

where Ki j ∈ R
2×2
>0 , with i = 1 . . . 4 and j = 1,2, are diagonal matrices.

That control law exponentially steers ya2 along any desired trajectory ya2
d =

[ϕd1 ϕd2 fLd
1 fLd

2 ]
>. The behavior of the convergence can be arbitrarily assigned by

suitably choosing the gain matrixes. �
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152 7 Towards multiple tethered aerial vehicles

Let us define the errors as e1 = ya21
d − ya21 and e2 = ya22

d − ya22. The controller
yields to the following error dynamics:

e(4)1 +K11e1 +K12e
(1)
1 +K13e

(2)
1 +K14e

(3)
1 = 0

e(2)2 +K21e2 +K22e
(1)
2 = 0.

Therefore, from basic linear system theory, one can arbitrarily assign the poles
of the dynamics of the error in order to guaranties an arbitrarily fast expo-
nential tracking of (ya21

d(t),ya22
d(t)) for (ya21(t),y

a
22(t)) by suitably choosing the

gains: K̄1 = [K11 K12 K13 K14] ∈ R
2×8
>0 and K̄2 = [K21 K22] ∈ R

2×4
>0 . Since

(ya21
d(4)(t),ya22

d(2)(t)) have to be well defined, the elevation and internal force trajec-
tories have to be of class C3 and C1 respectively.

Due to Proposition 8, if the links are bars, it is feasible to pass from compression
to tension and viceversa. Instead, in the case of a cable, it is possible to maintain a
sufficient value of tension under a maximum breaking value and above the minimum
tautness value.

We remark that, since the total relative degree is equal to the dimension of the
extended state, there is no internal dynamics. This implies that the dynamics of the
pitch of each vehicles is stable during the tracking of the desired output.

Remark (Case of zero thrust): If a particular desired trajectory of the outputs re-
quires zero thrust on one of the two vehicles the controller cannot be applied, indeed
in this case it has a singularity. Thus, this fact has to be considered in the planning
phase in order to design desired trajectories that ensure strictly positive, or negative,
thrusts. Although this is a planning problem that does not concern this work, we
believe that the problem of zero thrust does not imply a strong limitation on the set
of the feasible trajectories. Indeed, as it is shown in Sec. 7.5, we can still generate
non-trivial trajectories, e.g., inversion of the internal link force from tension to com-
pression, ensuring non zero thrusts. An extended study on the planning of feasible
trajectories is left as future work. �

Looking at the control law described by the equations (7.14) and (7.15), and
depicted in the block diagram of Fig. 7.2, one can notice that its implementation
requires the knowledge of the extended state x̄, the output y and its derivatives (up
to the third-order for ya21 and first-order for ya22). Nevertheless, y and all its needed
derivatives can be calculated as function of x and ū as done, e.g., in (7.8) and (7.13)
for some of the derivatives. Note also that u1 and Ûu1 are directly known because they
are internal state of the controller.

7.4 State estimation

Instead of considering a direct measure of the state to close the control loop, we aim
to find the minimal set of sensors based on which we can obtain an estimation of the

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



7.4 State estimation 153

Case 2nd Sensor Type
Mounting Measures Applica-
Place ρ1, ρ2 bility

1 Absolute Inclinom. FB1 θ1 yes
Absolute Inclinom. FB2 θ2

2 Absolute Inclinom. FB1 θ1 yes
Relative Inclinom. FB2 θ1 − θ2

3 Encoder FW − link1 ϕ1 no
Encoder FB1 − link1 ϕ1 + θ1

4 Encoder FW − link1 ϕ1 yes
Encoder FB1 − link2 ϕ2 + θ1

5 Encoder FW − link1 ϕ1 no
Encoder FB2 − link2 ϕ2 + θ2

6 Encoder FB1 − link1 ϕ1 + θ1 no
Encoder FB1 − link2 ϕ2 + θ1

7 Encoder FB1 − link1 ϕ1 + θ1 no
Encoder FB2 − link2 ϕ2 + θ2

Table 7.1: Possible sensors configurations. The 1st sensor type corresponds to an
accelerometer mounted on each robot.

state. Inspired by the results obtained in Chap. 4 we consider the possible sensory
setup of Tab. 7.1. In this section, for the case 4 of Tab. 7.1, we present a method to
transform the original measurements into direct measurements of the configuration
q and we show that this implies the observability of the full state, i.e., q and Ûq. For
this case we propose a nonlinear estimator, based on the HGO able to retrieve the
state from any dynamic condition. In the end we analyze the applicability of the
method to the other configurations of Tab. 7.1.

7.4.1 Output transformations

Assume to have an onboard accelerometer for each robot, placed at OBi and attached
to FBi . According to the model in Sec. 3.4, it measures the specific acceleration:

ai = RBi

W (ÜpBi + gzW ) =
[
aix 0 aiz

]>
, (7.16)

where RBi

W ∈ R
3 is the rotation matrix from FW to FBi , and ÜpBi is the acceleration

of the CoM of the i-th vehicle w.r.t. FW .
Then we assume to be in the case # 4 of Tab. 7.1, i.e., the system is equipped with

two encoders, one is rigidly attached to the ground and connected to the first link
and measures its absolute elevation relative to FW , while the second is fixed to FB1
and connected to the second link, and measures its relative elevation with respect to
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FB1, i.e.:

ρ1 = ϕ1, ρ2 = ϕ2 + θ1. (7.17)

Now, replacing ÜpB2 from (7.2) into (7.16) for i = 2, we obtain

−mR2a2 = RBi

W ( fL2d2 + fR2 zB2 ) = fL2RBi

W d2 + [0 0 fR2]
>, (7.18)

which allows to define the measurement transformation[
w1(k)

w2(k)

]
=


sgn

(
k − 1

2

) √
ā2

2x
+ ā2

2z

atan2
(

ā2z
w1(k)

,
ā2x

w1(k)

)  =
[

0
ϕ2 + θ2 +

π
2

]
±

[
fL 2
π
2

]
, (7.19)

where ā2x = mR2a2x , ā2z = mR2a2z + fR2 and k ∈ {0,1}. Note that i) there are
two solutions for k = 0 and k = 1 because sgn ( fL2) is not retrievable from the
measurements; ii) the transformation is allowed iff fL2 , 0.

At every time instant t there is only one correct pair of measurements, equal
to ( fL2, ϕ2 + θ2), while the other is wrong and equal to (− fL2, ϕ2 + θ2 + π). We
define k∗ the unique k ∈ {0,1} such that (w1(k∗), w2(k∗)) = ( fL2, ϕ2 + θ2). Then,
replacing ÜpB1 from (7.2) into (7.16) for i = 1, and after some simple algebra, we can
define two additional new measurement transformations:[

w3(k∗, j)
w4(k∗, j)

]
=


sgn

(
j − 1

2

) √
ā2

1x
+ ā2

1z

atan2
(

ā1z
w3(k∗, j)

,
ā1x

w3(k∗, j)

) =
[

0
ϕ1 + θ1 +

π
2

]
±

[
fL1
− π2

]
, (7.20)

where ā1x = mR1a1x − w1(k∗) cos ρ2, ā1z = mR2a1z − w1(k∗) sin ρ2 + fR2 and
j ∈ {0,1}. As in (7.19), the transformation is not possible when fL1 = 0. A practical
solution for the instantaneous zero internal force case is provided in Sec. 7.4.5

Since the sign of fL1 is not retrievable from the measurements, we obtain two
solutions parametrized by j, i.e., (w3(k∗, j), w4(k∗, j)). At every time instant t there
is only one correct pair of measurements equal to ( fL1, ϕ1 + θ1), while the other is
wrong and equal to (− fL1, ϕ1 + θ1 + π). Actually, recalling that also k ∈ {0,1}, we
obtain four groups of different measurements, i.e., (w1(k), w2(k), w3(k, j), w4(k, j))
with k, j ∈ {0,1}. We know that at each time t there is only one couple k∗, j∗ ∈
{0,1} such that the corresponding measurements are correct, i.e., (w1(k∗), w2(k∗),
w3(k∗, j∗), w4(k∗, j∗)) = ( fL2, ϕ2 + θ2, fL1, ϕ1 + θ1), while all the others are wrong.

Finally, exploiting the readings of the encoders, we can define the last measure-
ment transformation

η1 = ρ1

η2(k, j) = ρ1 + ρ2 − w4(k, j)

η3(k, j) = w4(k, j) − ρ1

η4(k, j) = w2(k) + w4(k, j) − ρ1 − ρ2.

(7.21)
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The transformation method is represented in Fig. 7.3a. From (7.21) one can no-
tice that for the pair (k∗, j∗) defined before, we obtain a direct measure of the
generalized coordinates, i.e. η(k∗, j∗) = [η1 η2(k∗, j∗) η3(k∗, j∗) η4(k∗, j∗)]> =
[η>1 (k

∗, j∗) η>2 (k
∗, j∗)]> = [ϕ1 ϕ2 θ1 θ2]

>. While, for the pairs (k, j) , (k∗, j∗),
η(k, j) is a wrong measurement of the configuration. From a single set of measures it
is not possible to discriminate which is the correct pair (k∗, j∗) corresponding to the
correct η, nevertheless, in Sec. 7.4.4 we show a discriminating method exploiting
the dynamics, similar to the one proposed in Sec. 4.8.

For the purpose of proving the observability of the system and for designing the
observer we consider η = η(k∗, j∗).

7.4.2 Observability

In order to study the observability of the system and to design an observer of the
state, we first rewrite the system in a state space form. We can rewrite (7.6) and the
measurements function (7.21) as:

Ûx = Ax + B

[
Σ(x,u1)

J−1u2

]
(7.22a)

η = Cx, (7.22b)

where A = diag(A1,A2,A3,A4), B = diag(B1,B2,B3,B4), C = diag(C1,C2,C3,C4)
and

Ai =

[
0 1
0 0

]
, Bi =

[
0
1

]
, Ci =

[
1 0

]
∀i = 1, . . . ,4

Σ(x,u1) = −M(x)−1c(x) + M(x)−1Q̄ϕ(x)u1. (7.23)

Notice that M(x) is always invertible. Writing (7.22) as Ûx = f(x,u), and η = h(x).
the system results observable if the nonlinear observability matrix O(x,u) =[
∂h(x)
∂x

,
∂ Ûh(x)
∂x

, . . . ,
∂h(7)(x)
∂x

]>
∈ R4·8×8 is full rank [49]. We can notice that

O(x,u)1 =
[
∂h(x)
∂x

,
∂ Ûh(x)
∂x

]>
=

[
C> (CA)>

]>
.

Changing the order of the rows we obtain O(x,u)′1 = I8, that is full rank for every
x ∈ R8 and u ∈ R4. This implies that also O(x,u) is always full rank, i.e.,

Proposition: Consider the system described by (7.6) with two on-board accelerom-
eters, mounted on each vehicles, and two encoders. One is attached to the ground
and connected to the first link, and one is mounted on the first vehicle and connected
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to the second link. Then, the system is observable except for the zero internal force
cases, i.e., fL1 = 0 or fL2 = 0. �

Although we proved Prop. 9 only for the fourth case of Tab. 7.1, actually, the result
shows a more general sufficient observability condition. Indeed, independently from
the available sensors, whenever there are some output transformations that translate
the original measurements into direct measures of q, then the system is observable,
i.e.,

Proposition: Consider the system described by (7.22a) and a set of measurements
w = h(x,u) ∈ Rp , where p ∈ R

≥1. DefineX the state space andU the control inputs
space. If there exists a subspace D ⊆ X × U and a measurement transformation
function Γ : Rp → R4 valid inD, such that [ϕ1 ϕ2 θ1 θ2]

> = Γ(w), then the system
is observable for every x and u in D, and can be written in the form of (7.22). �

7.4.3 High gain observer

For the sets of measurements that fulfill the condition of Prop. 10, and in particular
for the case 4 of Tab. 7.1 we show in this section the design of an observer based on
HGO (see Sec. 2.4).

Considering the system (7.22) we define ζ = [ζ>1 ζ>2 ]
> = [ζ1 ζ2 ζ3 ζ4]

> =

[x1 x2 x3 x4]
> and z = [z>1 z>2 ]

> = [z1 z2 z3 z4]
> = [x5 x6 x7 x8]

>. The
system (7.22) can be then written as{

Ûζ = Aζζ + BζΣ(ζ,η2,u1)

η1 = Cζζ

{
Ûz = Azz + Bzu2

η2 = Czz,
(7.24)

where Aζ = diag(A1,A2), Bζ = diag(B1,B2), Cζ = diag(C1,C2), Az = diag(A3,
A4), Bz = diag(B3,B4)J

−1, Cz = diag(C3,C4). Having replaced θ1 and θ2 with their
measures η2 in the dynamics of ζ , the two systems become completely indepen-
dent, moreover, the second one is linear, therefore we can design for it a classical
Luenberger observer

Û̂z = Azẑ + Bzu2 +Hz(η2 − Czẑ), (7.25)

where Hz = diag(Hz1,Hz1 ) and Hzi = [β
i
1 βi2]

>, whose elements, βij ∈ R>0 can be
set to place the poles of the error dynamics, ezi = zi − ẑi . Instead, for the first system,
thanks to its particular triangular form, it is possible to use the following HGO

Û̂ζ = Aζ ζ̂ + BζΣ(ζ̂,η2,u1) +Hζ(η1 − Cζ ζ̂ ), (7.26)

where Hζ = diag(Hζ1,Hζ1 ) and Hζi = [
αi

1
ε

αi
2
ε2 ]
>, with ε ∈ R>0, and the gains

αi
j ∈ R>0 are set such that the roots of s2 + αi

1s + αi
2 have negative real part. The
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gains (αi
1, α

i
2) influence the convergence rate of the estimation of the i-th elevation

angle and its derivative, i.e., ϕi and Ûϕi . A schematic representation of the observer
is given in Fig. 7.3b.

7.4.4 Disambiguation of η

The output transformations described in Sec. 7.4.1 generates four different set of
measurements, η(k, j) with k, j ∈ {0,1}, of which only one is correct.

As represented in Fig. 7.3a, for each k, j ∈ {0,1}, we implement an observer of
the state, Σk j , using (7.25) and (7.26), based on the measurements η(k, j). Therefore
we obtain four estimates of the state, one for each measurement pair, x̂0,0, x̂0,1, x̂1,0,
x̂1,1, and the correct one has to be recognized.

Define ŵ = [â>1 â>2 ρ̂1 ρ̂2]
> as the vector that contains the measurements

computed with the estimated state, i.e.,

ρ̂1 = x̂1, ρ̂2 = x̂3 + x̂5, âi = R̂Bi

W ( Ü̂pBi − gzW ),

where R̂Bi

W = RBi

W (x̂), and Ü̂pBi is calculated considering the system model (i.e., no
numerical differentiation is needed)

Ü̂pB1 = −l1d1(x̂1)x̂2
2 + l1d⊥1 (x̂1) Û̂x2

Ü̂pB2 = Ü̂pB1 − l2d2(x̂3)x̂2
4 + l2d⊥2 (x̂3) Û̂x4.

In the previous equations Û̂x2 and Û̂x4 are the estimation of the angular acceleration of
the elevations calculated replacing the estimated state into (7.23), i.e., [ Û̂x2 Û̂x4]

> =

Σ(x̂,u1) (no numerical differentiation needed in this case either).
In order to choose the correct estimation among the four, we propose a method

based on the minimal prediction error, similar to the one used in Sec. 4.8. For each
observer we compute a prediction error ẽk , j smoothed with an exponential discount
factor:

Û̃ek , j = λ(
w − ŵk , j

 − ẽk , j),

where λ ∈ R>0 sets the discount rate and w = [a>1 a>2 ρ1 ρ2]
>. Then, the estimation

of the observerwithminimumprediction error is chosen, i.e., x̂ = x̂k∗ , j∗ s.t. {k∗, j∗} =
arg mink , j∈{0,1}(ẽk , j). Fig. 7.3 shows the estimator structure.
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(a) Global Observer.
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ηηη2(k, j)

ηηη(k, j)

(b) Observer Σk , j .

Fig. 7.3: Graphic representation of the observer. © 2020 IEEE. Reprinted, with permission,
from [106].

7.4.5 Discussion on the proposed method

Zero internal force Case

As we previously noticed, if one of the link internal forces is zero then w2 or w4
cannot be determined. We noticed an analogous singularity in Sec. 4.7 and Sec. 4.8
for the single tethered system as well. Nevertheless, we showed that if the desired
internal force is passing through zero for a sufficiently short (ideally zero) time
interval, one can still use the proposed observes in practice by updating the filter
without the correction term in that time instants. For the multi-tethered system this
implies to impose

Û̂z = Azẑ + Bzu2
Û̂ζ = Aζ ζ̂ + BζΣ(ζ̂, ẑ,u1)

if w1 = 0 or w3 = 0.

During this instant the observation is done in ‘open loop’ only using the model
dynamics, thus the error dynamics becomes non strictly stable for a short moment.
However, the dynamics returns asymptotically stable as soon as the internal force
becomes non-zero again, as it is shown in Sec. 7.5 by simulations.
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Applicability

The transformation method showed for the case 4 in Tab. 7.1 can be applied also to
other sets of sensors. Last column of Tab. 7.1 specifies for which cases the method
is able to transform the original measurements into direct measures of the system
configuration. For cases 1 and 2, the measurements transformations are very similar
to those derived for case 4. For the remaining cases it is not possible to apply the
proposed method. In particular for the cases 3, 5, 7 we cannot compute the transfor-
mation (7.20).While, for the case 6, the problem lies in the last transformation (7.21).

Loop Stability

For the control law described in Sec. 7.3, the knowledge of the state is sufficient in
order to close the loop. Thus we can use as feedback the state estimation provided by
the proposed observer. Then a similar reasoning to the one in Sec. 4.7 and Sec. 4.8
can be done to prove that there exist a ε∗ such that, for every 0 < ε ≤ ε∗ in (7.26),
the closed loop system with the observer is exponentially stable, except for the zero
thrust and zero internal force cases.

7.5 Numerical validation

We tested the closed loop system (observer + controller) in simulation using two
aerial robots with mRi = 1 [kg] and JRi = 0.15 [kg m2], and two links with li = 2 [m]
(i = 1,2). In order to obtain a reasonable fast tracking of the desired trajectories we
set the gains such as the error dynamics relative to ϕ1, ϕ2 and fL1, fL2 has poles in
(−3,−6,−9,−12) and (−5,−10), respectively. Regarding the convergence of the state
estimation, we set ε = 0.1 and the gains (αi

1, α
i
2) such as the roots of s2+αi

1s+αi
2 are

(−2,−3). We set Hzi such that the error dynamics of the estimation of θ1 and θ2 has
poles in (−15,−25). Finally, the discount rate of the prediction error dynamics is set
to λ = 20. These gains values, replicated identically for each of the four observers,
guarantee the stability of the closed-loop system.

To show the ability of the proposed observer to exponentially converge to the real
state, we initialize it with an error of 5◦ relatively to the elevation and pitch angles.
We propose two different simulations:

i) the first, whose results are plotted in Fig. 7.4, shows the performances of the
global closed loop system in the particular case of inversion of the internal force.
In particular, the trajectory of the end-effector is a trajectory of class C3 from
the initial position pB2 (0) = [2.5 0 2]T to the final pB2 (t f ) = [−0.7 0 0.7]T .
While the desired internal force along the links is a trajectory of class C1 from
the initial tension of 10 [N] to the final compression of −10 [N].

ii) In the second simulation, reported in Fig. 7.5, we replicate a plausible real
scenariowhere the system is controlled as a two-link robot. The desired trajectory
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of the end-effector is planned in the Cartesian space as a sequence of three arcs
of ellipse in order to enter, stop on each room of a plausible building, and then
return to the initial position. By inverse kinematics the desired trajectories of
the two elevations are derived. In the meanwhile a constant tension of 5 [N] is
required on the two links for the hole duration of the task.

To better represent the behavior of the system, Fig. 7.4c and Fig. 7.5c show the
stroboscopic evolution of the systemwhere the flow of time is provided by the change
of color. To graphically represent the internal force variation, the link is drawn as a
dashed line with a thinner width when the tension is higher, and as a solid line with
a wider width when the compression is higher.

From Fig. 7.4 and Fig. 7.5 one can notice that the estimation of the state converges
to the real one in less than one second, in any dynamic condition. Moreover, for
the first simulation, the prediction error does not increase even when the desired
internal force passes through zero. Although during the transient of the estimation
the controller shows a non zero tracking error, actually, as soon as the estimation error
goes to zero, the outputs follow the desired trajectory with high fidelity during the
remaining time of the simulation. An animation of the simulations is also available
at [102].
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Fig. 7.4: Simulation results: point to point motion. © 2020 IEEE. Reprinted, with permis-
sion, from [106].

Preprint version, Springer Tracts in Advanced Robotics book series (STAR, volume 140)



162 7 Towards multiple tethered aerial vehicles

[d
eg

]

20

60

100 '1 '̂1

150

200

250
'2 '̂2

[d
eg

=s
]

0

100

200 _'1 _̂'1

0

100

200 _'2 _̂'2

[d
eg

]

20

40

60 #1 #̂1

-30

-20

-10 #2 #̂2

[d
eg

=s
]

-200

0

200
_#1 _̂#1

-100

0

100

_#2 _̂#2

[m
=s

2
]

0

20 a1x
a1z

-10

0

10
a2x

a2z

[s]
0 0.5 1 1.5 2

[d
eg

]

0

200

400 w2 w4

[s]
0 0.5 1 1.5 2

0

1

2 ~e

(a) Observer Results: the plot shows only the first 2 seconds of simulation.
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Fig. 7.5: Simulation results: example of a search and rescue task. © 2020 IEEE.
Reprinted, with permission, from [106].
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Chapter 8
Conclusions

Abstract In the following of this chapter we recap what have been presented
in this book. In particular, we provided a complete and thorough study of tethered
aerial vehicles going from the basic theoretical problems of modeling, controllability
and observability, to application-oriented problems. This book is not limited to the
theoretical analysis of the considered problems, but also presents experimental results
that validates the proposed methods.

8.1 Summary of the book

With the aim of advancing in the control and motion planning for aerial robots
interacting with the environment, in this book we extensively studiedtethered aerial
vehicles. These consists of unidirectional-thrust aerial vehicles connected to amoving
or fixed point on the ground by a link whose length can be changed by a link actuator.
For this general system, we produced a complete theoretical analysis of its dynamics
and intrinsic properties, the controllability and the observability with a minimal set
of standard sensors.

Starting with the investigation of the differential flatness of the systems, a very
useful and powerful property of dynamical systems, we proved the existence of two
flat outputs. The first, ya, is directly linked to physical interaction. It contains the
position of the vehicle with respect to the anchoring point, the rotation along the
thrust vector (standard flat output for an unidirectional-thrust vehicle in free-flight)
and the internal force along the link. This tells us that the position of the aerial
vehicle and the interaction force between the robot, the link and the system at the
other end, can be controlled independently. Thanks to the generality of the computed
dynamic model, the internal force can be tension and/or compression accordingly to
the specific implementation. The second flat output, yb , contains the position of the
vehicle with respect to the anchoring point, the rotation along the thrust vector and
the angle ϑA that is related to the attitude of the vehicle with respect to the link. The
latter output entry is unusual for unidirectional-thrust aerial vehicles because, in the
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free-flight configuration, the attitude is (in terms of differential flatness) a by-product
of the translational motion. This adds new potential capabilities to the system.

Aiming to control those outputs and not only the position of the vehicle like in
the majority of the state of the art, we designed and experimentally validated two
first hierarchical controllers. Those are based on the separation principle between
translational and rotational dynamics and exploit the flatness to compute the feed-
forward terms. The conducted experimental tests proven the validity of the method
in quasi-static conditions but also shown its limitations when asked to track highly
dynamic trajectories. For the goal of precisely tracking any sufficiently smooth
time-varying trajectory (not only stabilization like in the state of art), we used the
dynamic feedback linearization method to design a second pair of controllers. Parts
of those control results were also extended to the particular case of a passive link
actuator, which is an interesting case thanks to its simplicity. However, in this case,
the internal force along the link is not controllable anymore, and neither the attitude-
related variable.

All controllers require the full knowledge of the state of the system in order to
compute the control action. Though, in practice it is difficult or even impossible
to directly measure the full state of the system. Thus, motivated by the practical
and theoretical relevance of the problem, we investigated which is the minimal set
of standard sensors that make the system observable. Assuming that the motion
of the anchoring platform is known, we proved that the standard onboard IMU
together with three encoders measuring the attitude and the length of the link,
are enough to obtain an estimation of the full dynamic state (including, e.g., the
generalized velocities of the system). Differently from the state of the art in which
an observer based on a quasi-static assumption was proposed, we aimed to design
an almost globally convergent state estimator. For this purpose, we found some
nonlinear transformations of the measurements that bring the system in the canonical
controllability form. This allowed us applying a high gain observer. The case inwhich
the link has a constant length and the vehicle is constrained on a vertical 2D plane
is of particular interest. Under these assumptions, we proved that only onboard IMU
alone is enough to retrieve an estimation of the full state (including position, attitude
and generalized velocities). Such a surprising result is rather unique in the panorama
of state estimation for aerial vehicles, indeed a positional measurement is typically
always needed. Also in this case, we found some nonlinear transformations of the
measurements and of the state such that to apply a high gain observer.

From the theoretical study, we passed to a more applicative and practical prob-
lem: landing and takeoff of an unidirectional-thrust aerial vehicle on/from a sloped
surface. This problem is normally very challenging in a free-flight configuration due
to the underactuation and the consequential need of a precise motion planning and
tracking. On the other hand, we proved that the use of the tether makes those maneu-
vers much more safe, reliable and robust to model uncertainties and tracking errors.
For the practical execution, we successfully employed the hierarchical controller for
yb . A motion planner based on an optimal control method was also designed to
improve the reliability and smoothness of the landing and takeoff.
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Finally, we considered a multi-robot extension composed of two aerial vehicles
tethered by two links to the ground and to each other, forming a chain-like system. The
system is of particular interest for its similarity with a planar two-link manipulator,
where the actuators are aerial vehicles. For this system, we extended the flatness and
the dynamic feedback linearizability with respect to ya2 (containing the position and
internal link force for both couples vehicle/link). Also in this case, we designed a
high gain observer based on IMU and encoders measurements.

8.2 Future works

We presented a complete theoretical analysis of tethered aerial vehicles. Neverthe-
less, some additional works could be done, e.g., formally proving the stability of
the proposed hierarchical controller, proven only experimentally. Other interesting
extensions could be done toward an automatic identification of the system param-
eters and an adaptive controller, or toward a cooperative control with the moving
platform. Another work could be to consider the problem of landing (and takeoff)
on a surface with variable attitude, like a ship in a rough see. From the control and
motion planning point of view, an interesting problem could be the one of using a
tethered robot for the exploration of unknown and cluttered environments. On the
other hand, given the level of maturity of the theoretical part, many are works that
could be done form the practical and engineering point of view. Firstly, we plan to
experimentally test the proposed dynamic feedback linearizing controller and the
observers. Those could be then employed to enhance the performance during the
landing and takeoff maneuvers in highly dynamic cases. However, for the real ap-
plication, some improvements of the system have to be considered. For example a
small winch could be added to unroll and roll-up the cable immediately before and
after the tethered maneuvers. A more suitable anchoring mechanism can be designed
according to the type of landing surface. Finally, the robot could be equipped with an
onboard vision system to identify the position of the anchoring and landing points,
as well as the landing surface attitude.
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