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Cooperative Aerial Load Transportation via Sampled Communication

Enrica Rossi1, Marco Tognon2, Ruggero Carli1, Luca Schenato1, Juan Cortés2, Antonio Franchi2,

Abstract— In this work, we propose a feedback-based motion
planner for a class of multi-agent manipulation systems with
a sparse kinematics structure. In other words, the agents
are coupled together only by the transported object. The
goal is to steer the load into a desired configuration. We
suppose that a global motion planner generates a sequence of
desired configurations that satisfy constraints as obstacles and
singularities avoidance. Then, a local planner receives these
references and generates the desired agents velocities, which
are converted into force inputs for the vehicles. We focus
on the local planner design both in the case of continuously
available measurements and when they are transmitted to the
agents via sampled communication. For the latter problem,
we propose two strategies. The first is the discretization of the
continuous-time strategy that preserves stability and guarantees
exponential convergence regardless of the sampling period. In
this case, the planner gain is static and computed off-line. The
second strategy requires to collect the measurements from all
sensors and to solve online a set of differential equations at
each sampling period. However, it has the advantage to provide
doubly exponential convergence. Numerical simulations of these
strategies are provided for the cooperative aerial manipulation
of a cable-suspended load.

I. INTRODUCTION

Unamnned Aerial Vehicles (UAVs) have received a lot of
attention in the last decade thanks to their broad field of
applications. In fact, they are employed to perform diverse
complex tasks from search and rescue to load manipulation
and transportation [1], [2]. Due to the limited payload of
commercially available vehicles, a group of robots is rather
employed to transport and manipulate payloads, e.g., for
construction and assembly tasks. The most direct approach
to control such a multi-robot system is by a centralized
kinematic/dynamic inversion [3]–[5]. However, a distributed
approach, where the communication among agents is re-
stricted to neighbors [6], [7] or not employed at all [8], [9], is
more favorable. This technique guarantees major robustness
and flexibility w.r.t. a centralized one, where a central unit
handles all the computational load and if the latter fails, then
the whole task fails. However, the distributed approach lacks
global information as the load state and parameters, or the
total number of robots. This aspect increases the difficulty of
the controller design and might degrade the performance as
well. Moreover, many communication-less approaches rely
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on a leader-follower paradigm: the followers track the leader
who is the only agent aware of the desired task. Hence
i) if the leader fails, then the task will fail too, and ii) if
one follower fails, the formation might be loosen. In this
scenario, the communication is done implicitly by the forces
exchanged through the load [10], [11]. However, if a very
precise tracking is required, the force feedback is not enough
and a pose feedback from the load is needed. This can be
measured by a sensor placed on the load, or retrieved from
the robots pose if those are rigidly connected to the load.
Since in this work the load is suspended by cables, only
the first option is feasible. In particular, the load sensory
suit shall send the estimated load pose to the robots via a
communication channel.
To the best of our knowledge, in this work we investigate
for the first time the problem of cooperative aerial load
transportation via sampled communication. In fact, the band-
width required to fulfill real-time requirements in robotic
manipulation is larger w.r.t. the one provided by today’s Wi-
Fi. Therefore, the frequency of communication is not high
and neither constant. We tackle these problems by consid-
ering an architecture where a global motion planner [5]
generates off-line a sequence of reference points, taking
into account obstacles and singularities avoidance. These
points are then loaded in the computational unit, that in our
scenario can be placed on the transported platform or on
the vehicles, depending on the strategy. Then, to connect
each pair of consecutive points along the path computed
off-line, we propose a method that computes online the
reference vehicles velocities, guaranteeing the stability and
the exponential convergence of the pose load error, even
when the communication is not continuous. In the following,
we call this method a local motion planner. The design of
this planner is our main contribution: we firstly define it in
the continuous time scenario and later extend the analysis
to the more realistic case in which the measured variables
are transmitted via sampled communication to the low-level
agent controllers. Note that we focus only on the kinematic
model since it is assumed that each agent is endowed with
a dynamic model-based local controller. For this problem,
we propose two strategies: a static feedback technique that
exploits the sparsity of the system model and an adaptive one,
where the planner gain is adapted according to the system
state. The second strategy provides faster convergence rate
w.r.t. the first one, but cannot be implemented in a distributed
way.
The paper is organized as follows: in Sec.II we formalize
the problem for a particular class of systems. In Sec.III
we analyze the continuous-time scenario, extended to the
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Fig. 1: Example of a multi-agent system that transports a payload.

discrete-time case in Sec.IV. In Sec.V numerical simulations
are described.

II. MODELING AND PROBLEM FORMULATION

A. Kinematics of multi-agent systems

In this section we describe the kinematic model of a multi-
agent system composed by N actuated agents interacting
through a common object L (the load to be manipulated) by
means of passive mechanical connections, such as cables,
bars, joints, etc.. Agents can be, e.g., 1-DoF actuated cables
of variable length or even 3-DoF actuated points flying in
the 3D space. The kinematic model is derived as in [5]:[

p1 . . . pN
]> = h(q) =

[
h(1)(q1,qL) . . . h(N)(qN ,qL)

]>
. (1)

This function maps the Lagrangian coordinates of the sys-
tem q = [q>1 · · · q>N q>L ]> ∈ Rm to the vector collecting the
agents configurations p =

[
p1 . . . pN

]> ∈ Rn where pi ∈ Rni

represents the cables lengths in a cable-driven robot or
the positions of the flying points in an aerial system. In
particular, qi ∈ Rmi gathers the angles between the common
object L and the i-th robot, and qL ∈RmL represents the pose
(position and orientation) of the manipulated object itself.
Note that mi = 0 if pi can be fully described by the only load
pose qL. Otherwise, if pi depends also on qi, then mi = 1 if
one angle is sufficient to express the positions pi w.r.t. the
load pose (as in Fig.1); if a single cable connects a robot
to the load, then the cable orientation is described by two
angles, i.e. mi = 2. Note that we do not consider rotations of
the cables about their own axis, hence mi ≤ 2. A key feature
of the systems considered in this work is that they exhibit a
star-like interaction topology where each agent is connected
to a central unit (the load). This topology is more evident
when considering its differential kinematics:

ṗ = Aq q̇, (2)

where the Jacobian Aq = ∂h(q)
∂q ∈ Rn×m has the structure

Aq =


A(1)

q1 0 A(1)
qL

. . .
...

0 A(N)
qN A(N)

qL

, (3)

and A(i)
qi =

∂hi(q)
∂qi
∈ Rni×mi and A(i)

qL =
∂hi(q)

∂qL
∈ Rni×mL .

LOAD

AGENT

u

GLOBAL PLANNER q
r

Fig. 2: Representation of (5) (left) and (6) (right). The load is
represented in gray, each agent (dynamical controller plus robot)
in blue, the measurements from the sensors in red and the global
planner in green. The dynamical controller converts u into forces for
the robot. The wireless symbol refers to sampled communication.

B. Problem Formulation

The goal of the paper is to design a feedback-based local
planner in order to steer the system from an initial configura-
tion q0 to a desired one qr. In general, qr could be a waypoint
sampled at the time instant t`, ` ∈N from a trajectory qp(t),
with t ∈R, generated off-line by a global path planner. This
can take into account high-level performance metrics such
as obstacles avoidance, minimum energy trajectories and
singularity avoidance (i.e., the configurations s.t. the Jacobian
Aqp(t) is not full rank). The objective is to steer the system
from a configuration q0 ≈ qp(t`) to a final one qr ≈ qp(t`+1)
faster than the intersample interval ∆t = t`+1−t`. We assume
that each agent has an inner-loop control sufficiently fast with
respect to the dynamics of the entire system, such that the
velocities of the variable vector p are fully controllable, i.e.:

ṗ(t) = u(t), (4)

where u = [u>1 · · ·u>N ]> ∈ Rn. We consider two possible
architectures, depicted in Fig.2:

ui(t) = κ
s
i (qi(t),qL(t);qr

i ,q
r
L), i = 1, . . . ,N (5)

ui(t) = κ
c
i (q(t);qr), i = 1, . . . ,N (6)

where the former tries to maintain the same sparsity of the
Jacobian while the latter exploits the full knowledge of 1 q.
We will show that if q(t) is continuously accessible to the
local planner, then (5) is sufficient to drive the system from
q0 to qr very effectively. On the other hand, under the more
realistic scenario when some of the components of q(t) need
to be sampled and transmitted via wireless, then the two
architectures give rise to two different strategies with dif-
ferent performance and computational requirements. Before
proceeding, we define the set Br(qr) := {q∈Rm |‖q−qr‖<
r,r > 0}, where ‖ · ‖ indicates the Euclidean norm and the
following assumption:

Assumption 1. The following relations hold:
1) n = m, i.e., Aq ∈ Rn×n

2) the matrix Aq is invertible and the map h is twice con-
tinuously differentiable for all q ∈Br(qr). In addition,
these properties can be extended by continuity on the
closure of such set, defined as Br(qr).

1Note that we do not pursue control strategies of type u(t) = κ(p(t);pr)
where pr := h(qr) since the function h might not be perfectly known and
avoidance of singular configurations cannot be guaranteed.
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3) q0 ∈Br(qr)

The first assumption is adopted in the interest of space: an
example is reported in Fig.1. In particular, we refer to these
systems as square systems. The second assumption allows
defining the evolution of q(t) in Sec.III and IV and can be
satisfied in the points generated by the global path planner,
hence such an r exists by continuity arguments. The last
assumption is guaranteed if the planner properly selects the
waypoints such that ‖qp(t`+1)−qp(t`)‖ is smaller than r.

III. LOCAL PLANNER: CONTINOUS-TIME

In this section, we describe the local planner that generates
the desired vehicles velocity in the scenario of continuous
time measurements. The goal is to steer q(t) to qr. Assuming
Aq(t) full-rank, from (2) the evolution of q is ruled by

q̇(t) = A−1
q(t)u(t). (7)

A possible choice to define the desired vehicles velocities is:

u(t) =−Aq(t)K(q(t)−qr), (8)

where K is a gain matrix to be designed. With this choice,
if Aq(t) is invertible, we have that

q̇ =−K(q(t)−qr). (9)

The feedback gain K needs to guarantee stability, but also
to make the trajectory q(t) not to pass through a singularity.
This is established in the next Proposition.

Proposition 1. Consider the system (7)-(8) and Ass. 1. If
K+K> is strictly positive definite, then

1) for all t ≥ 0, q(t) ∈Br(qr)

2) the trajectory q(t) converges exponentially fast to qr.

Proof. 1) Take the Lyapunov function V (q) = ‖q− qr‖2.
Then its time derivative is as follow

V̇ (q) =−(q−qr)>(K+K>)(q−qr)< 0, q 6= qr,

if K+K> > 0, i.e., if the symmetric part of K is so. Hence
V (q) does not increase and therefore q(t) ∈Br(qr) ∀t ≥ 0.
2) The solution of (9) is q(t) = e−Ktq0 +qr that converges
exponentially fast to qr if −K is Hurwitz which is guaranteed
by the hypothesis K+K> > 0.

We conclude this section observing that, if we choose K
to be block diagonal of the form K = diag{K1, . . . ,KN ,KL},
where Ki ∈ Rmi×mi and KL ∈ RmL×mL , then

ui = A(i)
qi Ki(qi(t)−qr

i )+A(i)
qL KL(qL(t)−qr

L), (10)

i.e., the desired velocity for the i-th robot does not depend
on the other robots state, as defined in (5).

IV. LOCAL PLANNER: SAMPLED MEASUREMENTS

We now consider the evolution of (7) under sampled
dynamics, that is, we assume that q is measured on the time
instants hT , h = 0,1,2, . . . where T is the sampling time.
Furthermore, we assume that the vehicles reference velocity
u(t) is kept constant within a time window T using (8):

u(t) = uh =−AqhK(qh−qr), hT ≤ t < (h+1)T,

for h = 1,2, . . ., and qh := q(hT ). K can be chosen to satisfy
Prop.1 and s.t. ui does not depend on q j with i 6= j:

K = kIn, k ∈ R>0,

with In ∈Rn×n the identity matrix. In this scenario, assuming
Aq(t) non singular, the evolution of q(t) becomes:

q̇(t) =−kA−1
q(t)Aqh(qh−qr), hT ≤ t < (h+1)T. (11)

The main goal of this section is to design k, possibly time
varying, i.e., k = kh, such that the stability of the system is
still guaranteed. For the sake of notational convenience, we
apply a change of coordinates of type e(t)← q(t)−qr and
the simplified notation B0 := Br(er), with er = 0.

The design of k is based on the study of the following aux-
iliary system whose solution is characterized by interesting
and useful properties that will be analyzed later on:

ė′(τ;eh) =−A−1
e′(τ;eh)

Aeheh =: f(e′(τ;eh)) (12)

e′(0;eh) = eh; eh ∈B0,

where τ ∈ [0,kT ] and e′(·; ·) ∈ Rm. By direct inspection

e(t) = e′(k(t−hT );eh), hT ≤ t < (h+1)T. (13)

Hence, once the solution e′(τ;eh) is computed, then e(t)
is obtained through shifting by hT and rescaling by k as
long as e′(k(t − hT );eh) exists; then, q(t) = e(t)+qr. The
major benefit of this approach is that the analysis of (12) is
independent of the gain k and the sampling period T . From
Ass. 1, and since f and ∂ f

∂e′ are continuous maps on a compact
domain, the following properties follow, for some a,b > 0

f(e′(0;e)) = −e, ∀e ∈B0 (14)
‖f(e′(τ);e)‖ ≤ ‖A−1

e′ Ae‖‖e‖= a‖e‖, ∀q′,e ∈B0 (15)∥∥∥∥∂ f(e′(τ);e)
∂e′

∥∥∥∥ ≤ b‖e‖, ∀e′,∀e ∈B0, (16)

Since the flow f(e′;eh) is locally continuously differen-
tiable in e′, then for each eh ∈ B0 there exists δ (eh) > 0
s.t. (12) has a unique solution e′(τ;eh) for τ ∈ [0,δ (eh)).
Without loss of generality we define τmax(eh) the maximum
time extension for which the unique solution e′(τ;eh) exists
for τ ∈ [0,τmax(eh)). An interesting property of e′(τ;eh) is
described in Prop. 2:

Proposition 2. Consider the dynamical system (12) and
assume Ass. 1 holds true. Then the solution e′(τ;eh) satisfies
one of these two properties:

(i) for all τ > 0, it holds ‖e′(τ;eh)‖ < ‖eh‖ and in such
case τmax(eh) = ∞;
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Fig. 3: Depiction of B0, δeh , τ∗o , τo(eh), τ∗s , τs(eh) and τmax(eh).
The time values are in red, and the points or sets in Rm in black.

(ii) there exists 0 < τ̄ < τmax(eh) such that ‖e′(τ̄;eh)‖ =
‖eh‖ and ‖e′(τ;eh)‖< ‖eh‖ for all 0 < τ < τ̄ .

Proof. Only two scenarios are possible, either ‖e′(τ;eh)‖<
‖eh‖ for all τ > 0, from which τmax(eh) = ∞ follows, or not.
If not, then τ := infτ>0{τ |‖e′(τ;eh)‖≥ ‖eh‖} is well defined
and finite. Now, let us assume that τ̄ = 0: since e′(τ;eh) is
continuously differentiable in τ and since ė′(0;eh) = −eh,
then there exists ė′(0;eh) s.t. e>h ė′(0;eh) ≥ 0 ⇔ −e>h eh =
−‖eh‖2 ≤ 0 that is a contradiction. This implies that τ̄ > 0.
Finally, observe that the definition of τ̄ makes sense only if
a solution e′(τ;eh) exists, hence τ ≤ τmax(eh).

Based on the previous result, we can now define the
following temporal variables:

τs(eh) :=min
τ
{τ >0 |‖e′(τ;eh)‖= ‖eh‖}, τ

∗
s := inf

eh∈B0
τs(eh),

τo(eh) := arginf
0≤τ≤τs(eh)

‖e′(τ;eh)‖, τ
∗
o := inf

qh∈B0
τo(qh),

where τs(eh) = ∞ if ‖e′(τ;eh)‖< ‖eh‖,∀τ . These quantities
are sketched in Fig.3. Basically, τs(eh) represents the first
time that the solution e′(τ;eh) hits the boundary of the
ball centered at the origin and passing through the initial
condition eh, while τo(eh), represents the time that e′(τ;eh)
is closest to the origin. We will show in the next section,
that for any given set B0 we can find 0 < τ̄o < τ̄s and
0 ≤ ρ < 1 s.t. ‖e′(τ̄o;eh)‖ ≤ ρ‖eh‖ for all eh ∈ B0, and
τ̄o≤ τ∗o , τ̄s≤ τ∗s . The variables τ̄o and τo(eh) allow proposing
two different strategies to design the gain k. The first is
based on the observation that if k = τ̄o

T , then e′(τ;eh) →
0 ∀eh at a convergence rate ρ . In fact, from (13) we have
‖eh+1‖= ‖e′(kT ;eh)‖= ‖e′(τ̄o;eh)‖ ≤ ρ‖eh‖. This suggests
an offline procedure to select k that will be described in the
next Sect. IV-A. However, based on the definition of τo(eh),
it might be likely that ‖e′(τo(eh);eh)‖< ‖e′(τ∗o ;eh)‖ for most
eh ∈B0. Therefore, an alternative approach is to select k at
each instant h such that kh := τo(eh)

T . This idea suggests an
online strategy that will be described in Sect. IV-B.

A. Off-line procedure (Stability and convergence rate)
From (13), if we show that τ∗s > 0, then the original system

(12) is asymptotically stable for

kT < τ
∗
s ∀ e(0) ∈B0.

Note that if this condition is not satisfied, then we can find a
time instant τ ′ ∈ [τ∗s ,+∞] and e(0) such that ‖e′(τ ′;e(0))‖>
‖e′(0;e(0))‖, that is ‖e(kT )‖> ‖e(0)‖ for k = τ ′

T . Although
this does not imply instability of the whole trajectory, it is an
undesired behavior. We now want to find an explicit lower
bound τ̄s > 0 for τ∗s . To do that, we consider an expansion
of the solution of (12) and numerically estimate the upper
bound of the approximation error via an additional parameter
µ . This allows deriving an analytical expression of τ̄s.We
recall that the solution of (12) can also be written as:

e′(τ;eh) = eh +
∫

τ

0
f(e′(τ ′;eh))dτ

′, 0≤ τ < τs(eh).

By using Taylor’s theorem for multivariate functions with
integral form of the remainder, it becomes

e′(τ;eh) = eh + τ f(e′(0);eh)+

+ τ
2
∫ 1

0
(1− ε)

∂ f(e′(ετ);eh)

∂e′
f(e′(ετ);eh)dε

= (1− τ)eh + τ
2d(τ,eh), 0≤ τ < τs(eh), (17)

where the reminder d has the property2:

Proposition 3. There exists 0 < λ < ∞ such that for all qh ∈
B0 and for all 0 < τ < τs(eh) it holds ‖d(τ,eh)‖ ≤ λ‖eh‖2.

Proof. As a consequence of the properties (15) and (16), the
reminder in (17) becomes

‖d(τ,eh)‖ ≤
∫ 1

0
(1− ε)

∥∥∥∥∂ f(e′(ετ);eh)

∂e′

∥∥∥∥‖f(e′(ετ);eh)‖dε

≤
∫ 1

0
(1− ε)ab‖eh‖2dε =

1
2

ab‖eh‖2 = λ‖eh‖2

where λ := 1
2 ab and a,b are the bounding constants intro-

duced in (15) and (16).

Notice that since eh ∈Bo, then ‖eh‖ ≤ r and there exists

µ :=
1
2

abr, (18)

such that ‖d(τ,eh)‖ ≤ 1
2 ab‖eh‖2 ≤ µ‖eh‖. Note that µ rep-

resents a rough estimate of the upper bound of ‖d(τ,eh)‖.
However, this estimate can be refined as follows. Let

d′(τ,eh) :=τ
2d(τ,eh)

(17)
= e′(τ,eh)− (1− τ)eh and

µ
∗ := inf

γ
{γ | ‖d′(τ,eh)‖ ≤ γ‖eh‖τ2,

∀eh ∈B0, ∀τ ∈ (0,τs(eh))}.

We are interested in providing an estimate µ̂∗ of µ∗. To this
aim, we randomly pick samples in B0, ei

h ∈B0, and for each
of them we simulate e′(τi;ei

h) for τi ∈ [0,τs(ei
h)].

µ̂
∗ :=max

i

{
‖d′(τi,ei

h)‖
τ2

i ‖ei
h‖

,∀ei
h ∈B0, ∀τi ∈ (0,τs(ei

h))

}
. (19)

Since µ̂ is computed on a sampled B0, we may discard
some configurations which would give a larger value of the

2Note that the reminder scales as ‖eh‖2 which implies that as e′ becomes
closer to the origin, the faster it converges.
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Fig. 4: Representation of τs(µ), τ0(µ) and ρ(µ).

estimate. Hence µ̂ ≤ µ and µ̂→ µ as the number of samples
increases. From (17) and Prop. 3, for eh ∈B0 we have that

‖e′(τ;eh)‖ ≤ (|1− τ|+µτ
2)‖eh‖, (20)

for all 0≤ τ < τs(eh). In order to evaluate upper bounds for
the convergence rate, we need to study the following function

g(τ; µ) := |1− τ|+µτ
2

We start our analysis with the following result.

Proposition 4. Given µ , the function g(τ; µ) is strictly
smaller than 1, i.e., g(τ; µ)< 1 for τ ∈ (0,τs(µ)), where

τs(µ) :=

{
4

1+
√

1+8µ
if µ < 1

1
µ

if µ ≥ 1
, (21)

where τs(µ) is such that g(τs(µ); µ) = 1.

The proof is available in Appendix A. Note that since τs
is obtained by using upper bounds on some terms, it holds
that τs ≤ τ∗s ≤ τmax(eh). Hence, in the following set

T := {τ |g(τ; µ)< 1}= (0,τs(µ)),

the norm ‖e′(τ;eh)‖ decreases w.r.t. ‖eh‖. We now want to
find the time τo(µ) ≤ τ∗o in order to maximally decrease
toward the origin, and the relative decreasing rate ρ(µ), i.e.,

τo(µ) := argmin
τ

g(τ; µ), ρ(µ) = g(τo(µ); µ).

The following proposition provides the values attained by
τo(µ) and ρ(µ), which are obtained from their definitions
and the computation of g(τ; µ).

Proposition 5. Consider function g(τ; µ). Then

τo(µ)=

{
1 µ < 1

2
1

2µ
µ ≥ 1

2
and ρ(µ)=

{
µ µ < 1

2
1− 1

4µ
µ ≥ 1

2
.

Note that ρ < 1 as shown in Fig. 4. The proof is available
Appendix A. A representation of τs(µ), τo(µ) and ρ(µ) is
reported in Fig. 4. Note that if µ = 0 then ρ = 0 and we
obtain a dead-beat controller. Indeed, from (20) with k = τ̄o

T ,
it holds ‖e(t)‖= ‖e′(τ̄o(µ);eh)‖= 0 in one step. Moreover,
for µ < 1

2 , τo(µ) = 1 regardless of µ and this is an indication
of robustness. The previous result suggests that a possible
choice for the optimal offline gain k, once the sampling time
T is known, is

k∗ =
τo(µ)

T
, (22)

as formally established in the next proposition.

Proposition 6. For all e(0) ∈B0 the following inequality
holds:

‖e(hT )‖ ≤ ρ
h(µ)‖e(0)‖

and ‖e(t)‖ ≤ ‖e(hT )‖ for all hT ≤ t < (h+1)T .

Proof. From Prop. 1 and (20) and recalling that ρ(µ)< 1:

‖eh+1‖ ≤ ‖e′(τ;eh)‖ ≤ ρ(µ)‖eh‖ ≤ g(τ; µ)‖eh‖

Hence ‖eh+1‖ ≤ ρ(µ)‖eh‖ ≤ ρ(µ)2‖eh−1‖ ≤ ρ(µ)h+1‖e0‖.

Notice that, from Prop. 6, it turns out that the origin is
an asymptotically stable equilibrium for the system and the
proposed offline strategy converges exponentially fast with
a rate at least ρ(µ), ∀e(0) ∈ B0 that is included in the
corresponding basin of attraction. We conclude this section
observing that, since µ can be computed apriori before
running the algorithm, then the offline strategy is amenable
of both distributed and centralized implementations.

B. Online model-predictive procedure

In this section we consider the possibility to numerically
compute the future trajectory e′(τ,eh) based on the model
dynamics f(q;eh) and the current position eh. This implies
that also τo(eh) can be computed at any time step h. If so,
under the assumption that the input is kept constant for the
following time interval T , we can propose the following input

u(t) = uh =−khAeheh, hT ≤ t < (h+1)T,

where
kh :=

τo(eh)

T
. (23)

A more precise characterization of the convergence proper-
ties of this strategy is stated in the next proposition.

Proposition 7. Consider the system in (11) with a time
varying sequence of gains k0,k1,k2, . . ., where the generic
kh is given as in (23). Then the system satisfies the following
properties:
• ‖e(t)‖ ≤ ‖e(hT )‖ for all hT ≤ t < (h+1)T ;
• the convergence rate of the sampled dynamics is at least

quadratic;
• the gain kh tends to 1

T as h→∞, that is limh→∞ kh =
1
T .

Proof. Observe that, according to (23), we necessarily have:

‖eh+1‖= ‖e′(τo(eh);eh)‖ ≤ ‖e′(τo;eh)‖ ≤ ρ‖eh‖,

hence the proposed scheme is exponentially stable with rate
ρ for any T . Since in the online scenario r = ‖eh‖ → 0,
then µ = 1

2 ab‖eh‖ → 0. As so, there exists h̄ s.t. µ < 1
2 for

h > h̄. Then from Prop. 5, ρ(µ) = µ and ‖eh+1‖ ≤ ρ‖eh‖=
1
2 ab‖eh‖2 for h > h̄. As a consequence

limsup
h→+∞

‖eh+1‖
‖eh‖2 ≤

1
2

ab,

and ‖eh‖ ≤ ( 1
2 ab‖e0‖)(2

h−1)‖e0‖. Since ab > 0, then the
quadratic convergence of the sequence ‖eh‖ is guaranteed.
Moreover, µ → 0 implies ‖d(τ,eh)‖ → 0 and the second
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Fig. 5: In the figure, label offline refers to the choice (22), while
label online refers to (23).

term in (17) becomes negligible. So, e′(τ;eh)→ (1− τ)eh
is minimized for τ = 1. In the online scenario, the optimal
gain is chosen as in (23), where τo(eh) corresponds to the
minimum norm, hence τo(eh) = 1 and kh =

1
T .

Based on the definition of τo(eh) and on Prop. 7, we
expect the online strategy to exhibit a faster convergence
than the offline one. This fact is supported also by the
numerical results reported in the next section. However, the
higher rate of convergence comes at the price of a heavier
computational load. Indeed τo(eh) needs to be estimated
at each iteration and a global knowledge of the vector eh
is required; this implies that the online strategy cannot be
implemented distributively, but only in a centralized fashion.

V. SIMULATION RESULTS

The performance of the proposed steering method is
evaluated and compared in this section, reporting the results
obtained in Matlab. The platform edges of the simulated
system (the one in Fig. 1) are 1 [m] long and the cables
linking the robots to the load measure 1.5 [m]. The sampling
time is T = 0.01 [s]. The quantity µ̂∗ is estimated both for
a small Bo with radius r1 = 0.08 (that gave µ̂∗ < 1

2 ) and
for a larger one with r2 = 0.5 (µ̂∗ > 1

2 ), following the
reasoning of Sec. IV-A. Observe that r could be set as
an optimization parameter to generate the reference path.
Then, a desired configuration qr s.t. qr

L =
1
2 [1 1 1 0 0 0]> and

qr
α = [75◦ 75◦ 75◦]> is chosen and two initial conditions are

considered, one s.t. ‖q1(0)− qr‖ < r1 and the second s.t.
r1 < ‖q2(0)−qr‖< r2. Finally, from Prop. 5, τ̄o is obtained
based on the estimate µ̂∗, while the gain k∗ is computed
with (22). At this point, the system in (12) is simulated until
τ = τ̄o using the Matlab function ODE; then, the solution
of the original system, for hT ≤ t < (h+ 1)T , is retrieved
using (13). The procedure is repeated for every iteration.
Conversely, in the online strategy the optimal gain k = kh that
brings the system the closest to the desired configuration, is
recomputed at each instant hT based on the time τo(eh). We
implicitly assumed that the machine used for the simulations
can compute kh in less than T seconds. Moreover, T can
be designed by the path planner to satisfy this condition.
Fig. 5 shows the simulation results described above, where,
for µ smaller and greater than 1

2 , the online and offline
strategies are compared. We observe that for µ < 1

2 the two

strategies have quite the same behavior, as expected from
the proof of Prop. 6. Instead, as µ > 1

2 , the offline strategy
is not as efficient as the online one, since the convergence
rate ρ(µ)→ 1, as described in Prop. 5. In particular, it is
emphasized the difference between the exponential (offline
strategy) and doubly exponential (online) convergence rate
described respectively in Prop. 6 and 7. The soundness of the
proposed strategy is confirmed by preliminary simulations on
a dynamic simulator with force controller, not reported here
for space limitation.

VI. CONCLUSIONS

In this work, we faced the problem of steering a multi-
agent manipulation system to a desired configuration by
means of a feedback-based planner that exploits the sparse
structure of the system and provides the desired vehicles
velocities to be tracked by the system. We provided an
extension from the continuous time case to the one with
sampled measurements. This deals with a realistic scenario
where wireless communication is employed. Finally, two
different strategies were compared for the sampled scenario:
the offline strategy converges exponentially fast and exploits
a static control gain, while the second method is even
faster, but computationally demanding since the gain must
be computed online. Furthermore, if the second technique
can be implemented only in a centralized fashion, the first
one can be fulfilled also in a distributed way. Anyway, both
the techniques do not require any communication among the
robots. Some adaptations have been left for future work: we
aim at studying the non-square systems (n 6= m), analyzing
them under different norms definitions. As discussed in
Sec. II-B, there is potential for improving the trajectory
generation, taking into account additional parameters as the
inter-sample interval. Finally, we will apply the proposed
strategy to a dynamical system and include a more realistic
communication environment to simulate the whole structure.

APPENDIX

A. Stability and Convergence analysis

In this section we give the definition of the stability time
τ̄s(µ), the optimal time τ̄o(µ) and the convergence rate ρ(µ).
In order to evaluate upper bounds for asymptotic stability and
rate of convergence, we need to study the following function

g(τ; µ) := |1−τ|+µτ
2 =

{
1− τ +µτ2 =: g−(τ; µ) τ < 1
−1+ τ +µτ2 =: g+(τ; µ) τ ≥ 1

We will study the function g(τ; µ) in three different scenar-
ios: µ ∈ [0, 1

2 ), µ ∈ [ 1
2 ,1) and µ ≥ 1. We start by observing

that

g(0; µ) = 1, g(1; µ) = µ,
d g+

dµ
= 1+2µτ > 0

and by defining the minimum of g−(τ; µ) and its minimizer
w.r.t. τ as

τp(µ) = argmin
τ

g−(τ; µ)⇔ dg−(τ; µ)

dτ
= 0 =⇒ τp(µ) =

1
2µ
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We now note that in the first scenario µ ∈ [0, 1
2 ), τp(µ)≥ 1

which implies that the function g(τ; µ) is monotonically
decreasing for τ ∈ [0,1] and monotonically increasing for
τ > 1.
In the second scenario µ ∈ [ 1

2 ,1), τp(µ) < 1, therefore
g(τ; µ) is monotonically decreasing for τ ∈ [0,τp(µ)] and
monotonically increasing for τ > τp(µ).
Finally note that for µ < 1, g(1;τ)< 1, therefore there exists
a unique τs(µ) such that g(τs(µ); µ) = g+(τs(µ); µ) = 1,
while for µ > 1, g(1;τ)> 1, therefore there exists a unique
τs(µ) such that g(τs(µ); µ) = g−(τs(µ); µ) = 1. A pictorial
representation of the three scenarios is shown in Fig. 6.
We are now ready to compute the stability region and
convergence rate.

0 0.5 1 1.5 2 2.5 3 3.5

 [s]

-0.5

0

0.5

1

1.5

(a) µ ≤ 1
2

0 0.2 0.4 0.6 0.8 1

 [s]

0.5

1

1.5

(b) 1
2 ≤ µ ≤ 1

0 0.2 0.4 0.6 0.8 1

 [s]

0.5

1

1.5

(c) µ ≥ 1

Fig. 6: Representation of g(τ; µ) in the three scenarios.

1) Stability (g(τ; µ) < 1): According to the analysis
above, the stability set is given by:

T := {τ |g(τ; µ)< 1}= (0,τs(µ))

More specifically, we have two scenarios depending whether
the parameter µ is smaller or grater than unity.

If µ < 1 then −1+ τ +µτ2 = 1. Hence:

τs(µ) =
−1+

√
1+8µ

2µ
=

4
1+
√

1+8µ

while

µ > 1 =⇒ 1− τ +µτ
2 = 1 =⇒ τs(µ) =

1
µ

which can be summarized in

τs(µ)

{
4

1+
√

1+8µ
µ < 1

1
µ

µ ≥ 1
(24)

2) Optimal gain and rate (minτ g(τ; µ)): We now want to
find the optimal stopping time τo(µ) in order to maximally
decrease toward the origin, and the relative decrease rate
ρ(µ), i.e.

τo(µ) := argmin
τ

g(τ; µ), ρ(µ) = g(τo(µ); µ)

Once again, we can distinguish two scenarios, depending
whether the parameter µ is smaller or greater than 1

2
More specifically, for µ < 1

2 the function g−(τ; µ) is mono-
tonically decreasing for τ < 1, and therefore τo(µ)= 1, while
for µ > 1

2 then τo(µ) = τp(µ) =
1

2µ
. This can be summarized

as

τo(µ) =

{
1 µ < 1

2
1

2µ
µ ≥ 1

2
(25)

By substitution is easy to verify that

ρ(µ) =

{
µ µ < 1

2
1− 1

4µ
µ ≥ 1

2
(26)
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