
Chapter 2.3
Platforms with Multi-directional Total Thrust

Antonio Franchi

Abstract The chapter provides an overview of the basic modeling and the intrinsic
properties of aerial platforms with multi-directional total thrust ability. When also
fully-actuated, such platforms can modify the total wrench in body frame in any di-
rection, thus allowing the control of position and orientation independently. There-
fore, they are best suited for dexterous tasks, physical interaction, and for carrying
aerial manipulators, because they do not suffer from the underactuation of standard
collinear multirotors. The chapter includes a rigorous classification, a discussion on
the possible input coupling, and on the capabilities and pitfalls of inverse-dynamics
control approach for such platforms.

1 Introduction and Benefits of Multi-directional Total Thrust

Aerial vehicles have been thoroughly studied and applied in several fields and for
several tasks, from simple remote sensing to the more challenging physical in-
teraction with the environment and humans. The latter have been firstly targeted
using aerial vehicles actuated by multiple collinear rotors and endowed with ca-
bles [289, 84, 291] rigid tools [207, 315] or a more complex robotic arm with a few
degrees of freedom (DoFs) [88, 200, 292]. Collinear-rotor vehicles are energy effi-
cient but underactuated because of the unidirectionality of the total thrust in the body
frame. As a consequence the vehicle orientation is coupled with its translational mo-
tion, and the vehicle cannot instantaneously react to forces with any direction.

Cases in which a tool is rigidly fixed to the airframe have been presented
in [101, 15, 317, 207, 100]. The impossibility of controlling the 6D (position plus
orientation) dynamics of the end-effector limits the potential use cases and also cre-
ates stability issues. In fact, it has been shown that in the presence of interactions
with points of the airframe other than the vehicle center of mass (CoM) the internal
dynamics of underactuated multirotors is not guaranteed to be stable, and it is, in
general, neither easy to stabilize nor practical for real applications [207].

73

Preprint version, final version at Springer, https://link.springer.com

Chapters in ‘Aerial Robotics Manipulation’, STAR, 2019, Springer



74

Fig. 38 The TiltHex (left) and the OTHex (right): two fully actuated hexarotors by LAAS-CNRS.
They are capable of 6D motion (fully-decoupled pose) and 6D physical interaction thanks to the
non-collinear orientations of the thrust forces produced by its propellers and the use of suitable
physical interfaces, such as the passive gripper of the OTHex, optimized for bar lifting.

To overcome such limitation, the main approach has been to attach an n-DoF
robotic arm to the aerial platform [200, 199, 18, 138, 292], a solution which aims
at overcoming the underactuation of the end-effector dynamics exploiting the in-
creased number of actuators provided by the arm. In this way, a fully actuated 6D
force control at the end-effector side becomes possible [313]. However, this solution
comes with a few drawbacks as well, the main being that: i) a robotic arm strongly
decreases the payload and flight time due to its own weight; ii) the system is much
more complex from a mechanical point of view than a single airframe with a rigid
tool and, thus, it is more expensive to build and also requires more maintenance and
repairing costs across its operational life; iii) lateral forces in body frame, which
cannot be provided by the aerial platform itself, have to be generated through the
dynamical/inertial coupling between the arm and the aerial robot: the proper mas-
tering of the dynamical coupling is something that has to be necessarily exploited in
order to get the sought benefits in terms of 6D force control. This, in turn, requires
the knowledge of the precise dynamical model and a very accurate measurement
of the system inputs and states (position, orientation, linear and angular velocities).
As a matter of fact, these requirements are extremely hard to achieve in real world
conditions (especially the former). For this reason, kinematic-only approaches have
been preferred for real world validations, see e.g., [200, 199], at the expense of
losing the main benefits for which the manipulator was introduced.

Summarizing, standard flying platforms are underactuated and, thus, incapable
of 6D end-effector force control. On the other side, to bring a full manipulator up
to the air to perform the sought 6D end-effector force control is often excessively
complex and may introduce more problems than benefits, depending on the task. To
solve all these problems at once and finally achieve the sought full 6D force control
of the aerial interaction, is instead enough to let the aerial vehicle possess the min-
imal requirements to perform such interaction with a rigidly attached end-effector.
Such requirements can be satisfied with the use of a multirotor with generically-
oriented fixed propellers (GOFP) instead of the more common collinearly-oriented
fixed propeller (COFP) architectures [254]. In GOFP platforms, which appeared in
the robotics literature only recently (see, e.g., [237, 306, 244, 41, 225]), the full-
actuation is achieved by a more general propeller position and orientation. The dif-
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ference between the underactuated platform and the last approach is that, in the
former approach, all the propellers have the same orientation while, in the second
approach, every propeller orientation is different. The latter approach is, thus, able
to control independently the translational and angular acceleration in contact-free
flight, or any of the six components of the exerted wrench when in contact, thus
allowing full and dexterous 6D force control, which makes them much more suited
for physical interaction tasks than standard COFP platforms. An example of a fully
actuated GOFP platform is the OTHex by LAAS-CNRS, depicted in Figure 38.
This platform has six propellers with coplanar centers and non-collinear directions
of rotation, a configuration which makes it possible the 6D physical interaction and
manipulation [280].

Another solution to obtain full-actuation consists of actively tilting the whole
propeller groups [254, 255, 170], a solution which is called thrust vectoring or tilting
propeller. This solution however is subject to the same drawbacks of the solutions
employing a manipulator arm, since they require extra actuation, mechanical com-
plexity, and weight. Furthermore, they cannot in general guarantee instantaneous
disturbance rejection or fast force exertion since the propellers might have to be
re-oriented, which again takes some non-negligible time.

In this Chapter we introduce a basic but effective model of GOFP platforms
and provide a major classification and properties of such vehicles. In particular, the
model of the total thrust and moment generation, and classification with respect to
actuation singularity are provided in Sec. 2. In Sec. 3 we describe the capability of
producing a multi- or omnidirectional total thrust when employing propellers with
uni-directional lift force. The possible coupling between total thrust and total mo-
ment is described in Sec. 4. Sec. 5 introduces the inverse dynamics control strategy
for fully actuated platforms and highlights its limits, which will be overcome in
Chapter 3.6. Finally, conclusions are drawn in Sec. 6.

2 Platforms with Generically-Oriented Fixed Propellers

Let us define an inertial world frame FW = {OW ,xW ,yW ,zW} where OW is its ori-
gin, placed arbitrarily, and (xW ,yW ,zW ) are the orthogonal unit vectors. We con-
sider zW parallel and opposite to the gravity vector. Then we define the body frame
FB = {OB,xB,yB,zB} rigidly attached to the vehicle and centered in OB, the vehi-
cle center of mass (CoM). The position of OB and orientation of FB w.r.t. FW are
described by the vector pb 2 R3 and the rotation matrix Rb 2 SO(3), respectively.
Then we define by the vector vb 2 R3 the translational velocity of OB expressed in
FW , and by wwwb

b 2 R3 the angular velocity of FB w.r.t. FW and expressed in FB.
The generic vehicle, with only 3 of the n propellers, is depicted in Fig. 112.

The vehicle is modeled as a rigid body with mass m 2R>0 and moment of inertia
about OB, defined w.r.t. FB, described by the positive definite matrix Ib 2R3⇥3. The
dynamics of the system is computed applying the Newton-Euler equations, thus
obtaining ṗb = vb, Ṙb = RbW b, and
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Fig. 39 Schematic representation of a multirotor with generically oriented fixed propellers and its
main quantites. Only three of the n propellers are shown.
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where e3 = [0 0 1]>, W b = S(wwwb
b) is the skew symmetric matrix relative to wwwb

b,
fb
u 2 R3 and tttb

u 2 R3 are the controllable total input force and torque expressed in
FB, respectively.

Considering a multirotor with n rotors, each of them produces a lift force and a
moment due to the drag force [299]. All together they generate the total force (or
thrust) and moment, f and ttt , respectively,1 expressed as:

w =
⇥
f>ttt>

⇤>
=
⇥
G>

1 G>
2
⇤> ⇥

u1 . . . un
⇤>

= Gu. (41)

The matrixes G 2 R6⇥n, G1 2 R3⇥n, and G2 2 R3⇥n are called the full allocation
matrix, the force allocation matrix and the moment allocation matrix, respectively.
The control ui 2 R is typically equal to wi|wi|, where wi 2 R is the i-th propeller
rotational speed. G1 and G2 have the following structure

G1 =
⇥
v1 · · · vn

⇤
, (42)

G2 =
⇥
d1 ⇥v1 · · · dn ⇥vn

⇤
+
⇥
c1k1v1 · · · cnknvn

⇤
, (43)

where i) vi 2 R3 are the coordinates, in FB, of the lift force generated by the i-
th propeller when ui = 1. In this formulation the aerodynamic coefficient that maps
propeller speed into thrust intensity, typically called lift factor cT , is cTi = kvik= vi;
ii) di is the position of the center of the i-th propeller in body frame; iii) ci = �1
(ci = 1) if the i-th propeller angular velocity vector has the same direction of vi
(�vi) when ui > 0, i.e., the propeller spins CCW (CW) when watched from its top;

1 In the following we omit the subscripts and superscripts when there is no risk of confusion.
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Fig. 40 A standard underactuated collinear
hexarotor.

Fig. 41 The fully actuated non-collinear
hexarotor called ‘TiltHex’, by LAAS-CNRS.

iv) ki 2 R is the constant ratio between the i-th propeller lift force and the drag
moment, typically denoted with cQ/cT in the literature. The following is a well
known and easy-to-prove fact.

Fact 1 (translation invariance) G does not change if di is replaced with di + livi
for any i = 1, . . . ,n and l1, . . . ,ln 2 R.

We introduce now the basic concept of multirotor design. Let us first define c =
[c1 · · ·cn]> and k = [k1 · · ·kn]>.

Definition 1 A multirotor design is a tuple D = (n,c,k,d1, . . . ,dn,v1, . . . ,vn) , which
describes the number of propellers n, their aerodynamic characteristics, locations
and orientations w.r.t. FB. We call the tuples (v1, . . . ,vn) and (n,c,k,d1, . . . ,dn) the
vectoring part and the etero-vectoring part of D , respectively.

A first important classification of multirotor design is the following

Definition 2 A multirotor design is:

• Underactuated if rank(G) < 6
• Fully actuated if rank(G) = 6

furthermore, the multirotor translational (resp. rotational) dynamics are

• Underactuated if rank(G1) < 3 (resp. rank(G2) < 3)
• Fully actuated if rank(G1) = 3 (resp. rank(G2) = 3).

Full actuation requires n � 6, which is however, only a necessary condition. In
fact, classical multirotor designs, like the one depicted in Fig. 40 have the v1, . . . ,vn
all aligned and therefore rank(G1) = 1, which means that their translational dynam-
ics is underactuated. On the other hand they are such that rank(G2) = 3, i.e., the
rotational dynamics is fully actuated, and rank(G) = 4. Other designs, such as the
one depicted in Fig. 41, named TiltHex, by LAAS-CNRS, and presented in [237],
has the v1, . . . ,vn non collinear and such that rank(G) = 6 which makes it a fully
actuated platform.

Notice that choosing non-collinear vi’s is a necessary but non-sufficient condition
to obtain full actuation, in fact one has to ensure that all the 6 row vectors of G are
linearly independent.
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3 Multi-directional and Omnidirectional Total Thrust Platforms

We denote with 1 the column vector with all ones. Its size is understood from
the context. Given two vectors x and y, the notations x � y, x > y have to be
intended component-wise. Accordingly, we define Rn

�0 = {x 2 Rn|x � 0} and
Rn

>0 = {x 2 Rn|x > 0}, called the non-negative orthant and the positive orthant
of Rn, respectively.

Propellers can be of mainly two types: mono-directional and bidirectional. Mono-
directional thrusters are the cheapest and most common solution but can produce lift
only in one direction, a constraint which can be encoded imposing u 2 Rn

�0 in (41).
Bidirectional thrust rotors are able to invert the direction of the lift force by invert-
ing either the motor rotation or the propeller angle of attack. However such rotors
have several issues: i) scarceness of reversible Electronic Speed Controllers (ESC)
for brushless motors, ii) lower energetic efficiency compared to unidirectional ro-
tors, iii) lower controllability of the exerted force at low speeds, and iv) extra me-
chanical complexity and increased weight and thus energy consumption (in case of
variable pitch propellers). Such propellers have the advantage that u 2 Rn in (41).
Let us denote with U the set of admissible inputs: U = Rn

�0 for mono-directional
thrusters and U = Rn for bidirectional propellers. Then let us define the set of at-
tainable wrenches W = {w 2 R6 |9u 2 U s.t. w = Gu}, the set of attainable total
thrusts F = {f 2R3 |9u 2U s.t. w = G1u}, and the set of attainable total moments
Q = {ttt 2 R3 |9u 2U s.t. w = G2u}.

The following additional classification of multirotor design holds.

Definition 3 A fully actuated multirotor design for which Q = R3 is a

• multi-directional total thrust platform if F ( R3

• omnidirectional total thrust platform if F = R3.

A multi-directional thrust platform can produce a total force (independent from to-
tal moment) in multiple (but not all) directions. As a consequence it can hover with
multiple (but not all) orientations. An omnidirectional thrust platform can produce
a total force (independent from total moment) in any direction and can hover with
any orientation. Omnidirectional platforms can be oriented in any direction and can
compensate/exert any force independently, thus allowing applications that are im-
possible with other platforms, including safe human interaction, 360� aerial photog-
raphy, etc. In [225] and [41] two omnidirectional total thrust vehicles are proposed
with 6 and 8 tilted bidirectional thrust rotors, respectively. As explained before,
bidirectional thrusters have several drawbacks. The authors in [290] thoroughly in-
vestigate if and how it is instead possible to obtain omnidirectional thrust vehicles
with fixed and uni-directional thrusters, a solution that overcome all the problems of
the aforementioned solutions using bidirectional propellers. One of the main results
is summarized in the following:

Proposition 1 ([290]) If U = Rn then a fully actuated multirotor is also omnidirec-
tional. If U = Rn

�0 then a fully actuated multirotor is also omnidirectional if and
only if
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null(G)\Rn
>0 6= /0, (44)

otherwise, it is a multi-directional platform.

In other words, a fully-actuated platform with bidirectional propellers is also an
omnidirectional total thrust platform. On the other side, a fully-actuated platform
with mono-directional propellers is in general only a multi-directional total thrust
platform. For such platforms, it is required that (44) holds too, which implies that
n � 7. This latter is however only a necessary condition. In [290] the authors pro-
pose also a control allocation strategy and an algorithm for optimally design such
platforms.

4 Coupling Between Total thrust and Total Moment

In the following we assume a fully-actuated rotational dynamics, i.e.,

rank(G2) = 3. (45)

The input space Rn can always be partitioned in the orthogonal subspaces im
�
G>

2
�

and im
�
G>

2
�?

= null(G2), such that the vector u can be rewritten as the sum of two
terms, namely

u = T2ũ = [A2 B2]


ũA
ũB

�
= A2ũA +B2ũB, (46)

where T2 = [A2 B2] 2 Rn⇥n is an orthogonal matrix such that im(A2) = im(G>
2 )

and im(B2) = null(G2). Note that, because of (45), A2 2 Rn⇥3 is full rank, i.e.,
rank(A2) = 3, while B2 2 Rn⇥n�3 has rank(B2) = n� 3. Given this partition, we
have

ttt = G2T2ũ = G2A2ũA, (47)

f = G1T2ũ = G1A2ũA +G1B2ũB =: fA + fB. (48)

The matrix G2A2 in (47) is nonsingular thus any moment ttt 2R3 can be virtually
implemented by setting ũA = (G2A2)

�1ttt in conjunction with any ũB 2 Rn�3.
The control force, which obviously belongs to F := im(G1), is split in two com-

ponents: f = fA + fB. The component fA = G1A2ũA represents the ‘spurious’ force
generated by the allocation of the input needed to obtain a non-zero control mo-
ment. This component belongs to the subspace FA := im(G1A2) ⇢ Rn. The com-
ponent fB = G1B2ũB instead represents a force that can be assigned independently
from the control moment by allocating the input u in im(B2) = null(G2). This ‘free’
force component belongs to the subspace FB := im(G1B2) ⇢ Rn and it is obtained
by assigning ũB. Being T2 nonsingular, we have that F = FA + FB. It is instru-
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9 decoupled direction
9 decoupled plane

dimFB = 0 dimFB = 1 dimFB = 2 dimFB = 3

FB ( F FC PC and SD1 PC and SD2 N/A
FB = F N/A UC and SD1 UC and SD2 D3 (UC)

(dimF� 1) (dimF� 1) () dimF� 2) () dimF = 3)

Table 9 A table recalling the fundamental properties of the actuation of a GOFP.

mental to recall that 1  dimF  3 because rank(G1) � 1, and that FB ✓ F, thus
dimF� dimFB.

The dimension of FB and its relation with F sheds light upon the platform actua-
tion capabilities. The following two sets of definitions are devoted to this purpose.

Definition 1. A platform with generically-oriented fixed propellers (GOFP) is

• fully coupled (FC) if dimFB = 0 (i.e., if G1B2 = 0)
• partially coupled (PC) if dimFB 2 {1,2} and FB ( F
• un-coupled (UC), or fully-decoupled, if FB = F (or, equivalently, FA ✓ FB)

In a fully coupled GOFP the control force depends completely upon the imple-
mented control moment, in fact fB = 0 and thus f = fA. In a partially coupled GOFP
the projection of the control force onto FB can be chosen freely while the projection
onto F?

B \F depends completely upon the implemented control moment. Finally
in a un-coupled (equivalently, fully decoupled) GOFP no projection of the control
force depends on the control moment, i.e., the control force can be freely assigned
in the whole space F. Notice that the full decoupling does not imply necessarily that
the control force can be chosen in the whole R3, unless it holds also F = R3.

The second important classification is provided in the following definition.

Definition 2. A GOFP

• has a decoupled direction (D1) if dimFB � 1
• has a decoupled plane (D2) if dimFB � 2
• is fully actuated (D3) if dimFB = 3.

Combining the previous definitions we say that a GOFP

• has a single decoupled direction (SD1) if dimFB = 1
• has a single decoupled plane (SD2) if dimFB = 2.

If a GOFP has a decoupled direction then there exists at least a direction along
which the projection of the control force can be chosen freely from the control
moment. If a GOFP has a decoupled plane then there exists at least a plane over
which the projection of the control force can be chosen freely from the control
moment. If a GOFP is fully actuated then the control force can be chosen in all R3

freely from the control moment.
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Fig. 42 Two realistic simulations (noise and model uncertainty included) of the TiltHex in Fig. 41
controlled via the inverse dynamics approach. Left column: the TiltHex by LAAS-CNRS follows
a trajectory in which the position is constant and the roll varies sinusoidally. Right column: the
TiltHex by LAAS-CNRS follows a trajectory in which the orientation is constant and the position
follows a chirp signal. Both trajectories are unfeasible for the standard hexarotor in Fig. 40.

In terms of relations between the above definitions, we note that: D3 implies UC,
while the converse is not true; D3 implies D2; D2 implies D1. Finally, D1 (and thus
D2) can coexist with PC or UC but not with FC. Note that in the state-of-the-art
multirotor controllers it is implicitly assumed that the GOFP is fully decoupled and
there exists a decoupled direction oriented along its zB axis. Nevertheless, in the
controller proposed in [184] the decoupled direction can be any and the GOFP can
be also partially coupled. Table 9 yields a comprehensive view of all aforementioned
definitions and relations. For more examples and insights about GOFP’s, as well as
for a study of their ability to statically hover after propeller losses we refer the reader
to [185].

5 Inverse Dynamics Control for Fully-Actuated Vehicles

Plugging (41) in (40), we obtain

a = MR
�1(bR +GRGu). (49)

According to Definition 2 the allocation matrix G is full-rank for a fully-actuated
aerial vehicle, therefore one can choose the following inverse dynamics control law:
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u = G†GR
�1 (MRv�bR) , (50)

which brings the system (49) in the following linear and decoupled form:

a = v, (51)

where v is a six-dimensional virtual input which can be assigned at will in order to
independently steer the six degrees of freedom of the platform along any trajectory,
and to ensure robustness of the control scheme. Such classical nonlinear control
scheme has been proposed in [237] for fully-actuated aerial vehicles. Figure 42
shows two realistic simulations of the TiltHex executing two trajectories that are
unfeasible for a standard collinear hexarotor using the inverse dynamics approach.

The main limitation of the inverse dynamics approach is that, as it is, it does not
take into account the input saturations. This fact can easily destabilize the platform
when unfeasible inputs are needed in order to perfectly track a given trajectory. This
fact can be seen in the simulation of Fig. 43, where the same reference trajectory of
Fig. 42-right is used but for the introduction of input limits. In order to overcome
this drawback, a more clever controller should be used, as the one that is presented
in Chapter 3.6.

6 Conclusions

In this Chapter we have briefly presented the multi-directional thrust aerial plat-
forms emerging from a generic orientation of the propeller angular velocity vec-
tors, i.e., GOFP platforms. We have provided the fundamental definitions of multi-
directionality and omnidirectionality and a classification based on the decoupling
between the total moment and the total force. In Chapter 3.6 of this book it will be
shown how such platforms can be effectively used for aerial physical interaction.
One of the most interesting properties of GOFP platforms is their ability, under cer-
tain condition, to gain the property to statically hover after propeller losses. Due
to the limited amount of space such topic has not been addressed in this chapter,
however the reader can find an extensive description of such property in [185].
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Fig. 43 A realistic simulation (noise and model uncertainty included) of the TiltHex by LAAS-
CNRS in Fig. 41 with the addition of input saturation. While tracking the same trajectory of Fig. 42-
right the sole inverse dynamics approach makes the system unstable. A controller that overcomes
such pitfall is presented in Chapter 3.6.
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Chapter 3.6
Interaction Control of Platforms with
Multi-directional Total Thrust

Antonio Franchi

Abstract The chapter introduces an interaction control framework for multi-directional
total thrust platforms. When also fully-actuated, such platforms can modify the total
wrench in body frame in any direction. Therefore, they do not suffer from the under-
actuation of standard collinear multirotors, and are best suited for dexterous tasks,
physical interaction, and for carrying aerial manipulators. The chapter describes in
order: a full-pose controller which takes into account the lateral limits of the total
force; an algorithm for estimating the contract wrench; and an admittance-shaping
framework for physical interaction. Experimental results with the TiltHex platform
are also shown to validate the proposed methods.

1 Introduction

Standard multi-rotors (quadrotors, hexarotors, etc.) have collinear propellers gener-
ating a total force that is aligned to one direction in body frame, which makes them
under-actuated systems. In order to follow a generic position trajectory the total
force direction in world frame is changed by rotating the whole vehicle. Maneuvers
in which rotation and translation are completely independent are precluded to such
platforms, which constitutes a serious problem in the case that, e.g., the platform has
to move through a hostile and cluttered ambient or resist a wind gust while keeping
a desired attitude. Such an underactuation even deteriorates the potentiality to inter-
act with the environment because it makes impossible to rapidly exert forces in an
arbitrarily-chosen direction in the space while keeping a pre-specified orientation.

As described in Chapter 2.3, the main solution to overcome the aforementioned
issues has been to mount rotors in a tilted way such that the thrusts of the propellers
are not collinear anymore. In this way, the direction of the total force can be changed
by selecting the intensity of the force produced by each propeller, without the need
of reorienting the whole vehicle. If the propellers are at least six, and the tilting
directions do not generate a singular configuration, then direction and intensity of

189

Preprint version, final version at Springer, https://link.springer.com

Chapters in ‘Aerial Robotics Manipulation’, STAR, 2019, Springer



190

both the instantaneous total control moment and total control force are, in principle,
controllable at will.

However, in order to minimize the waste of energy caused by the appearance
of internal forces, the maximum component of the total thrust along the lateral di-
rection is typically kept (by design) much lower than the maximum allowed com-
ponent along the vertical one. We call these kind of platforms aerial vehicles with
laterally-bounded force (LBF): they are characterized by a principal direction of
thrust along which most of the thrust can be exerted. A certain amount of thrust
(typically smaller) can be exerted along any non-principal (lateral) directions. This
model includes: i) the standard underactuated multi-rotor vehicle where thrust is
possible only along the principal direction, and ii) the isotropically fully-actuated
platforms where a large amount of total thrust in the lateral directions is applica-
ble [225, 41, 290].

This Chapter is structured as follows. Section 2 presents the generic model of
a LBF platforms. Section 3 presents a theoretically grounded 6D tracking control
algorithm for LBF platforms is introduced in Sec. 3. Section 4 shows the design
of a full architecture to enable 6D interaction control using an admittance control
scheme, built around the tracker described in Sec. 3. Results of experiments for the
contact-free tracking and interaction control in contact are shown in Sec. 5.1 and 5.2.
Finally we conclude the paper and give an outline of further possible extensions in
Sec. 6.

2 Model of Laterally-Bounded Force Platforms

In this Section we propose the concept of Laterally-Bounded Force (LBF) Platform,
which represents a good approximation of any multi-directional total thrust plat-
form. An LBF platform is a rigid body to which gravity and control generalized
forces are applied. All the main symbols are summarized in Table 15 and Fig. 112.
Some of the symbols have been already defined at the beginning of the book and are
repeated here in order to ease the reading. For the sake of reducing the heaviness of
notation, the use of the subscript ?b is implied in the position, rotation matrix and
angular velocity notations. We consider here flying platforms which do not carry
any manipulator. Therefore, without risk of confusion, within this Chapter we can
denote with q the configuration (p,R) of the vehicle rather than the one of the ma-
nipulator.

The vehicle orientation kinematics is described by Ṙ = R[www], where [www]⇥ 2 so(3)
is the skew symmetric matrix associated to www . The control inputs u1 = [u1 u2 u3]T 2
R3 and u2 = [u4 u5 u6]T 2R3 are the input force and moment applied to the vehicle
expressed in FB. The following constraint applies

[u1 u2]
T 2 Uxy ⇢ R2, (142)
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Fig. 112 A drawing illustrating the main quantities of an LBF Aerial Vehicle, the main frames
involved, the laterally bounded input sets and the full-pose 6D reference trajectory.

Table 15 Symbols use to define the LBF platform model.

Definition Symbol

World Inertial Frame: FW = OW ,{xW ,yW ,zW} FW
Attached Body Frame: FB = OB,{xB,yB,zB} FB
Position of OB in FW , coincident with the Center of Mass (CoM) pb = p
Rotation matrix mapping coordinates in FB to coordinates in FW Rb = R
Configuration of the vehicle q = (p,R)
Angular velocity of FB w.r.t FW expr. in FB wwwb = www
Vehicle’s Inertia matrix w.r.t to OB expressed in FB Ib
Control force applied at the CoM expressed in FB u1
Control moment applied at the CoM expressed in FB u2
Feasible set of the control force u1 U1
Feasible set of the projection of u1 on the xy plane in FB Uxy
i-th vector of the canonical basis of R3 with i = 1,2,3 ei

where the laterally bounding set Uxy is a set that contains the origin. We define
U1 = {u1 2 R3 | [u1 u2]T 2 Uxy,u3 � 0}. Note that Uxy can be constant or even
be changing depending of u3, as shown in Figure 112. The dynamics of the aerial
platform is then

mp̈ = �mge3 +Ru1, Ibẇww = �www ⇥ Ibwww +u2. (143)

Some particularly relevant cases of LBF follow.
Case 1 (Underactuated aerial vehicle) When Uxy = {0} the total force is always

oriented as Re3 and model (143) becomes the standard underactuated quadrotor
model.

Case 2: (Conic LBF) When Uxy = {[u1 u2]T 2 R2 | u2
1 + u2

2  (tana)2u2
3},

model (143) approximates the case of hexarotors with tilted propellers [237, 254],
for which the set of allowable U1 forces has the pseudo-inverted-pyramidal shape.
The quantity a is a parameter that represents the tilting angle of the propellers
(hexarotor).

Case 3: (Cylindric LBF) When

Uxy = {[u1 u2]
T 2 R2 | u2

1 +u2
2  r2

xy}, (144)

Preprint version, final version at Springer, https://link.springer.com

Chapters in ‘Aerial Robotics Manipulation’, STAR, 2019, Springer



192

Table 16 Symbols related to the LBF platform tracking control.

Definition Symbol

Reference position for p at time t pr(t)
Reference rotation matrix for R at time t Rr(t)

Reference control force to be applied at OB fr(t) at time t
Set of orientations in SO(3) that allow the application of fr(t) R(fr)
Subset of R(fr) that minimizes a certain cost w.r.t. Rr R(fr,Rr)
Desired rotation matrix in R(fr,Rr) Rd

model (143) approximates the case of an multirotor with nm main propellers point-
ing up and ns secondary less powerful propellers tilted 90 degrees w.r.t. the main
ones, like the one presented in [244], for which the set of allowable U1 forces can
be approximated by a pseudo-cylindric shape

3 Full-pose Tracking Control for LBF Platforms

An underactuated LBF platform (the Case 1 depicted before) is not able to track
a generic full-pose trajectory, i.e., with independent position p and orientation R in
SE(3). The rotation about any axis that is orthogonal to zB must follow the evolution
over time of p, according to the well-known differential flatness property [188, 79].
Only the tracking og a 4D-pose trajectory (i.e., position p plus the rotation about
zB) is possible. On the contrary, a ‘fully-actuated’ LBF platform can exert some
force in the lateral direction thus allowing the tracking of a generic full-pose (6D)
trajectory. However, due to the bounded thrust along the lateral directions, it is not
possible to track any full-pose trajectory. The larger the bounds the higher the ability
of the platform to track any trajectory, the lower the bounds the more the platform
resembles an underactuated multi-rotor and thus it becomes almost unable to track
a full-pose trajectory but only a 4D-pose one.

The most straighforward approach to control fully-actuated platforms is the in-
verse dynamics approach. First, a control wrench is computed in order to track
the desired trajectory by cancelling the nonlinear dynamical effects and trying to
zero the position and orientation errors. Then the thrust inputs for each propeller
are computed from the control wrench by simply inverting the control allocation
matrix. This method has been first proposed in [237] and then used also in [41]
(with pseudo-inversion, in place of inversion, to allocate the input redundancy) and
in [225]. The limitation of this control approach is to neglect input saturation, which
may easily lead to an unstable behavior if, e.g., the full-pose trajectory to be fol-
lowed is not input-feasible.

In this Section we briefly present a geometric tracking controller for time-varying
references, introduced in [87], that is instead very general and applicable to any LBF
vehicle, thus also taking into account the bounds on the lateral control force. The
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method is not prone to local orientation representation singularities since it is na-
tively designed in SE(3). The proposed controller ensures, in nominal conditions,
the tracking of a full-6D pose reference trajectory (position plus orientation). If the
reference orientation and the force needed to track the position trajectory do not
comply with the platform constraints, the proposed strategy gives priority to the
tracking of the positional part while also tracking the feasible orientation that is
the closest to the reference one. This choice is supported by, e.g., the fact that in
typical applications a wrong position tracking is more likely to lead to an obsta-
cle crash than a non-perfect orientation tracking. The proposed method also suit-
able to control vectored-thrust vehicles that can transit from an under-actuated to a
fully-actuated configuration while flying – as, e.g., the one presented in [254]. The
proposed method is in this sense ‘universal’, since it does not need any switching
between two different controllers for each configuration.

Let be given a full-pose trajectory qr(t) = (pr(t),Rr(t)) : [t0, t f ]! SE(3), where
pr(t) 2R3 is the reference position trajectory and Rr(t) 2 SO(3) is the reference at-
titude trajectory (see Table 16 for a recap of the symbols used in this Section). Invert-
ing (143), the nominal inputs to track qr(t) are obtained as ur

1 = RT
r (mge3 +mp̈r)

and ur
2 = wwwr ⇥ Ibwwwr + Ibẇwwr, where wwwr is defined by [wwwr]⇥ = RT

r Ṙr.

Definition 4 qr(t) is feasible if ur
1(t) 2 U1 8t 2 [t0, t f ].

Exact full-pose (6D) tracking is possible only if qr(t) is feasible. However in real
world it is not granted that qr(t) will be such for the particular LBF platform in use.
For this reason, we propose a controller that works (in the sense that the tracking
of pr(t) is still guaranteed and no singularity appears) even if qr(t) is not feasible.
Consider the position error ep = p�pr, velocity error ev = ṗ� ṗr, and two positive
definite gain matrices Kp and Kv. Then consider fr = mp̈r + mge3 �Kpep �Kvev,
representing the reference total control force that ideally one would like to apply
to the aerial vehicle CoM if the system would be completely fully actuated, i.e., if
U1 = R3.

The set of orientations that allow to apply fr to the CoM of the LBF aerial vehicle
is defined as R(fr) = {R 2 SO(3) | RT fr 2 U1}. For an underactuated collinear
multi-rotor system the set R(fr) is formed by any R such that Re3 and fr are parallel,
i.e., Re3 ⇥ fr = 0. For a generic LBF aerial vehicle the set R(fr) may contain also
R’s for which Re3 ⇥ fr 6= 0. It is possible to show that (see [87] for its proof):

Proposition 2 The set R(fr) is always nonempty 8 fr 2 R3.

The proposed controller exploits a cascaded structure3 by choosing, at each time t,
a desired orientation Rd 2 SO(3) that belongs to R(fr) and also minimizes a given
cost function w.r.t. Rr. Then one can use the fully actuated rotational dynamics
to track Rd and, in turn, track the reference position pr. If qr is feasible then Rd
will exponentially converge to Rr. Otherwise, only the best feasible orientation will
be obtained. Therefore the controller implicitly prioritizes the position trajectory
tracking against the orientation one.

3 Notice that even if a cascaded structure is used, there is no time-scale separation assumption in
the proposed controller.
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Fig. 113 Block diagram of the 6D tracker for LBF platforms.

Define R(fr,Rr) ⇢ R(fr) as the set of rotation matrices that solve

min
R02R(fr)

J(Rr,R0),

where J : SO(3)⇥SO(3)!R�0 is an arbitraily chosen cost function that represents
the degree of similarity between Rr and R0 one is interested in. The elements in
R(fr,Rr) represent orientations of the LBF that allow to apply fr and minimize the
function J w.r.t. Rr.

Consider that, at each time t a desired orientation Rd 2 R(fr,Rr) is chosen. Fur-
thermore, whenever Rr 2 R(fr,Rr) then Rd must be chosen equal to Rr. Then
define the rotation error eR = 1

2 (RT
d R � RT Rd)_, and the angular velocity error

ew = www �RT Rdwwwd where •_ is the inverse map of [?]⇥, and wwwd is the angular
velocity associated to Rd . Consider then the following control law

u1 = satUxy

�
(fT

r Re1)e1 +(fT
r Re2)e2

�
+(fT

r Re3)e3 (145)

u2 = www ⇥ Ibwww �KReR �Kw ew � Ib
�
[www]⇥RT Rdwwwd �RT Rdẇwwd

�
(146)

where satUxy(x) is a vector in Uxy with the same direction of x, that minimizes the
distance from x. KR = kRI and Kw = kw I are the gain matrices with kR > 0 and
kw > 0.

In order to state the convergence properties of the proposed controller let us con-
sider the following error function between two rotation matrixes R1 and R2 to be
d(R1,R2) = 1

2 tr
�
I�RT

2 R1
�
. the following result holds (see [87] for the proof):

Theorem 1 Assume that Rd(t) 2 R(fr(t)) for any t and that wwwd(t) and ẇwwd(t) are
well defined for any t. Consider the control u1 and u2 defined at (145) and (146).

Assume that the initial condition satisfies

d (R(0),Rd(0)) < 2, (147)

kew(0)k2 <
2

lmin(Ib)
kR (1�d (R(0),Rd(0))) (148)

Then, the zero equilibrium of the tracking errors eR, ew , ep and ev is exponentially
stable. The region of attraction is characterized by (147) and (148).
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A block diagram that shows the main subsystems of the proposed control archi-
tecture is provided in Fig. 113.

Theorem 1 ensures, under mild conditions, the exponential stability of ep, ev,
eR, and ew . Notice that this results holds regardless of the feasibility of qr. If qr
is also feasible then exponential tracking of qr by q is also guaranteed. In order
to formally state this fact let us define the errors eRr = 1

2 (RT
r Rd � RT

d Rr)_, and
ewr = wwwd �RdRT

r wwwr.
In next result we characterize the convergence of the above errors to zero pro-

vided that the reference trajectory qr(t) is feasible and satisfies the additional prop-
erty that ur

1 is sufficiently inside U1, meaning that there exists a time instant t̄ and a
positive number e such that the distance of ur

1 from the boundary of U1 is greater
than e > 0 for all t > t̄, i,e,

dist(ur
1(t),∂U1) > e, 8 t > t̄. (149)

Corollary 1 Assume qr(t) is a feasible trajectory and that it satisfies the additional
property in (149). Assume that Rd(t) 2R(fr(t)) for any t and that wwwd(t) and ẇwwd(t)
are well defined for any t. Consider the control u1 and u2 defined at (145) and (146).
Assume that the initial condition satisfies (147) and (148). Then the zero equilibrium
of the tracking errors eR, ew , ep and ev is exponentially stable and there exists a time
instant t̄ � t0 such that eRr(t) = ewr(t) = 0 for all t > t̄ . The region of attraction is
characterized by (147) and (148).

The proposed controller (in particular the attitude controller (146)) relies on the
availability of wwwd , and ẇwwd . These quantities depend in turn on Rd which is the output
of an optimization algorithm executed at each control step. In order for wwwd and ẇwwd
to be well defined and available the optimization must ensure a sufficient smooth-
ness of Rd . This could be enforced by adding, e.g., a regularization term in the cost
function J. If in the real case at hand this is not possible (or not implementable),
then at each time instant in which Rd is not smooth the attitude controller will un-
dergo a new transient phase. In practice, see the experiments in Sec. 5.1, we have
experimentally ascertain that the presence of a few isolated non-smooth instants
does not constitute at all a real problem for the stability of the implementation and
that regularization is actually not needed for practical stabilization.

The proposed control method is kept on purpose general regarding two main
features: the choice of Uxy in (142) and the choice of the cost function J. The former
allows the method to be used for a large set of aerial vehicles with different actuation
capabilities. The latter allows the engineer to customize the definition of similarity
between two orientations in order to comply with the particular task at hand. it is
An illustration of how these two general features are particularized for a specific
meaningful case is provided in [87].
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Fig. 114 Signal block diagram of the control framework. The runtime frequency is highlighted.
For clarity higher derivatives of the signals have been omitted. The cascaded structure of the pose
controller has been omitted as well.

4 Control of the Interaction

In this Section we illustrate how the 6D full-pose tracking controller introduced in
Sec. 3 can be integrated in a larger architecture in order to allow the control of the
physical interaction with multi-directional thrust platforms.

The control framework is based on an outer loop admittance control and an inner
loop full-pose tracking controller (see Fig. 114). The state of the aerial robot is
estimated by a Unscented Kalman Filter (UKF) that fuses the Inertial Measurement
Unit (IMU) acceleration and angular velocity measurements with the position and
orientation from a pose sensor (e.g., a motion capture system or an onboard camera
using a Perspective-n-Point (PnP) algorithm). The interaction torques and forces
are estimated by a wrench observer. We will now introduce all single components,
except for the full-pose tracking controller, already introduced in Sec. 3.

4.1 Contact Wrench Estimation

In order to properly handle physical interaction of the aerial robot with the external
environment, the knowledge of the contact interaction wrench between the tool tip
and the environment, wE = [fT

E tT
E ]T 2 R6 is essential. To this aim, a force/torque

sensor could be mounted on the robot’s tool-tip, which is usually capable to pro-
vide a reliable measure, but this solution increases both the cost and the weight
of the robot. In the aerial robotics field, a more viable solution is the adoption of
a wrench estimator, that can provide a sufficiently accurate estimation, denoted as
ŵE = [f̂T

E t̂T
E ]T 2R6, in the presence of accurate measurements of position, velocities

and, if available, accelerations.
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Fig. 115 Estimated versus measured contact force. The ground truth is measured with an ATI45
force torque transducer. The aerial robot pushed the sensor vertically. Both signals have been fil-
tered with a low-pass with a 6Hz cut-off frequency. For reasons of clarity only the second and third
components are presented as the first and second component are overlapping each other a lot.

The external wrench on the robot, wR = [fT
R, RRtR

R
T]T, can be viewed as the

effect on the robot CoM of the wrench wE exerted by the environment on the tool
tip, namely

wR = HT
E(RR)wE , HE(RR) =


I3 �[RRpR

E ]⇥
O3 I3

�
. (150)

If the sensor equipment provides accurate enough measurements of the platform
position and velocities, both angular and linear, while only the linear acceleration,
provided by the IMU, can be reasonably used in a wrench observer. Thus we pro-
pose the hybrid approach already proposed in [293]. More in detail, the acceleration
based observer proposed by [316] is adopted in order to estimate the external inter-
action forces on the robot CoM, fR, while the external torques, tR

R are obtained by
exploiting a momentum-based observer ([63]).

Estimation of contact forces. The following disturbance observer, firstly pro-
posed for aerial robots in [316], is adopted for estimating the contact forces

˙̂fR = L(fR � f̂R) = �Lf̂R �L(mp̈R +mge3 �RRF1u), (151)

where L 2 R3⇥3 is a gain matrix to be designed. By defining the observer error as
e f = fR � f̂R, the error dynamics, in the presence of a constant or slowly varying
external force is given by [316]

ė f +Le f = 0. (152)

Thus, the error dynamics is asymptotically convergent to the origin for any positive
definite matrix L.

Estimation of contact moments. With reference to the system dynamics (143),
the angular momentum qR 2 R3 in frame FR can be computed as

qR = JwR. (153)
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The time-derivative of (153) can be expressed as

q̇R = JẇR = �wR ⇥JwR +F2u+ tR
R. (154)

By exploiting (154), the estimate t̂R can be seen as the residual vector

t̂R
R =KI


(qR(t)�qR(t0))+

Z t

t0
(wR ⇥JwR �F2u� t̂R

R)dt
�
, (155)

where t and t0 are the current and initial time instant respectively, KI is a positive
definite gain matrix. By reasonably assuming that wR(t0) = 03, it implies that qR(t0)
is null as well. By taking the time derivative of (155), through (154), the following
dynamics for the residual vector is obtained

˙̂tR
R +KI t̂R

R = KItR
R. (156)

Equation (156) is a first order low-pass dynamic system: it can be easily recognized
that t̂R

R ! tR
R when t ! • and with KI ' •. Thus, by properly choosing the matrix

KI , it is possible to achieve a good estimation of tR
R while, at the same time, a low

pass filtering of the high-frequency noise.
Estimation of the wrench acting on the tool tip. Once both f̂R and t̂R

R are known,
the estimated wrench acting on the tool tip, ŵE is computed as

ŵE = H�T
E


f̂R

RRt̂R
R

�
. (157)

An illustrative example of the wrench observer’s precision is presented in Fig. 115.
For the sake of clarity, the figure reports only the second and third component of
ŵE in (157) (continuous lines) against data of an ATI45 force-torque sensor (dotted
lines). As for the first component, it shows a behaviour similar to the second one.

4.2 Admittance Filter

In order to achieve bounded forces exchanged with the environment, a compliant
behavior could be enforced between the position and orientation of the end-effector
and the interaction generalized forces.

Assigned a planned desired trajectory of the end-effector in terms of position
pE,d , orientation RE,d , velocities nE,d = [ṗT

E,d RE,dwT
E,d ]

T, and accelerations ṅE,d ,
the corresponding set of reference motion variables to be fed to the motion con-
troller, (pE,r,RE,r,nE,r, ṅE,r), can be generated via an admittance filter, character-
ized by the following dynamics

MEDṅE +DEDnE +KEeE = ŵE , (158)

where DnE = nE,d �nE,r is the velocity error, while eE is the pose error given by
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eE =


(pE,d �pE,r)>

✓
1
2
(RE,dRT

E,r �RE,rRT
E,d)

_
◆> �

. (159)

The (158) represents the dynamics of a 6-DoF mechanical impedance ([271]) of
inertia ME , damping DE and stiffness KE : those matrices are all positive-definite
and suitably chosen in a way to impose an over-damped behavior to the system.

Once the reference trajectory of the end-effector has been computed it should be
expressed in terms of CoM reference trajectory in order to be tracked by the inner
loop pose controller. The reference position and orientation of the robot are then
computed as

⇢
pR,r = pE,r �RR,rpR

E ,
RR,r = RE,rRE

R ,
(160)

while the CoM reference velocities and accelerations are obtained by taking the time
derivatives of (160). In detail, the reference velocities are given by

⇢
ṗR,r = ṗE,r �RR[wR,r]⇥pR

E ,
wR,r = wE,r,

(161)

while the reference accelerations are
⇢

p̈R,r = p̈E,r �RR[ẇR,r]⇥pR
E �RR[wR,r]2⇥pR

E ,
ẇR,r = ẇE,r.

5 Experimental Results

5.1 Full-pose Tracking

In Fig. 116 we report the results of an experiment in which the LBF platform shown
in Fig. 117 is tasked to track pseudo-sinusoidal trajectory while keeping the orien-
tation horizontal. Thanks to the use of the controller described in Sec. 3, the task
is fulfilled as long as the required lateral force is within the bound. When the re-
quired force exceeds the bounds the tracking of the orientation is relaxed, however
the position tracking is still executed properly. More results and details are provided
in [87].

5.2 Interaction Control

In Fig. 118 we report some results of an experiment of interaction control where
the platform shown in Fig. 119 is tasked to slide on an inclined surface. The plots
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Fig. 116 Exp. 1.1: Desired position: sinusoidal motion along the xW axis with constant amplitude
and triangular (first increasing then decreasing) frequency. Desired orientation: constantly horizon-
tal. Lateral force bound: constant rxy = 3N.

Fig. 117 LAAS-CNRS TiltHex platform used for the tracking experiments.

clearly show how the interaction is stable and interaction forces kept within standard
values.

6 Conclusions

In this Chapter we have presented a framework to allow platforms with multi-
directional thrust capabilities to perform physical interaction. The method is build
around a full-pose tracker, a wrench estimator, an admittance filter and an aerial
platform that can accurately execute the total force and moment commands, and
measure the real exerted force thanks to the precise control and measurement of the
rotational speed of the propellers. It is worth to mention that such platforms and
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Fig. 118 Sliding with the tool-tip on a tilted surface. The contact phase is highlighted in green,
while the actual sliding starts at the gray dashed line: 1) Desired, reference and actual position of
the tool-tip. 2) Estimated tool-tip contact forces - low pass filtered (157). 3) Desired, reference and
actual tool-tip orientation. 4) Estimated tool-tip contact torques - low pass filtered output of (157).

framework can be used not only in physical interaction with rigid tool but also for
aerial manipulation, as recently demonstrated for example in [280].
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Fig. 119 LAAS-CNRS TiltHex platform used with a rigid tool for physical interaction experi-
ments.
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316. B. Yüksel, C. Secchi, H. H. Bülthoff, and A. Franchi. A nonlinear force observer for quadro-
tors and application to physical interactive tasks. In 2014 IEEE/ASME Int. Conf. on Advanced
Intelligent Mechatronics, pages 433–440, Besançon, France, Jul. 2014.
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