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Online Leader Selection for Collective Tracking and
Formation Control: the Second Order Case

Antonio Franchi1, Paolo Robuffo Giordano2, Giulia Michieletto3

Abstract—In this work, we deal with a double control task for
a group of interacting agents having a second-order dynamics.
Adopting the leader-follower paradigm, the given multi-agent
system is required to maintain a desired formation and to
collectively track a velocity reference provided by an external
source only to a single agent at time, called the ‘leader’. We
prove that it is possible to optimize the group performance
by persistently selecting online the leader among the agents.
To do this, we first define a suitable error metric able to
capture the tracking performance of the multi-agent group while
maintaining a desired formation through a (even time-varying)
communication-graph topology. Then we show that this depends
on the algebraic connectivity and on the maximum eigenvalue of
the Laplacian matrix of a special directed graph depending on the
selected leader. By exploiting these theoretical results, we finally
design a fully-distributed adaptive procedure able to periodically
select online the optimum leader among the neighbors of the
current one. The effectiveness of the proposed solution against
other possible strategies is confirmed by numerical simulations.

I. INTRODUCTION

For multi-agent systems, the tracking of a collective motion
constitutes a well-studied problem in both the control and
agentic communities (see, e.g., the recent [1] but also [2], [3],
[4]). Most of the proposed tracking algorithms relies upon the
leader-follower paradigm, a very popular technique [5], [6],
[7], [8], [9], [10], [11], [12] which envisages the presence of a
special agent, referred to as the leader, that has access to the
reference motion (often provided by an external source) to be
propagated to the whole group. This approach arises as a very
powerful tool in real applications, mainly because in many
situations it is unfeasible to communicate at the same time with
all the agents in the group especially if they are geographically
distributed and the available bandwidth is limited.

Within the multi-agent context, the leader-follower solutions
have to guarantee the propagation of the reference motion and
its tracking with the smallest possible error/delay by means
of proper local actions. For this reason, the selection of the
leader plays an important role, and the literature distinguishes
between static and online leader selection. In the first case, the
leader is constantly assumed to be a certain agent within the
group chosen at the beginning of the task by the whole multi-
agent system. Contrarily, when adopting the online selection,
the leader is left free to change over time.
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Related works - Both in static and online case, the leader
selection generally rests upon the optimization of a suitable
index. For example, the authors of [13] have addressed the
static leader election task accounting for the maximization of
the network coherence, defined as the ability of the consensus-
network to reject stochastic disturbances, while in [14] the
Harmonic Influence Centrality measure is used to quantify
the influence of a node on the opinion of the global network.
Allowing for the presence of multiple (static) leaders, in [15],
a fully distributed strategy is described to select the minimum
set of leaders that ensures the structural controllability of the
resulting communicating system, whereas a pre-specified num-
ber of leaders is assumed in [16] focusing on the computation
of bounds on the global optimal value in large stochastically
forced consensus networks. Similar scenario is considered
in [17] where the K-leader selection problem (standard static
leader selection issue) is investigated in ring and path graphs
assuming that leaders are noise-free and followers obey noisy
consensus dynamics. The authors of [18] instead evaluate the
effect of noise-corrupted leaders in the network performance
through the definition of the joint centrality of a set of nodes.
Finally, in [19] the combinatorial nature of the problem of
choosing k leaders among n agents is analyzed showing that
the task can be efficiently faced via a semidefinite program,
once applied a suitable sequence of relaxations.

Although the literature about online leader selection is more
limited, the authors of [20] have addressed this problem by
investigating the instantaneous impact of the (time-varying)
leaders on the remaining agents through the notion of ma-
nipulability. In [21], instead, both the total and the maximum
variance of the deviation from a desired trajectory are taken
into account to face the so-called in-network leader selection
problem designing a self-stabilizing algorithm that, after a
topology change, ensures the network stability until the online
determination of the optimal leader for the new topology.
Such approach rests on agents cooperation: the determination
of a distributed control protocol guaranteeing the leadership
uniqueness constitutes the main challenge of both static and
online leader selection. Within the static context, this issue
has been tackled in [22] by using explicit message passing
among the formation, while a fault detection strategy without
explicit communication need is exploited in [23]. Allowing for
a time-varying leadership, the leader identity becomes as an
additional degree of freedom that has to be handled over time
by the network in a distributed manner limiting the selection
duration and its computational burden.

Contributions - Differently from all the aforementioned
works in [24] we have proposed to perform the online leader
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selection to simultaneously optimize the collective tracking
performance from an external source and the maintenance of
a desired formation shape. The goal of this work is to consider-
ably extend the results achieved in [24] by considering a more
complex dynamics for the multi-agent group: while in [24]
the agents behave as first-order systems, we now consider a
second-order dynamics, thus assuming the linear accelerations
as control input. The presentation of the contributions follows
the same structure of [24] to clearly highlight the differences
arising from the adoption of the double-integrator dynamic
model. These are clearly stated at the end of this work and
mainly derive from the fact that the metrics introduced in [24]
are not valid anymore in the second-order case.

For a group of agents modeled as second-order systems, we
first formalize the problem of tracking an external reference
motion while maintaining a desired formation assuming that
the leader identity and the interaction graph topology can be
both time-varying. Then, we analyse the effect of a changing
leadership for accomplishing the formation control task by
showing a direct dependence of the convergence of a suitable
defined tracking error on the leader identity. Finally, we
propose a new distributed leader election procedure whose
effectiveness is validated by means of numerical simulations.

II. MODELING OF COLLECTIVE EXTERNAL REFERENCE
TRACKING AND DESIRED FORMATION MAINTENANCE

The first contribution of this work is a set of results
regarding the modeling of a multi-agent scenario consisting
of a group of N mobile agents equipped with communi-
cation, sensing and computation capabilities. Each agent i,
i ∈ {1 . . . N}, of the group is considered as a point mass in
Rd, with d ∈ {2, 3}. The i-th agent position is denoted by
pi ∈ Rd and its linear velocity by ṗi = vi ∈ Rd. The set
of the linear accelerations {v̇i}Ni=1 will be considered as the
control input set in the following development.

An undirected graph G, called interaction graph, describes
the inter-agent sensing and communication capabilities so that
the corresponding adjacency matrix A ∈ {0, 1}N×N is such
that [A]ij = 1 if agents i and j, j 6= i, can communicate
and measure their relative position pij = pi − pj ∈ Rd, and
[A]ij = 0 otherwise, ∀ i, j ∈ {1 . . . N}. The neighborhood
Ni = {j |Aij = 1} of the node i in G denotes thus the set
of agents with which the i-th one can interact. The cardinality
of this set represents the degree of the i-th agent, which in
turns corresponds with the i-th element in the main diagonal
of D = diag(A1) ∈ RN×N , i.e., in the diagonal matrix
associated to the vector A1 with 1 ∈ RN representing a
column vector of all ones. The degree matrix D contributes to
the definition of the Laplacian matrix L ∈ RN×N of G, i.e.,
L = D−A. We assume that the second smallest eigenvalue λ2
of L (algebraic connectivity of G) is positive, or equivalently,
that the Laplacian matrix has rank N − 1. This condition is
guaranteed by the existence of at least one communication
path (i.e., a sequence of edges) for any pair of agents in the
group, so that the graph G is connected.

In this work, the multi-agent swarm is required to track
a collective motion command provided to the group by an

external ‘entity’ (such as another agent, a planner, or a human
operator), referred to as the reference source. We assume that
this transmits a certain velocity reference ur ∈ Rd, which is
supposed to be a piecewise constant function with period Tr
(reference command period). In addition, we assume that the
current value of ur is communicated by the reference source
to only one agent of the group at a time, called the ‘current’
leader and denoted with the, possibly time-varying, index l.

The connectivity assumption on the interaction network
ensures that the reference velocity can be transmitted to the
whole group of agents by exploiting a multi-hop propaga-
tion algorithm. Without focusing on particular propagation
schemes, we consider the following consensus-based strategy

ûl = ur, (1)
˙̂ui = −ku

∑
j∈Ni(ûi − ûj), ∀i 6= l, (2)

where ûi ∈ Rd is the estimation of ur performed by the i-th
agent, while the positive scalar gain ku tunes the algorithm
convergence speed allowing to model both fast or slow prop-
agation technologies, e.g., high-bandwidth LAN networks or
ultrasonic underwater communication, respectively. Note that,
for the leader, ûl = ur since the reference is directly available.

To compactly rewrite the propagation model (1)-(2), we
introduce the ‘in-degree’ Laplacian matrix Ll ∈ RN×N of
the directed graph Gl, that is obtained from G by removing
all the ingoing-edges of l. In other words, the matrix Ll is
derived from L by zeroing its l-th row so that

Ll =

Ml,1 `l,1 Ml,2

0> 0 0>

Ml,3 `l,2 Ml,4

, (3)

where Ml,1, Ml,2, Ml,3, Ml,4, `l,1, `l,2, and 0 are matrices
and column vectors of proper dimensions. By introducing also
the matrix Gl = −(Ll⊗ Id) ∈ RdN×dN where ⊗ denotes the
Kronecker product, and the vector û = [û>1 . . . û

>
N ]> ∈ RdN ,

the estimation dynamics (1)-(2) can be compactly rewritten as

˙̂u = −ku(Ll ⊗ Id)û = kuGlû. (4)

As further task, the agents group needs to maintain a
desired formation shape defined through the set of constant
(absolute) positions d = [d>1 . . .d

>
N ]> ∈ RdN . Based on the

actuation and sensing properties of the agents, this goal can
be accomplished through several control strategies. For sake of
model generality, we here consider a classical consensus-like
solution applied to second-order agents, namely

ṗi = vi, (5)
v̇l = b(ur − vl), (6)
v̇i = b(ûi − vi)− kp

∑
j∈Ni(pij − dij), ∀i 6= l, (7)

where dij = di − dj ∈ Rd represents the desired relative
position between agents i and j. The positive scalar gains
b and kp determine the velocity tracking performances and
the ‘stiffness’ of the formation control, i.e., how strongly the
agents will react to deviations from their desired formation.
The convergence towards the desired configuration is guaran-
teed by the connectivity of the network interaction graph [25].
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Exploiting the matrix Gl (previously introduced) and the
vectors p = [p>1 . . .p

>
N ]> ∈ RdN , v = [v>1 . . .v

>
N ]> ∈ RdN ,

and d = [d>1 . . .d
>
N ]> ∈ RdN , the complete agents group

dynamics can be shortened as follows

ṗ = v, (8)
v̇ = b(û− v) + kpGl(p− d). (9)

Let us then introduce the formation tracking error, the ve-
locity tracking error and the velocity estimation error, namely

ep = (p− 1⊗ pl)− (d− 1⊗ dl), (10)
ev = v − 1⊗ vl, (11)
eû = û− 1⊗ ur. (12)

The first one provides a measure of accuracy in tracking
and maintaining the desired formation shape encoded in d,
while the second and the third ones represent, respectively,
the tracking accuracy of the leader velocity vl, and the error
in estimation the reference ur.

Using the properties b(û − v) − 1 ⊗ v̇l = b(eû − ev),
ėp = ev, Gl(p−d) = Glep, and taking into account (4), and
(8)-(9), the dynamics of the overall error e = [e>p e>v e>û ]>

takes the expression

ė =

[
0 IdN 0

kpGl −bIdN bIdN
0 0 kuGl

]
e, (13)

where the reference velocity is assumed constant (u̇r = 0).
The system (13) presents some interesting properties whose

role is fundamental for deriving the main contributions of this
work. In this perspective, we first define

`l = [`>l,1 `
>
l,2]> ∈ RN−1, (14)

Ml =
[
Ml,1 Ml,2

Ml,3 Ml,4

]
∈ R(N−1)×(N−1), (15)

where Ml is the matrix obtained from Ll by removing its
l-th row and column. Moreover, we report here the following
(known) facts important for the next developments.

Property 1 (Prop. 1 in [24]). If the graph G is connected, the
following properties hold:

1) Ll1 = 0, ∀l = 1 . . . N ;
2) Ml1 = (1>Ml)

> = −`l;
3) Ml is symmetric and positive definite;
4) σ(Ll) = σ(Ml) ∪ {0}, where σ(S) represents the spec-

trum of a square matrix S.

A consequence of this properties is that the matrix Ll has N
real non negative eigenvalues even though it is not symmetric.
Let σ(Ll) = {λi,l, i = 1, . . . N | 0 = λ1,l ≤ . . . ≤ λN,l} and
σ(L) = {λi, i = 1, . . . N | 0 = λ1 ≤ . . . ≤ λN} be the spec-
trum of Ll and L, then the following property holds.

Property 2 (Prop. 2 in [24]). For a graph G and an induced
graph Gl it is λi,l ≤ λi for all i = 1 . . . N .

Prop. 2 descends from the Cauchy interlacing theorem
applied to matrices L and Ml and it implies that, if G is
connected, then both λ2 > 0 and λ2,l > 0, where by analogy
we denote λ2,l as the ‘algebraic connectivity’ of Gl.

Given these premises, we conclude this behavioring section
by formally proving the stability of the system (13).

Proposition 1. If graph G is connected, the system (13) is
asymptotically stable for any positive constants kp, b, ku.
Furthermore, if

b > bc = 2
√
kpλN,l (critical damping),

the system evolution has no oscillatory modes, where λN,l =
maxσ(Ml), i.e., the largest positive eigenvalue of Ll. Finally,
the rates of convergence of [e>p e>v ]> and eû are dictated by

− b
2

+
1

2

√
b2 − 4kpλ2,l and − kuλ2,l,

respectively, where λ2,l = minσ(Ml), i.e., the smallest
positive eigenvalue of Ll (algebraic connectivity of Gl).

Proof. Since ep,l = ėp,l = ev,l = ėv,l = eû,l = ėû,l = 0, the
stability of (13) is determined by the real part of the eigenval-
ues of the 3(N − 1)× 3(N − 1) matrix

R =

[
0 I(N−1) 0

−kpMl −bI(N−1) bI(N−1)
0 0 −kuMl

]
⊗ Id,

that is required to be negative definite. Thanks to the properties
of the Kronecker product, we can focus on the first matrix
composing R. Being a block upper triangular matrix, it is
σ(R) = σ(R11) ∪ σ(R22), where

R11 =
[

0 I(N−1)
−kpMl −bI(N−1)

]
and R22 = −kuMl.

The spectrum of R22 is clearly σ(R22) = −kuσ(Ml) =
{−kuλ2,l, . . . ,−kuλN,l}. On the other hand, for any eigen-
value µj , j ∈ {1 . . . 2(N − 1)} of R11 it follows that

R11vj = µjvj , (16)

where vj = [v>j,1 v>j,2]> ∈ R2(N−1) is the unit-norm
eigenvector of R11 associated to µj . Consider the matrix
(I2 ⊗ w>i ) ∈ R2×2(N−1), where wi ∈ R(N−1) is the unit-
norm eigenvector of Ml associated to the eigenvalue λi,l,
i ∈ {2 . . . N}. Left-multiplying both sides of (16) with
(I2 ⊗w>i ) and exploiting the symmetry of Ml, we obtain[

0 1
−kpλi,l −b

]
︸ ︷︷ ︸

Rλi,l

[
w>i vj,1
w>i vj,2

]
= µj

[
w>i vj,1
w>i vj,2

]
.

Hence µj must also be an eigenvalue of the 2×2 matrix Rλi,l

for every λi,l ∈ σ(Ml), i = 2 . . . N . This directly leads to

µ2i−1 = − b
2

+
1

2

√
b2 − 4kpλi+1,l, (17)

µ2i = − b
2
− 1

2

√
b2 − 4kpλi+1,l, (18)

for i = 1 . . . N − 1, and then concludes the proof.

Therefore, both the agent velocities v and the estimation
vector û asymptotically converge to the common reference
velocity ur, while the agent positions p converge to the desired
shape 1 ⊗ pl + d − 1 ⊗ dl. Furthermore, the value of λ2,l
directly affects the convergence rate of the three error vectors
ep, ev, eû over time. Since, for a given graph topology G,
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λ2,l is determined by the identity of the leader in the group, it
follows that maximization of λ2,l over the possible leaders
results in a faster convergence of the tracking error. This
insight then motivates the online leader selection strategy
detailed in the rest of the paper, where we will show that
such maximization is actually only one of the ingredients for
obtaining a faster convergence through online leader selection.

III. ROLE OF LEADER IN TRACKING PERFORMANCE

In this section we provide a theoretical analysis of how the
dynamics of the error vector is affected by changing the leader
of the agents group at time tk = kT with k ∈ N and T > 0
(leader election period). Since it is reasonable to assume that
the internal group communication is much faster than the refer-
ence source/leader interaction, we suppose T ≤ Tr so that the
velocity reference ur remains constant between tk and tk+1.
Hereafter, we denote the leader at time tk with the index lk.

Rewriting the dynamics of the velocity estimation (4) and
of the system (8)-(9) among consecutive sampling times, i.e.,
during the interval [tk, tk+1), we obtain

˙̂u = kuGlk û, t ∈ [tk, tk+1), (19)
ṗ = v, t ∈ [tk, tk+1), (20)
v̇ = b(û− v) + kpGlk(p− d), t ∈ [tk, tk+1), (21)

with the following initial conditions where t−k coincides with
the right extreme of the previous time interval1,

û(tk) = û(t−k ) + (S̄lk ⊗ Id)(1⊗ ur(tk)− û(t−k )), (22)

p(tk) = p(t−k ), (23)

v(tk) = v(t−k ). (24)

The matrix S̄lk ∈ RN×N in (22) realizes the reset action (1) on
the components of û related to the new leader lk. This is a di-
agonal matrix having all zeros on the main diagonal except for
the lk-th entry which is set to one to ensure ûlk(tk) = ur(tk).
Its complement is defined as Slk = IN − S̄lk .

Recalling that ur(t) is constant in [tk, tk+1), the dynamics
of the error vector e(t) = [e>p (t) e>v (t) e>û (t)]> in this interval
is correctly described by the system (13). Using (22)-(24), we
can derive the initial conditions e(tk) as a function of the
chosen leader lk and of the received external command ur(tk):

ep(tk) = (Slk ⊗ Id)
(
(p(t−k )− d)− 1⊗ (plk(t−k )− dlk)

)
,

(25)

ev(tk) = (Slk ⊗ Id)(v(t−k )− 1⊗ vlk(t−k )), (26)

eû(tk) = (Slk ⊗ Id)(û(t−k )− 1⊗ ur(tk)). (27)

From (25-27) it is straightforward to see that the choice of
the leader lk directly affects e(tk). For this reason, whenever
appropriate we will use the notation e(tk, lk) to explicitly
indicate this (important) dependency.

In order to define a valid metric for the error vector, we
first state the following result which holds for any positive
semi-definite matrix and then we provide a lemma which is
preliminary to the main result of the section.

1Formally, t−k coincides with the one-sided limit of time function ap-
proaches tk ‘from below’.

Proposition 2. Consider the Laplacian matrix L ∈ RN×N
of any connected graph with N vertexes and denote by
λN the largest eigenvalue of L. Assuming three constants
kn1

, kn2
, kn3

∈ R such that

kn1 > 0, kn3 > 0 and 0 < kn2
< kn1

/
√
λN , (28)

the matrix

PL :=

[
kn1

G + kn3
IdN kn2

G 0
kn2

G kn1
IdN 0

0 0 IdN

]
∈ R3dN×3dN , (29)

where G = (L⊗ Id) ∈ RdN×dN , is positive definite.

Proof. In order to prove the statement it is sufficient to show
that the eigenvalues of the symmetric matrix

P? =
[
kn1

L + kn3
IN kn2

L
kn2L kn1IN

]
∈ R2N×2N , (30)

are all positive. Any eigenvalue µj , j ∈ {1 . . . 2N} of P?

must satisfy the relation P?vj = µjvj where vj ∈ R2N is
the eigenvector associated to µj . If we left-multiply both sides
of the previous relation with (w>i ⊗ I2) ∈ R2×2N , where
wi ∈ RN is the left-eigenvector of L associated to the generic
eigenvalue λi, i ∈ {1 . . . N}, we obtain[

kn1λi + kn3 kn2λi
kn2

λi kn1

]
︸ ︷︷ ︸

P?λi

[
w>i vj,1
w>i vj,2

]
= µj

[
w>i vj,1
w>i vj,2

]
, (31)

with vj = [v>j,1 v>j,2]>. This, in turn, implies that µj must be
an eigenvalue of the 2-by-2 matrix P?λi for every λi ∈ σ(L).
Analytically computing the eigenvalues of P?λi by solving a
quadratic equation we obtain

µj =
1

2

(
kn1(λi + 1) + kn3 −

√
∆
)
, (32)

µ2j =
1

2

(
kn1

(λi + 1) + kn3
+
√

∆
)
, (33)

where
∆ = (kn1

(λi − 1) + kn3
)2 + 4k2n2

λ2i . (34)

By then imposing µj , µ2j > 0 we obtain

λ2i k
2
n2
< k2n1

λi + kn3kn1 , (35)

which is always verified for λi = 0. For any other λi > 0, the
inequality (35) can be met by adopting the more restrictive
constraint λ2i k

2
n2
< k2n1

λi, i.e., kn2
< kn1

/
√
λi. The proof is

concluded by noticing that the last inequality holds for every
λi ∈ σ(L) when kn2

is set according to (28).

Lemma 1. Consider a positive definite symmetric matrix
A ∈ RN×N and denote by 0 < φ1 ≤ . . . ≤ φN its eigen-
values. Define the symmetric matrix

Q :=sym (Q1Q2) =
1

2

(
Q1Q2 + Q>2 Q

>
1

)
, with (36)

Q1 =

[
kn1

A + kn3
IM kn2

A 0
kn2

A kn1
IM 0

0 0 IM

]
, (37)

Q2 =

[
0 IM 0
−A −bIM bIM
0 0 −A

]
, (38)

Preprint version final version at http://ieeexplore.ieee.org/ 4 Accepted for IEEE Transactions on Control of Network Systems 2019



where b, kn1
, kn2

, kn3
> 0 and also kn2

< kn1
/
√
φN (to

ensure the positive definiteness of Q1, according to Prop. 2).
If the following conditions are also met

b < φ1, (39)

kn1
<

2φ1
b
, (40)

kn2 < min

{
bkn1

φN (2 + b)
,

2

b
− kn1

φ1

}
, (41)

kn3
<
bkn2φ1

2
, (42)

then the 3N eigenvalues of Q are all negative and in par-
ticular they are upper-bounded by the maximum between the
following negative quantities

kn2φ1(b− φ1), (43)

kn2
φN

(
1 +

b

2

)
− b

2
kn1

, (44)

φ1

(
b

2
kn2
− 1

)
+
b

2
kn1

. (45)

Proof. After suitable computations we obtain that

Q =

−kn2
A2 − b

2kn2
A + kn3

IM
b
2kn2

A
∗ kn2

A− bkn1
IM

b
2kn1

IM
∗ ∗ −A

.
Any eigenvalue νj , j ∈ {1 . . . 3N} of Q must satisfy the
relation Qvj = νjvj where vj ∈ R3N is the eigenvector
related to νj . Left-multiplying both sides of the previous
relation by (I3 ⊗ w>i ) ∈ R3×3N , where wi ∈ RN is
the left-eigenvector of A associated to the eigenvalue φi,
i ∈ {1 . . . N}, we get−kn2

φ2i − b
2kn2

φi + kn3

b
2kn2

φi
∗ kn2

φi − bkn1

b
2kn1

∗ ∗ −φi

w>i vj,1w>i vj,2
w>i vj,3

 = νj

w>i vj,1w>i vj,2
w>i vj,3


where vj = [v>j,1 v>j,2 v>j,3]>. This means that for every eigen-
value φi of A, νj must be an eigenvalue of the 3× 3 matrix

Qφi =

−kn2
φ2i − b

2kn2
φi + kn3

b
2kn2

φi
∗ kn2φi − bkn1

b
2kn1

∗ ∗ −φi

.
Applying the Gershgorin Circle Theorem we know that

every eigenvalue of Qφi is at least in one of the six disks (in
the complex plane) centered on the three main diagonal terms
of the matrix, and with radius the sum of the magnitudes of
the off-diagonal entries in same column or in the same row.
Due to the symmetry of Qφi in our case we have only three
disks whose largest intersection with real axis are respectively

zi,1 := −kn2φ
2
i +

∣∣ b
2kn2φi − kn3

∣∣+
∣∣ b
2kn2φi

∣∣ ,
zi,2 := kn2φi − bkn1 +

∣∣ b
2kn2φi − kn3

∣∣+
∣∣ b
2kn1

∣∣ ,
zi,3 := −φi +

∣∣ b
2kn2φi

∣∣+
∣∣ b
2kn1

∣∣ .
By using the fact that kn1

, kn2
, kn3

, φi, and b are positive
quantities and kn3

also satisfies (42) we obtain

zi,1 < −kn2φ
2
i + bkn2φi =: z̄i,1, (46)

zi,2 < kn2φi
(
1 + b

2

)
− b

2kn1
=: z̄i,2, (47)

zi,3 = −φi + b
2kn2

φi + b
2kn1

. (48)

Our goal is then to find the additional conditions on
kn1 , kn2 and kn3 such that z̄i,1, z̄i,2 and zi,3 are all neg-
ative for each i ∈ {1 . . . N}. Posing z̄i,1 < 0 results
in b < φi which is then equivalent to (39). Condition
z̄i,2 < 0 can be guaranteed if kn2

< b
φi(2+b)

kn1
which is

equivalent to kn2 <
b

φN (2+b)kn1 . Condition zi,3 < 0 results

in kn2 <
2
b −

kn1

φi
, i.e., kn2 <

2
b −

kn1

φ1
. Since it must be

also kn2 > 0, the last inequality can only be verified if
2
b −

kn1

φ1
> 0, i.e., if (40) holds. Condition (41) is the com-

bination of the just mentioned upper-bounds on kn2 , namely
it has to be simultaneously guaranteed that kn2 <

b
φN (2+b)kn1

and kn2 <
2
b −

kn1

φ1
. Finally the values in (43), (44), and (45)

represent the values of z̄i,1, z̄i,2, and zi,3, respectively, where
φi has always been chosen as the worst case according to the
asumption that 0 < φ1 ≤ . . . ≤ φN .

The following result finally gives an explicit characterization
of the behavior of e(t) during the interval [tk, tk+1) which
then naturally leads to the subsequent definition of optimal
leader selection. For the sake of exposition, we assume that
kp = ku = 1. All the results easily extend to the more general
case kp > 0, ku > 0 with a more tedious machinery.

Proposition 3. Consider the error vector e(t) with a specific
leader lk and, w.l.o.g., kp = ku = 1. If the constants b, kn1

,
kn2 , kn3 are chosen so as to satisfy the next conditions

0 < b < λ2,lk , 0 < kn1 <
2λ2,lk
b

, 0 < kn3 <
bkn2λ2,lk

2
,

0 < kn2
< min

{
bkn1

λN,lk(2 + b)
,

2

b
− kn1

λ2,lk
,

kn1√
λN,lk

}
,

(49)

then the error metric ‖e(t)‖2L := e>(t)PLe(t) is monoton-
ically decreasing in the time interval [tk, tk+1) wherein the
topology is assumed to be fixed. In particular, the error metric
behavior is dominated by the following exponential upper
bound

‖e(t)‖2L ≤ ‖e(tk)‖2L e−2 νlk (t−tk) ∀t ∈ [tk, tk+1), (50)

where νlk > 0 is the minimum among the following quantities

νlk = min


kn2

λ2,l(λ2,l − b),
b
2kn1

− kn2
λN,l

(
1 + b

2

)
,

λ2,l − b
2 (kn2λ2,l + kn1).

(51)

Proof. The dynamics of the error e(t) in [tk, tk+1), with
kp = ku = 1 reduces to[

ėp
ėv
ėû

]
=

[
0 IdN 0
Gl −bIdN bIdN
0 0 Gl

][
ep
ev
eû

]
(52)

where we omit (as in the following) the time dependency for
the sake of exposition. The sub-vectors ep,l, ev,l, and eû,l are
zero at t = tk and their dynamics is invariant, due to the row
of zeros in Ll corresponding to the agent l, i.e.,

ep,l = ev,l = eû,l = ėp,l = ėv,l = ėû,l = 0, ∀t ∈ [tk, tk+1).

Hence we can restrict our analysis to the dynamics of the
orthogonal subspace, i.e., of the remaining components ep,i,
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ev,i, and eû,i,∀i 6= l. We denote by lep, lev, and leû
the d(N − 1)-vectors obtained by removing the d entries
corresponding to l in ep, ev, and eû, respectively, and with
le their concatenation. Therefore we have

lė =

lėplėv
lėû

 =

 0 I(N−1)d 0
lGl −bI(N−1)d bI(N−1)d
0 0 lGl

le = Dl
le, (53)

where lGl = −(Ml ⊗ Id) ∈ R(N−1)d×(N−1)d.
We now consider the error metric dynamics. First, note that

‖e‖2L = e>PLe = le
>
PMl

le = ‖le‖2Ml
, (54)

where PMl
∈ R3d(N−1)×3d(N−1) is defined as (29) with lGl

and Id(N−1) in place of G and IdN , respectively. Notice that
the positive definiteness of PL implies that also PMl

is a
positive definite matrix for all l, thus the metrics ‖le‖2Ml

are
well defined for all l according to Prop. 3. Hence, we have

d

dt
‖e‖2L =

d

dt
‖le‖2Ml

= 2le>PMl

lė = 2le>PMl
Dl

le

= 2le>sym(PMl
Dl)

le ≤ 2µmax,l‖le‖2Ml
,

(55)

where µmax,l is the largest eigenvalue of the symmetric part
of PMl

Dl. Accounting for the equality (54), equation (55)
implies that for all t ∈ [tk, tk+1) it holds that

‖e(t)‖2L ≤ ‖e(tk)‖2L e2 µmax,lk
(t−tk), (56)

which coincides with (50) proving that µmax,l = −νl, where
νl is defined as in the proposition.

To this and, first of all we note that, due to the properties
of the Kronecker product, the eigenstructure of sym(PML

Dl)
is obtained by repeating d times the structure of matrix Q
in (36) by choosing A = Ml. Applying Lemma 1 with
A = Ml and thus φ1 = λ2,l and φN = λN,l we obtain
that, if kn1

, kn2
, kn3

are chosen as in the assumption of the
proposition, then −νl is the maximum eigenvalue of Q which
results upper-bounded by the maximum of the quantities in
Lemma 1. This, in turn, yields a lower-bound for νl by the
minimum among the quantities in the proposition.

For the reader’s convenience, we report in Fig. 1 the values
of λ2,l vs. λ2 and of λN,l vs. λN for different leaders l and
across different graph topologies.

Thanks to the upper bound (50), at every instant t = tk it is
possible to estimate the maximum future decrease of the error
vector e(t) in the interval [tk, tk+1). By evaluating (50) at
t = t−k+1, i.e., just before the next leader selection, we obtain

‖e(t−k+1)‖2L ≤ ‖e(tk, lk)‖2L e−2 νlkT . (57)

Note that both e(tk, lk) and νlk depend on the value of the
current leader lk. As a consequence, the right-hand side of (57)
can be exploited for choosing the leader at time tk in order
to maximize the convergence rate of e(t) during the interval
[tk, tk+1) and therefore improving, at the same time, both the
tracking of the reference velocity and of the desired formation.

These observations are gathered in the following Fact.

Fact 1. Consider a N -agent system required to accomplish the
dual task modeled in Sec. II according to the leader-follower

Fig. 1: Values of λ2,l vs. λ2 and λN,l vs. λN for different
leaders l. The squares correspond to values of λ2,l and λN,l
associated to a leader l = 1 . . . N , with N = 10. The solid
constant blue lines represent λ2 and λN . Each row corresponds
to a different graph with N = 10 vertexes. From the top to
the bottom: the line, ring, star, two random (connected) graphs,
and a clique graph.

paradigm. Within the online leader selection context, in order
to improve the tracking performance of the reference velocity
and of the desired formation during the interval [tk, tk+1)
having duration T , the leader should be selected so that it
solves the following minimization problem

arg min
l∈Lk

fk(l), with fk(l) = ‖e(tk, lk)‖2L e−2 νlT , (58)

where Lk ⊆ {1 . . . N} is the set of ‘eligible’ agents from which
a leader can be selected at tk and the error metric defined in
Prop. 3 is used.

In Fact 1 the concept of ‘eligible’ agents is introduced for
the first time, however this will be clarified in the next section.
In the following, we highlight two crucial aspects related to
the minimization problem (58).

Remark 1. Similar to the first-order case, the minimization
problem (58) needs to be solved online because of the depen-
dency of the cost function on both the group topology and the
current multi-agents system state.
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Remark 2. The reset action (1) implies the zeroing of the
components of the estimation error vector eû associated to
the current leader lk. Hence, the quantity ‖e(tk, lk)‖2L may
decrease at every instance of the leader selection. Thus, it
would be desirable to reduce the leader selection period
T as much as possible. However, in practice there exists
a maximum frequency at which the leader selection pro-
cess can be executed guaranteeing the successfully procedure
termination under real world constraints. This entails the
existence of a finite minimum selection period Tmin such that
T ≥ Tmin > 0.

IV. DISTRIBUTED NEXT BEST LEADER SELECTION

The contribution of this section is a fully distributed pro-
cedure to solve the optimization problem (58). To cope with
the distributiveness requirement, the set of agents eligible as
leader, namely the set Lk introduced in Fact 1, is restricted
to the neighborhood of the current leader, that is, Lk = Nlk .
As better explained in the following, this choice ensures the
possibility for each agent belonging Lk to evaluate the quantity
fk(l) in (58) (depending on the current leader) through local
information exchange. Nevertheless, this also implies that the
minimization (58) is performed only locally, i.e., in Lk = Nlk ,
thus the achieved minimum might not be global. To guarantee
a global optimum, indeed, fk(l) should be minimized over all
the agents in the group, i.e., setting Lk = {1 . . . N}. However
this would result in a fully centralized optimization whenever
G is not the complete graph since it entails that all the agents
have a global knowledge of the network. In our method, the
global optimum is instead approximated by the repetition, at
every time T , of the minimization (58) in the neighborhood of
the current leader. In this way the computation load is spread
among the agents and over time, as customary in distributed
approaches. We shall see in Sec. V that such choice is a good
compromise between distributiveness and global optimality.

We now consider the evaluation of the cost function fk(m)
in (58) by any leader-candidate m ∈ Nlk . This requires the
knowledge of the error norm ‖e(tk, m)‖2L and of the eigen-
values λ2,m and λN,m in order to compute νm through (51).
Although all of them are global quantities, in the following
we will prove that they can be locally retrieved by restoring
on some well-known distributed estimation techniques.

First, for any m ∈ Nlk both λ2,m and λN,m can be locally
estimated exploiting a simplified version of the Decentralized
Power Iteration algorithm proposed in [26] and based on the
PI average consensus estimating (PI-ace) technique introduced
in [27]. Thanks to the consensus-based mechanism, the PI-ace
strategy allows the m-th agent belonging to the group Nlk to
build a local estimation ŵk of the eigenvector wk of Mm

corresponding to the eigenvalue λk,m, k ∈ {2, N}. In this
way, the estimate λ̂k,m = −(

∑
n∈Nm [Mm]m,n[ŵk]n)[ŵk]−1m

can be derived employing only locally available information.
The convergence of such a procedure is ensured by a suitable
choice of the eigenvector estimation gains and initial condi-
tions as discussed in [26], [27].

Also the error norm ‖e(tk, m)‖2L can be estimated by any
leader-candidate m ∈ Nlk via a distributed procedure requir-
ing information locally available and recoverable via 1-hop

communication (i.e., directly provided by a neighboring node).
To prove this fact, omitting all the dependencies for sake of
brevity, we rewrite the scalar quantity ‖e(tk, m)‖2L as

e>PLe = kn3e
>
p ep + kn1e

>
v ev + e>û eû+

kn1
e>pGep + 2kn2

e>pGev, (59)

and we note that ‖(Sm ⊗ Id)x‖2 =
∑N
i=1 ‖xi‖2 − ‖xm‖2.

As a consequence, by recalling (25)-(27) and denoting with
the superscript − the all quantities computed at t−k and with
p̃− the difference p−−d, the first three terms in (59) can be
rewritten accounting for the following identities

e>p ep =
∑N
i=1‖p̃

−
i − p̃−m‖2 + 0 = (60)

=
∑N
i=1p̃

−>
i p̃−i − 2p̃−Tm

∑N
i=1p̃

−
i +N p̃−>m p̃−m,

e>v ev =
∑N
i=1‖v

−
i − v−m‖2 + 0 (61)

=
∑N
i=1v

−>
i v−i + 2v−>m

∑N
i=1v

−
i +Nv−>m v−m,

e>û eû =
∑N
i=1‖û

−
i − ur‖2 − ‖û−m − ur‖2 (62)

=
∑N
i=1û

−>
i û−i − 2u>r

∑N
i=1û

−
i +Nu>r ur − ‖û−m − ur‖2.

Therefore, the quantity ‖e(tk, m)‖2L can be evaluated by any
agent m ∈ Nlk as a function of:

1) the vectors pm(t−k ), vm(t−k ) and ûm(t−k ),
2) the vector ur(tk),
3) the three vectors

∑N
i=1ûi(t

−
k ),

∑N
i=1vi(t

−
k ), and∑N

i=1(pi(t
−
k )− di),

4) the three scalar quantities
∑N
i=1û

−>
i û−i ,

∑N
i=1v

−>
i v−i

and
∑N
i=1p̃

−>
i p̃−i ,

5) the total number of agents N .
The vectors listed in 1) are locally available to agent m

and, similarly, ur(tk) is locally available to agent m via 1-
hop communication from the current leader lk. On the other
hand, the quantities listed in 3)-4) can be locally estimated
employing the PI-ace strategy mentioned before. Finally, the
total number of agents N can be assumed to be an a-priori
information locally available to each agent, otherwise one can
resort to an additional distributed scheme (see, e.g., [28]) to
obtain its value over time. This analysis thus proves that any
agent m ∈ Nlk can compute ‖e(tk, m)‖2L exploiting only
local and 1-hop communication information.

We have thus shown that all the quantities involved in the
evaluation of fk(m) in (58) can be locally achieved by any
leader-candidate m ∈ Nk. Hence, at every tk the optimal
leader selection can be performed by the agents group in a
distributed way according to the procedure summarized in
Alg. 1. This is hereafter referred as Distributed and Optimized
Online Leader Selection (DO2 Leader Selection). Note that
its convergence is ensured by the convergence results on the
decentralized power iteration method and the PI-ace scheme
provided in [26] and [27], respectively.

V. SIMULATION RESULTS

This section is devoted to the validation of the proposed
DO2 Leader Selection approach through the comparison with
other trivial although intuitive leader selection procedures.
These consist of a random leader selection among all the
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Algorithm 1: DO2 Leader Selection

1 Denote by l0 the first selected leader
2 k ← 0
3 while true do
4 agent lk informs the reference source about its leadership
5 agent lk waits time T
6 k ← k + 1
7 if kT/Tr ∈ N then
8 agent lk−1 receives a new value of ur(tk) from the

reference source

9 if a new ur(tk) is received then
10 agent lk−1 sends ur(tk) to every neighbor in Nk−1

11 every agent m ∈ Nlk−1 sends fk(l) to agent lk−1

12 agent lk−1 computes the set L∗ = argminm∈Lk−1
fk(m)

13 if lk−1 ∈ L∗ then
14 lk = lk−1

15 else
16 agent lk−1 nominates lk in L∗, e.g., randomly

leadership changes

random leader selection 288
no leader selection 0

globally optimized leader selection 130
locally optimized leader selection 85

TABLE I: Leadership changes using various leader selections.

agents in the group and a no leader selection envisaging a
constant (a priori chosen) leader during all the task execution.
To highlight the effectiveness of the DO2 Leader Selection
strategy, we also consider its centralized version such that, at
each iteration, the leader is selected setting Lk = {1 . . . N}:
this allows to evaluate the gap between the global optimal
solution and the local one computed through Alg. 1.

Numerical simulations are performed accounting for a group
of N = 10 agents modeled as point masses in Rd with d = 3.
All the runs start from the same initial conditions on the agents
position and assume time-varying agents interaction. In detail,
the interaction graph G changes according to Fig. 2 which re-
ports on the top the topology variations with indexing defined
in Fig. 1: we simulate the decrease of the connectivity level to
show the robustness of the DO2 Leader Selection algorithm
w.r.t. to the communication amount. The reference velocity
ur(t) ∈ R3 is behaviored as a piece-wise constant function of
period Tr = 5 s w.r.t. its three components as depicted on the
bottom of Fig. 2. For the random and optimized strategies the
leader selection period is set to T = 0.05s. Finally, the gains
kp = 2, ku = 1, b = 0.01 are used in the network dynamics
model and all the PI-ace estimators are designed to converge
to the consensus value in a finite number of iterations limiting
the final estimation error.

The results of the simulations are shown in Fig. 3(a-d): the
plots on the top depict the result of leader selection procedure
(i.e., the time-varying leader identity l(t)) and the plots on
the bottom report the corresponding error norm ‖ei(t)‖L, i =
1 . . . N defined by matrix PL in (29) highlighting the value
related to the current leader (orange line).

First, we can observe that the constant leader strategy

Fig. 2: Current graph G topology (top) and components of the
external velocity reference ur (bottom).

(Fig. 3b) presents the worst performance in minimizing
‖ei(t)‖L w.r.t. the other cases, even though the convergence
of the errors toward zero is achieved, in accordance with
Prop. 3. Note that, w.l.o.g., we have assumed that the leader
constantly coincides with the agent 1. However, when a
fixed topology is considered, the performance of the constant
leader solution might improve by choosing the leader that
optimizes the error convergence rate computing the value νl
for each l ∈ {1 . . . 10} according to (51) (see Fig. 1 for
the values of λ2,l and λN,l). The random leader selection
(Fig. 3a) performs better than the constant leader strategy,
but its convergence time is much worse w.r.t. the optimized
(both globally and locally) leader selection cases in Fig. 3c-d.
Indeed, randomly picking the next leader among the neighbors
of the current leader makes the error converge to zero in
a time between 1 s and 2 s, while adopting the local DO2
Leader Selection strategy the convergence time is always
below 0.5 s. In addition, the results of local DO2 Leader
Selection strategy in Fig. 3d concerning the error behavior
are comparable to the ones of its global version in Fig. 3c.
This implies that the suboptimal solution derived from the
use of a distributed paradigm approaches the global optimum
provided by the centralized approach. Furthermore, the local
DO2 Leader Selection strategy visually results in fewer leader
identity changes (plots on the top). To clarify this point, Tab. I
reports the number of leadership changes over the considered
period for each leader selection strategy.

It has to be noted the following: while the random strategy
changes leader almost at each iteration T , the DO2 Leader
Selection strategy (especially the local version) tends to ‘sta-
bilize’ the leader choice as the error norm ‖ei(t)‖L converges
to zero, that is when the tracking transient becomes negligible
and the group of agents has reached a steady-state in its
tracking performance. This fact constitutes an important ad-
vantage of the DO2 Leader Selection strategy w.r.t. the random
one since in real-world applications the constant change of
leadership would correspond to the need of continuously re-
establishing new connections from the reference source side.
Furthermore, from this point of view to perform a local
optimization is more advantageous than a global one.

VI. FIRST-ORDER VS. SECOND-ORDER CASE

In this section, we aim at figuring out the main differences
between the first-order leader election addressed in [24] and
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(a) random leader selection (b) no leader selection (c) globally optimized leader selection (d) locally optimized leader selection

Fig. 3: Identity of the current leader l(t) (top) and error metric ‖ei(t)‖L i = 1 . . . N (bottom) applying different leader selection
strategies.

the second-order case faced in this work. The purpose is to
highlight both the challenging aspects and the benefits deriving
from the employment of a more complex dynamic model for
the multi-agent group. These are listed in the following.

• In [24] the described agents group is behaviored as a first-
order system since the single-integrator model represents
the simplest way to characterize a mobile agent dynamics.
Here we deal with second-order systems to describe the
dynamics of a multi-agent team. In spite of the increased
complexity, this choice is motivated by the fact that these
systems better approximate the behavior of physical agentic
agents and that controlling acceleration (rather than veloc-
ity) generally allows a agent to realize smooth movements.

• Contrary to [24], in general it occurs that ev 6= v − 1⊗ ur.
The leader velocity asymptotically converges to the ref-
erence ur via (4), however, since the control acts at
acceleration level, one has that vl 6= ur during any transient
phase.

• The initial condition û(tk) depends on the chosen leader lk
and is in general discontinuous at tk. The position vector
p(t) and (contrary to [24]) the velocity vector v(t) are
instead continuous at tk.

• Prop. 3 proves that the scalar metric ‖e(t)‖2L is monoton-
ically decreasing along the system trajectories, while this
is not guaranteed to hold for other metrics such as the `2-
norm ‖e(t)‖2, as well as the one introduced in [24] for the
first-order case. Hence, the definition of the matrix PL and
the results stated in Prop. 3 represent novel and original
contributions of this work, when comparing with [24].

• PL is significantly more complex matrix than its first-
order counterpart (Pkn in [24]) and it is not at all a
straightforward extension of it. Pkn is basically a ‘scaled’
identity matrix, while PL contains several repetitions of
the Laplacian matrix and is not anymore a diagonal matrix.
An important contribution of our work has been to find
a matrix, such PL, that 1) can be made positive definite,
so that it can represent a well defined norm; 2) makes
the matrix Q positive definite as well, in order to define
a monotonically decreasing error dynamics; and 3) has a
distributed structure, so that the error can be computed in a
distributed way using distributed estimation. Finding such
matrix, with a structure completely different from the first-

order case, is one of the main cornerstones of this work.
• We have shown that in the first-order leader election, it is re-

quired only the knowledge of the smallest eigenvalue λ2,m
of the matrix Mm. Considering a second-order dynamics,
it is required also the value of the maximum eigenvalue
λN,m since the parameter νm depends on both quantities.

• The structure of the Alg. 1 here proposed is similar to the
one in [24]. The similarity is however limited since the
computation of fk(m) (row 11) in the second-order cases
is different from the first-order one. Furthermore, in the
second-order case this computation requires the estimation
of three (instead of the four as in the first-order case) scalar
quantities because of the continuity of the velocity vector
v. This results in a simpler implementation compared to
first-order case since one less PI-ace filter is needed.

VII. CONCLUSIONS AND FUTURE WORKS

In this article we deal with the problem of online leader
selection for a group of agents whose dynamics is modeled
as a second-order system. The key idea is treating the leader
identity as a time-varying quantity to be chosen in order to
optimize the performance in tracking an external velocity ref-
erence signal and in achieving a desired formation shape. For
this goal, a suitable tracking error metric has been defined to
capture leadership changing effect in the group performance.

A distributed leader selection procedure has then been
proposed: during the agent motion, the DO2 Leader Selection
algorithm aims at persistently selecting the best leader w.r.t.
the defined tracking error metric. The validity of the proposed
approach has been stated comparing the DO2 strategy with
other more trivial solutions such as keeping a constant leader
over time (as typically done), or relying on a random choice.

As future developments we want to extend our analysis
allowing the presence of multiple reference sources/leaders
and accounting for other optimization criteria such as, e.g.,
controllability.
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