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A Novel Experimental Model for
Variable-Pitch Propellers

V.M. Arellano-Quintana1,2, E.A. Merchan-Cruz1, and Antonio Franchi2

Abstract—This paper proposes a new mathematical model to
map the rotational speed and angle of attack (pitch) of small-
size propellers typically used in multirotors and the aerodynamic
thrust force and drag moment produced by the propeller itself.
The new model is inspired by standard models using the blade-
element and momentum theories, which have been suitably
modified in order to allow for explicit fast computation of the
direct and inverse map (useful for high-frequency control) and
obtain a better adherence to experimental data. The new model
allows and captures all the main nonlinear characteristics of the
thrust/drag generation. An extensive experimental comparison
shows that the prediction capability of the proposed model
outperforms the most commonly used models at date. In the
second part of the paper, two optimization methods are proposed
in order to exploit the redundancy of the inputs of variable-pitch
propellers to decrease the power consumption due to the drag
dissipation. The first method deals with optimal allocation for
thrust generation on a single propeller, while the second method
is aimed at solving the optimal allocation of the rotational speed
and pitch of all the propellers in a multi-rotor with any number of
propellers. Simulations results show the viability and effectiveness
of the proposed methods.

I. INTRODUCTION

The fast growing of research in aerial robotics generates
several new challenges that demand new approaches, such as,
e.g., the one needed in physical interaction tasks with multi-
rotors, see, e.g., [1]–[3]. In this paper we explore alternative
models and solutions for the aerodynamic thrust generation
problem faced in such emerging fields.

The use of variable pitch (VP) propellers is an alternative
to the standard fixed-pitch (FP) propellers for several reasons.
They are capable of changing the value of the thrust from
positive to negative by using a combination of pitch angle
and motor velocity. Therefore the set of admissible forces is
enlarged, In fact, if we consider a standard quadrotor with FP
propellers, the vehicle is not able to apply an arbitrary desired
force downwards or even flip upside down; the maximum
force that the vehicle can apply downwards corresponds to
its own weight and perhaps less due to the minimum velocity
required by the motors. However, thanks to the simplicity of
building and controlling FP propellers, they are more popular
for multirotors than the VP propellers.
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The use of VP propellers in multirotors is not a new
approach, they have been studied and implemented in the
last years [4]–[8] as an alternative to the FP propellers. In
[4], a comparison between FP propellers and VP propellers is
done, they conclude that the VP propeller has a fundamental
advantage of being able to change the direction of the thrust
vector very fast. Also, they have found that VP propellers can
track more accurately the velocity and acceleration commands.
A complete study done by the same authors is presented in
[6]. They analyze the effects of adding VP propellers in a
quadrotor from the analytic part to the experimental part as
well. They mention that the VP propellers are a quick method
to reverse thrust. Similar conclusions and developments are
presented in [5], [8].

Mathematical models that describe the aerodynamic effects
of VP propellers have been developed in [8], [9]. Nevertheless,
other approaches [10] have shown that the experimental results
do not fit well with the mathematical models developed in
these papers. In [10] an experimental model is proposed that
claims to be more precise than the common models in the
literature. However, the validation of the proposed model is
only given for the thrust equation. Then, an approximation of
the power consumed by the propeller is given and supported
by experimental data.

On the other hand, one of the most known disadvantages
of multirotors is the autonomy. VP propellers present one
main advantage: they can save energy by allocating in a
strategic way the pitch angle and the motor velocity. Therefore
some approaches have been proposed to minimize the power
consumption of the propeller using VP mechanism, see [10]–
[12].

Despite the presence of these works, basic experimental
research steps in the modeling of VP propellers are still
strongly needed by the aerial vehicle community. In this paper,
we aim at filling this gap by proposing a new mathematical
model that is experimentally driven and validated. In Sec-
tion II, we our proposed model and its theoretical basis. In
Section III, the description of the experimental platform is
given, and the parametric identification procedure is described.
For sake of comparison, other models from the literature were
identified as well. The comparison shows that the proposed
model fits much better than the other models while having
almost the same level of complexity. In Section IV, the drag
optimization problem is stated. The optimization framework is
tested in simulation on a fully-actuated hexa-rotor. Finally, the
conclusions and the future work are presented in Section V.
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Fig. 1: Variable-Pitch scheme, where dL and dD are the resultant
incremental lift and drag per unit span at the blade element, respec-
tively; α is the angle of attack (AoA); φ is the relative inflow angle
at the blade element.

II. VARIABLE-PITCH PROPELLER AERODYNAMIC MODEL

A. Theoretical Implicit Model for a Variable-Pitch Propeller

A VP propeller is a type of propeller which has a mechanism
that allows varying the pitch angle θ of the rotor blades.
This capability allows changing the thrust direction in both
upward and downward directions by varying the pitch angle
from positive to negative values. The thrust generated by a
rotor is varied by changing either the blade pitch angle of
the propeller or the spinning velocity. The relation between
the lift (force) and the drag (moment) is derived using the
blade element theory (BET) together with momentum theory,
which is discussed in detail in [13], [14]. A scheme showing
an element of the blade with its resultant forces is shown in
Fig. 1. For helicopter rotors (see, e.g., [13]) one can assume
that the out-of-plane velocity Up is much smaller than the in-
plane velocity UT , and therefore U ≈ UT , leading to the fact
that the angle φ is small. Therefore, a good approximation
is that the increment in thrust (dT ) and drag moment (dD)
are approximately the increments in lift (dL) and torque (dQ)
along the blade, respectively. By integrating the expressions
for the thrust and the drag it is possible to derive the following
model:

T = ρCtA(ωR)2 (1)

Q = ρCqA(ωR)2R (2)

where T (in N) is the lift force (thrust); Q (in N m) is the drag
moment (or rotor-torque, simply called drag in the following);
ω (in revolutions per second or better said in Hz) is the
intensity of the angular velocity of the motor; R is the rotor
radius; A is the area swept by the propeller; ρ is the air
density (in kg/m3); Ct is the thrust coefficient; Cq is the drag
coefficient. This model has been used in some papers like [7],
[15], and it will be used as a guideline for the derivation of
our the proposed model.

The thrust coefficient Ct is related to the shape of the
propeller. Usually, the blades of FP propellers have a twist
along the blade which lets the pitch angle change at each blade
section. This is done to increase efficiency exploiting the fact
that the induced velocity varies along the blade. However, in
a VP propeller the blades are untwisted, i.e., θ is constant
along the blade. Therefore, for blades with zero twist and
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Fig. 2: a) Thrust coefficient Ct using the following values: N = 2,
and Clα = 5.73. b) Drag coefficient Cq curve using the same values
for Ct and the zero-lift coefficient Cd0 = 0.01.

considering uniform inflow velocity, the thrust coefficient is
given implicitly by, see [13],

θ =
6Ct
σClα

+
3

2

√
|Ct|

2
sgn(Ct) (3)

where θ is the pitch angle (in rad); Clα is the 2D lift-curve-
slope of the airfoil section(s) comprising the rotor; σ = Nbc

πR
is the blade solidity, where Nb is the number of blades, and
c is the chord length. A plot using different values of blade
solidity values is shown in Fig. 2a. Although the behavior of
Ct is almost linear for high values of pitch angle, it can be seen
the presence of a nonlinearity around zero, mainly due to the
second term in (3), this term is the additional pitch required to
compensate for the inflow resulting from the generated thrust.

Notice the absolute value in the squared root, this is
necessary to account for negative values of thrust, the sign
value of Ct is kept by the sign function. Furthermore, it can be
seen that (3) is nonlinear, with no closed form inverse. Hence,
in real-world applications, its inverse needs to be computed
iteratively on-board, which may result unfeasible, since the
control commands are sent at high frequency.

On the other hand, the drag coefficient is related to the thrust
coefficient Ct, as follows,

Cq =
|Ct|3/2√

2
+

1

8
σCd0 (4)

where Cd0 is the zero-lift drag coefficient, this is caused by
parasitic drag depending on the shape of the propeller. This
term models the fact that even with zero pitch angle there is
a drag moment, in contrast with what assumed in [6], where
the drag value is considered proportional to the thrust. A plot
of (4) using different values of blade solidity values is shown
in Fig. 2b.

From (1)-(2) and (3)-(4) it can be seen that the computation
of the thrust and drag, both essential for controlling a multi-
rotor, is not straightforward, e.g., because (3) has be solved
iteratively. Moreover, no force/torque sensors are considered
in a UAV design due to the weight that would imply, and
the high difficulty in properly filtering the noise induced by
the vibrations. Therefore, a simpler model has to be used
to precisely compute the thrust and drag generated by the
propeller without the need of a sensorial feedback.
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TABLE I: Principal VP models for multirotors reported in the literature.

Id Paper Lift force Equation Drag moment Equation

i) [5], [6] T = CiT1
θω2 Q = − sgn(ω)(CiQ1

ω2 + CiQ2
θ2ω2 + CiQ3

θω)

ii) [8], [9] T = CiiT1
θω2 − CiiT2

ω Q = CiiQ1
ω2 + CiiQ2

ω2θ2 + CiiQ3
ωθ + CiiQ4

iii) [7], [13], [15] T = CiiiT1
Ctω2 and θ = CiiiT2

Ct +
3
2

√
|Ct|
2

sgn(Ct) Q = CiiiQ1
ω2C

3/2
t + CiiiQ2

ω2

iv) [10] T = CivT1
| sinθ | sinθ ω2 No model presented.

v) proposed model T = (β1| sinθ | sinθ +β2 sinθ)ω2+ Q = − sgn(ω)[(γ1 sin
4
θ +γ2 sin

2
θ +γ3)ω

2+

+(β3| sinθ | sinθ +β4 sinθ)ω +(γ4 sin
4
θ +γ5 sin

2
θ +γ6)ω

B. Proposed Explicit Heuristic Model

In this section, the proposed experimental VP propeller
model is introduced. We shall take as a guideline the the-
oretical model described in Section II-A. The motivation of
arriving at a new model is mainly the simplicity for computing
the thrust and drag generated by the VP propeller in real-
world applications without the need of measuring the force/-
torque online with additional onboard sensors. Therefore, the
proposed model should be simpler and equally precise, and
highly reliable for predicting thrust and drag values from the
knowledge of the spinning velocity and the pitch angle.

1) Experimental Thrust Model: According to [16], the
quadratic approximation of the thrust equation of a FP pro-
peller commonly used in theory does not fit quite well with the
experimental data. Therefore, they propose to approximate this
thrust equation with a second-order polynomial in ω. However,
in order to give physical sense to the equation, we can neglect
the independent term. Hence, equation (1) can be rewritten as,

T = fCt(.)(ω
2 + ω) (5)

where fCt(.) is a function of the physical shape of the
propeller and the pitch angle.

In the following we propose a new model of the thrust
taking into account the pitch angle contribution. First of all, it
can be seen that (3) is unbounded. However, this does not fit
properly with reality, i.e., beyond a certain pitch angle value
the lift begins to decrease, as it enters the stall condition.
Hence, the equation to be found must possess the following
characteristics:

• fCt(.) ∈ R
• fCt(θ) = 0, θ = 0
• fCt(θ) = −fCt(−θ) due to the reverse thrust.
• fCt(.) ∈ [Ct, Ct]

The function fCt(.) proposed to model the thrust coefficient
is the following:

fCt(θ) = β1| sinθ | sinθ +β2 sinθ (6)

where sinθ = sin (θ). Notice that the first term of (6)
is a quadratic-like term which, however, has negative and
positive values. Furthermore, the equation proposed has all
the characteristics mentioned above.

Finally, the experimental thrust model that we propose has
the following form:

T = (β1| sinθ | sinθ +β2 sinθ)ω
2+

+(β3| sinθ | sinθ +β4 sinθ)ω
(7)

Equation (7) is slightly more complex than the one presented
in [10]. However, the proposed equation will show to be much
more precise and possessing a better prediction ability.

2) Experimental Drag Model: We take a similar approach
to find an equation that relates the pitch angle and the drag
moment. Taking (4), we replace the first term that it is related
to the thrust coefficient Ct with a function dependent on the
pitch angle. The function fCq to be found must possess the
following characteristics:

• fCq (.) ∈ R.
• fCq (θ) = Cq,0, θ = 0 due to the zero-lift coefficient.
• fCq (θ) = fCq (−θ)
• fCq (.) ∈ [Cq, Cq]

The function fCq (.) proposed is the following:

fCq (θ) = γ1 sin4
θ +γ2 sin2

θ +γ3. (8)

Notice that (8) is always convex (in the region of interest)
and it is nonzero at any point, in order to model the zero-lift
effect. Furthermore, the proposed model has all the charac-
teristics mentioned above. Inspired by the relation between T
and Q highlighted in (2) the proposed drag model takes the
following form:

Q = − sgn(ω)fCq (.)(ω
2 + ω)

The term − sgn(ω) accounts for the spinning direction of the
propeller since it will generate torque in the opposite direction
when the spinning direction changes its sign.

Rewriting the above equation and gathering all the constant
terms in lumped coefficients, we obtain:

Q = − sgn(ω)[(γ1 sin4
θ +γ2 sin2

θ +γ3)ω2+

+(γ4 sin4
θ +γ5 sin2

θ +γ6)ω].
(9)

III. EXPERIMENTAL VALIDATION OF THE PROPOSED
MODEL

A. Description of the Experimental setup

The experimental platform that we used for the testing and
comparison is shown in Fig. 3 and its general characteristics
are provided in Table II. It consists of a brushless (BL) motor1,
a VP mechanism2 with a ten-inch propeller3 attached and a
micro servo with feedback4. The control is done in MatlabTM

1http://wiki.mikrokopter.de/MK2832-35
2https://hobbyking.com/en us/4d-hollow-variable-pitch-unit-without-

motor-3mm-motor-shaft.html
3https://hobbyking.com/en us/10-inch-replacement-blades-for-variable-

pitch-motor-assembly.html
4https://www.adafruit.com/product/1404
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Fig. 3: Variable Pitch Testbed. The complete system is attached
to a base by dampers in order to reduce vibrations. The main
characteristics of the system are shown in Table II.
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Fig. 4: Velocity tracking while pitch angle tracks a sinusoidal.

by using a BL controller and an ArduinoTM board for the micro
servo. We used a Force/Torque (FT) sensor in order to measure
the force and the moment generated by the VP propeller.
The FT sensor is a SI-145-5, the full list of characteristics
of the sensor can be found on its webpage5. The FT sensor
was attached at the bottom of the platform as it is shown
in Fig. 3-right. The angular velocity is measured using the
zero crossings of the counter-electromotive force in the BL
controller [17], which gives a precision of less than ±0.1 Hz.
The pitch angle is measured by the servo encoder.

For controlling the pitch angle, a micro-servo with a linkage
is used. A PI controller was implemented to precisely drive
the blade pitch to its desired value. On the other hand, for
controlling the rotational speed, a robust closed-loop controller
presented in [17] was used. This controller provides a very
good insensitivity to the perturbations caused by the pitch
variations. In order to show its capability, we provide the
results of the following stress test: a desired spinning velocity
is kept constant at 40 Hz while the desired pitch angle is a
sinusoidal trajectory going from its minimum to its maximum
value (−20 deg and 20 deg) in less than 0.8 s. This corresponds
to an extremely large and fast variation of the disturbance
torque for the motor controller. Despite such big disturbance,
as we can see in Fig. 4, the motor controller [17] is capable
of compensating these extreme perturbations and keep the
tracking error within ±1 Hz.6 Clearly, during the identifica-
tion procedure, a much less aggressive trajectory was used,
explained later, where the tracking error is a decimal fraction
of the one seen in this stress test.

5http://www.ati-ia.com/products/ft/ft models.aspx?id=Mini45
6The units in all the plots were changed from radians to degrees in order

to facilitate the reading of the results.

TABLE II: Experimental platform specifications.

Component General Specifications

VP Mechanism Weight: 25 g

Propeller size Weight: 10 g; Size: 10 inches

BL Motor Weight: 68 g; Max. Current: 10A

Microservo Weight: 46 g; Max. Torque: 2.1Nm at 6V

Force Sensor Resolution: Force 1/16N; Torque 1/1504Nm

Frequency: 1 kHz

The relation between the blade pitch and the servo angle is
non-linear, however, a proper function is defined to correlate
both angles, this function works for calibrating the platform.
The calibration was made using a special software for image
analysis called Tracker7. Using this software different angular
positions given to the micro-servo were recorded to find the
counterpart for the blade pitch angle. After that, a proper
function was approximated to find the relation between the
two angles.

B. Parameter Identification Procedure

The identification is made offline using the least squares
(LS) algorithm with outlier rejection in order to compute the
coefficients for the different models in (7)-(9). The experi-
ments were carried out in the following way: constant spinning
velocities from 40 Hz to 80 Hz with steps of 10 Hz were set;
in each step, while the spinning velocity was constant, the
pitch angle tracked a ramp from −20 deg to 20 deg in 20 s.
For the sake of comparison, four more VP models from the
literature were also identified, a summary of these models is
shown in the first four lines of Table I. Since the LS algorithm
cannot be applied to model iii) because of its complexity,
a stochastic optimization technique can be used to find the
unknown coefficients; in particular, an evolutionary algorithm
was used [18].

C. Identification Results and Model Comparison

After carrying out all the experiments, the parametric iden-
tification of the five models was performed. In the following,
we present the numerical results. It is worth to mention that
model i) is arguably the most used model in real applications.
However, as it will be shown, its capability to predict the
thrust and drag of the propeller is not fully satisfactory. The
Root Mean Square Error (RMSE) was computed as a statistical
indicator to have a fitness index for each model. They are
gathered for the thrust and the drag of models i-v in Table III.
The coefficients identified for the five models are listed in
Table IV.

In order to provide a visual understanding the predictions
and residual errors of the models i), ii), iii), and the proposed
model v) are shown in two summarizing tables in Figs. 17
and 18, at the end of the paper. The predicted lift force of
model iv) is very similar to the one of model iii) and therefore
it is not reported here (quantitative results are reported in
Table III).

7https://physlets.org/tracker/
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TABLE III: Identification RMSE values for thrust and drag of all the models.

Thrust [N] Drag [Nm]

Velocity [Hz] Model i) Model ii) Model iii) Model iv) Model v) Model i) Model ii) Model iii) Model iv) Model v)

40 0.1986 0.1935 0.1505 0.1532 0.1115 0.0059 0.0044 0.0060 n/d 0.0034

50 0.2259 0.2092 0.1405 0.1449 0.1369 0.0041 0.0042 0.0046 n/d 0.0043

60 0.2949 0.2961 0.1641 0.1675 0.1693 0.0039 0.0043 0.0034 n/d 0.0041

70 0.4710 0.4665 0.2278 0.1620 0.1632 0.0062 0.0064 0.0058 n/d 0.0037

80 0.4486 0.4517 0.1868 0.2131 0.1613 0.0073 0.0067 0.0060 n/d 0.0024

TABLE IV: Identified coefficients of the five models.

Model id Thrust (lift force) coefficients Drag (moment) coefficients

i) CT1
= 3.0503× 10−5 CQ1

= 6.2492× 10−7, CQ2
= 4.1604× 10−8, CQ3

= 1.2359× 10−6

ii) CT1
= 3.0460× 10−5, CT2

= 7.4009× 10−4 CQ1
= 3.4568× 10−7, CQ2

= 4.1552× 10−8

CQ3 = 1.1954× 10−6, CQ4 = 4.4× 10−3

iii) CT1
= 0.0190, CT2

= 3.9865 CQ1
= 2.4× 10−3, CQ2

= 9.0679× 10−7

iv) CT1
= 6.6× 10−3 n/c

v) β1 = 4.7804× 10−3, β2 = 2.8394× 10−4, γ1 = 1.0131× 10−3, γ2 = 3.5109× 10−6, γ3 = 1.1091× 10−6,
β3 = 4.5704× 10−2, β4 = 2.2233× 10−3 γ4 = −1.1542× 10−2, γ5 = 3.2645× 10−3, γ6 = 4.1655× 10−5

Fig. 5: Thrust evaluation using the proposed model v).

Model i) is arguably the most popular model for multirotors
at the date. However, from the RMSE and the plots it is
clear that the experimental results agree with model i) neither
quantitatively nor qualitatively. In fact, at constant spinning
velocity model i) predicts a linear behavior on the thrust with
respect to the pitch angle, however, a nonlinear behavior is
clearly seen experimentally. Although the linear approximation
of the pitch angle could be useful for applications in which
larger angles of the pitch are required and just a quick
switch through zero is needed, for other applications, it is
mandatory to have a precise prediction of the thrust and drag
around the zero pitch. Also, the shape of the predicted drag
fits unsatisfactorily with the experimental data. The proposed
model v) fits much better both for thrust and drag. In fact,
thanks to its nonlinearity, the region around zero is predicted
very nicely.

The good quality of the model proposed can be also
compared with the other three common models ii), iii), and
iv), by observing the RMSE values reported in Table III. It is
possible to see how the RMSE values of the proposed model
are significantly smaller than the others, despite its equivalent

Fig. 6: Drag evaluation using the proposed model v).

complexity8.
Finally, Figs. 5 and 6 provide a global overview of the pow-

erfulness of the proposed model by showing the experimental
data superimposed to the full 3D surfaces for models (7)
and (9), respectively, as functions of ω and θ.

IV. DRAG OPTIMIZATION

A. Power dissipation

Brushless Direct Current (BLDC) motors are the most
common type of motors used in multirotors. BLDC motors
have high efficiency, high torque-to-weight ratio, increased
reliability, reduced noise and longer lifetime. Although the
mathematical model of a BLDC motor has three equations
due to its three-phase permanent magnet motor, it can be
approximated by a permanent magnet direct current motor.
A simplified model of a DC motor is the following

Em(t) = Raia(t) +Keω(t) (10)

ia(t) =
1

KT
[(Jm + JL)ω̇(t) + Tm + TL] (11)

8Notice that model iii) is even more complex than the proposed one, since
it needs to solve three equations in order to compute the thrust and drag.
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where Em(t) [V] is the supply voltage; ia(t) [A] is the current
trough the motor coils; Ra [Ω] is the armature resistance; Ke

is the motor back EMF constant [V s/rad]; KT [N m/A] is
the motor torque constant; ω(t) [rad/s] is the angular velocity
of the motor that coincides with the velocity of the load; Jm
and JL are the moment of inertia of the motor and the load,
respectively; Tm is the opposing torque due to the Coulomb
and viscous friction, and TL is the torque due to the load.
According to [19], the motor torque constant KT [N m/A] is
theoretically equal to Ke.

The input power to the motor Pi(t) is given by,

Pi(t) = i2a(t)Ra +Keωia(t)

= i2a(t)Ra + ω(t)Tm + ω(t)TL +

+(Jm + JL)ω(t)ω̇(t). (12)

Therefore, we can identify three terms that can be consid-
ered as power losses in a DC motor on the right-hand-side of
(12). These can be due to electrical or mechanical reasons,

• i2a(t)Ra - Winding resistive loss.
• ω(t)Tm - Coulomb friction and viscous friction.
• ω(t)TL - Load dissipation.
Notice that the last term in (12) can be ignored when either

the velocity is constant (or slowly varying) or where the final
velocity and the initial velocity are equal over an interval.

By definition, the propeller drag is considered as the load
of the motor TL, therefore, if the load is minimized, the part
of the power due to load dissipation, which constitutes a large
portion of the total power, will be minimized as well.

Supported by the previous analysis, in the following, we
tackle the problem of minimizing the VP-propeller drag
Q while producing the desired thrust for a single rotor
(Sec. IV-B) or a desired total wrench (Sec. IV-C) for a fully-
actuated multi-rotor system.

B. Optimal Drag Problem for a Single Rotor

Figure 7 shows the isothrust and isodrag curves in the plane
ω-θ for the identified setup of Figure 3. Such curves are
defined as the level curves of the functions T and Q in (7)
and (9) respectively. It can be seen that many isodrag curves
intersect an isothrust curve, i.e., several values of drag can
be generated for one value of thrust. Motivated by the power
consumption discussion in the previous section we consider
then the problem of choosing the spinning velocity ω and the
pitch angle θ in order to obtain a desired thrust T∗ while
minimizing the absolute value of the drag |Q|, according to
the proposed and validated model.

The VP-propeller drag is characterized by (9), that we vali-
dated and compared experimentally. The identified coefficients
for our experimental platform are shown in Table IV. In Fig. 8
we show the corresponding drag curves for constant values of
thrust ranging from 0.5 N to 5 N. The curves are obtained
from (9) by varying θ ∈ (0, 20] continuously and computing
ω from (7) for the particular θ and the given constant value of
T . It can be seen that such curves are convex with respect to
θ in that range. Moreover, the unconstrained minimum value
is always close 10 deg, for the particular setup in Figure 3.
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Other setup might present different behaviors, while convexity
is always preserved.

In this case, one single motor-propeller is considered. We
are interested in finding the combination of pitch angle θ and
the motor velocity ω that generate a desired value of thrust
T∗ such that (9) is minimum. The problem is multi-variable,
however, it can be rewritten as a single variable optimization
problem by doing some algebra.

Let be given a desired thrust T∗ > 0 (if T∗ < 0 then the
problem can be solved for −T∗ and then the sign of the found
θ∗ can be flipped; if T∗ = 0 the solution is ω = 0 with any
θ). The goal is to find θ∗ and ω∗ that realize T = T∗ and
minimize |Q|.

First of all since Q(ω, θ) = Q(−ω, θ) any minimum that
can be reached with a ω < 0 can also be reached with the
opposite positive ω. Second of all since T (ω, θ) = T (−ω,−θ)
any thrust that can be realized with ω < 0 can also be realized
with the opposite (positive) ω and the opposite θ. Therefore,
considering also that T∗ > 0 and observing the shape of T
w.r.t. θ we can restrict the optimization problem to case in
which ω > 0 and 0 < θ < π/2. Given this assumption we
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have that,

T = (β1| sinθ | sinθ +β2 sinθ)ω
2 +

+(β3| sinθ | sinθ +β4 sinθ)ω

= gT1
(θ)ω2 + gT2

(θ)ω, (13)
Q = −(γ1 sin4

θ +γ2 sin2
θ +γ3)ω2 −

−(γ4 sin4
θ +γ5 sin2

θ +γ6)ω

= gQ1
(θ)ω2 + gQ2

ω, (14)

where gT1(θ) , gT2(θ) and gQ1(θ) , gQ2(θ) are positive and
monotone functions in the domain of interest. The problem
to solve is then,

min
θ, ω

Q(ω, θ)

s.t. θ ≤ θ ≤ θ,
ω ≤ ω ≤ ω,
T (ω, θ) = T∗

(15)

where 0 < θ < θ < π/2 and 0 < ω < ω.
Solving for ω∗(θ) with T = T∗ in (13) and substituting in

Q we can eliminate the variable ω and the equality constraint.
Furthermore we can replace the inequality constraint on ω in
an inequality constraint on θ by imposing that ω ≤ ω∗(θ) ≤ ω.
We solve for θa in (13) with T∗ and ω, and θb with T∗ and ω.
Denoting with θ1 = max(θa, θ) and θ2 = min(θb, θ) we can
reformulate the minimization as

min
θ

Q(ω, θ)

s.t. θ1 ≤ θ ≤ θ2
(16)

notice that T∗ does not play any role in the cost function but
only in the definition of the constraints on θ.

Now, problem (16) can be solved with a single-variable un-
constrained optimization method, for instance, the dichotomy
algorithm. This algorithm is simple but efficient for solving a
problem in which the function is convex and unimodal. More-
over, it does not require either gradient or Hessian information,
and allow computing the required iterations given the step and
tolerance. This last is useful for real-applications since the
exact number of iterations need to ensure the convergence of
the algorithm is set. In Algorithm 1, the pseudo-code is shown.

Algorithm 1: Single rotor optimization

1 Compute ω∗(θ) with T∗ using (13);
2 Substitute ω∗(θ) in (14);
3 Solve θa and θb with T∗ using (13) and the constraints in
ω;

4 Define the constraints θ1 and θ2;
5 Solve the optimization problem (16);

Results: In order to show that the algorithm is able to
find the minimum value of Q for, e.g., the identified setup
of Figure 3, the algorithm has been tested for fixed values
of thrust Td = [0.2, 0.4, 0.6, 0.8, 1], and then the isothrust
curves will be plotted together with the isocurves found by
the algorithm, see Fig. 9.
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Fig. 9: Isothrust curves and the isodrag curves found by the
algorithm with the following values of desired thrust Td =
[0.2, 0.4, 0.6, 0.8, 1].
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Fig. 10: Isothrust curves and the isodrag curves found by the
algorithm with the following values of desired thrust Td =
[1.5, 2, 3, 4, 4.5].

The vector of optimal pitch angles, the vector of motor
velocities and the vector of the function Q were the following,

Td = [0.2, 0.4, 0.6, 0.8, 1]

θ∗ = [9.3630, 9.3767, 9.4107, 9.4392, 9.4623]

ω = [29.7823, 43.7286, 54.3084, 63.1875, 70.9899]

|Q|∗ = [0.0053, 0.0089, 0.0122, 0.0154, 0.0184]

Furthermore, the optimal values of pitch angles and motor
velocities for higher values of thrust are presented,

Td = [1.5, 2, 3, 4, 4.5]

θ∗ = [9.5604, 11.0602, 13.5764, 15.6976, 16.6580]

ω = [87.0964, 88.7046, 90.8413, 92.2991, 92.8909]

|Q|∗ = [0.0257, 0.0507, 0.0531, 0.0781, 0.0926].

As it can be seen from Fig. 10, the drag values found by the
algorithm for higher values of thrust would be suboptimal for
the unconstrained problem, in fact, the isothrust and isodrag
curves found by the algorithm are not tangent. However the
values found are optimal for the constrained problem. If the
upper bound of the motor velocity was higher, for instance,
20 < ω < 150, the optimal values of pitch angles would be
located around 11 deg.
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Fig. 11: Single VP propeller optimization.

Now, two sinusoidal signals are taken as desired thrust
Td1 = sint and Td2 = 4 sint, to analyze the behavior of the
commanded pitch angle and motor velocity.

In the first case, the pitch angle remains almost the same
around 10 deg since the required motor velocity is within its
valid range. On the other hand, in the second case the pitch
angle changes at the moment in which the motor velocity
reaches its upper bound, leading to an increment in the pitch
angle to achieve the desired thrust, while still minimizing the
drag, see Fig. 11. In other words, the pitch angle remains
almost constant if the motor velocity values are within its
limits, otherwise, the motor velocity goes up to upper limit
and the pitch angle finishes the job.

C. Optimal drag for a fully-actuated multi-rotor

The dynamics of an n-rotor can be described by the
following matrix equation,

[
mI3 03

03 J

]
︸ ︷︷ ︸

M

[
p̈
ω̇

]
︸︷︷︸
a

=

[
−mgẑ
−ω × Jω

]
︸ ︷︷ ︸

f

+

[
Rr 03

03 I3

]
︸ ︷︷ ︸

B

[
F1

F2

]
︸ ︷︷ ︸
F

u (17)

where n is the number of rotors. Matrix F is the allocation
matrix of the total wrench applied to the multirotor; matrices
F1 and F2 are the force and moment matrices, respectively.
Matrix F1 ∈ R3×n is made by unit vectors vi ∈ R3×1 that
define the orientation of the propeller i, ||vi|| = 1. Matrix

F2 ∈ R3×n is made by the vectors wi ∈ R3×1 that define
the sum of the torque due to thrust and the torque due to
drag moment, i.e. wi = σikdivi + ri × vi, where ri is the
position vector of propeller i to the center of gravity of the
vehicle; km is a coefficient that relates the spinning velocity
with the torque produced around the rotation axis, and σi is the
direction of rotation σi ∈ {−1, 1}. To compensate the torque
(drag moment) of each propeller the value of σi is defined
as σi = −1i. The control input is the force generated by
the propeller u = [f1, .., f6]T . Following the parametrization
presented in [20], the propeller angles used in this work are
α = ±35 deg and β = 10 deg.

The control allocation matrix F maps from the propellers
thrust to the forces and torques applied to the hexa-rotor.
Therefore, the matrix F can be expressed as follows,

F =

[
F1

F2

]
=

[
F1

P× F1 + Q

]
(18)

where F1 is a matrix made by the propellers orientation; F2

is the moment allocation matrix; P is the matrix that contains
the position of the propellers and Q is the drag due the VP
propellers, defined as,

Q =
[
kd1v1, ..., kd6v6

]
(19)

where kdi is the relation between the drag generated by the
VP-propeller and the force, kdi = Q∗

i /(fi + γ) where γ is
for avoiding indetermination, sufficiently small to not affect
the value of Q∗

i . The controller used in this simulations is
a Feedback Linearization with a PID controller. The PID
controller is defined as follows,

wd = −f −Kpep −Kdėp −Ki

∫ tf

t0

epdt+ ad (20)

where matrices Kp,Kd,Ki ∈ R6×6 are diagonal matrices
with proper proportional, derivative and integral gains, respec-
tively; the errors in translation and orientation are defined as
follows,

ep =

[
epos
eatt

]
=

[
p− pr

1
2 (RT

dRr −RT
r Rd)

]
(21)

ėp =

[
ėpos
eω

]
=

[
ṗ− ṗr

ω −RT
r Rdω̂r

]
(22)

where (̂.) is the hat operator; ωr = RT
d Ṙd.

The control allocation strategy is simple since the matrix F
is full rank, the control allocation is made by just inverting it
as follows,

u = (M−1BF)−1w∗. (23)

Using this controller, the matrix F is required to have inverse
in order to know the force required by each propeller. The
approach we propose to solve the problem of the fully-actuated
hexa-rotor with VP-propellers in an optimal sense is to find the
matrix F iteratively by using single rotor optimization problem
presented in Section IV-B for each motor, this algorithm was
inspired by the one proposed in [16]. First-of-all, the algorithm
initiate by computing the total thrust desired f , in this case, we
assume that the total thrust is defined as f = mg, where m is
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the hexa-rotor mass. Then, we compute the initial force needed
by each VP-propeller as f1,...,6 = (M−1BF)−1w∗ with
w∗ = [0, 0,mg, 0, 0, 0]T . After that, six optimization problems
are solved having as desired thrust the forces found in the
previous step. By solving the six optimization problems we get
the (minimum) drag produced by each propeller, Q∗

1, ..., Q
∗
6,

these values are substituted in matrix F and then its inverse
is computed, finally the forces values now become the initial
forces, and the algorithm starts again, see Algorithm 2 for the
pseudocode.

Algorithm 2: Matrix F computation

1 Compute initial forces f1,...,6 = (M−1BF)−1w∗ with
w∗ = [0, 0,mg, 0, 0, 0]T ;

2 for k = 1 to kend do
3 Solve optimization problem from Section IV-B for

each fi and save the optimal values of Q∗
i ;

4 Compute matrix F using Q∗
i values ;

5 Compute F−1 and find the required forces for the
desired total thrust fd and the desired torques Md;

6 end

After a few steps, the propeller forces converge to the proper
values to produce the required total thrust and the required
torques, minimizing the drag. The algorithm is suitable to
be implemented online, since the time required to compute
Algorithm 2 is lower than the typical control period of 2 ms.

D. Results

In this section we present a comparison with the main
strategy used in the literature in which the velocity is kept
constantly at its maximum value [5], [6], [8], [11]. Such
strategy generates the desired thrust by varying the pitch angle,
and the relation between force and pitch becomes one to one.
The same simulation with the same trajectory, parameters and
control gains with such strategy is run and compared with our
method. In order to have more realistic simulation results, we
added Gaussian white noise to the measurements. In addition,
to show the effectiveness of the method, we defined the
following performance index,

Jq =

∫ tf

t0

6∑
i=1

|Qi|dt. (24)

This is equivalent to sum the absolute values of the drag of
the six VP-propellers over time.

In Figs. 12-14, it can be seen, that the tracking is similar
in the two cases, and the forces demanded by the controller
are similar as well. In Figs. 13-15, it can be seen that the
optimization strategies minimize the drag consumption, going
to almost zero values in some points. On the other hand, in
the non-optimized case (constant speed) it is not possible to
reduce the drag below a certain value, even if a zero force is
required.

However, the performance indexes are different between the
two methods, see Fig. 16. Taking the final values, i.e. the total
drag over time, the difference is around 2.9834 N m s.
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Fig. 12: Trajectory tracking by a hexa-rotor with VP-propellers using
the proposed optimization strategy.

V. CONCLUSIONS AND FUTURE WORK

Making use of the commonly accepted blade element theory,
we proposed a mathematical model for variable-pitch pro-
pellers employed in multirotors. The main goal was to get
a simpler model, that is fast enough to be solved in real-
time applications and precise enough to predict the thrust/drag
values without the necessity of force/torque sensors onboard.
The proposed model was experimentally compared with the
four most popular models in the literature. Despite the fact
that the proposed model is equivalent to the most popular ones
in terms of complexity, the comparison has shown that it is
significantly more precise in terms of fitting and force/torque
prediction. The RMSE values obtained with the proposed
model are less than 0.18 N in all the cases for the thrust and
less than 0.0045 N m for the drag, for the identified setup
of Figure 3. Furthermore, we proposed an algorithm that
optimizes the power loss due to the drag of the propellers,
the algorithm was successfully tested in simulation on single
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Fig. 13: Optimal values of the pitch, the motor velocities and the
drag for each rotor using the proposed optimization strategy.

propeller and on a fully-actuated hexa-rotor; this kind of
platforms are more suitable for having optimization strategies
with VP propellers, since even in hover condition the required
thrust variation is larger than in a quadrotor. Based on this
fundamental building block, in the future, we will work on
control laws for energy efficient consumption strategies and
use this proposed model to drive multirotors in physically
interactive tasks.
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Fig. 17: Prediction vs measurements of the lift force (thrust) for models i), ii), iii), and the proposed model. The predicted lift of model iv)
is very similar to the one of model iii) (see RMSE in Table III) and is not reported here for space considerations.
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Fig. 18: Prediction vs measurements of the drag moment for models i), ii), iii), and the proposed model. Model iv) has no drag moment.
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