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Energy-Efficient Trajectory Generation for a Hexarotor

with Dual-Tilting Propellers
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Abstract— In this paper, we consider a non-conventional
hexarotor whose propellers can be simultaneously tilted about
two orthogonal axes: in this way, its underactuation degree
can be easily adapted to the task at hand. For a given tilt
profile, the minimum-energy trajectory between two prescribed
boundary states is explicitly determined by solving an optimal
control problem with respect to the angular accelerations of
the six brushless motors. We also perform, for the first time,
a systematic study of the singularities of the control allocation
matrix of the hexarotor, showing the presence of subtle singular
configurations that should be carefully avoided in the design
phase. Numerical experiments conducted with the FAST-Hex
platform illustrate the theory and delineate the pros and
cons of dual-tilting paradigm in terms of maneuverability and
energy efficiency.

I. INTRODUCTION

A. Motivation and related work

In the last decade, electrically-powered rotary-wing Un-

manned Aerial Vehicles (UAVs) have experienced a dra-

matic diffusion. Their maneuverability and small launch-and-

landing footprint have made them very popular, but their

aerodynamics have some disadvantages, such as the rela-

tively poor energy efficiency. Moreover, existing lithium-ion

polymer (LiPo) batteries have a high energy-to-weight ratio

and a high-rate discharge capability [1], but their reduced

capacity is major issue, limiting de facto flight endurance

to 15 to 30 minutes, thus precluding utilization in per-

sistent missions. Several solutions contributing towards in-

creased endurance of quadrotors have recently appeared in

the literature. To overcome the problem of fast depletion

of LiPo batteries, several companies (Intelligent Energy,

EnergyOr, etc.) have developed electrical quadrotors powered

by hydrogen fuel cells. This technology holds great promise

since flight endurance can be extended up to two and a

half hours, and the vehicle can be refueled almost instantly

after landing. However, some concerns remain about safe

handling of hydrogen indoors and about payload reduction.

Perching/climbing systems [2], [3] and more efficient rotor

configurations [4] have also been explored for quadrotors.

Other studies have envisaged to extend UAV’s mission time

by dumping exhausted battery modules out of the aircraft

in flight, thus reducing its mass [5]. Aerial robots tethered

to a ground station have also gained prominence in the last
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2LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France,
davide.bicego@laas.fr, antonio.franchi@laas.fr

3MIT, Computer Science and Artificial Intelligence Laboratory, Cam-
bridge, MA 02139, USA, ryll@mit.edu

This work has been partially funded by the European Union’s Horizon
2020 research and innovation program under grant agreement No 644271
AEROARMS.

few years. In fact, the tether can be used to provide energy

to the UAV, thus offering virtually unlimited flight time [6].

Abdilla et al. [7] have characterized the energy consumption

of a rotorcraft powered by LiPo batteries in hovering flight

and introduced an endurance estimation model tailored to the

Parrot AR.Drone 2.0. Similarly, in [7], in [8] an analytical

framework has been presented for predicting the hovering

time. Finally, wireless power transfer systems have been

developed in [9], [10] to minimize down time for recharging

or replacing batteries and enable longer flight times.

The problem of generating energy-optimal trajectories

for a rotorcraft has received much less attention in the

aerial robotics literature. In [11], an energy-efficient path-

planning strategy has been proposed for a hexarotor on a

multi-target mission. However, an approximated energy cost

function which does not explicitly account for the physical

parameters of the electrical motors is considered. In [12],

the authors have studied the relationship between navigation

speed and energy saving for the simplified kinematic model

of a quadrotor following an assigned trajectory. A model of

the LiPo battery of the Parrot AR.Drone 2.0 was identified,

but as in [11], the specifications of the electrical motors were

not considered for estimating energy consumption.

B. Original contributions, organization and notation

This paper builds upon our previous work on energy

management for quadrotor UAVs [13]. In [13], we ob-

tained minimum-energy trajectories between two prescribed

boundary states by solving an optimal control problem with

respect to the angular accelerations of the four brushless

DC (BLDC) motors. Inspired by [14], [15], in this work

we extend this formulation to a hexarotor whose propellers

can be simultaneously tilted about two orthogonal axes

via two servomotors (henceforth referred to as dual-tilting

propellers). When compared to the complex design of the

existing omnidirectional aerial robots with eight tilted re-

versible motors [16], [17], the dual-tilting mechanism offers

greater flexibility since the underactuation degree of the

vehicle can be easily adapted to the specific task at hand [14].

In particular, the hexarotor can be reconfigured in forward

flight to behave as a fully-actuated platform and is capable

of independently generating thrust and torque in any direc-

tion, which simplifies the execution of physical interaction

tasks with the environment [18]. This attractive morphology-

adaptation capability partially compensates for increased ve-

hicle mass and extra mechanical/control complexity. In view

of the tilt-planner design, we also provide, for the first time,

a complete characterization of the singularities of the control

allocation matrix of the hexarotor. Finally, to validate the
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proposed theory and study the interplay between maneu-

verability and energy efficiency, we numerically compute

minimum-energy trajectories for the FAST-Hex platform [14]

in realistic scenarios, using the TOMLAB Optimization En-

vironment [19]. The rest of this paper is organized as follows.

In Sect. II, we present the dynamic model of the hexaro-

tor with dual-tilting propellers and perform the singularity

analysis. In Sect. III, we introduce the electrical model of a

BLDC motor and formulate the minimum-energy trajectory

generation problem. The results of numerical experiments

are discussed in Sect. IV, and some possible directions for

future research are presented in Sect. V.

Notation: Throughout this paper, Z denotes the set of

integers, Rn the n-dimensional Euclidean space, In the n×n
identity matrix, 0n×m the n×m matrix of zeros, and ei the

ith element of the standard basis of R
3. Moreover, SO(3)

indicates the special orthogonal group in dimension three,

and Rz(θ), Ry(θ) and Rx(θ), the 3×3 elementary rotations

of an angle θ about the z-, y- and x-axis, respectively.

II. HEXAROTOR WITH DUAL-TILTING PROPELLERS

A. Dynamic model

Let FW = {OW; xW, yW, zW} be the world inertial

frame, FB = {OB; xB , yB, zB} the body frame rigidly

attached to the hexarotor (where OB corresponds to the ge-

ometric center of the six propellers and to the center of mass,

CoM, of the platform), and let FSi
= {OSi

; xSi
, ySi

, zSi
},

i ∈ {1, . . . , 6}, be the frame associated to propeller i.
The origin OSi

coincides with the CoM of motor i, the

rotation plane of propeller i is parallel to the plane defined

by the axes xSi
and ySi

, and zSi
is the spinning axis

of the propeller along which the thrust force is generated.

We will assume that propeller i can be tilted of an angle α
about the xSi

-axis and of an angle β about the ySi
-axis1

(see Fig. 1). A tilt planner controls two servomotors and a

transmission system to synchronize the angle α and β of the

six propellers (see Sect. II-B for some design considerations).

Following [14], [15], the equations of motion of the hexarotor

can be written as:
ñ

m p̈B

J ω̇B

ô

= −

ñ

mg e3

ωB × JωB

ô

+

ñ

RB 03×3

03×3 I3

ôñ

F1(α, β)

F2(α, β)

ô

u,

(1)

where pB = [x, y, z]T denotes the position of OB with

respect to FW, RB ∈ SO(3) represents the orientation of FB

with respect to FW, and ωB ∈ R
3 is the angular velocity

of FB with respect to FW, expressed in FB . Finally, m
denotes the total mass of the hexarotor, J ∈ R

3×3 the

inertia matrix of the rigid body with respect to OB expressed

in FB , g = 9.8066 m/s2 the acceleration due to gravity, and

u = [f1, . . . , f6]
T where fi is the magnitude of the force

generated by propeller i. For the control allocation matrices

F1, F2 ∈ R
3×6 in (1), we have that [14]:

∑6
i=1 fBi (fi, α, β) = F1(α, β)u,

∑6
i=1(p

B
B,Si

× fBi (fi, α, β)) + τ
B
i (fi, α, β) = F2(α, β)u,

(2)

1For the sake of simplicity, in the sequel the distance between the origin
OSi

and the center of propeller i will be neglected.

where, for i ∈ {1, . . . , 6},

fBi (fi, α, β) = fiR
B
Si
(α, β) e3, (3a)

τ
B
i (fi, α, β) = (−1)i−1 cτf fiR

B
Si
(α, β) e3, (3b)

are the thrust force and drag torque, respectively, and

pB
B,Si

= ℓRz((i − 1)π/3) e1, (4a)

RB
Si
(α, β) = Rz((i − 1)π/3)Rx((−1)i−1α)Ry(β), (4b)

where RB
Si
(α, β) ∈ SO(3) represents the orientation of

FSi
with respect to FB , ℓ > 0 is the distance between

OB and OSi
, and cτf > 0 (meters) is a constant parameter

which depends on propeller geometry and profile (see Fig. 1).

Note that the alternating sign in (3b) models the fact that pro-

pellers with adjacent indices are designed to spin in opposite

directions and thus generate opposite drags. Moreover, in

order to guarantee full actuation of the platform, in (4b) we

have assumed that the propellers with adjacent indices tilt

(inward/outward) in opposite directions of an angle α about

the xSi
-axis.

B. Singularity analysis and tilt-planner design

Let us define:

F(α, β) =

ñ

F1(α, β)

F2(α, β)

ô

∈ R
6×6.

Note that since
î

RB 03×3

03×3 I3

ó

has full rank, then

rank
(

î

RB 03×3

03×3 I3

ó

F(α, β)
)

= rank(F(α, β)). To study

the input singularities of system (1), we can then limit

ourselves to the control allocation matrix F(α, β) which

maps the input force vector u onto a control wrench (for

a general classification of rotary-wing UAVs based on the

dimension of the freely-assignable input force subspace,

see [15, Sect. III]). These singularities have an impact

on the optimal trajectory-generation problem studied in

Sect. III-B: hence, we will find below all values of α and

β for which F(α, β) becomes rank deficient. Using (2), we

can obtain explicit expressions for F1(α, β) and F2(α, β),
leading to the F(α, β) reported in (5), where,

1

2

3

4

5

6

xW
yW

zW

OW

pB

xB

yB
zB

OB

xS1yS1

zS1

OS1

ℓ

α
β

π/3

Fig. 1. Schematic representation of the hexarotor with dual-tilting pro-
pellers. The odd-numbered propellers spin clockwise and the even-numbered
propellers spin counterclockwise. The inset shows the tilting angles α and β
of propeller 1.
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F(α, β) =



























sβ 1
2sβ −

√
3
2 cβsα − 1

2sβ +
√
3
2 cβsα −sβ − 1

2sβ −
√
3
2 cβsα

1
2sβ +

√
3
2 cβsα

−cβsα
√
3
2 sβ + 1

2cβsα
√
3
2 sβ + 1

2cβsα −cβsα −
√
3
2 sβ + 1

2cβsα −
√
3
2 sβ + 1

2cβsα

cβcα cβcα cβcα cβcα cβcα cβcα

cτfsβ − 1
2c

τ
fsβ +

√
3
2 V cβ − 1

2c
τ
fsβ +

√
3
2 V cβ cτfsβ − 1

2c
τ
fsβ −

√
3
2 V cβ − 1

2c
τ
fsβ −

√
3
2 V cβ

−V cβ −
√
3
2 c

τ
fsβ − 1

2V cβ
√
3
2 c

τ
fsβ + 1

2V cβ V cβ −
√
3
2 c

τ
fsβ + 1

2V cβ
√
3
2 c

τ
fsβ − 1

2V cβ

−Wcβ Wcβ −Wcβ Wcβ −Wcβ Wcβ



























(5)

——————————————————————————————————————————————————–

V = ℓ cosα + cτf sinα, W = ℓ sinα − cτf cosα,

and sβ and cβ are shorthands for sinβ and cosβ, re-

spectively. Note that V is the scalar projection of vector

[ℓ, cτf ]
T onto [cosα, sinα]T (i.e. onto the ySi

-axis), and that

W is the scalar projection of [ℓ, cτf ]
T onto the orthogonal

[sinα, − cosα]T (i.e. onto the zSi
-axis). We have that,

det(F(α, β)) =

− 54 cosα cos2β (V sinα cos2β + cτf sin
2β)2 W,

(6)

from which the singularities of F(α, β) can be easily iden-

tified. In fact, det(F(α, β)) = 0 if:

• Case 1: cosα = 0, i.e. α = (2k + 1)π/2, k ∈ Z.

In this case, rank(F(α, β)) = 5 and its underactuation

degree2 δA = 1. The spinning axes zS1
, . . . , zS6

of the

six motors are coplanar. If β = 0, they are tangent to

the circular airframe (see Fig. 2(a), where α = π/2):

if f1 = f2 = . . . = f6, the hexarotor stands still.

• Case 2: cosβ = 0, i.e. β = (2k+1)π/2, k ∈ Z. In this

case, rank(F(α, β)) = 4 and δA = 2 (see Fig. 2(b),

where α = 0 and β = −π/2). If f1 = f2 = . . . = f6,

the hexarotor stands still.

• Case 3:
V sinα cos2β + cτf sin

2β = 0. (7)

Eq. (7) is transcendental and its zeros cannot be de-

termined in closed form. However, for a fixed α ∈
[kπ − arctan(ℓ/cτf ), kπ], k ∈ Z, we have β =

± arctan
(

√

− V
cτ
f

sinα
)

. For these pairs of α and β,

rank(F(α, β)) = 4 and δA = 2. Two values of α are of

special interest:

– Case 3.1: V = 0, i.e. α = − arctan(ℓ/cτf )
(cf. [20, Sect. IIIB]). Note that ℓ/cτf > 0, therefore

arctan(ℓ/cτf ) > 0.

– Case 3.2: sinα = 0, i.e. α = kπ, k ∈ Z. If α = 0,

the spinning axes zS1
, . . . , zS6

of the six motors

are parallel to zB and the platform behaves as a

conventional hexarotor.

• Case 4: W = 0, i.e.

α = arctan(cτf/ℓ). (8)

In this case, rank(F(α, β)) = 5 and δA = 1.

2The underactuation degree δA of a mechanical system modeled as q̈ =
f(q, q̇,u), where q is the vector of generalized coordinates and u is the
input vector, is the difference between the dimension of q and the rank of
the Jacobian matrix ∂f/∂ u, which, in the case under examination, is equal
to the rank of F. If δA = 0, the system is said fully actuated.

Remark 1 (Force and torque underactuation): Note that

the singularities in Case 1 and Case 3.2 are sources of

force underactuation for the hexarotor, whereas those in

Case 3.1 and Case 4 of torque underactuation. On the other

hand, the singularities in Case 2 cause both force and torque

underactuation (cf. the 3rd and 6th row of F(α, β)). ⋄
Remark 2: With reference to eq. (6), for β = 0,

det(F(α, 0)) = −54V 2W cosα sin2α (cf. Fig. 3), while

for α = 0, det(F(0, β)) = 54 (cτf)
3 cos2β sin4β. ⋄

Geometric interpretation of torque singularities

Note that while the singularities of Case 1 and 2 can

be easily avoided, since they correspond to orientations of

the propellers of scarce practical interest, the singularities

of Case 3.1 and Case 4 are subtler. In what follows, we

will only focus on Case 4, since Case 3.1 is complemen-

tary. Fig. 2(c) reports the forces and torques generated by

propeller i which is tilted of an angle αi = (−1)i−1 α > 0
about the xSi

-axis, i ∈ {1, . . . , 6} (the axis is directed out

of the page at the reader). When propeller i rotates about

its spinning axis zSi
, it generates a thrust force fi which,

in turn, produces a torque τ fi at the CoM of the platform

and a drag torque τ di
. The magnitude of these vectors can

be expressed as [21]:

fi = cf w
2
i , (9a)

τfi = ℓfi = ℓ cf w
2
i , (9b)

τdi
= cτ w

2
i , (9c)

where wi is the angular velocity of propeller i about the

zSi
-axis, and cf and cτ are the estimated thrust and aerody-

namic drag factors of the propeller, respectively. Note that

(9a)-(9c) is an approximation of a more accurate aerody-

namic model, which is, however, appropriate for the range

of wi’s of interest in this paper (between 0 and 750 rad/s,

cf. Sect. IV). To gain some physical insight into condi-

tion (8), it is convenient to study the total torque τ i applied

at the CoM of the hexarotor by propeller i, which is given

by τ i = τ fi + τ di
, where the two torque components are

always orthogonal, by construction. From Fig. 2(c) (see the

yellow-shaded rectangle), we deduce that:

γi + µi = π/2, (10)

tan γi = τfi/τdi
. (11)

By plugging eqs.(10) into (11), we find that tanµi =
τdi
/τfi . Setting cτf = cτ/cf , substitution of (9b)-(9c) into

the previous equation yields tanµi = cτf/ℓ, which tells us
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Fig. 2. Three of the four singular configurations of the hexarotor with dual-tilting propellers: (a) Case 1 for α = π/2 and β = 0 (top view); (b) Case 2
for α = 0 and β = −π/2 (top view); (c) Case 4: illustration of the forces and torques generated by propeller i. The propeller spins clockwise (wi < 0)
with a tilting angle αi > 0 about the xSi

-axis. The xByB -plane is dashed.

that the direction of the total torque generated by propeller i
at the CoM of the hexarotor only depends on two physical

parameters, cτf and ℓ, and on the tilting angle α. Notably,

the direction of τ i does not depend on the angular velocity

of the propeller itself. If µi = αi, then τ i belongs to the

xByB-plane and propeller i cannot generate torques along

zB anymore (see Fig. 2(c)). If this condition holds for all

propellers, i.e. µi = |αi|, ∀ i, then the entries of the 6th

row of F(α, β) (which maps u onto torques about the zB-

axis) are zero and the matrix becomes rank-one deficient.

This corresponds to condition (8), previously obtained in a

purely algebraic fashion. Note that Case 3.1 is even more

critical than Case 4, since this time τ i is aligned with zB ,

yielding a rank-two deficient F(α, β) (the 4th and 5th row

become zero). Fig. 4 complements Fig. 2(c) by reporting

the other possible combinations of forces and torques that

propeller i can generate according to the signs of αi and wi.

Tilt-planner design

Note that since α and β are slowly-varying parameters,

their value can be decided by a high-level tilt planner or by

a human operator. The angle α can be gradually changed

during flight: as a result, a continuum of configurations,

ranging from δA = 2 to δA = 0, is spanned (cf. Fig. 3).

The hexarotor can thus adapt its morphology to respond

to variable external conditions or task-related demands. In

particular, in a fully-actuated platform position and atti-

tude can be independently controlled and since any wrench

can be counteracted during contact with the environment,

aerial physical interaction becomes possible [18]. Note that

cτf = cτ/cf is “small”, since the aerodynamic drag factor

cτ is typically one order of magnitude smaller than cf .

−π/2 − arctan(ℓ/cτ
f
) arctan(cτ

f
/ℓ) π/2

α [rad]

δA

0

1

2

Fig. 3. Values assumed by δA for α ∈ [−π/2, π/2] and β = 0.

As a consequence, α = arctan(cτf/ℓ) is “small” as well.

For instance, if we take cτf = 1.7×10−2 m and ℓ = 0.315 m

as in [14], we obtain a critical α = 3.0892◦. Hence, if

one decides to increase α starting from zero in order to

transform the hexarotor into a fully-actuated platform, a

singularity will be crossed. This results in a temporary loss

of maneuverability, but the hexarotor will be able to maintain

stable flight long enough for the tilt planner to escape from

the narrow zone of torque underactuation. Finally, note that

since the implementation of the tilt planner is necessarily

task-specific, its design and that of the optimal controller

(see Sect. III-B) will be decoupled, and we will assume that

a singularity-free, smooth profile for α(t) and β(t) has been

precomputed to comply with the task requirements.

III. DETERMINATION OF MINIMUM-ENERGY

TRAJECTORIES

A. Electrical model of a BLDC motor

The model for a BLDC motor of the hexarotor takes into

account the energy dissipated in the resistive and inductive

windings, and the energy required to overcome the internal

and load friction [13]. The instantaneous current i(t) in the

motor is given by (see Fig. 5),

i(t) = 1
KT

[

Tf + TL(w(t)) +Df w(t) + (Jm + JL)
dw(t)
dt

]

,
(12)

where w(t) is the angular velocity of the motor shaft [rad/s],

KT is the torque constant of the motor [Nm/A], Tf is the

motor friction torque, TL(w(t)) is the speed-dependent load

friction torque which results from propeller drag, Df is the

viscous damping coefficient of the motor [Nms/rad], and

Jm and JL are the motor and load moments of inertia,

respectively. The voltage e(t) across the motor is given by:

e(t) = R i(t) +KE w(t) + L d i(t)
dt , (13)

where R and L are the resistance and inductance of phase

winding, respectively, and KE is the voltage constant of the

motor [Vs/rad]. Note that KE = KT [13]: in addition, if

KE is expressed in mV/rpm, we have that KE = 1000/KV

where KV is the motor velocity constant [rpm/V]. Since the

resistance RL, representing the losses in the magnetic circuit

of the motor, is usually much larger than R, the effect of

RL on motor operation can be neglected. Under steady-state
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Fig. 4. Case 4: illustration of the other possible combinations of forces and torques that propeller i can generate (cf. Fig. 2(c)). (a) αi > 0 and wi > 0;
(b) αi < 0 and wi > 0; (c) αi < 0 and wi < 0. The xByB -plane is dashed.

conditions, the current i(t) is constant and (13) reduces to:

e(t) = R i(t) +KE w(t), (14)

where eg(t) = KE w(t) is the counter electromotive force of

the motor.

B. Optimal control problem

We can now introduce an optimal control problem for

system (1), whose solution will give us the minimum-

energy trajectory of the hexarotor between a given initial and

final configuration. Let ei(t) and ii(t) denote the voltage

and the current across motor i ∈ {1, . . . , 6} at time t.
The energy consumed by the hexarotor between the initial

time t0 and the fixed end time tf is then,

E =

∫ tf

t0

6
∑

i=1
ei(t) ii(t) dt. (15)

By leveraging (12) and (14) for the six identical motors,

and by noticing that TL(wi(t)) = τdi
(t), i ∈ {1, . . . , 6}

(recall (9c)), we can rewrite (15) as follows:

E =

∫ tf

t0

6
∑

i=1

[

b1 + b2wi(t) + b3 w
2
i (t) + b4 w

3
i (t) + b5w

4
i (t)

+ b6 ẇi(t) + b7 ẇ
2
i (t) + b8 wi(t) ẇi(t) + b9 w

2
i (t) ẇi(t)

]

dt,
(16)

where the positive constants b1, . . . , b9 are given by:

b1 =
RT 2

f

K2

T

, b2 =
Tf

KT

Ä

2RDf

KT
+KE

ä

,

b3 =
Df

KT

Ä

RDf

KT
+KE

ä

+
2RTf cτ

K2

T

,

b4 = cτ
KT

Ä

2RDf

KT
+KE

ä

, b5 =
R c2τ
K2

T

, b6 =
2RJt Tf

K2

T

,

b7 =
RJ2

t

K2

T

, b8 = Jt

KT

Ä

2RDf

KT
+KE

ä

, b9 = 2RJt cτ
K2

T

,

being Jt = Jm + JL the total inertia of a motor.

+

+

e
R

L

RL
eg

w

Tf

TL

i

BLDC motor
Servo input signal from

the microcontroller

3-phase AC

LiPo
Battery ESC

Fig. 5. Electrical model of a BLDC motor of the hexarotor.

Remark 3 (Simplified cost function): Note that,
∫ tf

t0

6
∑

i=1

[

b6 ẇi(t) + b8 wi(t) ẇi(t) + b9 w
2
i (t) ẇi(t)

]

dt

=
∑6

i=1

[

b6(wi(tf)− wi(t0)) + 1
2 b8(w

2
i (tf)− w2

i (t0))

+ 1
3 b9(w

3
i (tf)− w3

i (t0))
]

.

Therefore, if we assume that wi(t0) = wi(tf), ∀ i, i.e. the

initial and final angular velocity of each motor are identical,

eq. (16) reduces to:

Er =

∫ tf

t0

6
∑

i=1

[

b1+ b2wi + b3w
2
i + b4w

3
i + b5w

4
i + b7ẇ

2
i

]

dt,

(17)

where the time index t has been dropped. This simplified

cost function will be used in the rest of this section. ⋄
We now cast the minimum-energy trajectory genera-

tion problem as a standard optimal control problem [22].

To this end, we rewrite system (1) in state-space form by

introducing the state vector x = [x1, . . . , x18]
T ∈ R

18

and the auxiliary control input η = [η1, . . . , η6]
T ∈ R

6, via

dynamic extension,

x1 = x, x2 = ẋ1, x3 = y, x4 = ẋ3, x5 = z, x6 = ẋ5,

x7 = φ, x8 = ẋ7, x9 = θ, x10 = ẋ9, x11 = ψ, x12 = ẋ11,

x13 = w1, ẋ13 = η1, . . . , x18 = w6, ẋ18 = η6,

where φ, θ and ψ are the hexarotor’s Euler (roll, pitch

and yaw) angles. This yields the following nonlinear system

affine in the auxiliary control input η:






























































ẋ1 = x2, ẋ3 = x4, ẋ5 = x6,




ẋ2
ẋ4
ẋ6



= −ge3 +
cf
m

RB(x7, x9, x11)F1(α, β)





x213
...

x218



,

ẋ7 = x8, ẋ9 = x10, ẋ11 = x12,




ẋ8
ẋ10
ẋ12



= J
−1

(

−





x8
x10
x12



× J





x8
x10
x12



+ cf F2(α, β)





x213
...

x218





)

,

ẋ13 = η1, . . . , ẋ18 = η6,
(18)

where eq. (9a) has been used and RB(x7, x9, x11) =
Rz(x11)Ry(x9)Rx(x7).

Assumption 1: The singularity-free, smooth profile of

α(t), β(t), t ∈ [t0, tf], has been computed by the tilt planner.
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The profile complies with the task requirements and it is

known at the time of solving problem (19) below. ⋄
Under Assumption 1, we can finally introduce the fol-

lowing optimal control problem by combining (17) with

system (18):

min
η

Er =

∫ tf

t0

[
18
∑

k=13
(b1 + b2 xk + b3 x

2
k + b4 x

3
k + b5 x

4
k)

+ b7 η
T
η
]

dt

s.t. System (18), x(t0) = xt0 , x(tf) = xtf
,

0 ≤ x13 ≤ wmax, . . . , 0 ≤ x18 ≤ wmax,
(19)

where wmax > 0 is the velocity saturation of the motors and

xt0 , xtf
∈ R

18 are assigned boundary states. Note that the

last six components of xt0 and xtf
must match in order to

fulfill the condition of Remark 3.

IV. NUMERICAL EXPERIMENTS

To validate our optimal control scheme, we considered

the physical parameters of the FAST-Hex hexarotor [14] (see

Table I). The FAST-Hex is equipped with six MikroKopter

MK3638 brushless outrunner motors. We computed the

inertia Jm of the motors using the inertia formula of a

thin cylindrical shell with open ends of radius rrot and

mass mrot (i.e. Jm = mrotr
2
rot), assuming that the weight

of the rotating part of the motor is 50% of the total weight.

Following [21], we know that JL = 1
4 nblmbl(r − ǫ)2 where

nbl is the number of blades of the propeller, mbl is the blade

mass, r is the radius of the propeller, and ǫ is the offset

between the blade root and the motor hub. The total mass

of the FAST-Hex, m = 2.4 kg, includes the mass of the 4s

LiPo 14.8 V, 2200 mAh battery (0.238 kg) and of the six

propeller units (6 × 0.15 kg = 0.9 kg). A diagonal inertia

matrix J = diag(Jx,Jy,Jz) was considered for the platform.

Problem (19) has been numerically solved using the TOM-

LAB Optimization Environment under Matlab 7.9. TOM-

LAB/PROPT relies on pseudospectral (Gauss or Chebyshev)

collocation methods for solving complex optimal control

problems [19]. In our first test, we solved problem (19)

to find the minimum-energy control input η(t) to fly from

the origin at time t0 = 0 s to the point of coordinates

[4, 6, 8]T m with a yaw angle of 45◦, at the fixed end time

tf = 15 s. This corresponds to xt0 = [01×12, ωh, . . . , ωh]
T

and xtf
= [4, 0, 6, 0, 8, 01×5, π/4, 0, ωh, . . . , ωh]

T where

ωh = 356.047 rad/s ≃ 3400 rpm (note that with α = β = 0◦,

the required velocity of a propeller for static hover is

KE = 9.5493/KV Vs/rad KV = 760 rpm/V, R = 0.07 Ω

Tf = 4× 10−2 Nm Df = 2× 10−4 Nms/rad

rrot = 0.0175 m, mrot = 0.05 kg Jm = 1.531 × 10−5 kgm2

cf = 9.902 × 10−4 Ns2 nbl = 2, mbl = 0.007 kg

cτ
f
= 1.91 × 10−2 m cτ = 1.896 × 10−5 Nms2

r = 0.1524 m, ǫ = 0.004 m wmax = 750 rad/s

ℓ = 0.315 m, m = 2.4 kg Jx = 1.1549 × 10−2 kgm2

Jy = 1.1368 × 10−2 kgm2 Jz = 1.9444 × 10−2 kgm2

TABLE I

Parameters of the FAST-Hex platform [14].

2π
»

mg
6 cf

= 395.483 rad/s). With these boundary states,

the condition of Remark 3 is satisfied. Fig. 6(a) shows the

minimum-energy trajectory of the FAST-Hex for α(t) =
β(t) = 0◦ (solid black) and α(t) = 55◦, β(t) = 15◦

(dashed black), t ∈ [t0, tf]. To obtain accurate trajectories,

problem (19) was first solved on a sparse grid, and then

re-solved recursively by using the obtained solution as a

starting point. The successively finer grids correspond to

a larger number of collocation points: 20, 40 and 60. The

starting guess was x(t0) = xt0 , η(t0) = 06×1. Figs. 6(b)-(c)

report the time evolution of the position and velocity of the

FAST-Hex for α(t) = β(t) = 0◦ (solid) and α(t) = 55◦,

β(t) = 15◦ (dashed), respectively. In both cases, PROPT

invoked the nonlinear solver SNOPT and the optimality

conditions were satisfied: in the first (second) case, the cost

function was evaluated 806 (645) times, and the total energy

consumed was 1.6933 kJ (2.6404 kJ). Fig. 6(a) also reports

the trajectory of the FAST-Hex for α(t) = 55◦, β(t) = 15◦

(green), generated with the nonlinear controller considered

in [13, Sect. IVA], that we tailored to system (18). Using the

same control gains as in [13], we obtained a consumption

of 3.0745 kJ which corresponds to a 16.44% increase with

respect to the energy-optimal trajectory.

Finally, to evaluate the impact of α on energy con-

sumption, we considered the same boundary conditions and

parameters as above, and we computed the minimum Er

for α ∈ (−90◦, 90◦) by considering a step size of 1◦ and

setting β = 0◦ (cf. Fig. 3). The number of collocation

points was fixed to 40, which offered a good trade-off

between solution accuracy and computation overhead. From

Figs. 6(d)-(e), we observe that the conventional hexarotor

configuration (α = 0◦) is the most energetically efficient

(1.6495 kJ), that a 1◦ variation in α yields, on average,

a 70.5 J variation in the figure of merit, and that the

consumption curve is near symmetrical about the origin.

Although further work is necessary to show that for any

possible pair of boundary states, the fully-actuated config-

uration is always less energy-efficient than the conventional

one, our results suggest that higher maneuverability entails

increased energy consumption. Note that the peak in Fig. 6(d)

corresponds to α = −87◦. For the contiguous critical α =
−(180/π) arctan(ℓ/cτf ) = −86.5215◦ (recall Case 3.1 in

Sect. II-B), the iteration limit was reached, and no feasible

solution was found by the SNOPT solver. On the other hand,

for α = (180/π) arctan(cτf/ℓ) = 3.4785◦ (cf. Case 4), the

FAST-Hex consumed 1.7191 kJ.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered a hexarotor with dual-

tilting propellers and we have determined minimum-energy

trajectories between two given boundary states, by solving

an optimal control problem which explicitly accounts for the

electrical parameters of the six motors. We have also fully

characterized the underactuation degree of the hexarotor by

studying the rank deficiency of the control allocation matrix.

In future works, we plan to perform a comparative study

with the minimum snap trajectory planner in [23], and

to solve our optimal control problem on the FAST-Hex

on-board computer. We are also interested in shedding light
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Fig. 6. (a) Minimum-energy trajectory of the FAST-Hex for α(t) = β(t) = 0◦ (solid black) and α(t) = 55◦, β(t) = 15◦ (dashed black), t ∈ [t0, tf].
The green trajectory is generated by the nonlinear regulator in [13, Sect. IVA] for α(t) = 55◦ , β(t) = 15◦ (propeller 1 is marked in blue); Time evolution
of (b) the position, and (c) the velocity of the FAST-Hex for α(t) = β(t) = 0◦ (solid) and α(t) = 55◦, β(t) = 15◦ (dashed) using our method.
(d) Energy consumed by the FAST-Hex for α ∈ (−90◦, 90◦), β = 0◦, and (e) ten of the corresponding optimal trajectories.

on the “internal motions” of a statically hovering hexarotor

with dual-tilting propellers: in fact, we would like to identify

those profiles of α(t) and β(t), treated as additional control

inputs, which result in a zero net motion of the platform.
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