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Aerial Co-Manipulation with Cables: The Role of Internal Force for

Equilibria, Stability, and Passivity

Marco Tognon1, Chiara Gabellieri1,2,†, Lucia Pallottino2, and Antonio Franchi1

Abstract— This paper considers the cooperative manipulation

of a cable-suspended load with two generic aerial robots without

the need of explicit communication. The role of the internal

force for the asymptotic stability of the beam position-and-

attitude equilibria is analyzed in depth. Using a nonlinear

Lyapunov-based approach, we prove that if a non-zero inter-

nal force is chosen, then the asymptotic stabilization of any

desired beam attitude can be achieved with a decentralized

and communication-less master-slave admittance controller. If,

conversely, a zero internal force is chosen, as done in the

majority of the state-of-the-art algorithms, the attitude of the

beam is not controllable without communication. Furthermore,

we formally proof the output-strictly passivity of the system

with respect to an energy-like storage function and a certain

input-output pair. This proves the stability and the robustness

of the method during motion and in non-ideal conditions. The

theoretical findings are validated through extensive simulations.

I. INTRODUCTION

Over the last decade UAVs (Unmanned Aerial Vehicles)
have risen the interest of a larger and larger audience for
their wide application domain. Recently, aerial physical
interaction, using aerial manipulators [1], [2] or exploiting
physical links as cables [3], has become a very popular topic.
One interesting and applicative problem is the aerial manipu-
lation of large objects, for which cooperative approaches are
usually applied because they allow to overcome the limited
payload of a single platform, thus lifting larger and heavier
loads [4].

Many works targeted this problem proposing different
methods and solutions. In [5], [6] cooperative aerial trans-
portation of a rigid and an elastic object is considered, re-
spectively. In [7] the use of multiple flying arms is exploited
to address the problem. Aerial manipulation via cables is
another interesting solution to the problem since it can
reduce the couplings between the load and the robot attitude
dynamics. Examples of cooperative aerial manipulation using
cables are studied in [8]–[10]. All these examples rely on
a centralized control. Instead, a decentralized algorithm, as
in [11], is more robust and scalable with respect to (w.r.t.)
the number of robots.
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Fig. 1: Representation of the system and its major variables. The
two aerial vehicles do not need to be necessarily quadrotors since
the analysis and control design is valid for general aerial vehicles.

However, the major bottleneck in decentralized algorithms
is the explicit communication. Communication delays and
packet losses can affect the performance and even the sta-
bility of the systems. Limiting the need for explicit com-
munication allows to reduce the complexity as well. In [12]
the authors proposed one of the first decentralized leader-
follower algorithm without explicit communication, for ob-
jects transportation performed by mobile ground robots.
Aerial cooperative transportation by two robots without
explicit communication has been addressed also in [13] for
a cable-suspended beam-like load, and a leader-follower
paradigm has been proposed. Here the leader follows an
external position reference, while the horizontal position of
the follower is controlled with an admittance filter, trying to
keep the cable always vertical (zero internal force). A similar
approach has been proposed in [14] but relying on a visual
feedback. However, those methods do not deal with the load
pose control and do not provide a formal stability proof.

For the same system composed by two aerial robots
carrying a cable suspended beam-like load (see Fig. 1 for a
schematic representation), we propose a decentralized algo-
rithm relying only on implicit communication. Our algorithm
uses a master-slave architecture with an admittance filter on
both robots (not only on the slave as in the related state of the
art), to make the overall system compliant/robust to external
disturbances.

One of our main contributions is the constructive and
intuitive method to choose the controller input to stabilize
the load at a desired pose. The control of both position and
orientation turns the simpler transportation task found in the
state of the art in a full-manipulation one.

We show that those inputs are parametrized by the internal
force of the load that plays a crucial role in the equilibria
stability. Differently from the state of the art algorithms,
which are not formally guaranteed to converge, we also
provide a formal proof of the stability through Lyapunov’s
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direct method. Furthermore, we prove that the controlled
system is output-strictly passive w.r.t. a relevant input-output
pair. This provides a bound for the energy variations during
the manipulation and an index of robustness of the method.

In Sec. II we derive the model. In Sec. III we present
the control strategy and the equilibria of the system. Their
stability is discussed in Sec. IV. In Sec. V we prove the
passivity and stability of transportation. Simulation results
and conclusive discussions are presented in Sec. VI and VII,
respectively.

II. SYSTEM MODELING

The considered system and its major variables are shown
in Fig. 1. The beam-like load is modeled as a rigid body with
mass mL 2 R>0 and a positive definite inertia matrix JL 2
R3⇥3. We define the frame FL = {OL,xL,yL,zL} rigidly
attached to it, where OL is the the load center of mass (CoM).
Then, we define an inertial frame FW = {OW ,xW ,yW ,zW}
with zW oriented in the opposite direction to the gravity
vector. The configuration of the load is then described by the
position of OL and orientation of FL with respect to FW ,
i.e., by the vector pL 2 R3 and the rotation matrix RL 2
SO(3), respectively. Its dynamics is given by the Newton-
Euler equations

mLp̈L =�mLge3 +fe

ṘL = S(!L)RL

JL!̇L =�S(!L)JL!L +⌧e �!

>
L BL!L,

where, !L 2 R3 is the angular velocity of FL w.r.t. FW
expressed in FL, S(?) is the operator such that S(x)y =
x⇥y, g is the gravitational constant, ei is the canonical unit
vector with a 1 in the i-th entry, fe and ⌧e 2R3 are the sum of
external forces and moments acting on the load, respectively.
The positive definite matrix BL 2 R3⇥3 is a damping factor
modeling the energy dissipation phenomena.

The load is transported by two aerial robots by means
of two cables, one for each robot. We denote with Ai the
attachment point of the i-th cable to the i-th robot, with
i = 1,2, and we define the frame FRi = {Ai,xRi,yRi,zRi}
rigidly attached to the robot and centered in the attachment
point. The i-th robot configuration is described by the po-
sition of Ai and orientation of FRi w.r.t. FW , denoted by
the vector pRi 2 R3, and the rotation matrix RRi 2 SO(3),
respectively. We assume that a position controller is applied
to the aerial robot, able to track any C2 trajectory with
negligible error in the domain of interest, independently
from external disturbances. Indeed, with the recent robust
controllers (as the one in [15] for both unidirectional- and
multidirectional-thrust vehicles) and disturbance observers
for aerial vehicles, one can obtain very precise motions,
even in the presence of external disturbances. However,
the proposed control method results particularly robust to
non-ideality, thanks to its passivity nature (see Sec. V). As
a consequence, in real applications, a precise tracking is
actually not needed for the stability, but only to achieve
perfect performance.

The closed loop translational dynamics of the robot subject
to the position controller is then assumed as the one of a
double integrator: p̈Ri = uRi, where uRi is a virtual input
to be designed. If we consider a multidirectional-thrust
platform capable of controlling both position and orientation
independently [16], the double integrator is an exact model
of the closed loop system apart from modeling errors. In
the case of underactuated unidirectional-thrust vehicle, the
double integrator is instead a very good approximation.
Indeed the rotational dynamics is totally decoupled from the
translational one and it is much faster than the latter, allowing
to apply the time-scale separation principle. At this stage it
might seem that the platform is ‘infinitely stiff’ w.r.t. the
force produced by the cable. However, we shall re-introduce
a compliant behavior by suitably designing the input uRi.

The other end of the i-th cable is attached to the load
at the anchoring point Bi described by the vector L

bi 2 R3

denoting its position with respect to FL. The position of Bi
w.r.t. FW is then given by bi = pL +RL

L
bi. To simplify

the discussion we assume, without loss of generality, that
L
b1 = [kL

b1k 0 0]>.
Assumption 1. The two anchoring points are placed such that
the load CoM coincides with their middle point, i.e., L

b1 =
�L

b2. This assumption is rather easy to meet in practice.
We model the i-th cable as a unilateral spring along

its principal direction, characterized by a constant elastic
coefficient ki 2R>0, a constant nominal length denoted by l0i
and a negligible mass and inertia w.r.t. the ones of the robots
and of the load. The attitude of the cable is described by the
normalized vector, ni = li/klik, where li = pRi � bi. Given
a certain elongation klik of the cable, the latter produces a
force acting on the load at Bi equal to:

fi = tini, ti =

(
ki(klik� l0i) if klik� l0i > 0
0 otherwise

. (1)

ti 2 R�0 denotes the tension along the cable and it is given
by the simplified Hooke’s law. As usually done in the related
literature, we assume that the controller and the gravity force
always maintain the cables taut, at least in the domain of
interest. The force produced at the other hand of the cable,
namely on the i-th robot at Ai, is equal to �fi.

Considering the forces that robots and load exchange by
means of the cables, the dynamics of the full system is:

v̇R = uR

v̇L =M

�1
L (�cL(vL)�gL +G(qL)f) ,

(2)

where qR = [p>
R1 p

>
R2]

>, qL = (pL,RL), vR = [ṗ>
R1 ṗ

>
R2]

>,
vL = [ṗ>

L !

>
L ]

>, uR = [u>
R1 u

>
R2]

>, f = [f>
1 f

>
2 ]> where

fi is given in (1), and is a function of the state, ML =
diag(mLI3,JL) and I3 2 R3⇥3 the identity matrix, gL =
[�mLge>3 0]>, cL = [0 S(!L)JL!L �!

>
L BL!L]> and

G=


I3 I3

S(L
b1)R>

L S(L
b2)R>

L

�
.

We remark that the two dynamics in (2) are coupled together
by the cable forces in (1).
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Fig. 2: Schematic representation of the overall system including
both physical and control blocks.

Control problem

In this work we aim to: i) stabilize the load at a desired
configuration, q̄L = (p̄L,R̄L); ii) preserve the stability of the
load during its transportation.

Assuming a perfect knowledge of the system dynamic
model, and a perfect state estimation, one could use a
centralized control approach, as in [8], [9]. We are instead
interested in solving the mentioned objectives using a decen-
tralized approach without explicit communication between
the robots.

III. CONTROL DESIGN AND EQUILIBRIA

To achieve the previous control objectives we propose the
use of an admittance filter for both robots, i.e., setting:

uRi =M

�1
Ai (�BAiṗRi �KAipRi �fi +⇡Ai) , (3)

where the tree positive definite symmetric matrices
MAi,BAi,KAi 2R3⇥3 are the virtual inertia of the robot, the
virtual damping, and the stiffness of a virtual spring attached
to the robot, and ⇡Ai 2 R3 is an additional input (see Fig. 2
for a schematic representation). Notice that (3) does not
require explicit communication. Indeed it requires only local
information, i.e., the state of the robot (pRi, ṗRi), and the
force applied by the cable fi. The first can be retrieved with
standard on-board sensors, while the second can be directly
measured by an on-board force sensor or estimated by a
sufficiently precise model-based observer as done in [13],
[16].

Combining equations (2) and (3) we can write the closed
loop system dynamics as v̇ = m(q,v,⇡A) where

m(q,v,⇡A) =


M

�1
A (�BAṗR �KApR �f+⇡A)
M

�1
L (�cL(vL)�gL +Gf)

�
, (4)

with q = (qR,qL), v = [v>
R v

>
L ]

> and ⇡A = [⇡>
A1 ⇡

>
A2]

>. Fur-
thermore MA = diag(MA1,MA2), BA = diag(BA1,BA2) and
KA = diag(KA1,KA2). In order to coordinate the motions of
the robots in a decentralized way we propose a master-slave
approach. Only one robot, namely the designated master, will
have an active control of the system. Choosing robot 1 as
master and robot 2 as slave we set KA1 6= 0, KA2 = 0.

We say that q is an equilibrium configuration if 9 ⇡A s.t.
0= m(q,0,⇡A), i.e, if the corresponding zero-velocity state
(q,0) is a forced equilibrium for the system (4) for a certain
forcing input ⇡A. We say that an equilibrium configuration q

is stable, unstable, or asymptotically stable if (q,0) is stable,
unstable, or asymptotically stable, respectively.
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Fig. 3: Relation between the equilibria and forcing control input. In
particular, starting from the left: to a desired load configuration of
equilibrium it corresponds a forcing input in the subset PA(q̄L) of
dimension one (inverse problem). Then, moving to the right: to a
forcing input in PA(q̄L) it corresponds an equilibrium in the subsets
Q+(tL, q̄L), Q�(tL, q̄L) or Q(0, q̄L) according to the value of tL
(direct problem). The orange line inside Q+(tL, q̄L) corresponds to
the equilibria q 2 Q+(tL, q̄L) such that qL = q̄L.

In the following we shall prove that for any desired load
configuration q̄L there exists a set PA(q̄L) ⇢ R6 such that
for any ⇡A 2 PA(q̄L) one can compute a q̄R, depending on
q̄L and ⇡A, that makes q̄ = (q̄L, q̄R) an asymptotically stable
equilibrium with ⇡A as forcing input. As we shall see, a
key role in all the following analyses is played by the load
internal force, defined as

tL := 1
2f

> ⇥
I3 �I3

⇤>
RLe1 =: 1

2f
>
rL, (5)

where rL =
⇥
I3 �I3

⇤>
R̄Le1. We have that if tL > 0 the

internal force is a tension (the work of the internal force
is positive if the distance between the anchoring points
increases) while if tL < 0 the internal force is a compression
(viceversa, the work is positive if the distance decreases).

A. Equilibrium Configurations of the Closed Loop System

We firstly carefully analyze the relation between equilib-
rium configurations, from now on simply called equilibria,
and the forcing input ⇡A. In particular, we shall study:
i) equilibria inverse problem: which is the set of inputs (and
corresponding robot positions) that equilibrates a desired q̄L
(Theorem 1); ii) equilibria direct problem: which is the set of
equilibria if ⇡A, chosen in the aforementioned set, is applied
to the system (Theorem 2). A schematic representation of the
results described in the theorems is given in Fig. 3.

Theorem 1 (equilibria inverse problem). Consider the closed
loop system (4) and assume that the load is at a given desired
configuration qL = q̄L = (p̄L,R̄L). For each internal force
tL 2R, there exists an unique constant value for the forcing
input ⇡A = ⇡̄A (and an unique position of the robots qR = q̄R)
such that q̄ = (q̄L, q̄R) is an equilibrium of the system.

In particular ⇡̄A and q̄R = [p̄>
R1 p̄

>
R2]

> are given by

⇡̄A(q̄L, tL) =KAq̄R + f̄(q̄L, tL) (6)

p̄Ri(q̄L, tL) = p̄L + R̄L
L
bi +

✓
kf̄ik

ki
+ l0i

◆
f̄i

kf̄ik
, (7)

for i = 1,2, where

f̄(q̄L, tL) =

f̄1
f̄2

�
=

mLg
2


I3
I3

�
e3 + tL


I3
�I3

�
R̄Le1. (8)
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Proof. The desired load configuration q̄L can be equilibrated
if there exists at least a q̄R and a ⇡A such that:

m(q̄,0,⇡A) = 0. (9)

Consider the last six rows of (9). We must find the f solving

Gf = gL. (10)

G is not invertible since rank(G) = 5, thus we have to verify
that a solution for (10) exists. Expanding (10) we obtain

f1 +f2 =�mLge3 (11)

S(L
b1)R̄

>
L f1 +S(L

b2)R̄
>
L f2 = 0. (12)

Then, substituting in (12) the f1 obtained from (11) we
have 2S(L

b1)R̄>
L f2 = �S(L

b1)R̄>
L mLge3, for which f2 =

mLge3/2 is always a solution. Therefore, all the solutions
of (10) can be written as

f̄ =G

†
gL +rLtL, (13)

where G

† = 1/2[I3 I3]> is the pseudo inverse of G, rL 2R6

is a vector in Null(G) , and tL 2 R is an arbitrary number.
We computed rL = [f>

1 f

>
2 ]> from (11) and (12) imposing

the right hand side equal to zero. From (11) f2 =�f1, and
replacing it into (12) we obtain S(2 L

b1)R̄>
L f1 = 0 which

is verified if f1 = tLR̄Le1 with tL 2 R. Finally we obtain
rL =

⇥
I3 �I3

⇤>
R̄Le1, as in the definition (5).

Equation (13) can be then rewritten as (8). The expression
of p̄Ri in (7) is computed using (1) and the kinematics of the
system. Notice that (7) is singular when f̄i = 0 for some i.
However this can always be avoided properly choosing tL.

Lastly, from the first six rows of (9) we have that q̄L is
equilibrated if ⇡A = ⇡̄A, where ⇡̄A is defined as in (6).

Remark 1. Based on Theorem 1 we can define a set
PA(q̄L) = {⇡A 2R6 : ⇡A = ⇡̄A(q̄L, tL) for tL 2R} which has
dimension 1, since it is parametrized by the scalar tL 2 R.
Remark 2. Given a desired load configuration q̄L to equili-
brate, Theorem 1 and its constructive proofs, give an intuitive
method for choosing the forcing input ⇡A. In particular one
has to choose only the value of the internal force tL.

Once tL is chosen and the input ⇡A = ⇡̄A(tL, q̄L) is applied
to the system, it is not in general granted that (q̄L, q̄R) is the
only equilibrium of (4), i.e., the equilibria direct problem
may have multiple solutions.

Theorem 2 (equilibria direct problem). Given tL 2 R and
the corresponding ⇡̄A 2 PA(q̄L) computed as in (6), the
equilibria of the system (4), when the input ⇡A = ⇡̄A(tL, q̄L) is
applied, are all and only the ones described by the following
conditions

tLRLe1 ⇥ R̄Le1 = 0

pR1 = p̄R1

pL = pR1 �RL
L
b1 �

✓
kf̄1k

k1
+ l01

◆
f̄1

kf̄1k
=

= p̄L +(R̄L �RL)
L
b1

pR2 = pL +RL
L
b2 +

✓
kf̄2k

k2
+ l02

◆
f̄2

kf̄2k
.

(14)
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(a) Two equilibria for tL 6= 0.
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Fig. 4: 2D representation of the equilibria varying tL.

Q(tL, q̄L) denotes the set of configurations respecting (14).

Proof. Given tL 2 R, and ⇡̄A 2 PA(q̄L), a configuration q

is an equilibrium if m(q,0, ⇡̄A) = 0. The first six rows are
KAqR +f� ⇡̄A = 0. Then, from (6) we have that

f =KA(q̄R �qR)+ f̄ . (15)

Multiplying both sides of (15) by G and using (10) we obtain
GKA(q̄R �qR)+Gf̄ = gL. Then, using KA2 = 0, and the
expression of f̄ in (8), we get


KA1eR1
S(Lb1)RLKA1eR1

�
+


mLge3

2S(Lb2)R
>
L R̄Le1tL

�
=


mLge3

0

�
, (16)

where eRi = (p̄Ri �pRi). The top row of (16) implies that
eR1 = 0, hence pR1 = p̄R1. Replacing eR1 = 0 in the bottom
part of (16) we obtain

S(L
b2)R

>
L R̄Le1tL = 0, L

b2 ⇥R

>
L R̄Le1tL = 0

, RLe1 ⇥ R̄Le1tL = 0.
(17)

We can retrieve pL and pR2, using (1) and the kinematics.

Remark 3. If tL = 0 the conditions in (17) hold for all the
possible load attitudes RL 2 SO(3). This means that Q(0, q̄L)
contains all the RL 2 SO(3) and the qR, pL computed from
RL using (14). Figure 4b illustrates some of these equilibria.

For tL 6= 0, it is required that RLe1 is parallel to
R̄Le1. This can be obtained with RL = RL(k,f) =
R̄LRzL(kp)R

xL(f), where k = 0,1, f 2 [0,2p], and R

zL(·)
and R

xL(·) are the rotations about zL and xL, respec-
tively. Considering that L

b1 is parallel to xL we have that
R

zL(kp)R
xL(f)

L
b1 is either equal to L

b1 if k= 0 or to �L
b1

if k = 1. Therefore, using (14), we obtain either pL = p̄L if
k = 0 or pL = p̄L+2b1 if k = 1. Fig. 4a provides a simplified
representations of the two different sets of equilibria for k = 0
and k = 1, formally defined as follows:

• Q+(tL, q̄L) = {q 2 Q(tL, q̄L)|RL =RL(0,f)8f},
• Q�(tL, q̄L) = {q 2 Q(tL, q̄L)|RL =RL(1,f)8f}.

Notice that Q(0, q̄L) is parametrized by an element in
SO(3) (any RL 2 SO(3) is allowed), while Q+(tL, q̄L) and
Q�(tL, q̄L), for tL 6= 0, are parametrized by an element in
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SO(1) (RL(0,f) and RL(1,f), for any f 2 [0,2p], respec-
tively). For all tL, the load rotation about xL is arbitrary
because the robots can not apply any torque along xL, so
the corresponding rotation results uncontrollable.

We can conclude that choosing tL = 0 (equilibrium with
vertical cables) every orientation of the load is contained in
the equilibrium set and the load equilibrium positions are
free to move on a sphere of radius kL

b1k centered on B1.
Contrarily, tL 6= 0 is a much better choice. In this case, a
part from the rotation about the xL axis, there are only two
distinct equilibria, and one is exactly qL = q̄L, as expected.
For the other one the load orientation is parallel to the one
in q̄L but its position is reflected w.r.t. B1 (see Fig. 4a for an
example).

IV. STABILITY OF THE EQUILIBRIA

In this section we shall analyze the stability of the equi-
libria discovered in Sec. III-A. Firstly we define x= (q,v)
as the state of the system, x̄= (q̄,0) the desired equilibrium
state, and the following sets (subspaces of the state space):

• X (tL, q̄L) = {x : q 2 Q(tL, q̄L), v = 0},
• X (0, q̄L) = {x : q 2 Q(0, q̄L), v = 0},
• X +(tL, q̄L) = {x : q 2 Q+(tL, q̄L), v = 0},
• X �(tL, q̄L) = {x : q 2 Q�(tL, q̄L), v = 0}.

Theorem 3. Let us consider a desired load configuration
q̄L. For the system (4) let the constant forcing input ⇡A be
chosen in PA(q̄L) corresponding to a certain internal force
tL. Then x belonging to:

• X +(tL, q̄L) is locally asymptotically stable if tL > 0;
• X �(tL, q̄L) is unstable if tL > 0;
• X (0, q̄L) is locally asymptotically stable;
• X +(tL, q̄L) is unstable if tL < 0;
• X �(tL, q̄L) is locally asymptotically stable if tL < 0.

Proof. Let us consider the following Lyapunov candidate:

V (x) =
1
2
(v>

R MAvR +e

>
R KAeR +v

>
L MLvL+

+ k1(kl1k� l01)
2 + k2(kl2k� l02)

2)� l

>
1 f̄1+

� l

>
2 f̄2 + tL(1� (R̄Le1)

>
RLe1)+V0,

(18)

where V0 2R�0 and eR = p̄R1�pR1. For an opportune choice
of V0, V (x) is a positive definite, continuously differentiable
function in the domain of interest for which we have that
xmin = argmin

x

V (x) is such that xmin 2 X (0, q̄L) and
xmin 2X +(tL, q̄L) for tL > 0. The complete proof is provided
in technical report in the multimedia materials. In particular,
if tL � 0, we can choose the term V0 such that V (x)� 0 and
V (x̄) = 0. Notice that V (x) = 0 for all x 2 X (0, q̄L) and
x 2 X +(tL, q̄L) for tL > 0.

Computing the time derivative of (18) and replacing
(4), (1) and (8) we obtain V̇ =�vR

>
BAvR �!

>
L BL!L that

is clearly negative semidefinite. In particular V̇ (x) = 0 for
all x 2 E {x : vR = 0, !L = 0}

Since V̇ is only negative semidefinite, to prove the asymp-
totic stability we rely on the LaSalle’s invariance princi-
ple [17]. Let us define a positively invariant set Wa = {x :

V (x)  a with a 2 R>0}. By construction Wa is compact
since (18) is radially unbounded and W0 is compact (W0 =
X (0, q̄L) and W0 = X +(tL, q̄L) for tL = 0 and tL > 0,
respectively, are both compact sets). Then we need to find
the largest invariant set M in E = {x 2 Wa | V̇ (x) = 0}.
A trajectory x(t) belongs identically to E if V̇ (x(t)) ⌘
0 , vR(t) ⌘ 0 and !L(t) ⌘ 0 , m(q(t),0,⇡A) = 0 for all
t 2 R>0. Therefore x has to be an equilibrium, and from
Theorem 2 we have that V̇ (x(t)) ⌘ 0 , x(t) 2 X (tL, q̄L).
Thus we obtain M = Wa \X (tL, q̄L).

For tL > 0, it is easy to see that for a sufficiently
small a , X +(tL, q̄L)✓ Wa but X �(tL, q̄L)\Wa =?. This
because V (x) = 0 for x 2 X +(tL, q̄L), while V (x) > 0
for x 2 X �(tL, q̄L). Indeed, in (18), for x 2 X �(tL, q̄L),
the term tL(1� (R̄Le1)>RLe1) = 2tL > 0. Therefore M =
X +(tL, q̄L). All conditions of LaSalle’s principle are satis-
fied and X +(tL, q̄L) is locally asymptotically stable.

On the other hand, for tL = 0 we have that X (tL, q̄L)✓Wa
for every sufficiently small a . Therefore M = X (tL, q̄L)
and, as before, we can conclude that X (tL, q̄L) is locally
asymptotically stable for the LaSalle’s invariance principle.

Now, let us investigate the stability for tL < 0. As before,
with an opportune choice of V0, we have that V (x) = 0
for x 2 X +(tL, q̄L). However X +(tL, q̄L) is a set of ac-
cumulation for the points where V (x)< 0. Indeed, consider
v= 0, pR1 = p̄R1, RL such that (R̄Le1)>RLe1 = 1�e , with
e > 0 arbitrarily small, pL and pR2 as in (14). Under this
conditions, we have that V (x) = tL(1� (R̄Le1)>RLe1) =
tLe < 0. Then, V̇ (x) < 0 in a neighborhood of X +(tL, q̄L).
All conditions of Chetaev’s theorem [17] are satisfied, and
we can conclude that X +(tL, q̄L) is an unstable set.

Finally, to study the stability of X �(tL, q̄L) for tL 6= 0,
let us consider a desired load configuration q̄

0
L = (p̄0

L,R̄
0
L)

such that p̄

0
L = p

0
L + 2R̄Le1 and R̄

0
L = RL(1,f) for a cer-

tain f . Then we choose ⇡

0
A 2 PA(q̄0L) with t 0L = �tL. For

the reasoning in Sec. III-A, we have that X +(t 0L, q̄
0
L) =

X �(tL, q̄L). Furthermore, for the previous results, if tL > 0,
t 0L < 0 and X +(t 0L, q̄

0
L) is unstable. Therefore, X �(tL, q̄L) is

unstable too. A similar reasoning can be done to prove that
X �(tL, q̄L) is locally asymptotically stable for tL < 0.

V. PASSIVITY AND STABILITY OF MANIPULATION

Theorem 3 characterizes the stability of all the possible
static equilibria given a certain constant forcing input. In
particular, it shows that one has to choose tL > 0 and ⇡A 2
PA(q̄L) to let the system asymptotically converge to a desired
load configuration. On the contrary, one must avoid tL = 0
because the control of the load attitude and its position is
not possible. Notice that this last case is the most used in
the literature, where the attempt is made to keep the cables
always vertical, i.e., with no internal forces.

Let us now show how one can exploit the input ⇡A1
in order to move the load between two distinct positions.
From (6)–(8) and from the fact that KA2 = 0, it descends that
only ⇡̄A1, in ⇡̄A=[⇡̄>

A1 ⇡̄
>
A2]

>, actually depends on the desired
load position p̄L. This makes robot 1 able to steer alone the
load position without communicating with robot 2. This is
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done by first plugging a new desired position p̄

0
L in (6) thus

computing a new p̄

0
R1, and then plugging p̄

0
R1 in (7) in order

to compute the new constant forcing input ⇡̄

0
A1. However,

one may want to minimize the transient phases generated by
a piecewise constant forcing input. It is sufficient to design
⇡A1 as

⇡A1(t) = ⇡̄A1 +uA1(t), (19)

where uA1(t) is a smooth function such that ⇡A1(0) = ⇡̄A1
and ⇡A1(t f ) = ⇡̄

0
A1 for t f 2 R>0.

To ensure that the system remains stable when the input is
time-varying, we shall prove that the system is output-strictly
passive w.r.t. the input-output pair (u,y) = (uA,vR).

Theorem 4. If ⇡A is defined as in (19) for a certain q̄ and
q̄

0 with tL � 0, then system (4) is output-strictly passive w.r.t.
the storage function (18) and the input-output pair (u,y) =
(uA, vR).

Proof. In the proof of Theorem 3 we already shown that (18)
is a continuously differentiable positive definite function for
tL � 0, properly choosing V0. Furthermore, replacing (19)
into (3), and differentiating (18) we obtain

V̇ =�vR
>
BAvR +vR

>
uA �!

>
L BL!L

u

>
y�y

>
BAy = u

>
y�y

>�(y),
(20)

with y

>�(y)> 0 8 y 6= 0. Therefore, system (4) is output-
strictly passive [17].

Thanks to the passivity of the system we can say that
for a bounded input provided to the master, the energy
of the system remains bounded too, and in particular it
stabilizes to a new constant value as soon as uA1 becomes
constant again. This means that while moving the master,
the overall state of the system will remain bounded, and will
converge to another specific equilibrium configuration when
the master input becomes constant. Furthermore, it is well
known that passivity is a robust property, especially w.r.t.
model uncertainties. In particular, choosing ⇡A 2 PA(q̄L) for
a given q̄, the system remains asymptotically stable even
in the presence of some parameter uncertainties, but it will
converge to a q̄

0 that is slightly different from q̄.
Remark 4. Once the desired load pose is decided and the
value of tL is chosen, one can compute the control input
⇡A and send it to the robots. Afterwards, if tL > 0 the robots
will steer the load to the desired configuration preserving the
stability and without the need of sending data to each other.
The cooperative task is performed exploiting the implicit
communication through the forces that the robots exchange
and feel from the cables and the object.

VI. NUMERICAL VALIDATION

In this section we shall describe the results of several
numerical simulations validating the proposed method and
all the presented theoretical concepts and results.

For the simulation we considered a quadrotor-like vehicle
with its proper nonlinear dynamics together with a geometric
position controller, even though, our method can be applied

to more general flying vehicles. System and control parame-
ters are reported in Tab. I. Notice the smaller apparent inertia
of the slave, chosen to make it more sensitive to external
forces.

Let us consider the desired equilibrium q̄ = (p̄L,R̄L),
whose value are in Tab. I, where (f̄ , q̄ , ȳ) are the Euler
angles that parametrize R̄L. We performed several simula-
tions with ⇡A 2 PA(q̄L) computed as in (6) for the cases:
1) tL1 = 1.5 [N]> 0, 2) tL2 = 0 [N], 3) tL3 =�1 [N]< 0.

To test the stability of the equilibria, we initialized the
system in different initial configurations and we let it evolve.
Figure 6 shows the position and orientation error for the three
tL and several different initial conditions. 1) For tL = tL1, the
system always converges to a state belonging to X +(tL, q̄L),
independently from the initial state, validating the asymptotic
stability of X +(tL, q̄L) when tL > 0. 2) For tL2, the system
final state belongs to X (0, q̄L). The particular final attitude
of the load depends on the initial state. 3) For tL3, the system
never converges to X +(tL, q̄L) even with a very close initial
configuration. This is due to the instability of X +(tL, q̄L)
when tL < 0. Fig. 5 shows the evolution of the system starting
from two different initial states for the three cases.

In another set of simulations, shown in detail in the
attached technical report, the master input ⇡A1(t) is chosen
as in (19) to bring the load in p̄

0
L = [4.5 4.5 5]>[m]. We

observed that, as expected, for both tL = tL1 and tL = tL2
the system remains stable during the master maneuver. Once
the input becomes constant, the master stops and the system
converges to q̄ for tL = tL1. For tL = tL2, the final load attitude
depends on the particular motion, and it is in general different
from q̄.

Additional simulations in non-ideal conditions are pro-
vided in the attached technical report. The results show
that thanks to the passivity of the system, the latter is very
robust to the considered non-idealities. Some representative
simulations are available in the attached video too.

VII. CONCLUSIONS

This work deals with the decentralized cooperative manip-
ulation of a cable-suspended load performed by two aerial
vehicles. The proposed master-slave architecture exploits an
admittance controller in order to coordinate the robots with
implicit communication only, exploiting the cable forces. The
passivity of the system has been proven, and the stability of
the static equilibria has been studied highlighting the crucial
role of the internal force. In particular, contrarily from what

System Parameters Controller Gains

i = 1 i = 2 i = 1 i = 2
mRi [Kg] 1.02 0.993 MAi 3I3 0.5I3

JRi [Kg ·m2] 0.015I3 0.015I3 BAi 18I3 1.3I3

l0i [m] 1 1 KAi 15I3 0

ki [N/m] 20 20 Desired Load Pose

Lbi [m] [0.433 0 0] [�0.433 0 0] p̄L = [0.3 0.3 0.2]> [m]

mL = 0.900 [Kg], JLx = 0.112 [Kg ·m2] f̄ = 0, q̄ = p/8 [rad]
JLy = 5.681, JLz = 5.681 [Kg ·m2] ȳ = p/7 [rad]

TABLE I: Parameters used in the simulations.
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Fig. 5: Each figure shows the evolution of the system from two different initial conditions (one is shown in red and the other in blue).
The two evolutions are represented as a sequence of images discriminated by the brightness of the color that represents the time (from
bright/start to dark/end). The load is represented as a tick solid line, the cables as thin dashed lines, the master robot as a circle and the
slave robot as a cross.

Fig. 6: Convergence to the desired load configuration for cases 1) 2)
and 3). In particular the first and second rows show the position and
the attitude errors, respectively, for four different initial conditions
(different colors) and for the three different internal force values
(columns). The attitude error is computed as the sum of pitch
and yaw errors. The roll error is not considered since it is not
controllable.

it is normally done in the literature (zero internal force), it is
advisable to choose a positive internal force to control both
position and orientation of the beam. In the future it would
be interesting to test the method on real platforms and to
extend the analysis to general loads or to agile motions. An
extension to a more generic load attached to N robots could
be very interesting too.
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Abstract—This document is a technical attachment to [1] as
an extension of the theoretical analysis and of the numerical
validation part. Here we present additional plots and additional
simulations in presence of non-ideal conditions as noise and
parameter variations. A thorough validation of the robustness of
the proposed method against the aforementioned non-idealities
is also conducted.

I. HOW TO CITE THIS WORK

This technical report is accompanying our IEEE Robotics
and Automation Letters paper [1]. If you wish to reference
this work, please cite this paper as follows:

@Ar t i c l e {Tognon2018�RAL,
a u t h o r = {M. Tognon and C . G a b e l l i e r i and
L . P a l l o t t i n o and A. F r a n c h i } ,
t i t l e = { A e r i a l Co�M a n i p u l a t i o n wi th
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y e a r = {2018} ,
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}

II. INTRODUCTION

In Sec. III we integrate the Lyapunov based stability analysis
of Sec. IV of the manuscript. In particular we shall prove
that the Lyapunov function (18) of the manuscript is positive
definite and has global minima in a particular set of interest.

Then, in the following sections, we shall describe several
additional simulations validating the proposed method and
all the theoretical concepts and results presented in [1]. The
parameter of the simulated system are the one reported in [1].
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III. LYAPUNOV FUNCTION CHARACTERIZATION

In the following proposition we analyze in details the
Lyapunov candidate:

V (x) =
1
2
(v>
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(1)

used in Sec. IV and Sec. V of the manuscript, for the proofs
of stability and passivity of the system.

Proposition 1. Considering the Lyapunov function (1), we

have that:

• xmin = argmin
x

V (x) is such that xmin 2 X (0, q̄
L

) and

xmin 2 X +(t
L

, q̄
L

) for t

L

> 0;

• V (x) is positive definite for an opportune choice of V0.

Proof. We divide (1) into three parts such that

V (x) = V̄ (x)+V1(x)+V2(x), (2)

where
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for i = 1,2.
We firstly show that the Lyapunov function is radially

unbounded (also called coercive), i.e., limkxk!• V (x) = •.
Indeed, we have that clearly limkxk!• V̄ (x) = •, while

lim
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Based on this results and on Theorem 1.15 of [2], we can say
that function (3) has a global minimum. Now we can look
for this minimum among the stationary points, i.e., where the
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gradient —V (x) = 0, and among the points where (1) is not
differentiable [3].

It is clear that —V̄ (x) = 0 only if v = 0, p
R1 = p̄

R1 and
t

L

R

L

e1 ⇥ R̄

L

e1 = 0. Regarding V

i

(x), let us consider its
gradient with respect to the cable configuration l

i

:

—
l

i
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∂ l
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Then, —
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Condition (6) holds in two different cases:
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< 0.
The previous two cases have a straightforward physical in-
terpretation. Since the cables are modeled as a spring, they
can produce a force at a certain point both being stretched in
the same direction of the force itself, as in case a), or being
compressed in the opposite direction, as in case b). However
in this work we consider only case a) because case b) is
not practicably feasible for cables, thus out of our region of
interest.

Therefore —V (x) = 0 if x 2 X a

—0[X b

—0 where

a) X a

—0 = {x | v = 0, p

R1 = p̄

R1, t

L

R

L

e1 ⇥ R̄

L

e1 =

0, k

i

(kl
i

k�l0i

)
kl

i

k = kf̄
i

k, l
i

= f̄

i

kf̄
i

k}
b) X b

—0 = {x | v = 0, p

R1 = p̄

R1, t

L

R

L

e1 ⇥ R̄

L

e1 =

0, k

i

(kl
i

k�l0i

)
kl

i

k =�kf̄
i

k, l
i

=� f̄

i

kf̄
i

k}

However, x2X b

—0 can not be the global minima since we can
show that V (x

a

)<V (x
b

) with x

a

2X a

—0 and x

b

2X b

—0. This
comes from the fact that in (1), �l

>
i

f̄

i

< 0 and �l

>
i

f̄

i

> 0 for
x 2 X a

—0 and x 2 X b

—0, respectively.
Finally we have to check the non-differentiable points of (1),

namely the state x2X
l

i

0 = {x | kl
i

k= 0 for i = 1,2}. Notice
that this condition is out of our domain of interest. Never-
theless, also in this case we can show that V (x

a

) < V (x
l

i

0).
Indeed, V̄ (x

a

) = V̄ (x
l

i

0) and

V

i

(x
l

i

0) =
1
2

k

i

l

2
0i

V

i

(x
a

) =
1
2

k

i

(kl
i

k2 + l

2
0i

�2kl
i

kl0i

)� l

>
i

k

i

(kl
i

k� l0i

)
l

i

kl
i

k

=
1
2

k

i

kl
i

k2 +
1
2

k

i

l

2
0i

� k

i

kl
i

kl0i

� k

i

kl2
i

k+ k

i

kl
i

kl0i

=
1
2

k

i

l

2
0i

� 1
2

k

i

kl
i

k2.

Thus V

i

(x
a

)<V

i

(x
l

i

0).
We can finally conclude that x2X a

—0 is the global minima
of (1). Furthermore, with a similar reasoning to the proof
of Theorem 2 of the manuscript, we can show that X a

—0 =
X (0, q̄

L

) for t

L

= 0 and X a

—0 =X +(t
L

, q̄
L

) for t

L

> 0, proving
the first point of Proposition 1.

For the last point, let us define the function V

0(x) as in (1)
but without V0. Then, in order to obtain V (x) > 0, we can
simply set

V0 > min
x

(V 0(x)) =V

0(x
a

)

with x

a

2 X a

—0.
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IV. LOAD POSE REGULATION

Given the desired load configuration of equilibrium p̄

L

=
[0.3 0.3 0.2]>[m], ȳ = p/7[rad] and q̄ = p/8[rad], we per-
formed several simulations with ⇡

A

2 P
A

(q̄
L

) computed for
the cases: 1) t

L

= 1.5 > 0, 2) t

L

= 0, 3) t

L

=�1 < 0,
To study the stability of the equilibrium configuration for

the different values of t

L

, we initialized the system in two
different initial configurations and we observed the evolution
of the system. We observed that for case
1) the system final configuration belongs to X +(t

L

, q̄
L

). Fig-
ure 1 shows the system configuration evolution for the
two different initial conditions. The final state of the two
trajectories is the same;

2) the system final configuration belongs to X (0, q̄
L

), and
depends on the system initial state. Figure 2 shows the
system configuration evolution in these cases;

3) the system does not converge to X �(t
L

, q̄
L

) even initializ-
ing it very close. Figure 3 shows the system configuration
evolution in these cases.

The previous plots integrate the ones provided [1] showing
the complete evolution of the main quantities of the system
for two particular initial conditions.

(a) First initial condition.

(b) Second initial condition.

Fig. 1: Evolution of the system variables for t

L

= 1.5 [N] starting from
two different initial conditions. The positions of the robots center of
masses (which coincide with the cables attaching points) are shown,
together with the position of the load center of mass and its yaw and
pitch angles. The reference signals are displayed with dotted lines of
the same color.
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(a) First initial condition.

(b) Second initial condition.

Fig. 2: Evolution of the system variables for t

L

= 0 [N] starting from
two different initial conditions.

(a) First initial condition.

(b) Second initial condition.

Fig. 3: Evolution of the system variables for t

L

=�1 [N] starting from
two different initial conditions.
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V. LOAD TRANSPORTATION

Considering a time-varying control input, we defined ⇡

A1(t)
such that the master robot follows a 5th-order polynomial
trajectory in the three directions (rest to rest with condition
of zero acceleration at the initial and final points) starting
from an initial position of [1.18 0.72 2.2]>[m]. The trajectory
covers 4[m] along each of the the three directions in 30[s].
The particular ⇡

A

(t), with ⇡

A2(t) = ⇡̄

0
A2 and ⇡

A1(t f

) = ⇡̄

0
A1,

brings the load in the configuration p̄

L

= [4.5 4.5 5.0]> [m],
ȳ = p/9 [rad] and q̄ = p/8 [rad]. In Fig. 5 we show the
results of the simulations in ideal conditions. We notice that,
once the final input ⇡

A1(t f

) = ⇡̄

0
A1 with t

L

> 0[N] is set, the
system successfully transports the load between the two points
stopping at the desired configuration, as shown in Fig. 4(a).
For t

L

= 0[N] instead, the final load attitude depends on the
particular motion, and it is in general different from the desired
one, as shown in Fig. 4(b). Finally, as one can see in Fig. 4(c),
when t

L

< 0[N] the final configuration of the system does
not correspond to the desired one, since it was an unstable
equilibrium. Notice in Fig. 4(a) how the error on the load
trajectory remains sufficiently small for all the transportation,
and goes to zero at the end of the task. In Fig. 5(a), 5(b)
and 5(c) we show the results for a similar task, for t

L

> 0,
t

L

= 0 and t

L

< 0, respectively. In this case the trajectory
is followed at a higher speed, since it is completed in 4 [s].
Consequently, as one can see in Fig. 5(a), the system moves
faster and the tracking error increases. However it remains
always bounded and the stability during the transportation
is preserved. Furthermore, one could tune the admittance
controller parameters of the slave robot to achieve better
results if needed.
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Fig. 4: Evolution of the system variables during transportation for
the three different values of internal force.
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Fig. 5: Evolution of the system variables during transportation for
the three different values of internal force.
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Fig. 6: Simulation result with noisy measurements.

VI. NON-IDEAL CONDITIONS

In the following, we test the robustness of the proposed
method against noise in the measured state and model pa-
rameter uncertainties. The following simulations consider the
transportation scenario presented in Sec. V, where the trajec-
tory is performed in 4[s].

A. Noisy Measurements

In Fig. 6 we report the results of a simulation where
Gaussian noise is added to the estimated state of the robots and
to the measured cable force, in order to simulate real sensors.
In particular, the noise variances on the aerial vehicle position,
velocity and measured cable force are equal to 0.005[m],
0.01[m/s] and 0.01[N], respectively. From the plots one can
see that, even in the presence of noise, the system is able to
bring the load to the desired pose showing only very small
oscillations.

B. Noisy Measurements and Parametric Uncertainties

In Fig. 7 both measurement noise and parametric uncer-
tainties are considered. In particular, the rest length of the
cables, the cables anchoring points positions with respect to
the center of mass of the load (or equivalently the position
of the center of mass of the load) and the mass of the load
are uncertain parameters. In other words, we put ourselves
in a condition in which the real parameters and the nominal
ones do not perfectly match. In particular, the known cables
rest length has been set 5% greater than the real one, the
load mass used to generate the constant control input ⇡

A

is 20% greater than the real one, and the anchoring points
positions in body frame have been chosen as follows: L

b1 =
[0.5 0.01 0.02]>[m], L

b2 = [�0.47 0.02 0.03]>[m]. With this
simulation we want to show that the proposed algorithm is
robust to uncertainties on the parameters in the sense that
the system final equilibrium will be clearly different from
the desired one, but the robots are still perfectly capable of
performing the object transportation task in a stable way, as
guaranteed by the system passivity. Fig. 7 shows the results
of the simulation during the transportation. As on can see, the

Fig. 7: Evolution of the main system variables for the transportation
can in the presence of noise and model uncertainties.

passive nature of the closed loop system makes the system
state and output completely stable and converging to a constant
equilibrium, that is of course different from the desired one
because of the wrong parameter used. An adaptive approach
could be used to reduce the effect of this

C. Sensitivity to Load Mass Uncertainty

We performed several simulations varying the mass of the
load known by the controller with respect to the real mass.
Figure 8 displays how the load position and attitude errors
at steady state, e

p

L

and e

a

L

, change when the real mass is not
exactly known. In particular, the errors are defined as:

e

p

L

= kp
L

� p̄

L

k
e

a

L

= ||q � q̄ ||+ ||y � ȳ||.

The load starts from the configuration given by: p

L

(0) =
[0.5 0.5 1]> [m], y = p/10 [rad] , q = p/8 [rad] and t

L

=
1.5 [N]. The desired final configuration is given by p̄

L

=
[0.5 0.5 1]> [m] , q̄ = p/9 [rad], ȳ = p/8 [rad], t

L

= 1.5 [N].
Calling m

0
L

the known mass, we compute it as m

0
L

= Dm ·m
L

where Dm is the relative mass increment. Figure 8 shows
e

p

L

and e

a

L

with respect to Dm. The larger the parametric
uncertainty on the load mass, the more the errors increase,
too. However one can notice that even with an uncertainty
grater than the 25% the system still remains stable. After the
value Dm = 1.3 the system becomes unstable. Nevertheless,
we remark that the mass of the load is one of the parameters
that can be known with very good precision, also using an
online estimation algorithm.

D. Sensitivity to Anchoring Point Position Uncertainty

As an additional study of the robustness of the proposed
method, in Fig. 9 we show the load position and attitude
errors at steady state when the parametric uncertainty is on

Preprint version, final version at http://ieeexplore.ieee.org/ 7 IEEE Robotics and Automation Letters 2018



0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 8: Load position and attitude errors when the load mass known
by the controller differs from the real one.

the position of the cables anchoring points on the load. In
particular, the known anchoring positions are given by

L

b

0
1 =

L

b1 +

2

4
1
1
1

3

5DbkL

b1k

L

b

0
2 =

L

b2 +

2

4
�1
1
1

3

5DbkL

b1k,

where Db 2 R�0. The system starts from the configuration
given by p

L

(0) = [0.5 0.5 1]> [m], y = p/10 [rad], q =
p/8 [rad] and t

L

= 1.5 [N]. The desired final configuration is
given by p̄

L

= [0.5 0.5 1]> [m] , q̄ = p/9 [rad], ȳ = p/8 [rad],
t

L

= 1.5 [N]. Also in this case, as expected, the larger the para-
metric uncertainty on the considered quantities, the more the
errors increase, too. However, with the considerable variation
of Db = 0.5 the system still remains stable.
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Fig. 9: Load position and attitude errors when the anchoring points
position on the load known by the controller differs from the real
one.
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Fig. 10: Convergence time of the load position and attitude errors
when the t

L

increases.

VII. EFFECTS OF THE INTERNAL FORCE ALONG THE
LOAD

In the manuscript we saw that to make a desired load con-
figuration asymptotically stable, one has to compute the proper
control input ⇡

A

(q̄, t
L

) choosing t

L

> 0. In the following, we
shall analyze the effects of the intensity of the internal force
on the system behavior. In this way we can better decide the
value of t

L

. In particular, in the following, we shall analyze
the relations between t

L

and convergence time, and between
t

L

and required total thrust in the equilibrium configuration.

A. Internal Force and Convergence Time

If the internal force t

L

= 0 [N] the load does not in general
converge to its desired pose, which instead happens for t

L

> 0.
However, it is interesting to see how the convergence rate
behaves changing the intensity of the internal force. In Fig. 10,
we show how the convergence time of the load position and
attitude, defined by t

c

, varies when increasing the internal
force. Here t

c

= min{t

a

c

, t p

c

}, where t

a

c

is the time after which
e

a

L

remains below 5 [�], while t

p

c

is the time after which e

p

L

remains below 0.02 [m]. The initial and the final desired load
configurations are the same as before. Notice that for t

L

= 0
the convergence time is in general infinite. One can notice
that increasing t

L

up to 0.7 [N], t

c

decreases. However, after
this value, t

c

starts to increase due to the appearance of some
larger oscillations that takes more time to be damped. In any
case, this study shows that even a minimal internal force of
0.1 [N] is enough to obtain asymptotically stability for which
an almost negligible increase of total thrust is required.

B. Internal Force and Total Thrust

Since the internal force, necessary to make the load con-
verge to the desired pose, implies an additional energy con-
sumption for the robots, we evaluated the amount of additional
thrust required when the internal force increases. Given a
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0
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0.01

0.015

0.02

0.025

0.03

Fig. 11: Additional thrust required by the two robots to stabilize the
load when t

L

increases.

certain desired load pose, Fig. 11 shows the relative increase
of total thrust, D f

R

, augmenting the intensity of the internal
force with respect to the total thrust required by the case with
zero internal force. In particular D f

R

is computed as

D f

R

(t
L

) =
f

R

(t
L

)� f

0
R

f

0
R

,

where f

R

(t
L

) is the the sum of the thrusts required by the two
vehicles at steady state to stabilize the load at a certain load
configuration with a certain value of t

L

, and f

0
R

= f

R

(0).
One can notice that even imposing t

L

= 1 [N], much higher
than the real internal force required to stabilize the system,
the D f

R

is below the 0.005, i.e., the total extra thrust is lower
than the 0.5% of the total thrust required with t

L

= 0 [N].
In any case we remark that the proposed control method

is still applicable for t

L

= 0 [N]. The system is proven to be
still stable, but will not clearly asymptotically converge to the
desired pose.
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