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Abstract:
This paper presents the description and experimental results of a versatile Visual Marker based
Multi-Sensor Fusion State Estimation that allows to combine a variable optional number of
sensors and positioning algorithms in a loosely-coupling fashion, incorporating visual markers
to increase its performances. This technique allows an aerial robot to navigate in different
environments and carrying out different missions with the same state estimation architecture,
exploiting the best from every sensor. The state estimation algorithm has been successfully
tested controlling a quadrotor equipped with an extra IMU and a RGB camera used only
to detect visual markers. The entire framework runs on an onboard computer, including the
controllers and the proposed state estimator. The whole software is made publicly available to
the scientific community through an open source implementation.
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1. INTRODUCTION

1.1 Motivation

Full state estimation of a multirotor aerial robot, including
its pose and derivatives, is a complex task that is highly
dependent on the environment and on the application.

The state estimation is performed using the informa-
tion provided by the sensors. Nevertheless, there are no
limitation-free sensors, e.g., IMUs (accelerometers and gy-
roscopes) suffer from high noises and drifts; GPS receivers
are only working outdoors with small precisions and at a
slow rate; air-pressure based sensors do not work properly
in indoors areas due to the disturbances generated by the
propellers; magnetometers are unreliable due to the elec-
tromagnetic disturbances created by the aerial platform,
and specially by some elements in the environment such as
steel girders; optical-flow based sensors that measure the
ground speed, like the px4flow, require a textured, static
and planar floor, and also require a small angle between the
normal of the floor and the sensor axis; motion capture sys-
tems are only suitable in indoor areas and their installation
is very expensive; ranging sensors, like LIDAR or RGB-
D cameras, require the presence of objects to observe;
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RGB cameras, both monocular and stereo require textured
environments and proper visibility conditions without fog
or smoke. Therefore, a combination of sensors is required
to produce a versatile and reliable state estimation.

Using vision-based algorithms for state estimation has
become a trend in the last years because of the low-
cost, and the light weight of cameras. Visual markers
based approaches require the environment to have visually
salient objects, and have the advantage of being able to
handle untextured environment (e.g., a big white wall with
a small window) or non-static scenes (e.g., an aerial robot
pushing a box in a storehouse).

1.2 Related Works

Multiple Sensor Fusion (MSF) for state estimation is a
common feature of all the works related to navigation
of aerial robots. Loianno et al. (2015) propose a tightly-
coupled Visual Inertial Odometry (VIO) algorithm used on
a smartphone powered aerial robot that fuses visual key-
points with IMU measurements. Despite of showing poorer
results in terms of accuracy, loosely-coupled approaches
are preferred due to their versatility. Lynen et al. (2013)
and Shen et al. (2014) show a loosely-coupling modular
MSF algorithm for aerial robots. The former uses an EKF
approach while the latter uses an UKF one. Both works
are able to combine relative pose measurements from any
number of sensors. A loosely-coupled approach is used
in (Stegagno et al., 2014), showing the first example of
a quadrotor estimating its state onboard using IMU and a
RGB-D sensor while being bilaterally tele-operated, with
force feedback computed from the onboard sensor data.



Liu et al. (2016) developed a loosely-coupled algorithm to
fuse monocular SLAM and IMU measurements decoupling
angular and linear states. All these loosely-coupled algo-
rithms use an IMU sensor in the prediction stage, which
limits to one the number of usable IMUs. Burri et al.
(2015) propose to use a dynamic model of the vehicle in the
prediction model instead, which increases the complexity
of the model and requires more parameters to be identified.

The two main algorithms used in loosely-coupling state
estimation are the well-known EKF and UKF. LaViola
(2003) recommend to use EKF when attitude estimation
is involved due to its simplicity. Additionally, Markley
(2004b) and Markley (2004a) analyze how to handle
quaternions in EKF state estimation, comparing Multi-
plicative and Additive approaches, finally recommending
the multiplicative one for being theoretically consistent.
Other important aspect needed when working in state
estimation is the estimation of the state (direct) or the
estimation of the error state (indirect). Panich (2010)
justifies the usage of indirect approaches, what can be
seen in most of the previously cited works. Shojaie et al.
(2007) suggest to iterate the EKF to improve its accuracy
and robustness against linear error propagation. Finally,
to incorporate time-delayed measurements, a buffer that
keeps track of the measurements and states is the most
common option, seen in some of the previously cited works.

While natural visual markers detection is improved, reli-
able fiducial visual markers are widely used in the litera-
ture. Zhang et al. (2002) present a comparison on different
fiducial visual markers, while Garrido-Jurado et al. (2014)
present the preferred by us, the ArUco visual markers.

Some works, like Lim and Lee (2009) use fiducial visual
markers for the navigation of a robot, but they do not
include any other sensor. Neunert et al. (2016) fuse IMU
measurements and visual markers in a state estimation
algorithm that maps the visual markers in the image plane,
making the algorithm very dependent on the marker type.

1.3 Contributions and outline

In this work, we present the first results of a versatile and
robust state estimator, capable of being used in a wide
range of environments and applications.

This paper continues our research on state estimation
presented in Sanchez-Lopez et al. (2016) and Pestana
et al. (2016). The proposed state estimator combines the
information given by different sensors and by other state
estimators, by means of an algorithm that incorporates
different state of the art techniques (such as an extended
Kalman filter). Moreover, the proposed state estimator
includes the possibility of using visual markers to increase
the robustness and precision of the state estimation at the
only cost of augmenting the environment with these visual
markers.

We have tested the state estimator with the minimal sensor
setup of an IMU and a camera detecting visual markers,
working at frequencies around 250 [Hz] (the IMU rate)
with average errors less than 4 [cm] and 1 [◦] for the
estimated position and attitude, respectively.

The remainder of the paper is organized as follows: Sec. 2
describes the proposed algorithm for visual marker based
multi-sensor fusion state estimation. Section 3 shows the
estimator experimental results. Finally, Sec. 4 concludes
the paper and indicates some future works.

Fig. 1. General architecture of the multi-sensor fusion state
estimation.

1.4 Notation and basic operations

Attitudes are represented by unit quaternions q following
the Hamilton notation. qA⊗qB represents the composition
operation of the quaternions qA and qB . (qA)

∗
represents

the conjugate of the quaternion qA. q {ν} is the operation
rotation vector to quaternion of ν. The notation νA × νB
represents the cross product of the vectors νA and νB .

The pose of frame A in coordinates of frame B, pBA , is
represented by means of the position tBA ; and attitude qBA .
νCA|B represents the vectorial quantity ν (e.g., velocity or

acceleration) of the frame A with respect to the frame B
in coordinates of frame C.

The equation x(k) = f (x(k − 1),µ,u(k − 1),nf ) repre-
sents a process model, and z(k) = h (x(k),µ,nz) rep-
resents a measurement model. n? represents a Gaussian
white noise vector.

2. VISUAL MARKER BASED MULTI-SENSOR
FUSION STATE ESTIMATION

The proposed state estimator has been designed to be
versatile with a variable number of inputs, depending on
the sensor setup and configuration defined by a particular
mission or environment. The state estimator is therefore
defined as a set of (optional) components (see Fig. 1) that
are gathered in the following groups: 1) world (Sec. 2.1),
2) robot (Sec. 2.2), and 3) sensors (Sec. 2.3).

We propose an EKF-based state estimator with the fol-
lowing advanced features:

• Inclusion of stochastic parameters to model uncer-
tainty of fixed coefficients.

• Error-state (i.e., indirect) formulation, accumulating
the noise over the error state.

• Quaternions for attitude representation, to avoid sin-
gularities.

• Multiplicative solution, to deal with quaternions ac-
curately.

• Time-delayed measurement compensation, by means
of a circular buffer.

• Iterative nature, to quickly converge to the real state
when the estimated state is far from the real state.

The following subsections provide further details of the
previously mentioned features of the proposed estimator.

State and parameters Our algorithm considers two types
of variables: On the one hand, the state is a random
variable whose value changes over the time. On the other
hand, parameters are random variables whose values do
not change over the time. A normal distribution is assumed
to represent both of them. In the case in which the
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covariance of the normal distribution that represents a
parameter is zero, then the parameter is assumed to be
deterministic. The use of both stochastic and deterministic
parameters increases the accuracy of the state estimation
without inflating the state.

Observability The observability of the state must be
satisfied for a particular state estimation setup. For the
sake of generality, and due to page limitations, we do not
analyze it in the present paper. Martinelli (2012) does
an equivalent observability analysis for a tightly-coupled
visual inertial state estimation.

Error-state formulation Our error-state formulation can
distinguish between: 1) true-state (x), 2) nominal-state
(x̌), and 3) error-state (δx). The true-state is expressed
as a composition of the nominal-state and the error-state
(local perturbation: x = x̌ ⊕ δx). The idea is to consider
the nominal-state as large-signal (integrable in non-linear
fashion) and the error-state as small signal (linearly inte-
grable and suitable for linear-Gaussian filtering).

Mapping of world elements The mapping stage is carried
out in a traditional EKF-SLAM fashion by augmenting
the state and the covariance matrix with the new mapped
element. The performance of the estimator decreases with
the number of mapped elements. Since it is assumed to be
limited, this is not a big inconvenience.

Buffer for time-delayed measurements To be able to ac-
curately incorporate time-delayed measurements, a buffer
approach is used. In the buffer, all the measurements
and states are stored and organized by their timestamp.
Olson (2010) shows a solution for accurate time-stamped
synchronization.

Three different actions can take place in the buffer:

1) A new measurement arrives: The measurement is added
to the buffer by its timestamp. After this, an estimation
step is done in the new buffer element. Finally, the
estimated states of the buffer are updated from the new
buffer element to the newest (by timestamp) element.

2) New prediction step: The prediction of the state is
done synchronously at a constant rate. This allows to
accurately integrate the prediction model, keeping the
estimated state on the buffer.

3) Request to get the current state estimate: When an esti-
mate of the state is requested (e.g., by the controller), a
prediction is done based on the newest (by timestamp)
buffer element.

Iterative algorithm The proposed algorithm uses an
iterated approach to improve the convergence to the real
state when the estimated state is far from the real state.
The update stage is iterated until a maximum number of
iterations is reached or until the estimate of the state has
not changed more than a threshold.

To better understand the following modules, Fig. 2 de-
scribes the reference frames and the main transformations
involved in the proposed state estimator.

2.1 World

These modules include the following elements:

Gravity This component includes the acceleration of
gravity in world coordinates, gW|W . In order to increase the

VMiCAMERAPOSE
SENSOR

IMU
SENSOR

ROBOT

SENSOR
WORLD

WORLD

g

Fig. 2. Reference Frames involved on the Visual-Marker
based Multi-Sensor Fusion State Estimator

accuracy in the state estimation, it might be considered as
a state with the following process model:

gW|W (k) = gW|W (k − 1). (1)

Reference frames These components include the ele-
ments of the environment described with a reference frame,
RF?, by means of its pose (position and attitude) in World
coordinates: tWRF? and qWRF?. They are assumed to be
static, but a more complex model could be added, being
their process model:

tWRF?(k) =tWRF?(k − 1) (2)

qWRF?(k) =qWRF?(k − 1). (3)

2.2 Robot

This module includes the robot related information. The
used model does not include any input command, esti-
mating the full state up to the acceleration. It neither
includes any parameter. This model is more versatile and
faster than those that use an IMU as input command or
the aerial robot model. Nevertheless, its prediction is only
useful in the very short term, quickly diverging, being
therefore highly dependent on the sensor measurements.
In addition, it does not represent any extra robot state
that might be useful (e.g., battery level).

The state is given by:

• Pose (position and attitude) of the robot in world
coordinates: tWR and qWR .
• Velocity (linear and angular) of the robot w.r.t. world

in world coordinates: vWR|W and ωWR|W .

• Acceleration (linear and angular) of the robot w.r.t.
world in world coordinates: aWR|W and αWR|W .

Its process model (with noises added as local perturba-
tions) is:

tWR (k) =tWR (k − 1) + vWR|W (k − 1) ·∆t

+aWR|W (k − 1) · ∆t2

2
(4)

vWR|W (k) =vWR|W (k − 1) + aWR|W (k − 1) ·∆t (5)

aWR|W (k) =aWR|W (k − 1) + naW
R|W

(6)

qWR (k) =δq ⊗ qWR (k − 1) (7)

ωWR|W (k) =ωWR|W (k − 1) +αWR|W (k − 1) ·∆t (8)

αWR|W (k) =αWR|W (k − 1) + nαW
R|W

. (9)

where:
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δq =q {ω̄ ·∆t}+
∆t2

24
· δq [α] (10)

ω̄ ·∆t =

(
ωWR|W (k − 1) +

∆t

2
·αWR|W (k − 1)

)
∆t (11)

δq [α] =

[
0

αWR|W (k − 1)×
(
ωWR|W (k)

) ]
. (12)

Note that, since δq is not unitary, a re-normalization is
required after getting qWR (k).

2.3 Sensors

All the sensors components, S?, share a similar common
part that represent their reference frame. They have the
pose (position and attitude) of the sensor in robot co-
ordinates as state or parameters: tRS? and qRS?. They are
described by the following noise-free process model:

tRS?(k) =tRS?(k − 1) (13)

qRS?(k) =qRS?(k − 1). (14)

The following different kinds of sensors have been taken
into account in our work:

IMU sensor The IMU sensor component, SI , adds to
common state or parameters, the biases on the measure-
ment of the accelerometer, baccel, and gyro bgyro. It also
includes as zero covariance parameters, the sensitivity
matrices on the measurement of the accelerometer, Saccel,
and gyro, Sgyro.

The dynamics of the non-static biases are modeled as a
random process, because they randomly change their value
with the time, so, its noisy process model is given by:

baccel(k) =baccel(k − 1) + nbaccel
(15)

bgyro(k) =bgyro(k − 1) + nbgyro
. (16)

The measurement model of the accelerometer is:

zaccel = Saccel ·
(
aSI

SI |W − g
SI

|W

)
+ baccel + naccel, (17)

being:

g
SI
|W =

(
qWSI

)∗
⊗ gW|W ⊗ qWSI

(18)

a
SI
SI |W

=
(
qWSI

)∗
⊗ aW

R|W ⊗ qWSI
+
(
qRSI

)∗
⊗ aR

Fict ⊗ q
R
SI

(19)

aR
Fict =ωR

R|W × ωR
R|W × tRSI

+αR
R|W × tRSI

. (20)

Similarly, the measurement model of the gyro is:

zgyro = Sgyro · ωSI

SI |W + bgyro + ngyro, (21)

being:

ωSI

SI |W =
(
qWSI

)∗ ⊗ ωWR|W ⊗ qWSI
(22)

Coded visual marker detector The visual marker detector
is run on the images acquired by a camera, SC . The coded
visual markers are uniquely labeled, and represented by a
reference frame, VMi.

Its measurement model (with local perturbation) is:

zt =
(
qWSC

)∗ ⊗ (tWVMi − tWSC

)
⊗ qWSC

+ nzt (23)

zq =
((
qWSC

)∗ ⊗ qWVMi

)
⊗ q

{
nzq
}
, (24)

Pose sensor This generic sensor component, SP , repre-
sents any SLAM and positioning systems such as GPS or
Motion Capture Systems. They provide measurements in
coordinates of their particular world reference frames SW .

Its measurement model (with local perturbation) is:

zt =
(
qWSW

)∗ ⊗ (tWSP
− tWSW

)
⊗ qWSW + nzt (25)

zq =
((
qWSW

)∗ ⊗ qWR ⊗ qRSP

)
⊗ q

{
nzq
}
, (26)

3. RESULTS

In this section, the proposed algorithm for state estimation
is tested through real experiments controlling a quadrotor.

3.1 System Setup

A Mikrokopter quadrotor is used as the aerial platform,
as seen in Fig. 3a. Its Flight Controller board is only used
to acquire its embedded IMU measurements at 1 kHz and
as interface with the motor controllers. The quadrotor is
equipped with an extra IMU Phidgets 1044 (250 Hz) and
a UI-3241-LE-C-HQ camera with a wide angle lens (set
to 640× 480 @ 30 Hz). An Intel NUC5i7RYH is mounted
onboard in which all the software runs. Finally, a desktop
computer is used as the Ground Control Station (GCS)
for user visualization and mission commanding purposes.

The system architecture is represented in Fig. 3b and has
the following components:

• Aruco Eye 1 : Visual marker detector based on Garrido-
Jurado et al. (2014).

• POM 2 : Based on Crassidis and Markley (2003), it
fuses the MK-IMU measurements with the proposed
state estimator output. This cascaded approach con-
fers robustness to the system when closing the hard-
real time control loop at 1 kHz.

• Controller : A standard SE(3) controller (attitude, ve-
locity and position) for the quadrotor, which greatly
benefits from the in-house built direct motor speed
controller by Franchi and Mallet (2017).

• Trajectory Commander : Generates a smooth trajec-
tory from the commanded waypoints.

• Visual Marker Obstacle Detector 3 : Generates usable
geometric primitives based on the visual markers of
the environment.

3.2 Experimental Results

The goal of this experiment is to perform a simple trajec-
tory using only onboard sensors showing the performances
of the proposed estimator. After the take-off the robot is
required to follow a circular trajectory on an horizontal
plane at height 1.3 [m], oscillating along the x-axis of the
inertial frame between −0.5 and 0.6 [m], and along the
y-axis between −0.5 and 0.25 [m], with a frequency of
0.8 [Hz]. The trajectory is performed while controlling the
yaw angle to be equal to 45[◦] in order to always head
toward the wall on which 5 markers are placed. This wall
is developed along the x-axis of the inertial frame and
placed at y = 1.32[m]. A video of the experiment can be
found at https://youtu.be/8viNirMet_4.

This simple, but rich enough trajectory, is used to show
the capabilities of the proposed method on estimating the
1 https://github.com/joselusl/aruco_eye
2 https://git.openrobots.org/projects/pom-genom3
3 https://bitbucket.org/joselusl/vm_obstacle_detector
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(a) Hardware used for the experiments. The markers for the MOCAP
are used only for the ground truth.

POM
Aruco EyeMSF

Localiz

Controller

VM
Obstacle
Detector

Traj
Commander

(b) System architecture used for the experiments.

Fig. 3. System setup used for the experiments.

pose of the robot and its first and second derivatives, as
it is shown in Fig. 4. In particular this figure shows the
estimated variables for three different approaches:

a) POM+MOCAP : POM is used to fuse the MK-IMU
measurement with the one coming from a motion
capture system (MOCAP). This estimated state is used
as a ground truth to evaluate the performance of our
method;

b) POM+MSF : as said before, the use of POM on top of
our methods gives robustness to the final estimation;

c) MSF : the estimated state provided by the proposed
method without any additional filtering.

Furthermore, in the plots we show the mean estimation
error on the position and on the orientation of the robot
with respect to the methods a) and b), i.e., ea−bpos and ea−batt ,
respectively. Looking at these quantities we can see how
the estimation errors remain always bounded. In particular
the error stays between a minimum value less then 1 [cm]
and a maximum value about 7 [cm] for the estimation of
the position; and between a minimum value less then 1 [◦]
and a maximum value about 2 [◦] for the estimation of
the attitude. However, notice that the peaks on the errors
coincide with the moments in which the aerial vehicle is at
the farthest position from the markers. Indeed the more
the distance between the camera and a marker, the higher
the noise on the visual marker detector.

From Fig. 4, comparing methods b) and c) with method a),
can be seen that the linear and angular velocity and ac-
celeration are well estimated, except for some small biases
due to calibration errors. We highlight the fact that the ad-
ditional filtered method b), as expected, reduces the noise,
in particular on the estimated linear acceleration, but, on
the other hand, introduces a small delay. The last origin of
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Fig. 4. Experimental results following a circular trajectory
at a constant altitude.

estimation errors, and in particular of biases, consists on
the calibration errors that have to be minimized in order
to obtain the best performances of the estimator.

4. CONCLUSIONS AND FUTURE WORK

This paper presented the first results of a versatile Multi-
Sensor Fusion State Estimation for aerial robots, that
allows combining, with the same state estimation archi-
tecture, a variable optional number of sensors and posi-
tioning algorithms in a loosely-coupling fashion. This lets
exploit the best from every sensor, providing flexibility in
the working environment and mission executed. It also
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includes the use of visual markers in a SLAM loop to
increase the performance of the state estimation.

We have combined in an EKF-based state estimator the
following features: 1) Inclusion of stochastic parameters
to model uncertainty of fixed coefficients; 2) Error-state
(indirect) method, accumulating the noise over the error
state; 3) Quaternions for attitude representation, to avoid
singularities; 4) Multiplicative update, to deal with quater-
nions accurately; 5) Time-delayed measurement compen-
sation, by means of a circular buffer; 6) Iterative method,
to quickly converge to the real state when the estimated
state is far from the real state.

Our state estimator have been successfully tested with a
minimal sensor setup in real experiments, controlling a
quadrotor equipped with an extra IMU and a RGB camera
used only to detect visual markers, running on an onboard
computer. The state estimation output is comparable to
the ground truth (given by a motion capture system) with
average errors less than 4 [cm] and 1 [◦].

Our final contribution is the release of the algorithm as an
open-source software 4 , allowing the scientific community
to use it in their experiments.

As future work, we are planning to add more sensors,
like unscaled pose sensors (e.g. mono-vSLAM algorithms)
and drifting pose sensors (for odometry algorithms like
mono-VO algorithms). Integration of force sensors or force
observers, as e.g., the ones presented in (Yüksel et al.,
2014b) and in (Ryll et al., 2017) will be extremely helpful
in order to estimate the state of aerial vehicles while in
contact with the environment, a scenario that is becoming
very popular in the literature, see, e.g., (Yüksel et al.,
2014a) and (Gioioso et al., 2014) and references therein.

Other planned future work is to explore other more ef-
ficient approaches for the mapping, like Sparse Extended
Information Filters, that better scales up when the number
of mapped elements grow significantly.

Finally, we plan to investigate the extension to multiple
robots performing mutual localization in critical condi-
tions, as, e.g., the anonymous measurement case intro-
duced in Franchi et al. (2013) and Stegagno et al. (2016).
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