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Dynamic Decentralized Control for Protocentric Aerial Manipulators

Marco Tognon1, Burak Yüksel2, Gabriele Buondonno3 and Antonio Franchi1

Abstract— We present a control methodology for underac-
tuated aerial manipulators that is both easy to implement on
real systems and able to achieve highly dynamic behaviors. The
method is composed by two parts: i) a nominal input/state tra-
jectory generator that takes into account the full-body dynamics
of the system exploiting its differential flatness property; ii) a
decentralized feedback controller acting on the actuated degrees
of freedom that confers the needed robustness to the closed-loop
system. We demonstrate that the proposed controller is able to
precisely track dynamic trajectories when implemented on a
standard hardware. Comparative experiments clearly show the
benefit of using the nominal input/state generator.

I. INTRODUCTION

Aerial robots are attracting increasing interest from sci-
entists in the robotics society, due to their agility and great
workspace. The interest in control of such robots concerns
tracking of complex trajectories, human-robot interaction [1],
and recently aerial manipulation [2] as well.

An aerial manipulator is a robotic system, which has the
capacity to fly and at the same time to manipulate objects
in its environment. Most commonly they consist of a flying
robot and at least one manipulator arm. This system breaks
ground to many different robotic applications, e.g., pick and
place [3], aerial physical interaction [4], and aerial grasping
(first introduced in [5] and then shown also in [6] with the
help of an arm). In [7] a passive decomposition method is
shown for dynamic modeling and control of a quadrotor
equipped with a redundant rigid arm. A kinematic control
of a rigid manipulator attached on a quadrotor was recently
experimented in [8]. Despite the fact that rigid manipulators
are the most common tools, other types of aerial manipula-
tors are also studied as, e.g., compliant actuators [4], [9].

Although aerial manipulators open new doors for various
robotic tasks, their control is not trivial, since they are an
interconnection of multiple nonlinear robotic systems. For
this reason, it is important to analyze their system dynamics,
and develop control algorithms dealing not only with the
problem of tracking the outputs we are interested in, but
also with the internal dynamics of the system and how
they are coupled with each other. Such sophisticated control
methods using deep system knowledge often require torque
control of the manipulating arms [7], [9]. However small-size
light-weight arms with torque-controlled actuators are either
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not available at a low price or not reliable enough in the
torque control modality. On the other hand, position/velocity
controlled servo motors are cheap and easy to reach, making
them preferable to be used in the experimental setups. Thus,
it is relevant to seek for a controller that, while taking into
account the system dynamics, can also be used with light-
weight manipulators built using off-the-shelf servo motors.

The differential flatness property allows to analytically
compute all nominal system states and inputs from a desired
differentiable trajectory of certain flat outputs [10]. In [2] we
showed that, in the 2D vertical plane, for Protocentric Aerial
Manipulators (PAMs), with rigid or compliant joints, the end-
effector position together with the arm configuration is a flat
output. This was exploited to develop an exact linearization
controller, and the same was done in [9] for a single-link
PAM equipped with a Variable Stiffness Actuator (VSA).

A drawback of such controllers is that they require
very good knowledge of the model parameters and torque-
controlled motors. As an alternative, in this paper, we present
a decentralized flatness-based control for the output tracking
problem of PAMs. This is different from the one used in [2],
since it is not exactly linearizing, but uses differential flatness
to compute the feed-forward terms in the control law. In [6] a
decentralized controller was presented for the simple case of
a single-DoF PAM (a PAM equipped with an arm having one
Degree of Freedom). The controller presented here is instead
thought for a more complex system where i) the Center
of Mass (CoM) of the aerial vehicle can be different from
the geometric center of its actuation, ii) the PAM can have
any number of arms, each having any number of DoFs. The
controller presented in this paper best performs for robot
arms equipped with torque-controlled actuators. However, it
is possible to obtain very good results also with kinematically
controlled motors, thanks to a simple variant.

The paper is organized as follows. In Sec. II we introduce
a generic dynamic model of an aerial manipulator. In Sec. III
we describe the decentralized controller which requires the
nominal states and inputs. In Sec. IV we show how to
compute these nominal quantities for a PAM in 2D vertical
plane. Then in Sec. V we experimentally test our controller
comparing it with two other standard approaches. Final
discussions are conducted in Sec. VI.

II. MODEL OF AN AERIAL MANIPULATOR

Consider a generic aerial manipulator, consisting of
a Vertical Take-off and Landing vehicle, VTOL for short,
equipped with m robotic arms. We denote with FW :
{PW,xW ,yW , zW } and F0 : {P0,x0,y0, z0} the world
inertial frame (chosen according to the common North-
East-Down convention) and the VTOL frame, respec-
tively, where P0 is the CoM of the VTOL. The orien-
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Fig. 1: Sketch of a two-arm protocentric aerial manipulator (PAM)
and its projection on the xW − zW plane. In the 3D model the axis
of rotation for each joint is parallel to yW .

tation of F0 in FW is described by the rotation matrix
R0 = [x0 y0 z0] ∈ SO(3), parametrized by the roll-pitch-
yaw angles η = [φ0 θ0 ψ0]T ∈ R3 The µ-th arm possesses
nµ links and its joint configuration is described by the
vector θµ = [θ1µ · · · θnµ ]T ∈ Rnµ . The total number of
links of the generic aerial manipulator is n =

∑m
µ=1 n

µ.
A particular example of aerial manipulator is shown on
the left of Fig. 1. A set of generalized coordinates of the
whole platform is q =

[
pT0 ηT θT

]T ∈ R6+n, where
p0 = [x0 y0 z0]T ∈ R3 is the position of P0 expressed in
FW and θ = [θT1 · · · θTm]T ∈ Rn.

The ν-th joint of the µ-th manipulator (νµ-th joint) is
actuated by the torque τνµ , and all actuation torques of
the µ-th arm are listed as τµ = [τ1µ · · · τnµ ]T ∈ Rnµ . All
joint torques are referred to as τ = [τT1 · · · τTm]T ∈ Rn.
The VTOL is actuated by the thrust ut, which is a scalar
force value acting perpendicularly to the platform (in the
direction of −z0), and by the torque ur ∈ R3. We denote
with PG the center of actuation of the PVTOL, where the
thrust vector f0 = −utz0 ∈ R3 and the base torque ur
are applied; its constant position in F0 is denoted with
dG = [dGx dGy dGz ]

T ∈ R3. The overall control input of the
whole aerial manipulator is u =

[
ut uTr τT

]T ∈ R4+n.
The classical Lagrangian dynamic model is given by

M(q)q̈ + c(q, q̇) + g = G(η)u (1)

G(η) =

[
−R0e3 0

0 I3+n

]
M(q) =

[
msI3 Mpr

MT
pr Mr

]
(2)

where M ∈ R(6+n)×(6+n) is the inertia matrix, ms is the
total mass of the system, c is the vector of Coriolis and
centrifugal forces, g is the vector of gravity forces, and
G ∈ R(6+n)×(4+n) is the input matrix. Here, Ik is the k×k
identity matrix, e3 is the third column of I3, and 0 is the
zero matrix, of appropriate dimension.
Remark II.1. Notice that, since the control input has less
elements (4+n) than the configuration variables (6+n), the
system is underactuated. In particular we can not indepen-
dently control the orientation of the aerial vehicle. Therefore,
since the position of the end-effectors does not only depend
on p0, ψ0 and θ, but also on η, it is not possible to plan

exclusively for p0, ψ0 and θ if the position of the end-
effectors has to be controlled.
Remark II.2. The inertia matrix M exhibits dynamic cou-
plings between all elements of the state. This considerably
complicates the control problem.

III. DECENTRALIZED CONTROL

In this section we present a decentralized controller for a
generic aerial manipulator in 3D. By decentralization, we
mean that the controller does not consider the dynamic
coupling of the complex system, explicitly. However, it does
take the system dynamics implicitly into account, by using
some feed-forward terms. Moreover, it uses feed-back terms
for steering the system to a desired behavior while providing
some robustness to the closed-loop system.

Now, say yd(t) stands for the desired output of the system
given in (1), and our objective is to track this output. If the
desired output trajectory is consistent with the underactuation
constraints it is in theory possible to find some correspond-
ing desired states and inputs, i.e., qd(t) = [pd0

T
ηd

T
θd

T
]T ,

ud = [udt u
d
r
T
τ d

T
]T , q̇d(t) = [ṗd0

T
η̇d

T
θ̇d

T
]T , where we

assume that these desired values are given; hence we will
call them feed-forward terms. Notice that these terms can
be computed as the nominal states and inputs using the
differential flatness property of the system (e.g., as shown in
Sec. IV). In fact, doing so, we will be using the knowledge
of the system dynamics in a decentralized controller.

Now, let us first address the control of the aerial platform,
in this case a VTOL. We develop a hierarchical approach
based on the separation of the translational and rotational
dynamics, which eventually tracks the position pd0. First let
us compute the controlled thrust vector as:

f0 = fd0 + f?0 = fd0 + KP
p0

(pd0 − p0) + KD
p0

(ṗd0 − ṗ0), (3)

where KP
p0
,KD

p0
∈ R3×3

≥0 . Notice that f0 is computed as a
combination of the feed-forward terms (·d), and the feedback
term (·?) proportional to the state error of the system with
respect to the nominal one. From the controlled thrust vector
we can retrieve the commanded thrust as

ut = −(R0e3)T f0, (4)

and the commanded attitude as Rc
0 = [xc0 yc0 zc0] where

zc0 =
f0
‖f0‖

, yc0 =
zc0 × e1
‖zc0 × e1‖

, xc0 =
yc0 × zc0
‖yc0 × zc0‖

. (5)

This closes the outer-loop control. The controlled attitude is
then passed to the inner-loop control as the desired attitude,
to compute the controller torque as:

e
[×]
R0

= 1
2 (Rc

0
TR0 −RT

0 R
c
0), eω0

= RT
0 R

d
0ω

d
0 − ω0

ur = udr + u?r = udr + KP
R0

eR0 + KD
R0

eω0 ,
(6)

where, ·[×] represents the skew operation, ω0 ∈ R3 and
ωd0 ∈ R3 are the current and the desired angular velocities
of the VTOL body in body-fixed frame (directly computed
from η, ηd and their time derivatives), Rd

0 is the desired
rotation matrix computed from ηd, and KP

R0
,KD

R0
∈ R3×3

≥0 .

Preprint version, final version at http://ieeexplore.ieee.org/ 2 2017 IEEE ICRA



Arm

Attitude Control

Translational
PAM

3D

ωωω0,R0

τττ

θ̇θθ
Control

torque

kinematic

Control
ut

ur

q, q̇

qr, q̇r

pd0, ṗ
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Fig. 2: Control of the PAM depicted in Fig. 1, using the decentral-
ized controller, exploiting its differential flatness property.

Now, let us give the control of the generic νµ-th joint,
to track the relative desired angle. For a torque-controlled
motor, we design the control law based on a PD strategy as

τνµ =τdνµ+τ?νµ =τdνµ+kPνµ(θdνµ−θνµ)+kDνµ(θ̇dνµ−θ̇νµ), (7)

where kPνµ , k
D
νµ ∈ R≥0. This controller ensures the best per-

formances. Nonetheless, for kinematically controlled motors,
the commanded velocity can be given as

θ̇νµ = θ̇dνµ + kPνµ(θdνµ − θνµ). (8)

A schematic representation of the controller is shown in
Fig. 2. Now let us show how to use the differential flatness
of a specific type of aerial manipulator for computing the
feed-forward terms of this controller.

IV. FLATNESS AND CONTROL OF PAMS

In Sec. III we presented a decentralized controller for
aerial manipulators. As mentioned, this controller requires
an algorithm computing all nominal states and inputs.

In our previous work [2] we have introduced the notion of
protocentricity. A protocentric aerial manipulator (PAM) is
characterized by all manipulator arms being attached at P0.
We studied the properties of such systems in the 2D vertical
plane, and we found that they are differentially flat w.r.t. a
set of flat outputs given by the angles of the manipulator
links with respect to zW and the position of any of the end-
effectors (or, alternatively, the position of P0), thus making
PAMs of particular interest for aerial manipulation.

The above discussion suggests the possibility to control
the motion of a PAM in the xW − zW plane by combining
the controller presented in Sec. III and the flatness property
proven in [2]. In order to do this, consider a PAM in 3D,
where the motion of all manipulators is constrained to a
plane, i.e., y0 = 0, yT0 zW = yT0 xW = 0, and each joint
axis is parallel to y0. Hence the projection of the PAM on
the xW − zW plane can be modeled as a planar mechanical
system. A sketch of such design is depicted in Fig. 1 (right).

In 2D, we give the generalized coordinates of a PAM as
q2 =

[
pT0xz θ0 qTr

]T ∈ R3+n, where p0xz = [x0 z0]T ∈
R2 is the position of P0 in the xW − zW plane, θ0 is
the pitch, and qr = [qTr1 · · · qTrm ]T ∈ Rn is the vector
combining the absolute orientations of each joint of every
arm, with qTrµ = [θ01µ · · · θ0nµ ]T ∈ Rnµ written for the
µ-th manipulating arm, where θ0kµ = θ0 +

∑k
ν=1 θνµ is the

absolute orientation of the νµ-th joint. The set of inputs is

u2 = [ut ur τ
T ]T ∈ R2+n, where the scalar ur ∈ R is the

magnitude of the base torque applied about the axis passing
through PG and parallel to y0. Notice that the PAM in 2D
is also underactuated, as the one in 3D. Finally, we define
peµxz as the position of the µ-th end-effector in the 2D plane.
The flatness property can be then phrased as:

Fact 1. Thanks to protocentricity, y = [pT0xz qTr ]T ∈
R(n+2) is a flat output of a PAM modeled in 2D. Hence,
ye = [pT

eµxz
qTr ]T ∈ R(n+2) is also a flat output, for any µ.

In the following, we will show the computation of the
nominal states and control inputs as sole functions of the
flat outputs trajectories, assuming each joint is actuated via
a motor rotating around the corresponding joint axis.

A. Computation of Nominal Inputs and States

Define pc ∈ R2 as the position, in the xW − zW plane,
of the CoM of the whole PAM (i.e., flying base plus all the
manipulators) . The (translational) dynamics of pc ∈ R2,
see [2], implies that the vector

w = w(y, ẏ, ÿ) = p̈c − [0 g]T = [wx wz]
T ∈ R2, (9)

is equal to w = − ut
ms

[sin(θ0) cos(θ0)]T , g being the gravi-
tational constant. Hence

θ0 = θ0(p̈c) = atan2(−wx,−wz)
θ̇0 = θ̇0(p̈c,

...
pc) = wzẇx−wxẇz

w2
x+w

2
z

θ̈0 = ẅxwz−wxẅz
w2
x+w

2
z
− 2[(w2

z−w
2
x)ẇxẇz+(ẇ2

x−ẇ
2
z)wxwz ]

(w2
x+w

2
z)

2

ut = ut(p̈c) = ms‖w‖.

(10)

Therefore, we need to compute the second to fourth time
derivative of pc from the flat outputs. To this end, define
PMνµ

and Pνµ as the CoM of the νµ-th motor and link, with
coordinates pmνµ ∈ R2 and pνµ ∈ R2 in FW , we have

pc =
1

ms

(
m0p0xz+

m∑
j=1

( nj∑
i=1

(mijpij+mmij
pmij )

))
, (11)

where ms = m0 +
∑m
j=1

(∑nj

i=1mij + mmij

)
, with m0,

mνµ and mmνµ the masses of the aerial platform and
the νµ-th link and motor, respectively. This expression is
easily differentiated from the second up to the fourth time
derivative, as a function of the corresponding derivatives of
pij and pmij . These are computed as follows. For each link,
define the local frame Fνµ , attached to the link CoM and
with orientation R0νµ w.r.t. FW , where R∗ ∈ SO(2) denotes
a rotation of angle θ∗ ∈ R in the plane. The constant position
of PMνµ

and PM(ν+1)µ
in Fνµ is denoted with −dνµ ∈ R2

and d̃νµ ∈ R2, respectively. Thus we obtain

pmνµ (y) = p0xz +

νµ−1∑
iµ=1

R0iµ d̄iµ (12)

pνµ(y) = pmνµ + R0νµdνµ , (13)

which are easily differentiated to obtain the second to fourth
time derivative, with d̄∗ = d∗+d̃∗. Here, (12) is used in (13),
both are used in (11), and finally (9) and (10) are applied.
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The νµ-th nominal torque is given recursively as

τνµ = τνµ+1+mT
0νµ(θ0νµ)p̈0xz+crνµ (qrµ , q̇rµ)+Jνµ θ̈0νµ

+ grνµ (θ0νµ) +

nµ∑
l=1,l 6=νµ

mlνµ(θ0lµ , θ0νµ)θ̈0lµ , (14)

where τnµ+1 = 0, while crνµ and grνµ are the νµ-th elements
of the Coriolis and gravitational force vectors acting on the
center of the νµ-th link, respectively. The coupling term
between the aerial platform and the νµ-th joint is given
with m0νµ , and it is an element of Mpr in (2). Both terms
Jνµ and mlνµ are inertial terms of Mr in (2), where the
former one is the diagonal element and the latter is the
coupling term between the l-th and the ν-th joint of the µ-th
manipulator. Using these quantities, it is possible to compute
τνµ = τνµ(y, ẏ, ÿ). Then the flying base torque is computed:

ur = ur(y, ẏ, ÿ,
...
y,

....
y ) = J0θ̈0 +

m∑
j=1

τ1j − dGxut, (15)

where J0 is the inertia of the aerial platform and dGx is the
constant position of PG with respect to P0 in F0 along x0.

Finally, the relative joint angles can be easily obtained
from the absolute ones and the value of θ0. Hence, all state
and input variables can be computed from (or coincide with)
the flat outputs y and their time derivatives up to the fourth
order. We refer the meticulous reader to [2], [11] for the
details of the notation and the computations.

The 2D flatness can be exploited in 3D by setting

Rd
0 =

 cθd0 0 sθd0
0 1 0
−sθd0 0 cθd0

 , ωd0 = θ̇d0e2 (16)

fd0 = −udtRd
0e3, udr = udre2, yd0 ≡ 0. (17)

Notice that θd0 , θ̇
d
0 , u

d
t , τ

d
νµ , u

d
r are computed as in (10), (14)

and (15) for yd. Then we can use these values as the feed-
forward terms of the controller presented in Sec. III. See
Fig. 2 for a representation of the overall control method.

V. EXPERIMENTAL VALIDATION

In this section we show the results of some experiments
aimed at validating the controller proposed in this paper.
Furthermore, we analyze its performances by comparing it
with other standard control techniques.

The aerial manipulator used for the experiments (see
Fig. 3) consists of a Quadrotor VTOL and a 2-DoF ma-
nipulator arm. The light-weight arm design was inspired by
the work in [12]. A big difference of our design is that
all the actuators are placed at the base of the arm, rigidly
attached to the VTOL. The first joint is directly connected to
its actuator (a dynamixel MX-64 motor), while the second
one is connected to its motor (a dynamixel MX-28) via a
metal-reinforced plastic belt. Such design allows us to reduce
the mass of each joint and in particular their inertia. This
in turn lets us use a relatively small and weak quadrotor
(diameter 0.4 [m], maximum thrust per propeller of 5.26 [N])
with respect to the platforms normally used for arms of
similar length (e.g., in [8] a larger octorotor is used). For

Phys. param. VTOL 1th-Link 2th-Link
Mass [Kg] 1.3 0.145 0.123
Rot. inertia [Kgm2] 0.03 1.2 · 10−3 0.9 · 10−3

Length [m] 0.4 (diam.) 0.29 0.25

Controller KP
p0

KD
p0

KP
R0

KD
R0

kP1 kP2
Gain 12I3 7I3 3I3 0.3I3 1.8 1.6

Traj. Param. axp0
[m] a1

qr [◦] a2
qr [◦] ω [rad/s]

(a) 0 30 60 2π/3
(b) 0.5 -40 -70 2π/3
(c) 0.5 40 70 2π/3

TABLE I: Starting from the top: physical parameters of the real
system; controller gains; and the parameters of the three trajectories.
Length and the inertia are the one on the 2D vertical plane.

the physical parameters of the system, please refer to Tab. I.
Since the motors cannot be controlled in torque but at best
in velocity, we used (8) slightly modified to cope with the
fact that the second link is not directly attached to its motor.

The aerial vehicle hardware is the one of a Mikrokopter
quadrotor endowed with an IMU, and four brushless motor
controllers (BLDC ESC) regulating the propeller speed using
an in-house developed closed-loop speed controller [13].

The control law presented in Sec. III, implemented in
Matlab–Simulink, runs on a desktop PC sending the com-
manded propeller velocities at 500 [Hz] and the commanded
arm motor velocities at 250 [Hz] through a serial communica-
tion. The gains used for the controller are given in Tab. I. The
control loop is then closed based on the measurements of:
i) the position and attitude of the vehicle provided at 1 [kHz]
by a UKF that fuses the Motion Capture (Mo-Cap) System
measurements at 120 [Hz] with the IMU measurements at
1 [kHz]; ii) the linear and angular velocities of the vehicle
provided by the same UKF filter at 1 [KHz]; and finally
iii) the position and velocity of the arm motors provided
by their internal absolute encoders at 250 [Hz]. In order to
read the motor values corresponding to zero joint angles, a
calibration procedure is implemented once, using the Mo-
Cap markers on the manipulator arm (see Fig. 3).

We tested the proposed controller with a paramet-
ric and multi-DoF sinusoidal-like trajectory, i.e., yd =[
pd0xy

T
qdr

T
]T

=
[
axp0

0 a1qr a
2
qr

]T
sin(ωt), for three dif-

ferent sets of parameters corresponding to three qualitatively
different task trajectories:
(a) the arm oscillates and the quadrotor remains still,
(b) the arm and quadrotor oscillate with opposite phases,
(c) the arm and quadrotor oscillate with the same phase.
These task trajectories are understandable from Fig. 4, and
the parameters of the trajectories are given in Tab. I.

For each of the three task trajectory, we compared the
performance of the proposed controller using three different
types of feedforward methods:
1) minimal compensation: on the quadrotor side only the

total mass is compensated, i.e., udt = −mse
T
3 R0e3. In

this way the VTOL and the arm virtually are treated as
two independent systems (even if in practice they are not).

2) static compensation: only the static effects due to gravity
are compensated, i.e., the nominal state and inputs are
computed considering all the derivatives of the desired
trajectory equal to zero, i.e., yd

(l)

= 0 for l = 1, . . . , 4,
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Fig. 3: Experimental setup of the aerial
manipulator. A quadrotor VTOL is equipped
with a 2 DoF manipulating arm.
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Fig. 4: Nine moments from the experiments using method 3 (dynamic compensation).
From left to right trajectories (a), (b) and (c) are shown, respectively. From top to bottom
the start, intermediate and end moments of half period of each the trajectory are shown.
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Fig. 5: Experimental results for trajectory (a) (see Fig. 4.a). In all
plots, the flat outputs and the nominal states/inputs are depicted
with starred black dashed lines, while red, green and blue curves
show the results of the controller with minimal compensaton, static
compensation, and dynamic compensation, respectively. A more
detailed version of the plots can be found in [11].

(yd 6= 0). This method is often used for the control of
aerial manipulators for so called quasi-static operations,
in order to partially compensate the effects of the manip-
ulator on the aerial vehicle.

3) dynamic compensation: this corresponds to our proposed
method where we exploit the flatness of the system. We
compute the nominal states and inputs as functions of the
desired trajectory to be tracked, and provide them to the
controller as explained in Sec. III and IV.

The performances of these three methods are shown in
Figs. 5, 6 and 7, and Tab. II. We encourage the reader to
watch the attached video in order to appreciate even better
the nature and results of the performed tests.

Looking at the tracking of the desired VTOL CoM and
end-effector position one can see that the minimal compen-
sation (method 1) shows good tracking performances (similar
to the one with our method) only for trajectory (b). On the
other hand, for trajectories (a) and (c) the tracking error is
considerably larger than the one with dynamic compensation.

For the static compensation (method 2), the tracking

method 1 method 2 method 3

Traj. (a) ētrack 0.058 0.033 0.014
σētrack 0.021 0.012 0.005

Traj. (b) ētrack 0.056 0.174 0.054
σētrack 0.023 0.085 0.023

Traj. (c) ētrack 0.171 0.209 0.066
σētrack 0.078 0.106 0.034

TABLE II: Mean tracking error ētrack and relative standard devi-
ation σētrack for each trajectory and control method.

performances result to be good (similar to the one with our
proposed method 3) only for trajectory (a). Indeed, since
trajectory (a) is the less dynamic one (quadrotor not moving),
the static compensation is enough to obtain good perfor-
mances. However, for more dynamical trajectories as (b)
and (c) the performances rapidly get worse.

On the contrary, our proposed method 3 shows good track-
ing performances for all the types of trajectories validating
the fact that flatness-based dynamic compensation is a good
control strategy for both static and dynamic trajectories.
Moreover, thanks to the feedback, the controller is robust
enough to the non-perfect protocentricity of the real system.
Indeed in the testbed used during the experiments, along
the z-axis of F0 there is a non-zero offset of about 6 [cm]
between the position of the CoM of the VTOL and the first
joint. Nevertheless the controller is able to keep the tracking
error small even for dynamic trajectories. For the interested
reader, the effects of the non-protocentricity are investigated
in the technical report [11] by numerical simulations.

In addition to the good results obtained with our method,
it is also very interesting to notice that for trajectory (b),
method 1, based on minimal compensation, is better than
method 2, based on static compensation, in terms of tracking
error. This brings us two interesting results.

The first one is highlighting how for some dynamic
trajectories it is more suitable to just compensate the effect
of the total mass rather than try to compensate the static
configuration only. Indeed the last compensation term could
result considerably wrong since it is computed for a different
condition. This error in the compensation leads to undesired
effects and in turn to a large tracking error, as seen in Fig. 6.

The second fascinating aspect is that for some particular
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Fig. 6: Experimental results for trajectory (b) (see Fig. 4.b). The
proposed controller (blue) always achieves a better performance.
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Fig. 7: Experimental results for trajectory (c) (see Fig. 4.c). The
proposed controller (blue) again outperforms the other methods.

dynamic trajectories, as for trajectory (b), the arm could
help the aerial vehicle to move toward the desired direction,
implying the need of smaller compensations and in turn of
smaller control efforts. Indeed, looking at Fig. 4.b one could
notice the similarity between: i) the motion of the robotic
arm and the one of the legs of a person sitting on a swing
when trying to enhance the angular motion of the swing;
ii) the thrust force and the tension along the cables attached
to the swing to win the gravity and the centrifugal terms.
This is why for trajectory (b) the minimal compensation
shows similar results to the ones obtained with our method.
Based on this consideration we believe that the studies on
optimal trajectory generation become even more fundamental
to achieve aerial manipulation tasks exploiting the dynamic
properties (such as the flatness) of the systems. However this
promising topic is left as future work.

VI. CONCLUSIONS

In this paper we have presented a dynamic decentralized
controller for a specific type of aerial manipulators: VTOLs
equipped with any number of manipulator arms, each having
any number of rigid links. The aerial manipulator is assumed
to be protocentric, namely all the manipulator arms are
attached to the CoM of the flying base. Using the differential

flatness property of PAMs (in 2D), we showed how to com-
pute the nominal states and inputs of the system analytically
in advance, and use it to track dynamic maneuvers for an
aerial manipulator in the 3D space. The experimental results
are in line with the proposed theory showing the advantage
of using the differential flatness of aerial manipulators.

This work can be extended in many directions. One is
to study the differential flatness property directly in 3D.
Another is finding ways to relax the protocentric assumption.
The third one is performing experiments using more than one
manipulator arm.
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