
Preprint version, final version at http://ieeexplore.ieee.org/ 2017 IEEE Int. Conf. on Robotics & Automation, Singapore

Adaptive Closed-loop Speed Control of BLDC Motors
with Applications to Multi-rotor Aerial Vehicles

Antonio Franchi and Anthony Mallet

Abstract— This paper introduces the adaptive bias and adap-
tive gain (ABAG) algorithm for closed-loop electronic speed
control (ESC) of the brushless direct current (BLDC) motors
typically used to spin the propellers in multi-rotor aerial robots.
The ABAG algorithm is adaptive and robust in the sense that
it does not require the knowledge of any mechanical/electrical
parameter of the motor/propeller group and that neither a pre-
calibration nor the knowledge of the feedforward/nominal input
is needed. The ABAG algorithm is amenable to an extremely
low complexity implementation. We experimentally prove that
it can run in 27.5 µs on a 8 MHz microcontroller with no floating
point unit and limited arithmetic capabilities allowing only
8-bit additions, subtractions and multiplications. Besides the
controller implementation we present a self-contained open
source software architecture that handles the entire speed
control process, including clock synchronization, and over-
current and blockage safeties. The excellent performance and
robustness of ABAG are shown by experimental tests and aerial
physical interaction experiments.

I. INTRODUCTION

Multi-rotor aerial vehicles represent at date a fundamental
asset of aerial robotics. They rose to a prominent role with
respect to other aerial platforms mainly because of their
mechanical/electrical resilience and relative simplicity, their
capability of hovering, and the usability indoor and close to
natural or artificial structures. Research in the stabilization
of such platforms went very far allowing, e.g., the tracking
of impressive acrobatic maneuvers. Nowadays off-the-shelf
solutions are available on the market that relief roboticists
of the burden of controlling canonical aerial platforms.

However, there are still several open points in the control
of aerial robots. Two prominent examples are the physically
interactive aerial robots and omnidirectional aerial plat-
forms. As explained in the following, these new fields of
research call for a more accurate and faster control of the
rotor speed, which is directly related to the wrench (i.e.,
thrust force and drag moment) produced by the propeller.

In the case of physically interactive aerial robots, such as
cable-connected [1] or tool-operating [2] aerial robots, and
aerial manipulators [3], precise and quick control of the pro-
peller speed would allow to effectively implement interaction
control algorithms, such as, e.g., impedance control [4] and
interaction-force observers [5]. Ultimately, a precise control
of the propeller speeds is at the basis of a full-body torque
control (i.e., base included) of an aerial manipulator.

The propellers of omnidirectional aerial platforms, such as
the tilted-propeller hexarotor [6], [7] or the omnidirectional

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
antonio.franchi@laas.fr, anthony.mallet@laas.fr

Work funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 644271 AEROARMS

octorotor [8], are all fixed in different orientations. The
direction of the total force then depends on the speed of
each propeller. The accurate control of each speed is of
fundamental importance to precisely orient the total force.
This issue did not arise in underactuated multi-rotors with
collinear propellers, where the direction of the total force is
constant in body frame regardless of the propeller speeds.

Also in the case of common multi-rotors that do not belong
to the previous two categories a fast and precise control of the
propeller speed is highly beneficial, since it allows to, e.g.,
i) set higher gains for the attitude control thus increasing
the reactivity of the whole platform in fast maneuvers, and
ii) precisely estimate and compensate external disturbances.

In this paper we focus on electronic speed controllers
(ESC) for brushless direct current (BLDC) motors, which
are the mostly used in multi-rotor robots.

The majority of ESC softwares at date provide the pos-
sibility to adjust the speed in open loop by setting the
PWM duty cycle. A look-up table can be used to map the
duty cycle to the speed. However this method is clearly
not fast, imprecise and non-robust (due to its open loop
nature), and requires a non-negligible pre-calibration effort.
To solve this problem some ESC softwares, like the SimonK,
BLHeli, and Autoquad ESC32 implement a real closed-
loop speed control, typically a proportional integral (PI) plus
feedforward (FF). This method allows to reach a good control
of the speed but at the price, again, of a pre-calibration
phase for the FF term that has to be performed for each
motor/propeller pair. The ‘I’ term provides also some level
of robustness which is however kept limited due to the need
of avoiding excessive overshoot and wind-up problems.

In this paper we present an alternative algorithm for con-
trolling the propeller speed. Differently from the others i) it
does not require any pre-calibration phase, ii) it is extremely
robust and applicable to a wide set of motor/propellers with-
out the need of gain tuning, iii) can achieve performances
that are independent of the terminal voltage supplied by
the battery, the mechanical wearing, the temperature, and
so on, iv) it is amenable to an extremely low complexity
implementation even when compared with a ‘supposedly
simple’ PI+feedforward controller.

Furthermore, we present an open source implementation of
the algorithm (available at https://git.openrobots.org/projects/
tk3-mikrokopter) in a self contained software architecture
that provides also additional features such as, e.g., clock syn-
chronization, mechanical and electrical safeties, and speed
reversibility. Then we provide an experimental campaign
that validates the great adaptiveness and robustness of the
algorithm, able to achieve very good performances with no

mailto:antonio.franchi@laas.fr
mailto:anthony.mallet@laas.fr
https://git.openrobots.org/projects/tk3-mikrokopter
https://git.openrobots.org/projects/tk3-mikrokopter

position, speed, or  
zero crossing information

Inverter

1

4 2

5 3

6

PWM
Power

Generat.V+

uV+

u

Control triggers

1 5 34 2 6

1

3

2

back EMF
phase  
current

1

3 2

motor
windings

Rotor Electrical Angle
Possible sensor 
measurement

Current zero crossing  
measurement

rotor

stator

Fig. 1: A simplified scheme of a typical BLDC motor and BC
circuit. Different wirings and and number of windings can be used
depending on the model, without affecting the working principles.

specific gain tuning despite the change of motor and propeller
types, and other external disturbances. Finally we show the
major benefit of employing the proposed propeller speed
control in physically interactive aerial robotic tasks.

An alternative approach to force control is the one based
on aerodynamical power [9] rather than the propeller speed.
The possibly better force tracking requires however more
complex hardware and long-lasting calibration.

This paper is organized as it follows. The model and
problem setting is given in Sec. II. Section III presents the
algorithm and Sec. IV shows its implementation in a self-
contained software architecture. An extensive experimental
validation is given in Sec.V and Sec.VI concludes the paper
discussing future perspectives.

II. MODELING AND PROBLEM SETTING

We consider a standard BLDC motor connected to an ESC
unit (see Fig. 1 for a high-level simplified scheme of a typical
system). The motor is composed of a static part (stator)
that includes the electromagnetic coils (or windings) and a
rotating part (rotor) that carries no electric parts but only
permanent magnets. In order to be precise, in the following
we shall call rotor the rotating part of the motor and we
denote the rotating wing fixed to the the rotor only with the
word propeller (or just load if we want to stay general).

The ESC unit contains an inverter (see Fig. 1) whose
output provides the sequential current commutation on the
coils, which in turns generates the rotating magnetic field
that starts and sustains the motion of the rotor. Commutations
are triggered by a rotor position feedback that comes either
from an additional sensor (e.g., an encoder) or, in case of
sensorless BLDC, from the detection of the instants of zero
crossing of the voltage generated in the unpowered windings.

In the implementation and tests (Secs. IV and V) of the
speed control algorithm proposed in Sec. III we shall use
the latter approach, which is more common in aerial robotics
applications, since they do not require to drive a propeller
at very low speeds (for which the sensorless approach is not
viable). Furthemore, the sensorless approach allows to obtain
a smaller weight, reduced hardware complexity, and lower
costs. Nevertheless, the speed control algorithm proposed in
Sec. III can be seamlessly used also for sensorized motors.

The equivalent voltage applied to the inverter of the BC
is u V+, where u ∈ [0,1] is the duty cycle of the actual pulse

width modulated (PWM) voltage signal, and V+ ∈R+ is the
power supply voltage (e.g., the terminal voltage of a battery).

Thanks to the very low inductance design of typical BLDC
motors1 we can typically neglect the fast current dynamics
within the sampling frequency of the control loop. However,
in order to remain general and to account also for the errors
due to this approximation, we consider a generic model
for the dynamics of x represented by a standard nonlinear
differential equation

ẋ = f̄ (x, t)+ h̄(x,V+, t)u, (1)

where the rotor frequency (or speed) of rotation (naturally
expressed in Hz), and f̄ , and h̄ are unknown nonlinear
functions of x and the time t. The dependency on t in (1)
makes the system very general because it incorporates the
presence of both unknown and approximated parameters and
dynamics. The function h̄ plays, roughly speaking, the role of
the inverse of the inertia ‘seen’ by the input u. The function f̄
represents instead all the other possibly nonlinear dynamical
effects (including the external moment applied to the rotor).
Without loss of generality we assume h̄(x,V+, t) = h̄(x, t)> 0
for any x and t in the domain of interest. In sensorless BLDC
motors the most directly available measure is the rotor period
of rotation y = 1/x, we can then write the period dynamics
from (1) as

ẏ =−y2 f̄ (1/y, t)− y2h̄(1/y, t)u = f (y, t)−h(y, t)u. (2)

Since h̄(x, t)> 0 we also have that h(y, t)> 0 ∀y > 0 and ∀t.
The addressed control problem is then the following.

Problem 1 (Robust Control of the propeller period of rota-
tion). Assume that it is possible to set u, and let be given the
desired and measured motor periods of rotation: denoted with
yd and y, respectively. Design a feedback control law u(y,yd),
that steers y to yd and satisfies the following requirements:
• [Complexity] The algorithm has extremely low com-

plexity, i.e., it must be possible to implement it with
simple arithmetic operations (additions, subtractions,
shift, comparisons and simple multiplications) at low
resolution (e.g., 8 bits).

• [Adaptiveness and Robustness] The functions f (·) and
h(·) in (2) are plausible for a real BLDC motor used
in aerial robotics. However their exact structure is not
known, a part for the fact that h(·)> 0.

Since the algorithm is, eventually, implemented in discrete
time, we shall denote with ?k the discrete-time counterpart
of a variable ?, where k ∈ Z denotes the time step index.

III. ALGORITHM DESCRIPTION AND DISCUSSION

In this section we describe a control law for the input u
that practically solves Problem 1.

A. The ABAG Algorithm
We named our algorithm the Adaptive–Bias / Adaptive–

Gain (ABAG) Algorithm. A pseudocode description is given
in Algorithm 1. The algorithm basic loop is composed by
four simple steps:

1For example, the inductance of the Roxxy2827-35, one of the motors
used in the experiments of Sec. V, is 2×10−4 H.

Preprint version, final version at http://ieeexplore.ieee.org/ 2 2017 IEEE ICRA

Algorithm 1: ABAG Propeller Speed Control Algorithm

Inputs : yk ∈ R+ %Measured rotation period, [s]
yd

k ∈ R+ %Desired rotation period, [s]
Output : uk ∈ [0,1] %PWM duty cycle, [adim.]
Parameters : α ∈ (0,1) %error sign filtering factor, [adim.]

ēb ∈ (0,1) %threshold for bias adaptation, [s]
δb ∈ (0,1) %bias adaptation step, [adim.]
ēg ∈ (0,1) %threshold for gain adaptation, [s]
δg ∈ (0,1) % gain adaptation step, [adim.]

Variables : ēk ∈ [−1,1] % low-pass filtered error sign, [adim.]
bk ∈ [0,1] % adaptive bias, [adim.]
gk ∈ [0,1] % adaptive gain, [adim.]

1 k = 0, u0 = ē0 = g0 = b0 = 0
2 while ++k do
3 ēk = α ēk−1 +(1−α)sgn(yk− yd

k) %error sign filtering
4 bk = sat[0,1] (bk−1 +δb hside(|ēk|− ēb)sgn(ēk− ēb)) %bias update

5 gk = sat[0,1] (gk−1 +δg sgn(|ēk|− ēg)) %gain update

6 uk = sat[0,1]
(
bk +gk sgn(yk− yd

k)
)

%control input computation

1) Error sign low pass filtering (Line 3): this step updates
the variable ēk ∈ [−1,1], called the low-passed error sign,
which is the output of a low pass filter applied to the sign of
(yk−yd

k). The parameter α ∈ (0,1) is the filtering factor: the
closer α is to 1 the more the error sign is low-pass filtered.

2) Adaptive bias update (Line 4): this step updates the
variable bk ∈ [0,1], which is called the adaptive bias. The
update is done in the following way: if ēk > ēb ∈ (0,1)
(a parameter called the bias adaptation threshold) then bk
is incremented by δb ∈ (0,1) (a parameter called the bias
adaptation step); if ēk <−ēb then bk is decremented by δb;
otherwise bk is left unchanged. In any case bk is kept limited
in the set [0,1]. This step is compactly written in Line 4
where ‘hside’ denotes the Heaviside (or unit step) function.

3) Adaptive gain update (Line 5): this step updates the
variable gk ∈ [0,1], called the adaptive gain. The update law
is inspired by [10] and is done in the following way: if |ēk|>
ēg ∈ (0,1) (a parameter called the gain adaptation threshold)
then gk is incremented by δg ∈ (0,1) (a parameter called the
gain adaptation step); otherwise ḡk is decremented by δg; In
any case ēk is kept limited in the set [0,1].

4) Control input computation (Line 6): this step computes
the algorithm output uk (i.e., the control input of (2)) on the
basis of the current values of the adaptive bias bk, adaptive
gain gk and the sign of yk−yd

k . In particular, if yk > yd
k then

uk = bk +gk, if yk < yd
k then uk = bk−gk, otherwise uk = bk.

In any case uk is kept limited in the set [0,1].

B. Rationale of the ABAG Algorithm

The rationale behind the proposed algorithm stems from
basic discontinuous control analysis. First of all it is impor-
tant to highlight the role of the signal ēk (Line 3 of Algo-
rithm 1) and of the associated decision maps2. Developing
the recursion we obtain ēk ' (1−α)∑

k
l=k−m α lek−l , where

2In this context a decision map is a function ξ : [0,1]→{−1,0,1} which
‘decides’ whether a variable has to be decreased, kept constant, or increased
depending on whether its value is −1, 0, or 1, respectively.

�ēg ēg

�1

1

sgn(|ēk| � ēg)

1�1 ēk

�1

1

1�1 ēk

ēb�ēb

hside(|ēk| � ēb) sgn(ēk � ēb)

Fig. 2: Decision maps for the two adaptation steps. Left: ξb decision
map for the bias: bk is increased if ēk <−ēb, kept constant if −ēb <
ēk < ēk >, and decreased if ēk > ēb. Right: ξg decision map for the
gain: gk is increased if |ēk|> ēg and decreased otherwise.

ek = yk − yd
k , and m is the ‘time window’ after which the

infinite sum terms are indistinguishable from the quantization
error. Clearly, the larger α the larger m.

When the tracking quality is good, i.e., ek ' 0, the number
of times in which ek−l > 0 and in which ek−l < 0, for l =
0, . . . ,m, are close, thus generating ēk ' 0 because of its low-
pass nature. If instead the tracking is not good, there will be
a large predominance of positive (or negative) values which
will bring ēk in the neighborhood of 1 (or −1). By suitably
thresholding the continuous function ēk it is possible to turn
ēk into a decision map tailored on the specific needs.

The ABAG algorithm uses two distinct thresholding. The
first generates the following decision map (see Fig. 2-left)

ξb = hside(|ēk|− ēb)sgn(ēk− ēb), (3)

which is used in Line 4 of Algorithm 1. If in last m samples
ek has mainly been positive then ξb = 1, if the error has been
isotropically oscillating around 0 then ξb = 0, and if ek has
mainly been negative then ξb =−1. The second thresholding
generates another decision map (see Fig. 2-right)

ξg = sgn(|ēk|− ēg), (4)

which is used in Line 5 of Algorithm 1. The decision map ξg
returns 1 if the tracking is not acceptable (ek is not oscillating
around 0 in the last m samples) and −1 otherwise.

The use of the two decision maps in the gain and bias
adaptations laws is justified in the following. Writing Line 6
in continuous time (see previous remark) we have u = b+
gsgn(e). Using (2) the dynamics of e is then

ė = ẏ− ẏd = f (y, t)−h(y, t)b− ẏd︸ ︷︷ ︸
l(y,t,ẏd)

−h(y, t)gsgn(e). (5)

Let us consider 1
2 e2 as the candidate Lyapunov function,

whose time derivative along the closed loop trajectories is

d
dt

(1
2 e2)= ėe = l(y, t, ẏd)e−h(y, t)g|e|. (6)

Recalling that h(y, t)> 0, the rhs of (6) is made negative if

g > l(y, t, ẏd)/h(y, t). (7)

If, e.g., g is set to a large enough constant, robust stability
would be guaranteed. However if g is chosen too large then
an undesirable chattering phenomenon might appear when
the error is practically zero, due to large jumps in the control
command. Even though generating chattering for a very

Preprint version, final version at http://ieeexplore.ieee.org/ 3 2017 IEEE ICRA

Operation Instructions Clock cycles Time at 8 MHz
32bits integer division ≥ 500 ≥ 564 ≥ 70.5µs
16bits integer division ≥ 153 ≥ 190 ≥ 23.75µs
32bits integer multiplication 40 74 9.25µs
16bits integer multiplication 7 10 1.25µs
14 poles motor at 150 Hz 158µs period
ABAG algo in Table II ≤ 140 ≤ 220 ≤ 27.5µs

TABLE I: Complexity of costly operations on 8bit AVR micro-
controllers compared to the required period of a motor controller
spinning a 14 poles motor at 150 Hz and to the implementation of
the whole ABAG algorithm in Table II.

short moment is acceptable, an everlasting chattering must
be avoided to preserve the system mechanical integrity.

The idea behind the adaptation of g is to increase g
only if the tracking quality degrades and to decrease it
otherwise. Then it appears natural to let the decision map
ξg decide the direction of the adaptation of g, while the step
of the adaptation is set by another parameter δg. This brings
naturally to the Line 5 of Algorithm 1.

Even if the gain adaptation keeps g as small as possible
at each time t, it cannot decrease it below the value of the
rhs of (7) at t. Therefore it is important also to decrease in
parallel that value, to ensure an effective chattering suppres-
sion by the gain adaptation. This need is at the basis of the
adaptation of the bias b. In fact the better b approximates
(f (y, t)− ẏd)/h(y, t) the smaller the rhs of (7). Similarly to
a kind of gradient descent search, the adaptation of b is
then driven by the decision map ξb which points towards
the direction needed to decrease the error taking also into
account the negativity of −h(y, t) in (2). The step of the
search is set by the parameter δb.

IV. SOFTWARE IMPLEMENTATION AND COMPLEXITY

A software implementation of the ABAG algorithm has
been developed for the MikroKopter hardware. In partic-
ular, we used the BL-Ctrl-2.0 motor controller for which
the electronic schematics are available3. This ESC uses an
ATmega168A microcontroller running at 8 MHz. The I2C
bus of the microcontroller is connected to another central
microcontroller, called the flight controller (not described
here), that communicates with all motors as well as with
the outside world. An RS232 line is also available for direct
control of individual motors.

The ATmega168A has no floating point unit and has
limited arithmetic capabilities, allowing only 8bits additions,
subtractions and multiplications. Other operations must be
performed by expensive software routines. Table I shows
a few examples of such common arithmetic operations. In
order to obtain good performance in the proposed software,
all such operations have been avoided completely.

A. Overview, Interface, and Speed Measurement

The BL-Ctrl-2.0 hardware allows the microcontroller to
control the six MOSFETs of the phase bridge through six
independent GPIO. A hardware generated PWM signal can
be applied to each of the high side transistors, while the
lower side transistor are only switched on or off. The analog

3http://wiki.mikrokopter.de/en/BL-Ctrl 2.0

ISR

clock sync spinning period
measurement

ABAG
controller

safety stop

phase control
active braking

current
saturation

I2C bus and RS232

Hardware

message decoding/encoding

msg

tick yk
d

time

time yk

yk

yk

on/off
uk

MOSFETs

zero
crossing

ikuk

uk

Fig. 3: ESC software architecture overview.

comparator unit of the microcontroller is hardwired to allow
direct detection of the zero crossing of any phase. The
associated interrupt service routine (ISR) is used to precisely
trigger the software driving the phase bridge. Figure 3
shows an overview of the control software architecture. The
individual blocks are described in the next subsections.

1) Interface and Protocol: Communication with the ESC
is done through a message based protocol4, either on the I2C
bus or on the RS232 line. To save bandwidth, the protocol is
not designed to be robust to message corruption: the RS232
line (that may sometimes corrupt data) is used only for
testing. During normal operation, the reliable I2C bus is used.
However, messages are marked with start and stop delimiters
to allow proper synchronization if one peer has to drop part
of a message because of a communication buffer overflow
or any other unexpected reason.

The two communication channels can achieve up to
500 kbit/s baudrate. However, the I2C bandwidth is shared
among all motors and the bus is half duplex, so the available
bandwidth for a motor in a typical quadrotor setup is about
60 kbit/s (e.g., 600 Hz for 10 bytes messages). In order to
guarantee that during normal operation the desired spinning
velocity for each motor is sent at the desired frequency
(typically 1 kHz), the flight controller is configured as a
bus master and always has the sending priority. It polls the
motors for any data they have to send only when the bus
is free. Also, in order to guarantee that all motors receive
their desired spinning velocity in a synchronized way, such
messages are broadcasted on the bus as an array of velocities
in a single message. All motors receive the array at the same
time, and pick up the velocity corresponding to their own id.

2) Speed Measurement and Clock Synchronization: The
main difficulty was to get a precise time measure on the
microcontroller that has no quartz oscillator. To this aim, we
carefully implemented a clock synchronization algorithm.

The spinning period is measured as the time elapsed
between two phase switches, i.e., 1/6th of an electrical
rotation (or 1/42th of a physical rotation with a 14 poles
motor). The measurement noise is filtered with an exponen-
tial moving average. Practically, a weighting factor of 1/4
for new measurements leads to a good compromise between

4https://git.openrobots.org/projects/tk3-mikrokopter/gollum/communication

Preprint version, final version at http://ieeexplore.ieee.org/ 4 2017 IEEE ICRA

http://wiki.mikrokopter.de/en/BL-Ctrl_2.0
https://git.openrobots.org/projects/tk3-mikrokopter/gollum/communication

1 int16_t u; /* output ∈[0;1023] */
2 int16_t bias, gain; /* bias and gain ∈[0;1023] */
3 int32_t e_bar; /* avg err sign, 16:16 fixed point */
4
5 void abag_ctrl(uint16_t y, uint16_t y_d) {
6 /* error sign low pass filtering */
7 if (y > y_d) e_bar = (3 * e_bar + 65536)/4;
8 else e_bar = (3 * e_bar - 65536)/4;
9 /* bias adaptation and saturation */

10 if (e_bar > 49152 && bias < 1023) bias += 1;
11 if (e_bar < -49152 && bias > 1) bias -= 1;
12 /* gain adaptation */
13 if (e_bar < -32768 || e_bar > 32768) {
14 if (gain < u/2) gain += 2;
15 } else {
16 gain -= 2; if (gain < 1) gain = 1;
17 }
18 /* command computation and saturation */
19 if (y > y_d) {
20 u = bias + gain; if (u > 1023) u = 1023;
21 } else {
22 u = bias - gain; if (u < 0) u = 0;
23 }
24 }

TABLE II: Implementation of ABAG control algorithm in C lan-
guage. The longest code path is about 140 instructions that require
about 220 clock cycles, i.e., 27.5 µs at 8 MHz. The parameters used
are given in Table III.

Parameter Value in the code Parameter Value in the code

ēg ∈ (0,1) (32768
65536 = 0.5) δg ∈ (0,1) (2

1024 = 0.001953)
ēb ∈ (0,1) (49152

65536 = 0.75) δb ∈ (0,1) (1
1024 = 0.000976)

α ∈ (0,1) (3
4 = 0.75)

TABLE III: Values of the parameters used in the experiments.

noise filtering capabilities and filtering delay. The period is
measured with 1 µs resolution and it can be experimentally
observed that the standard deviation of the measurement
noise is about 2 µs (corresponding to ±0.6 Hz at 50 Hz or
±2 Hz at 90 Hz with a 14 poles motor).

B. ABAG Algorithm Implementation and Complexity

For maximum efficiency, the ABAG algorithm is imple-
mented using only additions, comparisons and shifts. The
actual C code is shown in table II. The longest code path
runs in about 27.5 µs at 8 MHz (note that all other code paths
are about the same length). This relatively light complexity
allows to run the controller directly from the ISR routine that
measures the current spinning velocity and controls the phase
bridge. This is an important property since the controller, by
its nature, provides a very discontinuous PWM duty cycle
input u, the faster it runs the less chattering will actually be
visible from the motor coils. This also guarantees that the
controller runs each time a velocity measurement is available.
Typically, for a 14 poles motor spinning from 20 Hz to
100 Hz this means that the controller runs at frequencies
ranging from 840 Hz to 4.2 kHz.

In order to obtain ēk (called e_bar in the code), 16:16
fixed-point arithmetic is used. With this representation, the
±65536 numbers in the code (line 7 and 8) represent ±1,
i.e., the current error sign. Note that α is hardcoded in order
to let the compiler optimize this computation efficiently as a
simple shift and additions. Using a parameter that could be
changed online would require a real 32 bits division.

The gain amplitude is limited to half of the commanded
duty cycle (line 14). This limitation is useful only at low
duty cycles (i.e., low spinning frequency), and was required

20

40

60

[H
z]

Exp. M1L12P45+: Steps

0:077 [s]

0:103 [s]

0:089 [s] 0:115 [s]

x xd

-4

-2

0

2

4

[H
z]

x! xd

-1

-0.5

0

0.5

1

[%
]

7e

0

0.2

0.4

0.6

[%
]

u g b

3 3.5 4 4.5 5 5.5 6 6.5 7
time [s]

0

5

10

15

20

[A
];
[V
]

I V+

40
45
50
55
60

[H
z]

Exp. M1L12P45+: Chirp

x xd

-4

-2

0

2

4

[H
z]

x! xd

-1

-0.5

0

0.5

1

[%
]

7e

0

0.2

0.4

0.6

[%
]

u g b

0 0.5 1 1.5 2 2.5 3
time [s]

0

5

10

15

20

[A
];
[V
]

I V+

Fig. 4: A detail of the step and chirp responses for one particular
experiment. The time instants in the top left plot indicate the
rise/descend times of the step responses.

to limit the current required to go from low to high spinning
frequency, in particular the startup current. In practice, the
aerial platforms are hovering at about half of the maximum
duty cycle or more, so the gain limitation is seldom triggered.

The values of ēg and ēb have been chosen empirically
to provide a good compromise between low chattering and
good response time.

C. Active Braking, Current Safety, and Blockage Safety

Active (or dynamic) braking is a way to improve the
deceleration time. This is implemented by controlling the
phase bridge so that it produces a counter torque instead
of the zero torque provided by the freewheeling mode.
Additionally, two safety blocks prevent accidental damage to
the hardware: i) a current limitation strategy, and a ii) short-
circuit prevention in case of propeller blockage.

V. EXPERIMENTS

1) Pure Speed Control Tests: In order to validate the
stability, robustness and adaptiveness of ABAG and its
implementation, we conducted an experimental campaign
using two motors and three propellers with different weights
and sizes. The propellers are all shaped for clockwise (cw)
spinning. Nevertheless, to test the robustness, we also spun
them counterclockwise (ccw), letting them generate much
more drag and turbulence. The same controller parameters
have been used for all the tests (see Table III). No knowledge
of the model (e.g., feedforward (FF) input or any sort of pre-
calibration) has been exploited.

We used a step sequence and a chirp since they allow
to see the transient/steady state, and the dynamic tracking
performances, respectively. Figure 4 reports two plots of
all the controller variables for a portion of one particular

Preprint version, final version at http://ieeexplore.ieee.org/ 5 2017 IEEE ICRA

10

20

30

40

50

60
x
;

x
d

[H
z]

3 3.05 3.1 3.15
20

30

40

50

4 4.05 4.1 4.15

20

30

40

50

3 3.5 4 4.5 5
time [s]

0

0.2

0.4

0.6

u
[%

]

3.8 3.9 4
0

0.2

0.4
35

40

45

50

55

60

65

0 0.5 1 1.5 2 2.5 3 3.5 4
time [s]

0

0.2

0.4

0.6

0.8

1

Fig. 5: Outputs xd , x (top) / input u (bottom) time-zoomed signals
for the step (left) / chirp (right) responses for all the experiments.

100 200 300 400 500
_xd [Hz=s]

0

2

4

6

8

[H
z]

jx! xdj for all the experiments

Fig. 6: Cumulative maximum tracking error norms in all the chirp
responses w.r.t the desired acceleration ẋd (Hz/s).

experiment. Time-zoomed plots showing the output tracking
and the corresponding inputs for all the experiments are
given in Fig. 5. Figure 6 shows the cumulative distribution
of the absolute error while tracking the chirp trajectory w.r.t.
its acceleration ẋd . As it can be clearly seen, the closed–
loop system is asymptotically stable, the performances are
very similar across the different experiments regardless the
different nature of the systems in each experiment.

In the step sequence experiments, the (finite time) re-
sponses are very fast despite the lack of any FF. The
step rising time is typically of a few tens of ms, even in
presence of current saturations and voltage droppings. Small
acceptable overshoots appear in some cases despite the fact
that the FF is not known at all. The steady state average error
is basically zero and the standard deviation is the same as the
one of the measurement noise (see Sec. IV-A.2) (when the
current saturation allows). In fact, the noise introduced by the
controller is negligible w.r.t. the noise of the measurement. It
can also be appreciated how the input u varies significantly
across the experiments to automatically accomodate for the
different systems.

The tracking of the time-varying chirp trajectories is also
excellent. All the experiment show a zero mean error norm
with standard deviation below 3 Hz for accelerations smaller
than 200 Hz/s. The performances degrade very smoothly (in
most cases linearly) for an increasing acceleration. The two
outliers are due to current saturation incurring when a small
motor is used for too big propeller.

2) Tests in Physically Interactive Aerial Tasks: The pos-
sibility to control and measure the propeller frequency has
made possible the control of the interaction force in physi-
cally interactive aerial task. A first example is the one shown
in the experiments of [1] in which a quadrotor takes off from
a 50◦ sloped surface with the help of a tether anchored to

the ground. The fine control of the propeller speed done by
the ABAG algorithm (the error standard deviation is below
0.5 Hz) makes possible the fine control of the tether tension
thus allowing this challengin take-off maneuver.

A second example is the one shown in [11] where a tilted-
propeller hexarotor is in contact with a stiff environment and
is controlled by means of an admittance force control. The
admittance force control scheme requires a good tracking
of the desired position and the estimation of the interaction
force, which is done using a momentum based wrench
estimator. Both requirements are obtained thanks to the
underlying ABAG algorithm.

VI. CONCLUSIONS

In this paper we have presented a robust and low-
complexity control algorithm for the propeller speed of
multi-rotor aerial robots. We have demonstrated its imple-
mentability on a computationally limited ESC and experi-
mentally validated its stability, robustness and applicability
to aerial robotics tasks in which physical interaction with the
environment is required.

In the future we plan to improve even more the responsive-
ness of the controller with e.g., some adaptive model based
technique. We also plan to investigate the possibility to adopt
a similar method for the control of the aerodynamic power.

REFERENCES

[1] M. Tognon, A. Testa, E. Rossi, and A. Franchi, “Takeoff and landing
on slopes via inclined hovering with a tethered aerial robot,” in 2016
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Daejeon, South
Korea, Oct. 2016, pp. 1702–1707.

[2] G. Gioioso, M. Ryll, D. Prattichizzo, H. H. Bülthoff, and A. Franchi,
“Turning a near-hovering controlled quadrotor into a 3D force effec-
tor,” in 2014 IEEE Int. Conf. on Robotics and Automation, Hong Kong,
China, May. 2014, pp. 6278–6284.

[3] G. Muscio, F. Pierri, M. A. Trujillo, E. Cataldi, G. Giglio, G. Antonelli,
F. Caccavale, A. Viguria, S. Chiaverini, and A. Ollero, “Experiments
on coordinated motion of aerial robotic manipulators,” in 2016 IEEE
Int. Conf. on Robotics and Automation, May 2016, pp. 1224–1229.

[4] F. Forte, R. Naldi, A. Macchelli, and L. Marconi, “Impedance control
of an aerial manipulator,” in 2012 American Control Conference, June
2012, pp. 3839–3844.

[5] B. Yüksel, C. Secchi, H. H. Bülthoff, and A. Franchi, “A nonlinear
force observer for quadrotors and application to physical interactive
tasks,” in 2014 IEEE/ASME Int. Conf. on Advanced Intelligent Mecha-
tronics, Besançon, France, Jul. 2014, pp. 433–440.

[6] S. Rajappa, M. Ryll, H. H. Bülthoff, and A. Franchi, “Modeling,
control and design optimization for a fully-actuated hexarotor aerial
vehicle with tilted propellers,” in 2015 IEEE Int. Conf. on Robotics
and Automation, Seattle, WA, May 2015, pp. 4006–4013.

[7] M. Ryll, D. Bicego, and A. Franchi, “Modeling and control of FAST-
Hex: a fully-actuated by synchronized-tilting hexarotor,” in 2016
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Daejeon, South
Korea, Oct. 2016, pp. 1689–1694.

[8] D. Brescianini and R. D’Andea, “Design, modeling and control of an
omni-directional aerial vehicle,” in 2016 IEEE Int. Conf. on Robotics
and Automation, Stockholm, Sweden, May 2015.

[9] M. Bangura, H. Lim, H.-J. Kim, and R. Mahony, “Aerodynamic power
control for multirotor aerial vehicles,” in 2014 IEEE Int. Conf. on
Robotics and Automation, Hong Kong, China, May 2014, pp. 529–
536.

[10] V. I. Utkin and A. S. Poznyak, “Adaptive sliding mode control
with application to super-twist algorithm: Equivalent control method,”
Automatica, vol. 49, no. 1, pp. 39–47, 2013.

[11] M. Ryll, G. M. F. Pierri, E. Cataldi, G. Antonelli, F. Caccavale, and
A. Franchi, “6D physical interaction with a fully actuated aerial robot,”
in 2017 IEEE Int. Conf. on Robotics and Automation, Singapore, May
2017.

Preprint version, final version at http://ieeexplore.ieee.org/ 6 2017 IEEE ICRA

	Introduction
	Modeling and Problem Setting
	Algorithm Description and Discussion
	The ABAG Algorithm
	Error sign low pass filtering (Line 3)
	Adaptive bias update (Line 4)
	Adaptive gain update (Line 5)
	Control input computation (Line 6)

	Rationale of the ABAG Algorithm

	Software Implementation and Complexity
	Overview, Interface, and Speed Measurement
	Interface and Protocol
	Speed Measurement and Clock Synchronization

	ABAG Algorithm Implementation and Complexity
	Active Braking, Current Safety, and Blockage Safety

	Experiments
	Pure Speed Control Tests
	Tests in Physically Interactive Aerial Tasks

	Conclusions
	References

