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Bearing Rigidity Theory in SE(3)

Giulia Michieletto, Angelo Cenedese, and Antonio Franchi

Abstract— Rigidity theory has recently emerged as an ef-
ficient tool in the control field of coordinated multi-agent
systems, such as multi-robot formations and UAVs swarms, that
are characterized by sensing, communication and movement
capabilities. This work aims at describing the rigidity properties
for frameworks embedded in the three-dimensional Special
Euclidean space SE(3) wherein each agent has 6DoF. In such
scenario, it is assumed that the devices are able to gather
bearing measurements w.r.t. their neighbors, expressing them
into their own body frame. The goal is then to identify
the framework transformations that allow to preserve such
measurements maintaining it rigid. Rigidity properties are
mathematically formalized in this work which differs from the
previous ones as it faces the extension in three-dimensional
space dealing with the 3D rotations manifold. In particular, the
attention is focused on the infinitesimal SE(3)-rigidity for which
a necessary and sufficient condition is provided.

I. INTRODUCTION

The term rigidity usually concerns a combinatorial theory
for characterizing the stiffness of structures formed by rigid
bodies connected by flexible linkages or hinges [1]. Specifi-
cally, the goal is studying whether one can deform the shape
of such type of structure preserving the relative poses among
the agents in terms of distances and/or directions.

For this reason, rigidity theory is involved in the properties
evaluation of several systems deriving from different fields of
research, e.g., mechanical and building structures, biological
and artificial compounds, industrial materials, and recently,
it has taken an outstanding position in the interactive multi-
agent context [2]–[4]. Indeed, rigidity framework fits for
applications connected to the motion control of mobile robots
and to the sensors cooperation for localization, exploration,
mapping and tracking of a target. More generally, it turns
out to be an important architectural property of many multi-
agent systems where a common inertial reference frame
is unavailable but the agents involved are characterized by
sensing, communication and movement capabilities.

According to the available sensing measurements, rigidity
properties for a framework deals with inter-agent distance
and/or direction maintenance. When agents are able to gather
only range information, distance constraints can be imposed
to preserve distance rigidity properties. On the other hand,
parallel/bearing rigidity properties are determined by direc-
tion contraints defined upon angle/bearing measurements.

Main notions about distance rigidity are illustrated in [5]–
[7]: these works explain how distance constraints for a frame-
work can be summarized into a unique matrix whose rank
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determines the infinitesimal rigidity properties of the system,
providing a necessary and sufficient condition. In such a
context, a framework is generally represented by means of
the bar-and-joint model where agents are represented as
points joined by bars whose fixed lengths enforce the inter-
agent distance constraints. Infinitesimal rigidity properties
concern with distance-preserving motions of the framework
which thus consist of only global roto-translations of the
entire system as a rigid body.

As far as bearing rigidity in R2 (or parallel rigidity)
is concerned, it is determined by the definition of normal
constraints over the directions of neighboring agents, namely
the edges of the sensing/communication graph associated to
the framework, as explained in [8]–[13]. These constraints
entail the preservation of the angles formed between pairs
of agents and the lines joining them, i.e., the inter-agent
bearings. As a consequence, allowed collective infinitesimal
motions consist of only global translations and uniform
scaling of the whole set of positions in the framework.

The same infinitesimal motions characterize the infinites-
imally bearing rigid frameworks in Rd with d > 2, where
the bearing measurement between agents i and j coincides
with the angle between the x-axis of the local coordinate
system of node i and the line segment joining node i with
node j, as stated in [13], [14]. In literature, some distinctions
are usually made between the 2D case and the higher
dimensional ones, although in [13] a unified dissertation for
bearing rigidity is presented. Several theoretical results are
also provided in [13], however the main contribution is the
necessary and sufficient condition to guarantee that a given
framework is infinitesimally bearing rigid in Rd , d ≥ 2. This
is related to the rank and eigenvalues of a certain matrix
which summarizes the involved constraints.

In [11], [12], bearing rigidity theory has been studied
for systems embedded in SE(2), i.e., frameworks where the
underlying graph is directed and bearings are expressed in
the local frame of each agent of the framework modeled
as a SE(2)-point having its own position and attitude in
the plane. Because of the nature of the SE(2) manifold,
bearing-preserving infinitesimal motions for a given frame-
work are composed of motions in R2 with motions in S1

(1-dimensional manifold on the unit circle). Hence, these
result to be rigid-body translations and uniform scaling of
the whole set of positions but also coordinated rotations,
namely the synchronized rotations of all the agents about
their own body axis at the same angular speed, coupled with
a rigid-body rotation of the whole framework in R2.

The current state of the art motivates the study of bearing
rigidity for formations in SE(3), which is the main contribu-
tion of this work. As for SE(2) case, the principal features
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of such theory concern the bearing measurements that are
referred to the local frame of each agent (SE(3)-point having
its own position and attitude in the 3D space) corroborating
the use of a directed graph to represent agents interactions.
Nevertheless, the extension from the two-dimensional Spe-
cial Euclidean space to the three-dimensional one is not triv-
ial. The main challenge deals with the attitude representation
of the agents: while in SE(2) a single angle is sufficient
to determine the orientation of a robot on the plane, in 3D
space three degrees of freedom have to be managed involving
different and more complex type of manifolds. In this sense,
even though the infinitesimal motions are still translations,
uniform scaling and coordinated rotations, they have been
redefined in the new higher-dimensional context. In addition,
it has been proven that they span the null-space of the so
called SE(3)-rigidity matrix and, similarly to [11], that a
framework is infinitesimally rigid in SE(3) if and only if the
size of the null-space of this matrix is equal to seven.

The paper is organized as follows. The notation used is
depicted in Sec. II and a brief review of the bearing rigidity
theory in R3 is provided in Sec. III. Sec. IV is devoted to the
development of rigidity theory for SE(3), clearly illustrating
the properties of allowed infinitesimal motions, while some
examples are given in Sec. V. Finally, concluding remarks
and future research directions are discussed in Sec. VI.

II. PRELIMINARIES AND NOTATION

In this work, SE(3) = R3 × SO(3) indicates the three-
dimensional Special Euclidean group describing the rigid-
body transformations in 3D space. Specifically, SO(3) refers
to the 3D rotation group, while the 2-dimensional manifold
on the unit sphere in R3 is denoted as S2. Note that SO(3) is
not isomorphic to S2, while in 2D space it holds SO(2)' S1.

The standard Euclidean norm of a vector v ∈ R3 is indi-
cated as ‖v‖ so that ‖v‖2 = v>v. The cross product between
the vectors v,u ∈R3 is instead computed as v×u = S(v) ·u,
where S(·) is the map that associates any vector in R3 to
its corresponding skew-symmetric matrix belonging to the
Special Orthogonal Lie algebra, so(3).

A directed graph G = (V ,E ) is specified by a vertex set
V and an edge set E ⊆ V ×V , such that |V |= n and |E |=
m. The graph with all the possible directed edges, i.e., the
complete directed graph with m = n(n−1), is denoted as Kn.
The relationship between the sets V and E is described by
the incidence matrix E ∈ Rn×m, namely the {0,±1}-matrix
such that

[E]ik =


1 if ek = (vi,v j) ∈ E (outgoing edge)
−1 if ek = (v j,vi) ∈ E (ingoing edge)
0 otherwise

Similarly, the {0,1}-matrix Eout ∈ Rn×m is designed so that

[Eout ]ik =

{
1 if ek = (vi,v j) ∈ E (outgoing edge)
0 otherwise

The notation E = E⊗ I3 ∈ R3n×3m and Eout = Eout ⊗ I3 ∈
R3n×3m is also introduced.

Finally, given a generic matrix A ∈Rp×q, its null-space is
indicated as N (A) and its (column) rank as rk(A), while
diag({Ai})∈Rrp×rq refers to a block diagonal concatenation
of all the matrices {Ai ∈ Rp×q, i = 1, . . . ,r}.

III. BEARING RIGIDITY THEORY IN R3

Some fundamental concepts of bearing rigidity are here
briefly reviewed, focusing on frameworks embedded in R3.
A more exhaustive dissertation is reported in [13].

A framework in R3, denoted as (G ,p), is a pair consisting
of an undirected graph G = (V ,E ) and a configuration p =
[p>1 . . .p>n ]> ∈R3n such that each vertex vi ∈ V in the graph
is associated to the point pi ∈R3. In other words, it is a set of
n agents able to interact according to the the edge set E , each
of them with a specific position pi into the three-dimensional
space. As a consequence, for each pair (vi,v j) ∈ E the unit
vector p̄i j = pi j/‖pi j‖, where pi j = p j − pi, represents the
relative bearing between vi and v j expressed w.r.t. some
common reference frame.

Bearing rigidity theory in R3 aims at determining when
a framework can be uniquely determined up to a translation
and a uniform scaling (bearing-preserving transformations)
by the set of inter-neighbor bearings.

In order to tackle this issue, it is advantageous to define
the orthogonal projector operator P : R3 → R3×3, which
geometrically projects any nonzero vector v ∈ R3 onto its
orthogonal complement. Explicitly it holds

P(v) = I3−
vv>

‖v‖2 .

The resulting orthogonal projection matrix P(v) is sym-
metric, idempotent and positive semi-definite, and its null-
space coincides with the space generated by vector v, i.e.,
N (P(v)) = span{v}.

The orthogonal projection operator provides a convenient
way to describe parallel vectors in R3 where the bearing
rigidity notion relies on the the parallelism conservation for
the line segment between any pair of nodes of a framework.
Indeed, two frameworks (G ,p) and (G ,p′) are said to
be bearing equivalent if P(pi − p j) · (p′i − p′j) = 0 for all
(vi,v j)∈ E and bearing congruent if P(pi−p j) ·(p′i−p′j)= 0
for all vi,v j ∈ V . Hence, two bearing congruent frameworks
are always related by an appropriate finite sequence of rigid-
body translations and scaling.

Definition 1 (Bearing Rigidity [13, Def. 3]). A framework
(G ,p) is bearing rigid if there exists an ε > 0 such that every
framework (G ,p′) which is bearing equivalent to (G ,p) and
satisfies ‖pi−p′i‖ < ε for all vi ∈ V , is bearing congruent
to (G ,p).

Definition 2 (Global Bearing Rigidity [13, Def. 4]). A
framework (G ,p) is globally bearing rigid if all bearing
equivalent frameworks to (G ,p) are also bearing congruent
to (G ,p).

All the bearings in a given framework can be summarized
through the bearing rigidity function b‖,G : R3n→ R3m that
maps the configuration p into the stacked bearings vector,
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Node domains Measurement domains Measurement properties Nomenclature References

pi ∈ Rd di j = ‖pi−p j‖ ∈ Rd d ji = di j (undirected underlying graph) (distance) rigidity [5], [6], [7]
bi j =

p j−pi
‖pi−p j‖

∈ Sd−1 b ji =−bi j (undirected underlying graph) parallel/bearing rigidity [13], [8], [9], [10]

χχχ i = (pi,θi) ∈ SE(2) bi j = R(θi)
> p j−pi
‖pi−p j‖

∈ S1 bi j,bi j independent (directed underlying graph) SE(2)–rigidity [11], [12]

χχχ i = (pi,Ri) ∈ SE(3) bi j = R>i
p j−pi
‖pi−p j‖

∈ S2 bi j,bi j independent (directed underlying graph) SE(3)–rigidity

TABLE I: Summary of the state of the art about rigidity properties: different theories have been formulated according to nodes domain,
measurements domain and properties.

i.e., b‖,G (p) = [ p̄>1 . . . p̄>m ]> where p̄k refers to the mea-
surement on the k-th edge. The Jacobian of the bearing
function B‖,G (p) ∈ R3m×3n, which is referred as bearing
rigidity matrix, represents a key feature to study the rigidity
properties of a framework in R3. Indeed, considering a vari-
ation δδδ p of the configuration p, if B‖,G (p)δδδ p = 0, then δδδ p is
called an infinitesimal bearing motion of (G ,p). Moreover, if
an infinitesimal motion corresponds to a bearing-preserving
transformation, namely a translation or a scaling of the entire
framework, it is referred as trivial.

Definition 3 (Infinitesimal Bearing Rigidity [13, Def. 5]).
A framework (G ,p) is infinitesimally bearing rigid if every
possible infinitesimal motion is trivial.

The infinitesimal bearing rigidity properties of a frame-
work are linked to the null-space and the rank of the
corresponding bearing rigidity matrix.

Theorem 1 (Condition for Infinitesimal Bearing Rigidity [13,
Thm. 4]). For a framework (G ,p) in R3, the following
statements are equivalent:

(a) (G ,p) is infinitesimally bearing rigid;
(b) rk(B‖,G (p)) = 3n−4;
(c) N (B‖,G (p)) = span{1⊗ I3,p}.

Moreover, it can be proven that the infinitesimal bearing
rigidity is a stronger property than both bearing and global
bearing rigidity which are equivalent.

Theorem 2 (Rigidity Properties). For a framework (G ,p) in
R3, the following implications are valid:

- bearing global rigidity⇔ bearing rigidity [13, Thm. 3];
- bearing infinitesimally rigidity ⇒ bearing global rigid-

ity [13, Thm. 5];
- bearing infinitesimally rigidity ⇒ bearing rigidity.

Some main features of the bearing rigidity in R3 can be
derived from the Tab. I that provides an overview on the
taxonomy used in the rigidity literature according to the
domain of nodes and measurements.

IV. RIGIDITY THEORY IN SE(3)

The concepts introduced in previous section are required to
extend the rigidity theory for frameworks that are embedded
in the three-dimensional Special Euclidean group SE(3).
Here, each agent is characterized by a position and an attitude
in the 3D space and is assumed to interact with its neighors
according to a certain directed graph.

Definition 4 (SE(3) framework). An SE(3) framework is
a triple (G ,p,a), where G = (V ,E ) is a directed graph,

p : V → R3 is a function mapping each node to a point in
R3 (position) and a : V → SO(3) is a function associating
each node with an element of SO(3) (attitude).

In literature various well-known formalisms exist to repre-
sent the attitude of an agent able to move in 3D space, e.g.,
Euler angles, quaterions, axis-angle representation. In this
work, the agents orientation is expressed through the rotation
matrices which belong to the Special Orthogonal group
SO(3). This group includes all the 3×3 orthogonal matrices
having unit determinant. Therefore, in the following, the
attitude of each agent i has to be interpreted as a rotation
matrix Ri ∈ R3×3 such that RiRT

i = I3 and det(Ri) = +1.
Hereafter, for notation convenience, the position and at-

titude of the node vi ∈ V is denoted by (p(vi),a(vi)) =
(pi,Ri) = (χχχ p(i),χχχa(i)) = χχχ(i) ∈ SE(3), whereas p(V ) =

χχχ p(V ) ∈ R3n and a(V ) = χχχa(V ) ∈ SO(3)n indicate the
position and attitude components of the complete framework
configuration, respectively.

Similarly to the SE(2) case (see [11], [12] for details),
the extension to SE(3) explicitly handles frameworks where
the underlying graph is directed and bearings are expressed
in the local body frame of each agent (SE(3) point). These
assumptions are justified by real multi-agent scenarios where
a robot can gather the relative bearings between itself and
other robots through sensors attached to its body frame such
as, e.g., robots flying in 3D with onboard cameras.

In this venue, the agent i accesses the bearing of the
agent j if and only if the directed edge (vi,v j) belongs to
the graph G . Furthermore, the relative bearing bi j ∈ S2 is
measured from the body coordinate system of the i-th agent,
but it can be expressed in terms of the relative positions and
attitudes of the two points w.r.t. the world frame. It holds

bi j = R>i
pi−p j

‖pi−p j‖
= R>i p̄i j,

where the matrix R>i is the rotation matrix describing the
orientation of the world frame w.r.t. the body frame of
agent i, and p̄i j is a shorthand notation for the normalized
relative position vector from i to j.

Bearing rigidity theory in SE(3) seeks to evaluate the
rigidity properties of a given framework (G ,p,a) which rest
on its bearing measurements preservation. In other words,
the main goal is to identify the allowed motions that do not
modify the whole systems in term of inter-agent bearings.

Definition 5 (Equivalence and Congruence in SE(3)). Two
frameworks (G ,p,a) and (G ,p′,a′) are equivalent if

R>i
pi−p j

‖pi−p j‖
= R′>i

p′i−p′j
‖p′i−p′j‖

∀(vi,v j) ∈ E .
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Two frameworks (G ,p,a) and (G ,s,o) are congruent if

R>i
pi−p j

‖pi−p j‖
= R′>i

p′i−p′j
‖p′i−p′j‖

∀vi,v j ∈ V .

Definition 6 (Global Rigidity in SE(3)). A framework
(G ,p,a) is globally rigid in SE(3) if every framework which
is equivalent to (G ,p,a) is also congruent to (G ,p,a).

The information about bearing measurements can be han-
dled defining the SE(3)-rigidity function associated to the
framework, namely the function bG : SE(3)n→ S2m

such that

bG (χχχ(V )) =
[
b>1 . . .b>m

]>
,

where bk denotes the measurement on the k-th directed edge
in the graph G . It can be proven that the SE(3)-rigidity
function can be rewritten in the more compact form

bG (χχχ(V )) =−diag
({

R>i
‖pi−p j‖

})
E
>

χχχ p(V ).

In such a scenario, a framework (G ,p,a) is SE(3)-rigid
if and only if for any χχχ ′(V ) ∈ SE(3)n sufficiently close
to χχχ(V ) with the same bearing measurements, namely
bG (χχχ(V )) = bG (χχχ

′(V )), there exists a (local) bearing-
preserving transformation taking χχχ(V ) to χχχ ′(V ).

Definition 7 (Rigidity in SE(3)). A framework (G ,p,a) is
rigid in SE(3) if there exists a neighborhood S⊂ SE(3)n of
χχχ(V ) such that

b−1
Kn
(bKn(χχχ(V )))∩S = b−1

G (bG (χχχ(V )))∩S,

where b−1
Kn
(bKn(χχχ(V ))) denotes the pre-image of the point

bKn(χχχ(V )) under the SE(3)-rigidity map.

The set b−1
Kn
(bKn(χχχ(V )))⊂ SE(3)n contains χχχ(V ) and all

its possible transformations induced by the complete graph
Kn, while the set b−1

G (bG (χχχ(V ))) ⊂ SE(3)n contains (at
least) χχχ(V ) and all its possible transformations induced by
the graph G . Thus, b−1

G (bG (χχχ(V )))−b−1
Kn
(bKn(χχχ(V ))) is the

set of all the possible transformations of χχχ(V ) constrained
by G that are not admissible by Kn and allows to define the
property of roto-flexibility for a framework.

Definition 8 (Roto–flexibility in SE(3)). A framework
(G ,p,a) is roto–flexible in SE(3) if there exists an analytic
path η : [0,1]→ SE(3)n such that η(0) = χχχ(V ) and η(t) ∈
b−1

G (bG (χχχ(V )))−b−1
Kn
(bKn(χχχ(V ))) for all t ∈ (0,1].

Using the language of Def. 8, a smooth motion along a
path η with η(0) = χχχ(V ) such that the initial rate of change
of the rigidity function is zero (bearing measurements do
not change), constitutes an infinitesimal motion of a SE(3)
framework. It can be proven that the set of infinitesimal
motions is characterized by the null-space of the Jacobian of
the SE(3)-rigidity function, namely by the null-space of the
SE(3)-rigidity matrix BG (χχχ(V )) = ∇χχχ bG (χχχ(V )) ∈ R3m×6n

such that
∂bi j

∂ χχχ(i)
=
[

∂bi j
∂pi

∂bi j
∂Ri

]
=
[
− P(bi j)

‖pi−p j‖R
>
i S (bi j)

]
,

∂bi j

∂ χχχ( j)
=
[

∂bi j
∂p j

∂bi j
∂R j

]
=
[

P(bi j)

‖pi−p j‖R
>
i 0

]
.
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Fig. 1: Example of infinitesimally rigid SE(3) framework, where
n = 4, the underlying graph G is complete (m = 6), each agent has
its own body frame.

As a consequence, if a path η is contained entirely
in b−1

Kn
(bKn(χχχ(V ))) for all t ∈ [0,1], then it correspond

to an infinitesimal motion. Hence, the infinitesimal mo-
tions are completely described by the tangent bundle Tp of
b−1

Kn
(bKn(χχχ(V ))) and it holds Tp = N [BKn(χχχ(V ))].

These premises lead to a formal definition for infinitesimal
rigidity of frameworks in SE(3).

Definition 9 (Infinitesimal Rigidity in SE(3)). A framework
(G ,p,a) is infinitesimally rigid in SE(3) if N [BG (χχχ(V ))] =
N [BKn(χχχ(V ))]. Otherwise it is infinitesimally roto-flexible
in SE(3).

Def. 9 suggests that any SE(3) framework whose under-
lying graph is complete, i.e., (Kn,p,a) where p and a are
suitable defined, is infinitesimally rigid (see Fig. 1); however
it is not a necessary condition as explained in the following.

A. Infinitesimal Motions Properties

The main challenge regarding the extension of the rigidity
theory to SE(3) rests upon the identification of the bearing-
preserving transformation in the 3D rotation manifold. In-
deed, infinitesimal motions of a SE(3) framework are the
composition of motions in R3 with motions in SO(3) for each
point. Each infinitesimal motion δδδ χ ∈ N (BG (χχχ(V ))) is
therefore characterized by the velocity component δδδ χp ∈R3n

and the angular velocity component δδδ χa ∈ R3n.
If all agents do not alter their attitude, i.e., δδδ χa = 0, then

the condition δδδ χ ∈N (BG (χχχ(V ))) reduces to the constraints
for bearing rigidity in R3. Hence translations and uniform
scaling of the framework result to be infinitesimal motions
still in SE(3) context. On the contrary, if the angular veloc-
ities of the agents are non-zero, then the only infinitesimal
motions of the framework consists of the bearing-preserving
motion termed (3D) coordinated rotation. It envisages a 3D
synchronized rotation of all the agents in their frameworks
jointly to an equal rotation of the whole framework as a rigid-
body in R3 (the angular velocity of each agent is equal to
the one of the center of mass of the system). Fig. 2 proposes
an explanatory example of the just described infinitesimal
motions.

To characterize these inifitesimal motions in SE(3), it is
suitable to introduce the permutated SE(3)-rigidity matrix
B̃G (χχχ(V )) that results from the permutation of the columns
of BG (χχχ(V )) so as to be
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(a) SE(3) framework (b) Traslation (c) Factor scaling (d) Coordinated rotation

Fig. 2: Example of infinitesimal motions: the SE(3) framework (K4,p,a) (Fig. 2a) is translated along the x axis (Fig. 2b), scaled by a
factor α = 0.5 (Fig. 2c), counterclockwise coordinated rotated of θ = π/4rad (Fig. 2d).

B̃G (χχχ(V )) =
[
∇χχχ p

bG (χχχ(V )) ∇χχχa
bG (χχχ(V ))

]
=
[
diag

({
− P(bi j)
‖pi−p j‖R>i

})
·E> diag

({
S(bi j)

})
·E>out

]
.

Proposition 1. Every infinitesimal motion
δδδ χ ∈N [BG (χ(V ))] satisfies

diag
({
−

P(bi j)

‖pi−p j‖
R>i

})
E>δδδ χp +diag

({
S(bi j)

})
E>outδδδ χa = 0.

Proof. The null-space N (B̃G ) derive from the permutation
of the vectors in the null-space of BG . Therefore, the thesis
is proved evaluating the permuted SE(3)-rigidity matrix.

Corollary 1. Every infinitesimal motion
δδδ χ ∈N [BG (χ(V ))] satisfies the condition

B‖,G (χχχ p)δδδ χp =−F(χχχ p)δδδ χa ,

where
• B‖,G (χχχ p) = diag

({
P(p̄i j)

‖pi−p j‖

})
E
>

is the bearing rigidity

matrix in R3 (see Sec. III),
• F(χχχ p(V )) =−diag(

{
RiS(bi j)

}
)E
>
out .

Proof. The result is obtained directly by Prop. 1 through
substitution.

Proposition 2. For the complete directed graph Kn, the
coordinated rotation subspace R	(Kn) is not trivial and
dimR	(Kn) = 3.

Proof. Consider a rigid-body rotation δδδ χ of the framework
χχχ with angular velocity ωωω ′. In a (3D) coordinated rotation,
for each i-th agent the linear velocity ṗi results from the
cross product between its position pi and ωωω ′, while its
angular velocity ωωω i is the expression of ωωω ′ in its body frame.
Formally [

δδδ χp

]
i = ṗi =−S(pi) ωωω

′, (1)[
δδδ χa

]
i = ωωω i = R>i ωωω

′. (2)

From Prop. 1, for the infinitesimal motions it must result

P(bi j)

‖pi−p j‖
R>i (ṗi− ṗ j)+S(bi j)ωωω i = 0 ∀vi,v j ∈ V

and, substituting (1)-(2), it is possible to verify that

P(bi j)

‖pi−p j‖
R>i (S(pi) ωωω

′−S(p j) ωωω
′)+S

(
bi j
)

R>i ωωω
′ =

=−P(bi j)R>i S
(
p̄i j
)

ωωω
′+S

(
R>i p̄i j

)
R>i ωωω

′ =

=−P(bi j)S
(

R>i p̄i j

)
R>i ωωω

′+S
(

R>i p̄i j

)
R>i ωωω

′ =

= (I3−P(bi j))S
(

R>i p̄i j

)
R>i ωωω

′ = 0.

Hence, the coordinated rotation subspace is not trivial as
it contains all the vectors whose components satisfy (1)-
(2). Moreover, each arbitrary rigid-body rotation can be
expressed as composition of rotations around the x–axis
with angular velocity ωωω ′ = [1 0 0]>, the y–axis with angular
velocity ωωω ′ = [0 1 0]> and the z–axis with angular velocity
ωωω ′ = [0 0 1]>. As a consequence, dimR	(Kn) = 3.

Since Prop. 2 provides an analytic description for the
vectors spanning the coordinated rotations subspace R	(·), it
is possible to exhaustively explicate the space of infinitesimal
motions.

Corollary 2. For an infinitesimally rigid SE(3) framework,

N [B̃G (χχχ(V ))] = span
{[

1n⊗ I3
0

]
,

[
χχχ p
0

]
, R	(G )

}
.

Finally, the main result of this section relates the infinites-
imal rigidity of an SE(3) framework to the rank of the
SE(3)–rigidity matrix.

Theorem 3. A SE(3) framework is infinitesimally rigid if
and only if rk[BG (χχχ(V ))] = 6n−7.

Proof. It holds

rk[BG (χχχ(V ))] = rk[B̃G (χχχ(V ))]

= dim(B̃G (χχχ(V )))−N [B̃G (χχχ(V ))]

= 6n−7,

where the equivalence N [B̃G (χχχ(V ))] = 7 is justified by
Cor. 2.

The same conclusion can be derived by considering the
bearing rigidity matrix in R3, introduced in Sec. III.

Corollary 3. An SE(3) framework is infinitesimally rigid in
SE(3) if and only if
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(a) (b) (c)

Fig. 3: Examples of non-infinitesimally SE(3)-rigid frameworks.

(a) (b) (c)

Fig. 4: Examples of infinitesimally SE(3)-rigid frameworks.

1) rk[B‖,G (χp)] = 3n−4,
2) dimR	(G ) = 3.

Proof. The statement follows directly from the Def. 9 of
infinitesimal rigidity in SE(3), Cor. 1 and Prop. 2.

Cor. 3 also allows to prove the necessary and sufficient
condition for infinitesimal rigidity as follows.

Proof. of Theorem 3 Assume that rk[BG (χ(V ))] = 6n−
7. From Cor. 1 and Prop. 2, it can be concluded that
rk[BKn(χ(V ))] = 6n−7. By definition of infinitesimal rigid-
ity in SE(3), the framework (G ,p,a) is infinitesimally rigid.
On the contrary, assuming that the framework (G ,p,a)
is infinitesimally rigid in SE(3), from Cor. 3 it follows
that rk[B‖,G (χp)] = 3n− 4 and dimR	(G ) = 3. Therefore,
rk[BG (χ(V ))] = 6n−7.

V. NUMERICAL EXAMPLES

In order to clarify the previous statements and defini-
tions about infinitesimal rigidity in SE(3), this section is
devoted to some numerical examples. In detail, Fig. 3 shows
examples of non–infinitesimally SE(3)-rigid frameworks.
On the other hand, Fig. 4 displays examples of infinitesi-
mally SE(3)-rigid frameworks, for which it can be verified
rk(BG (χχχ)) = 6n−7. All the links depicted are bidirectional,
meaning linked agents are able to reciprocally gather the
bearing measurements.

It is worth to notice that when the agents are aligned the
infinitesimal SE(3)-rigidity property is not ensured, while
it could be attained by adding a single link in the other
situations.

VI. CONCLUSIONS AND FUTURE WORKS

This work introduces an extension of the rigidity theory
to the case of frameworks embedded in SE(3). The main
contribution is the characterization of infinitesimal rigidity
properties that are related to the rank of the SE(3)-rigidity
matrix. Moreover, it has been showed that the null-space of
that matrix describes the infinitesimal motions of an SE(3)

framework, including the rigid body translations and uniform
scaling, in addition to (3D) coordinated rotations.

A considerable effort has been made in defining the con-
cepts known in the rigidity literature for manifold dedicated
to the representation of the rigid-bodies transformations in
three-dimensional space. Nonetheless, this work aims to be
the starting point for many future works concerning both the
relative positions and orientation estimation and the control
of 3D formation, e.g., UAVs swarms.
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P. Robuffo Giordano, “Rigidity maintenance control for multi-robot
systems.” in Robotics: Science and Systems. Sydney, Australia, 2012,
pp. 473–480.

[7] D. Zelazo, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano,
“Decentralized rigidity maintenance control with range measurements
for multi-robot systems,” The Int. Journal of Robotics Research,
vol. 34, no. 1, pp. 105–128, 2014.

[8] T. Eren, W. Whiteley, P. N. Belhumeur, B. Anderson et al., “Sensor
and network topologies of formations with direction, bearing, and
angle information between agents,” in Decision and Control, 2003.
Proceedings. 42nd IEEE Conference on, vol. 3. IEEE, 2003, pp.
3064–3069.

[9] A. Franchi and P. Robuffo Giordano, “Decentralized control of parallel
rigid formations with direction constraints and bearing measurements,”
in Decision and Control (CDC), 2012 IEEE 51st Annual Conference
on. IEEE, 2012, pp. 5310–5317.

[10] T. Eren, “Using angle of arrival (bearing) information for localization
in robot networks,” Turk J Elec Engin, vol. 15, no. 2, 2007.

[11] D. Zelazo, A. Franchi, and P. Robuffo Giordano, “Rigidity theory
in se (2) for unscaled relative position estimation using only bearing
measurements,” in Control Conference (ECC), 2014 European. IEEE,
2014, pp. 2703–2708.

[12] D. Zelazo, P. Robuffo Giordano, and A. Franchi, “Bearing-only forma-
tion control using an se(2) rigidity theory,” in 54rd IEEE Conference
on Decision and Control, Osaka, Japan, 12/2015 2015.

[13] S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-
only formation stabilization,” IEEE Transactions on Automatic Con-
trol, vol. 61, no. 5, pp. 1255–1268, 2016.

[14] ——, “Bearing-based distributed control and estimation of multi-agent
systems,” in Control Conference (ECC), 2015 European, 2015, pp.
2202–2207.

Preprint version, final version at http://ieeexplore.ieee.org/ 6 55th IEEE CDC

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6577954
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6577954

	Introduction
	Preliminaries and Notation
	Bearing Rigidity Theory in R3
	Rigidity Theory in SE(3)
	Infinitesimal Motions Properties

	Numerical Examples
	Conclusions and Future Works
	References

