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Modeling and Control of FAST-Hex:
a Fully–Actuated by Synchronized–Tilting Hexarotor

Markus Ryll1, Davide Bicego1 and Antonio Franchi1

Abstract— We present FAST-Hex, a novel UAV concept which
is able to smoothly change its configuration from underactuated
to fully actuated by using only one additional motor that
tilts all propellers at the same time. FAST-Hex can adapt to
the task at hand by finely tuning its configuration from the
efficient (but underactuated) flight (typical of coplanar multi–
rotor platforms) to the full-pose-tracking (but less efficient)
flight, which is attainable by non-coplanar multi-rotors. We
also introduce a novel full-pose geometric controller for generic
multi-rotors (not only the FAST-Hex) that outperforms classical
inverse dynamics approaches. The controller receives as input
any reference pose in R3×SO(3) (3D position + 3D orientation).
Exact tracking is achieved if the reference pose is feasible
with respect to the propeller spinning rate saturations. In case
of unfeasibility a new feasible desired trajectory is generated
online giving priority to the positional part. The new controller
is tested with the FAST-Hex but can be used for many other
multi-rotor platforms: underactuated, slightly fully-actuated
and completely fully-actuated.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are widely used in
different application scenarios like remote monitoring and
aerial photography, search and rescue missions and, more and
more, aerial physical interaction with the environment [1],
[2] and the with the human operator [3]. This new field of
complex tasks including grasping and manipulation results in
new challenges in the mechanical structure, the design and
furthermore the control of aerial vehicles.

Recently, fully-actuated non-coplanar multi-rotor systems
emerged as a valid solution to either benefit from a faster
disturbance rejection [4], [5] or achieve a full-pose tracking,
i.e., a decoupled tracking of a desired 3D position and 3D
orientation [6]–[12]. Furthermore, fully actuated systems can
be adapted to track a desired wrench and are therefore
optimal tools in physical interaction tasks. The benefits come
with the drawback of a reduced efficiency with respect to
standard coplanar multi-rotors due to higher internal forces.

The first contribution of this paper is to present a new con-
cept, the Fully–Actuated by Synchronized–Tilting Hexarotor
(FAST-Hex), with six propellers actively tiltable by means
of only one additional servomotor. With respect to solutions
with more than one servomotor [5], [8], [10], [11] the use of
a single one reduces the energy consumption, the total mass,
the probability of failure, and the complexity of the system.
Using this additional input, the platform can be driven along
a continuum of configurations going from the energetically
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Fig. 1: Preliminary CAD prototype of the FAST-Hex concept.

efficient (but underactuated) one to the maximally actuated
(but less efficient) one. The high-level fine tuning of the
single tilting input allows to find the best trade-off between
decoupled tracking and power efficiency for the task at hand.
Therefore, from this point of view, the FAST-Hex clearly
outperforms fixed non-coplanar multi-rotors [4], [6], [9],
[12].

The second contribution is to introduce a new lower-
level full-pose controller for the six propeller speeds that
works seamlessly with any kind of multi-rotor platform
(both coplanar and non-coplanar). The controller accepts as
reference a full pose trajectory in R3×SO(3) and modifies
it (giving priority to the positional part) only when strictly
needed by the limitation imposed by the spinning rate satu-
rations of the six propellers. The controller finds its perfect
application to the FAST-Hex as, differently from inverse
dynamics approaches, it optimally deals with configurations
that are slightly fully-actuated, like in the case of quasi-
coplanar multi-rotors. However, it is applicable to a much
larger category of multi-rotors (beyond the FAST-Hex).

The paper is structured as follows. We describe and derive
a dynamical model of the FAST-Hex in Sec. II. In Sec. III
we develop a full-pose geometric control in R3×SO(3) for
generic multi-rotors and we test its validity in a realistic
simulation in Sec. IV. Finally, Sec. V concludes the paper
with a summary of the results and an outline of future work.

II. MODELING

The CAD model of a preliminary design of FAST-Hex is
shown in Fig. 1. Its main feature is the ability to tilt the
six propellers synchronously by using a transmission system
connected to a single servomotor. In this section we introduce
a simplified mathematical model that is used to derive the
controller in Sec. III. A more accurate mathematical model
will be used for the numerical validation of Sec. IV.

In its simplest model FAST-Hex is composed by a rigid
body and six massless orientable propellers. We refer the
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Fig. 2: A sketch of the simplified model of FAST-Hex. We
highlighted all quantities related to the (i=3)-th propeller group.
Clockwise spinning propellers {1,3,5} are depicted in light-blue,
while the counterclockwise spinning ones {2,4,6} in light-orange.

reader to Fig. 2, where all main frames and symbols are re-
ported. Let us define a world frame FW =OW ,{xW ,yW ,zW},
the body frame FB =OB,{xB,yB,zB}, rigidly attached to the
platform, where OB corresponds to the geometric center of
the six propellers and to the center of mass (CoM) of the
platform. The position of OB expressed in FW is denoted
by pB ∈R3 and the orientation of FB in FW is represented
by the rotation matrix RB ∈ SO(3). The angular velocity of
FB with respect to FW , expressed in FB, is denoted with
ωωωB ∈ R3. The kinematics of RB is then

ṘB = RB[ωωωB]×, (1)

where [•]× ∈ so(3) represents, in general, the skew symmet-
ric matrix associated to any vector • ∈ R3.

Hereafter we denote with e1, e2, and e3 the three vectors
of the canonical basis of R3, and with Rx, Ry, and Rz, the
three canonical rotation matrices in SO(3).

Let us consider six frames FS1 , . . . ,FS6 , where FSi =
OSi ,{xSi ,ySi ,zSi}. The orientation of FSi with respect to FB
is represented by the rotation matrix

RB
Si
(α) = Rz

(
(i−1)

π
3

)
Rx

(
(−1)i−1α

)
, i = 1, . . . ,6 (2)

where α ∈ A is the synchronized tilting angle which is
adjustable by using a unique servomotor and a suitable
transmission system (see Fig. 1 and attached video). The
presence of (−1)i−1 in (2) models the fact that the rotation
axes of propellers with adjacent indexes are designed to tilt
in an opposite fashion, which guarantees the full actuation of
the platform for α ∈A \{0}, see, e.g., [9] for an explanation.

The vector from OB to OSi , describing the position of the
center of the i-th propeller, expressed in FB, is

pB
B,Si

= lRz

(
(i−1)

π
3

)
e1 for i = 1, . . . ,6 (3)

where l > 0 is the distance from OB to OSi .
The i-th propeller is centered at OSi and rotates with

angular velocity (−1)iwizSi where wi > 0 is the controllable
propeller spinning rate. While rotating, the propeller exerts
simultaneously a thrust force and a drag moment, applied in
OSi and oriented along zSi , that, expressed in FB, are

fB
i ( fi,α) = fiRB

Si
(α)e3, for i = 1, . . . ,6, and (4)

τττB
i ( fi,α) = (−1)i−1cτ

f fiRB
Si
(α)e3, for i = 1, . . . ,6, (5)

respectively, where cτ
f > 0 is a constant parameter character-

istic of the type of propeller, fi is the intensity of the force

produced by the propeller, which is related to the controllable
spinning rate by means of the quadratic relation

fi = c f w2
i , (6)

where c f > 0 is another propeller-dependent constant param-
eter. The presence of (−1)i in (2) and (5) models the fact
that propellers with adjacent indexes are designed to spin
with opposite sign and thus generate opposite drags.

Summing all the thrust forces we can compute the total
force applied to the platform in its CoM, expressed in FW

fW (α,u) = RB

6

∑
i=1

fB
i ( fi,α) = RBF1(α)u, (7)

where u = [ f1 f2 f3 f4 f5 f6]
T and F1(α)∈R3×6 is a suitable

α-dependent matrix. If α = 0, i.e., all the propellers are co-
planar like in a standard hexarotor, then F1(α) = [06 06 16]

T .
Summing all moment contributions (drag moments and

thrust contributions), we obtain the total moment applied to
the platform, with respect to OB, and expressed in FB

τττB(α,u) =
6

∑
i=1

((
pB

B,Si
× fB

i ( fi,α)
)
+ τττB

i ( fi,α)
)
= F2(α)u.

(8)

Using the Newton-Euler approach, the equations of motion
of the aerial platform can be then compactly written as[

mp̈B
Jω̇ωωB

]
=−

[
mge3

ωωωB×JωωωB

]
+

[
fW

τττB

]
(9)

where J > 0 is the 3×3 inertia matrix of the rigid body with
respect to OB and expressed in FB, m > 0 is the total mass
of the platform, and g > 0 is the gravitational acceleration.

Replacing (7) and (8) in (9) we obtain[
mp̈B
Jω̇ωωB

]
=−

[
mge3

ωωωB×JωωωB

]
+

[
RBF1(α)

F2(α)

]
︸ ︷︷ ︸

F(RB,α)

u. (10)

Finally, we take into account the propeller spinning rate
saturations, that can be expressed as input saturations as

u ∈U = {u ∈ R6 |0≤ u≤ fi ≤ u ∀i = 1 . . .6}. (11)

A. Synchronized Tilting Angle: Efficiency vs. Full-Actuation

FAST-Hex has two structurally different configurations:
1) α = 0 ⇒ rank

(
F(RB,α = 0)

)
= 4

2) α ∈A \{0} ⇒ rank
(
F(RB,α)

)
= 6.

In configuration 1) all propellers of the FAST-Hex are co-
planar or, equivalently, their spinning axes are all collinear.
The system degenerates to an ordinary hexarotor platform.
In this configuration the internal forces during hovering are
zero. Only internal torques due to the drag moment appear.
These are typically one order of magnitude less strong than
the torques generated by the thrust moments and therefore
neglected in the following efficiency considerations.

We model the wasted force using the following index

η f (α,u) = ‖∑
6
i=1 fB

i ( fi,α)‖
∑

6
i=1 ‖fB

i ( fi,α)‖ =
‖∑

6
i=1 fB

i ( fi,α)‖
∑

6
i=1 fi

∈ [0,1] (12)
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Fig. 3: Volume of attainable total forces RT
B fW (α,u) corresponding

to different values of α . The surfaces are computed using (7),
expressed in the body frame FB, and imposing fi > 0 ∀i = 1, . . . ,6.
The larger α the larger the volume of the pseudo-cone. For α = 0
the cone degenerates to a single direction along the zB axis (not
shown in the plot).

that we call the force efficiency index.
It is easy to check that η f (α = 0,u) = 1 for any input

u, which corresponds to maximum efficiency. Hence the
configuration 1) is energetically very efficient. This comes
with the drawback that the platform is underactuated and a
simultaneous tracking of fully independent pr(t) and Rr(t) is
impossible. The best choice left in this case is a control that
selects a new reference orientation, denoted with Rd(t), that
is compatible1 with pr(t) and is as close a possible to Rr(t)
with respect to a certain criterion, as, e.g., possessing the
same yaw angle of Rr(t), or the same projection of a certain
axis on a certain plane. This approach is used, e.g., by the
well established geometric control [13], whose rotational part
is based on [14]. Global convergence is achieved without the
singularities of other orientation parametrization.

In the configurations of type 2) the internal forces in
hovering are greater than zero, which means that the system
is wasting more energy than in configuration 1). The larger
|α| the larger the internal forces. This is clearly visible from
the fact that η f (α ∈ A \{0},u) < 1. In particular, during
horizontal hovering, when all the propellers are spinning at
the same speed producing the same force f , we have that
η f (α, f 16×1) = cosα . If the platform is following a non-
hovering trajectory then η f (α,u) is in general different from
cosα and one has to use (12) to exactly compute it. On
the other side in configurations of type 2) the platform is
fully actuated, and the larger |α| the larger the volume of
admissible total forces fW in (9), as it can be clearly seen
from Fig. 3. The simultaneous tracking of pr(t) and Rr(t)
becomes feasible as shown in [9], where a controller for this
particular case is also proposed.

Due to the fact that α is a slowly changeable parameter,
the change of α is delegated to a high-level slow-rate
controller/planner or to a human operator. The high-level
controller can gently tune α while flying, thus continuously
changing the platform between configuration 1) and any of

1Compatibility is related to the well-known differential flatness property
of coplanar-rotor vehicles. In particular, the zB axis must be kept parallel to
p̈r(t)+mge3. The orientation about zB is instead not constrained by pr(t).

the configurations of type 2) in order to adapt to the particular
task being executed. For example configuration 1) can be
chosen when a pure horizontal hovering is requested while
a type 2) configuration can be selected when hovering with
non-zero roll and pitch is needed.

III. FULL-POSE GEOMETRIC CONTROL WITH
PRIORITIZED POSITION TRACKING

In this section we consider the problem of designing a
low-level control law for the six spinning rate inputs u that
lets pW

B and RB track at best an arbitrary full-pose reference
trajectory (pr(t),Rr(t)) : R→ R3×SO(3). For the reasons
given above, the low-level controller assumes that α is given.
By decoupling the control of α and u we also make the low-
level controller described in this section applicable to many
other platforms beyond its specific use for the FAST-Hex.

One option to design the controller would be to use the ge-
ometric control [13] in configuration 1) and the fully actuated
controller [9] in configuration 2). A part from the problems
possibly generated by the use of a switching controller, this
solution is not advisable as the computation of F(RB,α)−1

(used in [9]) is ill-conditioned if α → 0 and it would result
in very high control inputs which do not fulfill (11). The use
of such controller on FAST-Hex would lead to saturations,
unpredictable behavior and possible destabilization.

A possible remedy could be to use the geometric con-
trol [13] even for small values of |α|, which would mean to
give up on the possibility of tracking the full-pose trajectory
when α is too small, i.e., a bad exploitation of the FAST-
Hex full-actuation capabilities. In fact, driving the platform
with α close to 0 is actually desirable, since in this case we
might have the perfect balance between full actuation and
minimization of the wasted internal forces.

Driven by these considerations, we propose to use a unique
controller that works seamlessly in configurations of both
types ((type 1) and (type 2)). The main design idea is to
extend the underactuated geometric control [13] to the fully-
actuated case. The resulting behavior of FAST-Hex with our
novel controller will then be the following:
• the smaller |α| (and the larger ‖p̈r(t)‖) the more the

output of the control law resembles [13]. In other words,
when |α| decreases FAST-Hex becomes gradually un-
deractuated, i.e., it still keeps a good tracking of the
reference position but it becomes progressively unable
to independently track also the reference orientation;

• the larger |α| (and the smaller ‖p̈r(t)‖) the more the
controller generalizes [13], and FAST-Hex becomes
gradually fully-actuated, i.e., more and more able to
control simultaneously the position and the orientation
in an independent way.

This approach is formally described in the following.
Similarly to [13], and to many other aerial vehicle con-

trollers, our controller is composed by an inner control loop
(the attitude controller) and outer control loop (the position
controller), see Fig. 4 for a block diagram of the full control
system. The controller terminates with a wrench mapper that
computes the actual input u based on the reference control
force fr ∈R3 and reference control moment τττr ∈R3 provided
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Fig. 4: Block diagram of the controller.

by the position and attitude controller, respectively. We shall
describe in detail the three components in the following.

1) Attitude controller: The attitude controller is standard:
it takes as input a desired orientation, denoted with Rd ∈
SO(3), and the measured attitude state RB,ωωωB to compute
the reference control torque τττr ∈ R3 as

τττr = ωωωB×JωωωB−KReR−Kω ωωωB (13)

where KR,Kω are positive gain matrixes, eR is the orientation
error defined as

eR =
1
2
(RT

d RB−RT
BRd)

∨, (14)

and •∨ is the vee map from so(3) to R3, see, e.g., [13]. The
vector τττr is then passed to the wrench mapper. Notice that
the desired orientation Rd is not in general the same as the
reference orientation Rr.

2) Position controller: The position controller takes as
input the full-pose reference trajectory

(
pr(t),Rr(t)

)
and the

measured translational state pB, ṗB and produces as output
the desired orientation Rd (given as input to the attitude
controller) and the reference control force fr ∈ R3 (sent
directly to the wrench mapper).

In order to describe the position controller algorithm we
start by defining the position tracking errors

ep = pB−pr, and ev = ėp = ṗB− ṗr. (15)

from which the reference force vector is computed as

fr = m(p̈r +ge3−Kpep−Kvev) , (16)

where Kp and Kv are positive diagonal gain matrixes. It is
easy to check that if fr could be applied to the CoM of FAST-
Hex then ep would converge exponentially to zero with a
dynamics dictated by Kp and Kv.

Given α , the set of orientations2 of the main body that
allow to exert fr on the CoM while satisfying the input
constraints (11) can be defined recalling (7) and (8)

Rα(fr) = {R ∈ SO(3) |
∃u ∈U , RF1(α)u = fr ∧ F2(α)u = 0}. (17)

Simultaneous tracking of both pr(t) and Rr(t) is possible
iff Rr(t)∈Rα(fr(t)). In that case the position controller just
selects Rd = Rr. Otherwise, our strategy is to modify Rr as
less as possible in order to find an Rd that is contained in
Rα(fr(t)) and is also close to Rr.

2This set can also be defined for a generic multi-rotor platform, thus
allowing to extend our method beyond its specific use for the FAST-Hex.

In order to describe how Rd is computed in the FAST-Hex
case let us define the following set of orientations

R(fr) = {R ∈ SO(3) | Re3× fr = 0}, (18)

which represents the set of body orientations for which zB
is parallel to fr. It is easy to be convinced that, thanks to the
way FAST-Hex is designed, the following relation holds:

Rα(fr) 6= /0⇒Rα(fr)⊃R(fr). (19)

In fact, the direction zB is the one along which the largest
force can be exerted by the FAST-Hex.

Notice that if α = 0 then zB is actually the only direction
along which a force can be exerted, i.e.:

Rα=0(fr) 6= /0⇒Rα=0(fr) = R(fr). (20)

When α > 0, the set Rα(fr) may contain orientations in
the ‘neighborhood’ of R(fr). The main idea is then to search
for Rd by moving from Rr toward the set R(fr) and to stop as
soon as an orientation that belongs to Rα(fr) is found. In the
best case (Rr(t) ∈Rα(fr(t))) the search stops immediately
and the controller selects Rd = Rr; in the worst case the
search terminates in R(fr); in the general case it terminates
somewhere in the middle.

In order to efficiently implement the search consider the
rotation matrix Rs(λ ) defined as the matrix that represents
a rotation of an angle λ about the vector Rre3× fr. Then
define λd as the solution of

min
Rs(λ )Rr ∈Rα (fr)

λ∈[0,λmax]

λ , (21)

where λmax = arccos
(

fr
‖fr‖

T Rre3

)
(i.e., λmax is such that

Rs(λmax)Rr ∈ R(fr)) and finally compute the desired ori-
entation as

Rd = Rs(λd)Rr. (22)

The minimization problem (21) is efficiently implemented
using a bisection search on λ ∈ [0,λmax].

3) Wrench mapper: The wrench mapper takes as inputs
fr and τττr and computes a feasible u using:

u =

[
RBF1(α)

F2(α)

]−1 [ fc
τττr

]
. (23)

Notice that (23) does not include directly fr, but it uses
instead the vector fc ∈ R3. The vector fc is computed by
initializing it as fr and then rotating it about fr × RBe3
of the minimum angle that is needed to let u satisfy the
constraints (11) or to eventually be parallel to RBe3. This
computation is also efficiently implemented using a bisection
search, as it is done for Rd .

To sum up the full controller in words, we aim at tracking
a desired full-pose reference trajectory

(
pr(t),Rr(t)

)
: if this

is not feasible as the control output u would violate the
minimum or maximum forces of any propeller ui, we seek
to find an Rd(t) ∈ Rα(fr) such that (11) is obeyed. Finally,
since Rd cannot, in general, be attained instantaneously, we
search for an fc close to fr that obeys (11) given the current
orientation and we compute u using (23).
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TABLE I: Parameters of the accurate model used in the simulations.

Definition Symbol Value in Sim.

Total mass of the structure without the propeller groups mS 1.5 Kg
Mass of the ith propeller group mi 0.15 Kg
Mass of the whole FAST-Hex m 2.4 Kg
Gravity acceleration g 9.81 m/s2

Distance between OB and OSi l 0.315 m
Parameter of the propeller linking wi to fi c f 6.3∗10−4 N

Hz2

Constant parameter characteristic of the propeller cτ
f 1.7∗10−2m

IV. SIMULATIONS WITH AN ACCURATE MODEL

In this section we present simulation results to validate
the presented controller. The model of the FAST-Hex in-
troduced in Sec. II is useful in order to introduce the
mathematical framework and to design the controller, but
it is not realistic enough to predict the real behavior of the
controlled platform in simulation. Therefore we developed a
more advanced model which includes all the characteristics
of the preliminary prototype depicted in Fig. 1 includ-
ing but not limited to: physical properties obtained from
the CAD model, control frequencies, delays, dynamics of
the rotor spinning velocity control, tilting propeller groups
with moving masses, change of the inertia matrix and the
center of mass. A list of the main parameters used in
the simulations can be found in Table I. Additionally, the
following parameters have been also used: inertia tensor of
the main body JB

B = [[4.30 0 0]T [0 4.11 0]T [0 0 8.20]T ] ·
10−2 Kg/m2; inertia tensor of the propeller group JPi

Pi
=

[[1.97 0 0]T [0 1.97 0]T [0 0 1.21]T ] ·10−4 Kg/m2. Finally, the
controller gains in (13) and (16) are chosen as Kr = 70I3,
Kω = 10I3, Kp = 45I3, Kv = 15I3.

The results of a representative simulation are shown in
Fig. 5 while additional simulation results can be seen in the
attached video. For the reader’s convenience the orientations
corresponding to a rotation matrix used in the controller are
displayed in the plots using the roll, pitch, and yaw angles
with the following naming convention: R• → φ•,θ•,ψ•.
The full-pose reference trajectory is defined by the position
pr(t) = [prx(t) pry(t) prz(t)]

T and the orientation Rr(t), with
t ∈ [0,40] s. The trajectory pr(t),Rr(t) is chosen purposely
unfeasible for a standard (co-planar) hexarotor (i.e., the
FAST-Hex with α = 0). In particular, the position trajectory
is constant w.r.t time for pry(t)= 0 m and prz(t)= 0.75 m
and sinusoidal for prx(t). In a similar fashion the rotational
trajectory is constant for roll and yaw (φr(t)= 0 deg and
ψr(t)= 0 deg) and sinusoidal for the pitch θr(t). The main
parameters of the two sinusoids are given in Table II.
Furthermore, the two sinusoids are out of phase by 180 deg
(see Fig. 5 – compare prx and θr). In this way the FAST-Hex
is tasked to change the direction of motion in position while
flying backwards – a clearly unfeasible motion for co-planar
multi-rotors. For further visualization we refer the reader to
the attached video.

Concerning the signal α(t), we assume that α = 0 deg
(underactuated configuration) for t < 15.2 s; α is linearly
increasing from 0 deg to 35 deg for 15.2 s ≤ t ≤ 30.2 s;
and that α = 35 deg for t >30.2 s (largely fully-actuated
configuration) (see Fig. 5–α).

TABLE II: Features of pr(t),Rr(t) concerning prx(t) and θr(t)

Position (prx (t)) Orientation (θr(t))

Amplitude: 1 m 10 deg
Peak velocity: 1 m/s 10 deg/s
Peak acceleration: 1 m/s2 10 deg/s2

A. Main findings

1) Phases induced by a changing α: It becomes clear
from the results that the trajectory tracking can be sub
grouped into three phases, named underactuated phase,
transition phase and fully actuated phase (see Fig. 5). The
system is underactuated as long as α = 0. In this phase only
the reference position can satisfyingly be tracked (maximum
position error ‖ep‖≈ 0.05 m) while the orientation is actually
in opposition of phase with respect to the reference trajectory
because the controller gives priority the position tracking.
The second phase is determined by small values of α > 0
which allows a partial tracking of the reference orientation
trajectory. In fact, although α > 0, the admissible force
space (compare Fig. 3) is not always wide enough such
that fr in (16) remains inside. In these cases Rr 6= Rd and
0 < λ < λmax. The last phase, the fully actuated phase, is
characterized by a α > 0 that is large enough to let fr always
remain in the feasible set, resulting in a good simultaneous
tracking of pr and Rr.

2) Trajectory tracking: It is very interesting to point out
that the position tracking (see Fig. 5 – epx ) starts to improve
in the transition phase and is even more improved in fully
actuated phase compared to the underactuated phase. This
effect is two–folded. It is clear that in the case of the
underactuated system the position tracking is limited by the
accuracy of the orientation tracking, while the tracking of
both position and orientation start to become independent
when α > 0. Additionally we would like to point out that
the reference trajectory is currently only defined in Rr but its
derivatives are not used (i.e., ωωωr, ω̇ωωr). How to correctly use
(ωωωr, ω̇ωωr) in the controller is not an easy problem to solve
and an interesting subject of future research.

3) Force efficiency: The force efficiency index η f (pre-
sented in (12)) in Fig 5 shows the expected decreasing of
the efficiency for α > 0. We would like to note that even
for a high α = 35 deg the efficiency is only reduced by
≈ 18%, which corresponds to an average of about 1 N more
of thrust for each propeller w.r.t. the the underactuated case.
Furthermore it is important to note that the actuation of the
propeller groups (additional mechanics + motor) increases
the mass of the full platform by ≈ 10%. This additional
efficiency loss has to be taken into account in the design
phase in addition to η f .

4) Maximum rate change of f: As soon as α > 0 the
controller requires very high dynamics of the control output
(see Fig. 5 – f1 . . . f6 at time 15.2 s). In the simulation we
imposed a realistic rate of change of the propeller speed
based on experimental data. The system remains perfectly
stable with the addition of this non-ideality. Although the
system is stable, a smother control input directly from
controller would be desirable. One option could be to limit
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Fig. 5: Simultaneous tracking of a sinusoidal reference position
trajectory and an opposing-phase reference sinusoidal attitude tra-
jectory. What is impossible for a standard underactuated platform
becomes feasible for the FAST-Hex when α becomes large enough.
The proposed geometric controller works seamlessly in any α
condition. All symbols are defined in the paper.

the rate of change when searching for λ in the position
controller in (21) thus achieving a continuous and smooth
control output u. This is left as future work.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a new multi-rotor aerial con-
cept, named FAST-Hex, that is able to smoothly change

between an efficient but underactuated aerial platform and
a fully-actuated but less efficient one. Additionally, we also
proposed a new full-pose geometric controller in R3×SO(3)
for generic multi-rotor platforms that is able to cope with
propeller spinning rate saturation. Finally we have shown
the practicability of this method for controlling the FAST-
Hex with realistic simulations.

In the near future we will build a real prototype and test
the controller with real hardware. Sensor-based automatic
calibration procedures will be designed, as, e.g., in [15].
Furthermore, we will improve the controller to explicitly
cope with limitation of the propeller spinning acceleration
(not only the rate); we will work on the optimal and
automated control of α and the control of the platform in
the case of motor failures.
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