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Ground and Aerial Mutual Localization using
Anonymous Relative-Bearing Measurements

Paolo Stegagno, Marco Cognetti, Giuseppe Oriolo, Heinrich H. Bülthoff, Antonio Franchi

Abstract—We present a decentralized algorithm for estimating
mutual poses (i.e., relative positions and orientations) in a
group of mobile robots. The algorithm uses only anonymous
relative-bearing measurements obtainable, e.g., using onboard
monocular cameras, and onboard motion measurements, such
as inertial ones (acceleration and angular velocity). Onboard
relative-bearing sensors supply anonymous measurements, i.e.,
they provide the directions along which other robots are located
but each direction is not associated to any robot (identities
are unknown). The issue of anonymity is often overlooked in
theory but represents a real problem in practice, especially when
employing onboard vision. The solution is first presented for
ground robots, in SE(2), and then for aerial robots, in SE(3), in
order to emphasize the difference between the two cases. The
proposed method is based on a two-step approach, the first
uses instantaneous geometrical arguments on the anonymous
measurements in order to retrieve the most likely unscaled
relative configurations together with the identities, the second
uses a numeric Bayesian filtering in order to take advantage of the
motion model over time and to retrieve the scale. The proposed
method exhibits robustness w.r.t. false positives and negatives of
the robot detector. An extensive experimental validation of the
algorithm is performed using Khepera III ground mobile robots
and quadrotor aerial robots.

Index Terms—Bearing/vision-based mutual localization of
ground and flying robots, mutual localization, bearing-only,
bearing/visual-inertial sensor fusion, unknown data-association.

I. INTRODUCTION

The designer of a decentralized multi-robot system must take
into account the problem of the mutual localization among
the agents, that is, each agent must be able to detect its
teammates and compute an estimate of their configurations.
This knowledge is mandatory for all robots in order to co-
operate and exchange data, and is a prerequisite to perform
in a decentralized way higher level tasks such as formation
control [1], connectivity maintenance [2], cooperative explo-
ration [3] and transportation [4], distributed estimation [5],
coverage and sensing [6], [7].

The first efforts to solve this issue can be ascribed to [8],
in which the authors propose a system for the estimation of
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Toulouse, France, afranchi@laas.fr.

the configuration of a team of robots that uses relative mea-
surements collected by the robots themselves. The problem
introduced by this work subsequently evolved in what is now
known as Cooperative Localization (CL) which consists in
estimating the configuration of the agents in a common fixed
frame. Many authors have addressed CL through the use of
particle filters, Kalman filters and MAP estimators [9], [10],
[11], [12], [13], and the general result of those works is the
improved accuracy of the localization of the entire system
by the inclusion of relative measurements among the robots.
However, we state that agreeing in advance on a common
fixed frame already implies a form of centralized consensus
between the agents, and should be avoided if possible in the
development of a decentralized system.

A possible workaround is to assume that each agent ex-
presses configurations and measurements in its own fixed
frame. Then, it is necessary for each robot to solve the Abso-
lute Mutual Localization (AML) i.e., to estimate the change
of coordinates among its fixed frame and the fixed frames
of the other robots. Otherwise, assuming that each robot is
equipped with its own attached frame leads to the definition
of the Relative Mutual Localization (RML) as the problem
of estimating the change of coordinates among the agents’
moving frames. Some authors have studied the solvability
of the RML problem, investigating the minimal sets of data
needed to determine the robot-to-robot 3D relative pose [14]
and proposing observability analysis and estimators [15], [16].

Most of the previous works assume that robot-to-robot
measurements come with the identity of the measured robot,
or equivalently that the estimation is performed pairwise. The
situation in which the identities of the measured robots is
not retrieved by the sensor is known in robotics literature
as unknown data-association or anonymous measurements.
In [17], [18], we have addressed the problem of 2D RML
with anonymous position measurements plus odometric data.
The concept behind these papers is that the capability of
achieving mutual localization with anonymous measurements
increases the level of decentralization, widens the field of
applicability and adds flexibility to the system. Hence, we
proposed a two-phase localization system composed by (1) a
multiple registration algorithm that compute all the possible
changes of coordinates among the agents’ relative frames
using geometrical arguments to invert the measurement map
(2) a bank of particle filters to account for the uncertainty
and ambiguity of the process (see also [19]). The whole
localization system relies on the exchange of measurements
among the robots through communication.

In an effort of further generalization, in [20] and [21] we
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have considered 2D and 3D extensions to the case of bearing-
only (rather than range-and-bearing) measurements, to allow
the use of non-depth sensors such as simple cameras, whose
employment widens the field of applicability of our system.
The objective of this work is to offer a comprehensive point
of view on bearing-only mutual localization with anonymous
measurements. At this aim, we will tackle the problem both
in 2D and 3D worlds considering three among the most sig-
nificant settings for robotics applications, defined as follows:
Scenario A (2D, linear and angular velocity measurements):

the robots lie on a plane, and are able to measure both their
own linear and angular velocity in body frame;

Scenario B (3D, linear and angular velocity measurements):
the robots live in a 3D world, and are able to measure both
their own linear and angular velocity in body frame.

Scenario C (3D, linear acceleration and angular velocity mea-
surements): the robots live in a 3D world, and are able to
measure their own linear acceleration and angular velocity
in body frame;
Note that Scenario A can be regarded (and will be for-

malized) as a particular case of Scenario B. However, as
we will explain in the paper, not having the third dimension
causes a loss of information in the measurements which
calls for a different metric while evaluating the result of a
geometric algorithm to solve the problem. In addition, with our
system architecture we will be able to introduce an additional
constraint in the 3D case. Moreover, the introduction of
Scenario A is functional to the explanation of the general case,
and provides more insights on some design choices.

Preliminary works regarding only Scenarios A and C ap-
peared in our conference papers [20] and [21]. With respect
to these works, in this paper we also address the newly
formulated Scenario B, which is an interesting compromise
among the other two, allowing us to produce a detailed dis-
cussion on the similarities and differences among the different
Scenarios. Moreover, we provide a theoretical discussion on
the consequences of anonymity, we present new experiments
and compare the results of the different solutions.

The rest of the paper is organized as follows. In Section II
we introduce the working principle and a qualitative descrip-
tion of the system aimed at the estimation of the relative
configurations among the robots in the three Scenarios. In
Section III we draw some conclusions on the consequences of
the assumption of anonymous measurements. In Section IV
we formally introduce the considered mutual localization
problems, while in Section V we address Scenario A. The
developed system is then modified in Section VI to tackle the
increased dimensionality of Scenarios C and B. We discuss
some important aspects of the system, as the computational
complexity, in Section VII. Experimental results for the three
Scenarios are presented in Section VIII, and some conclusions
are given in Section IX.

II. SYSTEM OVERVIEW

In general, the localization of a team of robots requires both
proprioceptive and exteroceptive sensors. The use of GPS or
motion capture system, and more in general off-board sensors,
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Fig. 1: The working principle of the developed mutual localization
system.

bounds the use of the system to the presence of an external
infrastructure. Hence, the choice of the sensor equipment of
the robots will be crucial for the design of the system, and
will vary depending on the considered Scenario. However, it
is possible to draw some similarities on the functionalities
of the sensors on different platforms as the ones moving in
different spaces (2D and 3D).

In fact, in all Scenarios the generic robot will carry on:
• a motion detector, which provides some proprioceptive

measurements of its own motion;
• a robot detector, which is able to detect the bearing

of the adjacent robots and provides some exteroceptive
measurements on their relative configurations, without
detecting their identities; hence, the robot detector will
provide at each time-step a set of untagged relative
measurements.

In our system we want to ensure robustness against single-
robot failures adopting a decentralized approach. For this
reason we opted for a robo-centric estimation, in which each
robot computes the relative configurations of the team-mates
in its own frame of reference. In this way it is also addressed
the problem that the robots do not have a common fixed
frame of reference, and in general are not able to compute
it. In fact, although some techniques for the computation of
common frames of reference are known (see, e.g., [22]), to the
best of our knowledge those techniques do not account for the
situation of anonymous measurements.

Most previous works in mutual localization apply Bayesian
filters and/or geometrical considerations to perform the es-
timate of the relative configurations of the robot. However,
the standard use of those tools is favored by the assumption
of known data association of the measurements. Instead, in
this work we want to tackle the more challenging situation of
anonymous measurements, which cannot be used directly to
feed a filter or a geometrical algorithm. In fact, they require
a foregoing step to recover the correspondences among the
measurements and the measured robots.

Although this step can be implemented through methods
such as Maximum Likelihood [23] and Joint Compatibility
Test [24], those approaches are likely to be successful only in
situations in which the robots are sparse, so that at each time-
step the sets of measurements contain one or few elements
and the beliefs on their configurations do not overlap. Instead,
they are likely to make a high number of association errors if
the robots operate close to each other, hence the beliefs are
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Fig. 2: Examples of 2D (left) and 3D (right) formations up to a
scaling factor.

overlapping. Moreover, they do not solve the problem of the
initialization, when there is no available belief.

In our proposed solution each robot of the team runs an
independent mutual localization system as the one depicted in
Fig. 1. In order to perform the mutual localization, each robot
collects at each time-step the sensor perception communicated
from the team-mates. Then, all the measurement sets provided
by the robot detectors are registered by a custom algorithm
(multiple registration) on the basis of geometrical computa-
tions to reconstruct the correspondences among measurements
and measured robots. The multiple registration does not act as
a standard data association technique, since it also reconstructs
part of the unmeasured state (i.e., the relative orientation). In
particular, since it processes only angular measurements, and
since the multiple registration problem may admit multiple
solutions (see Sec. III), its output is a set of most likely for-
mations up to a scaling factor. In fact, no distance information
is offered by the robot detector, hence it is not possible to
reconstruct the scale of the registered formations.

The problem of discriminating among multiple solutions, as
well as the reconstruction of the scale of the formation and
the rejection of noise is demanded to the filtering stage. While
the time update of the filtering is performed using appropriate
models and the measurements from the motion detector of all
robots, the output of the multiple registration is used to feed
the measurement update. Note that the prediction computed by
the filtering stage is used in the multiple registration to help
in the reconstruction of the correspondences of measurements
and robots, and prune the multiple solution before the filtering
stage.

III. CONSEQUENCES OF ANONYMITY

One of the key point of our mutual localization system is
the design of a multiple registration algorithm which recon-
structs the correspondences among the measurements and the
measured robots on the basis of geometric considerations.

It is very well known from literature that in general this
problem admits multiple solutions [25] even in the simplified
situation of non-anonymous position measurements and 2D
world. In such case, frameworks (i.e.: spatial configuration and
measurement graph) which admit a single solution are said to
be rigid, and there are known conditions and algorithms to
individuate rigid and non-rigid frameworks.

In our previous paper [19] we have shown that, in case of
anonymous position measurements, the multiple registration

problem applied in rotational symmetric configurations admits
multiple solutions even if the underlying framework is rigid
(i.e.: the framework is rigid considering the non-anonymous
version of the measurements). Hence, the loss of the identity
information results in the loss of unique solvability. Here,
avoiding a formal description of the problem, we want to
show some relevant properties that will be useful in the
design of the algorithm. We will use the following abbre-
viations: MRB (MRAB) indicates multiple registration with
(anonymous) bearing measurements, MRP (MRAP) indicates
multiple registration with (anonymous) position (i.e.: bearing
plus distance) measurements.

Property 1: any configuration obtained through a change of
scale of a solution of the MRAB problem is again a solution
of the same problem. Two simple examples in 2D and 3D
(Fig. 2) show that bearing measurements are invariant w.r.t.
the scale of the original formation. This is valid in general, and
implies that a MRAB problem always admits infinite solutions.
In the following analysis, we will not consider the infinite
solutions derived by the unknown scale of the formation in
case of bearing measurements. When referring to a particular
solution to this problem we will implicitly indicate the class
of equivalence of all the solutions up to a scale factor.

Property 2: a solution of the MRAP problem is also a
solution of the equivalent MRAB problem, while the opposite
is not necessarily true. In fact, the additional distance in-
formation contained in the position measurements constitutes
additional constraints which are not present in the case of
bearing measurements. Conversely, all constraints given by
the bearing measurements are contained also in the position
measurements. Consider the examples in Fig. 3. The first row
shows an equilateral triangular formation which is rigid, but
admits two different solutions both in case of anonymous
position and bearing measurements. In the example, the robots
Aj and Ak can be switched as vertices of the triangle, keeping
the third one on Ai. Then, in this case, the loss of the
metric information does not impact on the type and number
of the solutions. The same does not apply when considering
isosceles or scalene triangles, analyzed in the second and third
rows. In both cases the solution to the problem with position
measurements is unique, while it is possible to exchange the
role of Aj and Ak in case of bearing measurements.

Property 3: Consider the 2D MRAB problem. If the mea-
surement sets of two robots coincide up to a 2D rotation
of all the measurements then the 2D MRAB problem admits
multiple solutions. It is easy to show (e.g., Fig. 3) that if the
measurement sets of two robots are equal up to a rotation,
then the role of the two robots can be exchanged in a solution
in order to create a different solution. This property can be
generalized to the 3D MRAB problem: if the measurement
sets of two robots coincide up to a 3D rotation of all the
measurements then the 3D MRAB problem admits multiple
solutions. Figure 4a shows an example of such situation.

Note that in the 3D case the rotation can be around any axis,
hence the third dimension increases in general the difficulty
of the problem. However, if the robots are able to agree on a
common direction in space, they can restrict the problem on
the plane perpendicular to that direction, bringing it back to
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Fig. 3: Comparison of the solvabilty of the multiple registration problem in case of triangular formation using anonymous position or bearing
measurements.

axis-angle
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no feasible
angle for the 

given axis

a)

b)

Fig. 4: a) Example of axis-angle rotation in the 3D MRAB problem;
b) same situation with a common direction in space available to the
robots.

2D (Figure 4b). In particular, if the sensor equipment includes
an IMU, each robot is able to estimate the gravity vector
and obtain a direction known also by the other robots. In
this way, the only feasible axis direction for the axis-angle
pair becomes the direction of the gravity vector and the 3D
MRAB problem can be restricted to the horizontal plane. The
considerable simplification introduced by this approach is only
one of two advantages. The second is that, as we will show
in detail in Sec. VI, once the problem is reduced to 2D, the
vertical information contained in the bearing measurements
(the angle that the bearing forms with the direction of the
gravity vector) provides additional constraints that reduces the
number of solutions of the problem.

IV. PROBLEM FORMULATION

A. Notation in the generic 3D Case

We refer the reader to Fig. 5 for illustration. Consider a system
of n robots A1, . . . , An, with n unknown (hence, it may vary
during the operation). Let K = {1, . . . , n} be the set of robot
indices and Ki = K \ {i}. The robots are modeled as rigid
bodies in SE(3). Denote by W : {OW , XW , YW , ZW} and
Bi : {OBi

, XBi
, YBi

, ZBi
}, respectively, the inertial (world)

frame and the body frame attached to the center of mass

false  posiƟve

Fig. 5: Mutual localization with anonymous bearing measurements.
Triangles are robots with their attached frame, velocity, acceleration,
angular velocity measurements and robot detectors with false posi-
tives.

of Ai. Body frames conform to the North-East-Down (NED)
convention, as common in the aeronautic field.

The configuration of Ai is represented by the posi-
tion Wpi ∈ R3 of OBi in W and the rotation ma-
trix WRBi

∈ SO(3) between W and Bi. Denote with
RX(·),RY (·),RZ(·) the canonical rotation matrices about
the axes X,Y, Z respectively. Then WRBi

can be written
as WRBi

= RZ(Wψi)RY (Wθi)RX(Wφi)RX(π), being
Wψi,Wθi,Wφi ∈ S1 the yaw, pitch, and roll angles of Ai
respectively, RX(π) the rotation matrix between a NED frame
to its corresponding NWU (North-West-Up) frame, and S1
denotes the unit circle.

Since we are interested in the mutual localization between
the robots, we define the following relative quantities

Bipj = WR
T

Bi
(Wpj −Wpi) (1)

BiRBj = WR
T

Bi

WRBj (2)

and we denote by BixBj
= {Bipj ,

BiRBj
} the full relative

configuration of Aj in Bi. Computing an estimate of BixBj
is

the final goal of the mutual localization.
It is convenient to introduce the frame Ci =

{OCi , XCi , YCi , ZCi}, defined as the frame having the same

Preprint version final version at http://ieeexplore.ieee.org/ 4 Accepted for IEEE Transaction on Robotics 2016



ω

v

i

ii

i
i


C

iC

W

jC
t-

t

b
uii

Fig. 6: Mutual localization with anonymous bearing measurements.
The differences of the 2D case w.r.t. the other Scenarios.

origin as Bi (OCi ≡ OBi
) and such that WRCi = RZ(Wψi).

Hence, the rotation matrix between Bi and Ci is

CiRBi
= RY (Wθi)RX(Wφi)RX(π). (3)

In principle, the whole localization system could be ex-
pressed in NED frame, but the introduction of its correspond-
ing NWU will be useful to develop a common notation with
the 2D case. Note that the plane XCiYCi is parallel to the
plane XWYW , or equivalently ZCi ‖ ZW . In general, we will
use the left superscripts Bi(·) and i(·) to denote quantities (·)
expressed in Bi and Ci respectively.

B. Particularization to the 2D Case

If the robots lie on the XWYW plane the third component of
the position Wpi, as well as the roll Wφi and pitch Wθi angles
are equal to zero. Hence, in Scenario A the configuration of
Ai is completely determined as W x̃i = (W p̃Ti ,

Wψi)T , where
W p̃i =

(
1 0 0
0 1 0

)
Wpi ∈ R2. Therefore in Scenario A

equation (3) reduces to
CiRBi = RX(π). (4)

For a visualization of the peculiarities of Scenario A refer to
Fig 6.

C. Sensor and Communication Equipment

For what concerns the sensor equipment of the robots, we
must distinguish among the different Scenarios. In Scenario A,
which is compatible with a team of general purpose wheeled
robots, Ai’s motion detector provides the measurements: iv̄i,
linear velocity of Ai in the XWYW plane in Ci; and iω̄i,
angular rate about the axis ZW . This can be easily done, e.g.,
through the use of encoders on the wheels. The integration of
iv̄i, iω̄i between two sampling instants t− 1 and t, provides
a measurement of the robot displacement ūti on the plane
between t − 1 and t. Hence, the motion detector in this case
will be particularized as an odometer.

Scenarios B and C are more complex to address, since they
are compatible with a wider range of systems, from swarms
of aerial vehicles to a multitude of underwater vehicles. A
general purpose motion detector which is usually present on
those platforms is the IMU (Inertial Measurement Unit), that

provides to Ai noisy measurements Bi āi, Biω̄i of its proper
acceleration Biai and angular velocity Biωi in body frame,
defined by

Biai = WR
T

Bi
(W p̈i − ge3) (5)

Biωi = WR
T

Bi

Wωi (6)

where g is the gravity acceleration and e3 = (0 0 1)T .
In Scenario B only, we assume that, in addition to the

IMU, measurements Bi v̄i of the linear velocity Bivi are also
available. Linear velocities can be recovered by the use of a
camera and techniques based on the image optic flow or visual
odometry (e.g: [26],[27], [28]).

For the robot detector, we are able to give a generic
formulation independent from the Scenario by assuming the
same type of sensor in all Scenarios. In particular, we assume
that each Ai is able to obtain at each time t anonymous
measurements of the relative bearings

Bibj = WRT
Bi

Wpj −Wpi
‖Wpj −Wpi‖

(7)

of all robots Aj falling in the perception set Dp attached to
Bi.

The relative bearing Bibj ∈ S2 is the unit-norm vector
pointing toward the center of mass of Aj , expressed in Bi. A
measure of (7) can be obtained, for example, by using a feature
tracking algorithm on the images provided by a calibrated
camera mounted on the Ai.

Note that a relative bearing b can be equivalently rep-
resented by the use of an azimuth and zenith-distance pair
(α, ζ) ∈ [0, 2π)× [0, π), since they are related by

b = (sin ζ cosα sin ζ sinα cos ζ)T . (8)

In addition to being subject to false positives (due to objects
that look like robots) and false negatives (due to line of sight
occlusions), relative bearing measurements do not contain the
identities of the measured robots (see Fig. 5). Hence, the
output of the robot detector is a set BiBt = {b̄1, b̄2, . . .} of
measurements whose ordering has no relation to the robot
indexing. In addition, each measurement may or may not
refer to an actual robot due to the possible presence of false
positives. For this reason, in the following we will generically
refer to relative measurements as features. Eventually, each
feature in BiBt identifies a ray originating from Ai on which
another robot may lay.

The only difference between the Scenarios is that in Sce-
nario A the third component of a bearing measurement b̄k is
always equal to zero, being its corresponding zenith-distance
ζ always equal to π/2. Hence, in Scenario A each bearing
can be represented by the use of a unit-norm vector in S1,
or equivalently by mean of the only azimuth α angle. Note
that, in this Scenario, it is immediate to express the features
in Ci using the rotation matrix given by equation (4), while
in Scenario B–C this operation requires the knowledge of the
roll and pitch angles of Ai. We will denote with iBt the set
of features expressed in Ci at time t.

The equipment of Ai is completed by a communication
module that can send/receive data to/from any other robot,
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symbol description Scenario
Ai i-th robot ABC
K set of robot indices ABC
W world frame ABC

OF , XF ,
YF , ZF

origin and axes of the generic frame F ABC
Fpi position of Ai in F ABC
FRG rotation matrix from the frame G to the frame F ABC
Wψi yaw angle of Ai ABC

Wθi,Wφi pitch and roll angles of Ai BC
FxG configuration (position and orientation) of G in F BC
F p̃G reduced position of G in F BC
F x̃G reduced configuration (F p̃T

G ,
FψG) of G in F BC

vi linear velocity of Ai ABC
ωi angular velocity of Ai ABC
ut
i displacement on the plane of Ai between t− 1 and t A

ai linear acceleration of Ai BC
iB feature set relative bearing of Aj ABC
bj relative bearing of Aj ABC
�̄ measurement of � ABC
�̂ estimate of � ABC
Dp perception set ABC
Dc communication set ABC
Ni communication neighbors ABC
α, ζ azimuth and zenith-distance angles ABC

TABLE I: Main symbols with the Scenarios where they are used.

provided that it lies in the communication set Dc rigidly
attached to Bi. In general, the robots use the communication
module to exchange the sensor readings, and each robot signs
its communication packet. However, since the content of the
packets is dependent from the Scenario, we will give its
detailed description while addressing each specific problem.
A list of the main symbols used in each Scenario is given in
Table I.

Eventually, we can formulate the relative mutual localization
problem from the point of view of the generic robot Ai.
Denote with N t

i the neighbors of Ai at time t, i.e., the set
of robots from which it is receiving communication. In a
probabilistic framework, the RML problem with anonymous
bearing measurements requires Ai to compute at each t a
belief about the relative configuration Bixj of all Aj that have
been in communication with Ai, (i.e.: such that j ∈ N1:t

i =
N1
i ∪N2

i ∪. . .∪N t
i ) given all the measurements from the robot

and motion detectors of all communicating robots. We will
formalize later the RML problem in each specific Scenario.

V. SCENARIO A

In Scenario A the robots lie on the XWYW plane. Using the
definition of the motion and robot detector for this Scenario,
the system architecture explained in Fig. 1 can be particular-
ized as shown in Fig. 7. Hence, in this case the communication
packet sent at time t by the generic robot Ai will contain, in
addition to the robot signature,

1) the displacement ūti;
2) the feature set iBt;

and the RML problem can be formalized as
Problem 1: (2D RML with anonymous bearing measure-

ments) For t = 1, 2, . . . and j ∈ N1:t
i , compute the following

belief:

bel(ix̃tj) = p(ix̃tj |ū1:t
i , iB1:t, {ū1:t

j , jB1:t}j∈N1:t
i

). (9)

x x

b

robot
detector

motion
detector

to/from neighbors

PMBR

motion
models

measurement
updates

filtering

multiple
registration

Fig. 7: Scheme of the mutual localization system that runs on Ai in
Scenario A.

Now, we can particularize the multiple registration and the
filtering stages for this Scenario.

A. Multiple Registration

Multiple registration in this scenario is performed by
PMBR, a probabilistic multiple registration algorithm run by
Ai at each time instant t to feed the measurement update
of the particle filters (see Fig. 7). In general, registration is
the process of computing the relative pose between two or
more different viewpoints of the same scene. In our case,
since the ‘scene’ consists only of bearing angles, the scale
of the relative pose cannot be recovered. In particular, given
the sets of features iBt, {jBt}j∈Nt

i
and the current beliefs

{bel(ix̃tj)}j∈Nt
i

computed in the particle filters through the

motion model of the robots, PMBR derives an estimate iξ̂
t

j of
the relative bearing-orientation of Aj , j ∈ N t

i , w.r.t. Ai.
The basic steps of PMBR reported in the pseudo-code in

Algorithm 1 are explained by means of an illustrative example
in Fig. 8.
line 1) Difference angles representation: consider the con-
figuration of the multi-robot system shown in Fig. 8a, with
the corresponding feature sets in Fig. 8b. Note that each pair
of features (bearing angles) in the same feature set can be
equivalently represented by their difference angle. Let B a
feature set, then the equivalent difference set D is defined as

D = {drs = br − bs|drs < π,∀{br, bs} ⊆ B} (10)

and in the pseudo-code is computed through the function
computeDiffAngleSet(�). Note that if B has m elements
then D has at most m(m − 1)/2 elements. In fact, there
are m(m − 1)/2 pairs br, bs, and each pair originates two
difference angles, one larger and one smaller than π, with
only the second being part of D. If br−bs = π, no difference
angle is added to D.
line 2) Triangle finding: now take a triplet of robots that ‘see’
each other, e.g., Ai, Aj , Ak, and make Ah ‘disappear’ for a
moment. Each robot in the triplet sees only two anonymous
features, or equivalently one difference angle; since the triplet
defines a triangle, the sum of the three difference angles must
be π. The algorithm exploits this basic observation by scanning
all the possible triplets of feature sets and looking for triplets
of difference angles (one from each feature set) d1 ∈ Di,
d2 ∈ Dj , d3 ∈ Dk whose sum is π, with a certain tolerance
τ1 needed to account for measurement noise:

d1 + d2 + d3 = π ± τ1 (11)
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Algorithm 1: PMBR
input : feature sets iBt, {jBt}j∈Nt

i
, beliefs {bel(ix̃t

j)}j∈Nt
i

output: relative bearing-orientation estimates {iξ̂
t

j}j∈Nt
i

init : Traw = ∅, Trat = ∅, Tirr = ∅, Tbest = ∅, S = ∅
foreach j ∈ {i} ∪N t

i do jDt = computeDiffAngleSet(jBt)1
foreach {D1, D2, D3} ⊆ {iDt} ∪ {jDt}j∈Nt

i
do2

foreach {d1 ∈ D1,d2 ∈ D2,d3 ∈ D3} do
if d1 + d2 + d3 = π ± τ1 then

(Ta, Tb) = computeTriangles(d1,d2,d3)
Traw = Traw ∪ {Ta, Tb}

foreach T ∈ Traw do3
if count3Intersections(T )≥ th1 then Trat = Trat ∪ {T}

foreach T ∈ Trat do4
if d1 ∈ iDt and areIrreconcilable(T, T ′), ∀T ′ ∈ Tirr then
b Tirr = Tirr ∪ {T}

foreach T ∈ Tirr do5
if beliefRating2D(T ) ≥ th2 then Tbest = Tbest ∪ {T}

foreach T ∈ Tbest do S = S ∪ branch(T, Trat)6

foreach j ∈ N t
i do iξ̂

t

j = extractAziOri(S)7

function branch(partialSolution S, triangleSet Trat):8

init : Snew = ∅, Srat = ∅, Sirr = ∅, Sbest = ∅
foreach T ∈ Trat do9

if commonSide(S, T ) and T 6∈ S then
b Snew = Snew ∪ {join(S, T )}

foreach S ∈ Snew do10
if count3Intersections(S)≥ th3 then Srat = Srat∪ {S}

foreach S ∈ Srat do11
if areIrreconcilable(S, S′), ∀S′∈Sirr then Sirr=Sirr∪{S}

foreach S ∈ Sirr do12
if beliefRating2D(S)≥ th4 then Sbest =Sbest∪{S}

if Sbest = ∅ then return S13

else foreach S ∈ Sbest do S = S ∪ branch(S, Trat)14

As explained in Sect. III and Fig. 3, each of these triplets
defines two triangles whose vertices are occupied by the three
robots; more precisely, it defines a class of equivalence for
each triangle, because the triangles are defined only up to
a scaling factor. An example of a triangle pair originated
by the same difference angles is given by T1 in Fig. 8c
and T9 in Fig. 8f. Note that triangles include the identity
of the robots at their vertices. Once appropriate triplets are
identified, the triangle pairs are computed through the function
computeTriangles(�,�, ◦) and collected in a set Traw.
line 3) 3-intersection rating: when three robots of a triangle
see a fourth robot (e.g., Ah in Fig. 8a), their sets of features
include three rays (one from each feature set) which intersect
in a single point (we call this a 3-intersection). Based on
this idea, the algorithm rates all triangles by counting their 3-
intersections (function count3Intersections(�) in the pseudo-
code), and discards those below a certain threshold th1, with
the remaining triangles collected in a set Trat. Note that a
simple 2-intersection does not provide any useful information,
since two non-parallel lines on the plane will always intersect.
line 4) Irreconcilable triangles: from the set Trat, one extracts
a maximal subset Tirr of irreconcilable triangles containing

i
j

h

i
k

h

i
j

k

i

h
k

i

h

j

i
k

j

j h

h

k

k

j

(a)

(b)
robot detection and communication

i j k

B
i

i j

k

B
j

h

h

B
kB

h

find and rate triangles

rating based expansion of the solutions

T5 T6

T7T1

T3

T2

T4

T8maximal subset of irreconcilable triangles

triangles containing (c)

(d)

bel(x )j

bel(x )k

i

bel(x )j

bel(x )k

i

i
j

k h

T1

i
j

k

+

h

i
j

kh

i
j

k

T5

T3+

T7+

(g)

(e)

(f)

i

j

h

i

A

A

A

A
A

A A

A

A

A

A

A

AA

A

A

A

A
A

A
A

A

A A A A

A A

AA

A

A

A A

AA

A

A

A

A

A
A

A

A

A

A A

A

A
A

AA

A

T9

Fig. 8: Illustration of the basic steps of PMBR in a simple situation:
(a) true configuration (b) feature sets (c) all the triangles having
one 3-intersection and containing Ai (d) one choice for the maximal
subset Tirr and comparison with the current belief (e) all the triangles
having one 3-intersection but not containingAi (f) one of the triangles
without 3-intersections (g) expansion of the partial solution using the
remaining triangles in T .

Ai. Two triangles are irreconcilable if they associate the same
robot to different features of the same set (e.g., Aj in T5 and
T6), or two different robots to the same feature (e.g., Ak and
Aj in T2 and T5). With this definition, it is easy to implement a
function areIrreconcilable(�, ◦) to test whether two triangles
are irreconcilable or not. The result of the triangle finding and
rating process is illustrated in Fig. 8c–f.
line 5) Belief rating: with the function beliefRating2D(�),
the algorithm rates each triangle T ∈ Tirr on the basis of the
current belief about the configuration of the robots, using the
metric function

P (ix̂tj) =
∑
Aj∈T

∫
p(ix̂tj |ix̃tj)bel(ix̃tj)d

ix̃tj , (12)

in which the scale of each triangle is computed so as to max-
imize (12). Then an adaptive thresholding of these maximum

Preprint version final version at http://ieeexplore.ieee.org/ 7 Accepted for IEEE Transaction on Robotics 2016



values is used to keep only the triangles that better fit the
belief, which are collected in a set Tbest.
line 6) Partial solutions: at this step a recursive algorithm is
initialized through the function branch(�, ◦). Each triangle in
Tbest is the base of a branch of the algorithm, and constitutes
the partial solution of that branch at the first step. Let S be
the partial solution of a branch at a given step; S includes (1)
a collection of triangles (2) the change of coordinates among
them (3) the total number of the 3-intersections. In Fig. 8g, the
only branch of the algorithm is originated by T5. Each branch
of the algorithm can originate multiple branches, and when the
recursion terminates on a given branch, the partial solution of
that branch is inserted in the set S of final solutions.
line 7) Relative azimuth-orientation extraction: the output
of the algorithm, a set of relative azimuth-orientation for each
j ∈ N t

i , is easily extracted from S through the function
extractAziOri(�). Since the solutions in S in principle come
from many different branches, it is possible to once again rate
them (with 3-intersections and beliefs) considering only the
best to extract azimuth-orientation estimates.
lines 8-14) Recursive expansion: during one recursion
in each branch, the current partial solution S is expanded
looking for triangles in Trat having common edges with it
(through the function commonSide(�, ◦)). In particular, using
the function join(�, ◦) a new set Snew of partial solutions is
created, each partial solution being the expansion of S plus
a triangle which was not previously in S and which had (at
least) one common side with S (line 9). As in the case of
triangles, each solution in Snew is rated counting out its total
number of 3-intersections (line 10). Having more triangles
joined together, it is possible that more than three rays all
intersect in the same point. In general, an n-intersection counts
as n!/3!(n− 3)! = n(n− 1)(n− 2)/6 3-intersections. Among
the best rated partial solutions of each branch, collected in
Srat, the algorithm selects a maximal subset of irreconcilable
solutions Sirr (line 11). Among those, only the solutions that fit
with the current belief according to equation (12) are collected
in Sbest (line 12) and used as partial solutions at following
step, expanding a branch for each of them (line 14).

In the example of Fig. 8g the algorithm expands T5 by
joining T1, T3 and T7 respectively at the first, second and third
iteration. The recursive process continues in each branch until
Sbest becomes empty (line 13), which may happen because
either no expanded solution is good enough, or because all
triangles have already been joined in S.

B. Filtering
The filtering stage is exploited by Ai by the use of a bank of
particle filters, one for each Aj , j ∈ N1:t

i . The use of a separate
filters instead of one filter for the whole system implicates
the computation of a separate belief for each robot rather
than a single joint belief. While this is an approximation, the
single joint belief computation is however not computationally
feasible. In fact, the state of the filter would grow linearly
with the number of robots, which would cause the number of
required particles to grow exponentially.

Moreover, we preferred to use particle filters instead of
extended Kalman filters because the firsts are inherently multi-

modal, that is desirable in a situation in which multiple solu-
tions may be returned from the multiple registration algorithm.

The inputs of the j-th filter at time t are the displacement ūti
of Ai, the displacement ūtj of Aj (sent by Aj) and the relative

bearing-orientation estimate iξ̂
t

j (computed by PMBR). The
latter is used to generate a Gaussian measurement model with
mean value iξ̂

t

j and appropriate covariance. If PMBR generates
m > 1 estimates (e.g., due to ambiguity), the model is given by
the normalized sum of m Gaussians centered at the estimates.

The update rules accounting for the motion of Ai and Aj
are respectively

p(ix̃j |ui) = Fi

∫
p(u′|ui)p(ix̃j ⊕ u′)du′

p(ix̃j |uj) = Fj

∫
p(u′|uj)p(ix̃j 	 u′)du′,

with Fi and Fj normalization factors, and ⊕, 	 are the
composition operators introduced by [29]. These lead to the
following update for the single particle:

ix̃j =
(
ix̃j 	 (ui ⊕ nui

)
)
⊕ (uj ⊕ nuj

),

where nui
and nuj

are samples taken by p(u′|u).
Note that if Ai and Aj do not communicate over a time

interval (ta, tb) (e.g., due to the fact that they are far from
each other or due to temporary or prolonged communication
failures) the motion update of Aj is not performed. At tb,
when communication is resumed, Aj sends to Ai all odometry
measurements ūtaj , . . . , ū

tb
j , which are used in more consecu-

tive time updates. Since no measurement update will happen
for multiple motion updates, the resulting particles will be
in general more scattered than during normal operation. The
outcome of the update step are the beliefs {bel(ix̃tj)} (see
Fig. 7).

Since PMBR only produces relative azimuth-orientation, the
measurements have a lower dimension than the state. However,
the generalization of the update rule is straightforward and
given by

p(ix̃j |ξ̂j) = Fp(iξ̂j |ix̃j)p(ix̃j), (13)

where F is another normalization factor. Equation (13) allows
the computation of the posteriors {bel(ix̃tj)} as depicted in
Fig. 7 by using the the beliefs {bel(ix̃tj)} and the relative
azimuth-orientation estimate given by PMBR. Note that the
filter is in charge of reconstructing the distance information
among the robots, which is missing in the measurements (i.e.:
in the estimates produced by PMBR). In fact, the authors
of [30] proved that the system is observable, hence our
combination of inputs and measurements is suitable to fulfill
this task.

Standard instruments can be applied to improve the perfor-
mance of the filter. For example, the initial prior distribution
can be generated using the first measurements. Similarly, if
new robots are encountered during the normal operation of
the system, the relative particle filters will be added to the
current bank of filters and initialized with the first available
measurements. Also, it is advisable to reduce the frequency of
the measurement update with respect to the motion update in
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Fig. 9: Scheme of the mutual localization system that runs on Ai in Scenarios B and C.

order to guarantee the independence assumption for successive
measurements.

VI. SCENARIOS B AND C

The problem addressed in this section can be formalized as
follows.

Problem 2: (3D RML with anonymous bearing measure-
ments) For t = 1, 2, . . . and j ∈ N1:t

i , compute the following
belief:

bel(Bixtj) = p
(
Bixtj |Bim̄1:t

i , BiB1:t, {m1:t
j , BjB1:t}j∈N1:t

i

)
(14)

with

Bim̄1:t
i =

{
{Bi ā1:t

i , Biω̄1:t
i , Bi v̄1:ti } in Scenario B

{Bi ā1:t
i , Biω̄1:t

i } in Scenario C.
(15)

The higher dimensionality of the state space w.r.t. Sce-
nario A is the major challenge to be tackled in order to extend
the method presented in Section V. In fact, it adds one and two
degrees of freedom respectively to the position and orientation
of the relative configuration. This additional problem will
impact mainly on the multiple registration algorithm, in which
the research of triangles switches from 2D to 3D. In particular,
the additional non-zero roll and pitch angles enormously
complicates the geometrical computations. Furthermore, the
velocity of the robots becomes a state to be estimated in
Scenario C, in addition to the pose.

Notice that the multiple registration algorithm would be
easier to perform if roll and pitch angles in the team were
all equal to zero. In fact, in this situation we could apply a
multiple registration algorithm similar to the one developed in
the 2D case. In addition, the third dimension would also be
turned from an issue into a resource, allowing the use of the
zenith-distance angles as additional check on the triangles.

Hence, in order to tackle the increased dimensionality we
modified the conceptual scheme of Fig. 1, following a divide
et impera strategy. The resulting system architecture is shown
in Fig. 9. Note that the scheme, as well as the multiple
registration algorithm, is valid for both Scenario B and C. In
fact, those Scenarios differ only for the type of measurements
provided by the motion detector which impacts only on the
design of the filtering stage.

A. Estimation of Roll and Pitch

The basic idea of the new architecture is to let each Ai
independently compute an estimate W φ̂Bi

and W θ̂Bi
of its

roll and pitch angles using the first two components of the
IMU measurements Bi āi, Biω̄i. This is achieved using a
complementary filter (see [31], [32]).

Then, Ai is able to compute an estimate CiR̂Bi
of the

rotation matrix CiRBi between the Bi and Ci plugging W φ̂Bi

and W θ̂Bi in equation (3). By the use of CiR̂Bi , each Ai is
able to express its own measurements in Ci:

âi = CiR̂Bi
(0 0 Bi āiZ )T (16)

ω̂i = CiR̂Bi
(0 0 Bi ω̄iZ )T (17)

v̂i = CiR̂Bi

Bi v̄i in Scenario B (18)
iB̂ = {b̂h = CiR̂Bi

b̄h, ∀b̄h ∈ BiB}. (19)

Note that âi and ω̂i are computed using only the third
component of the respective vectors, implicitly neglecting the
first two components. We need to take this approximation
in order to preserve the independence of the measurements
and avoid multiple use of the x and y components of Bi āi
and Biω̄i, since they have been already used to compute the
roll and pitch angels. For Example, in a typical quadrotor
this approximation can be safely taken assuming that the
linear velocities are less than 5 m/s and the roll and pitch
angles are less than 25◦ [32]. More in general, an independent
source should be used, either a different sensor or a model-
based prediction using the control inputs. This is the case of
Scenario B, in which we will not use âi during the motion
update, being available v̂i.

In addition, the system uses an estimate W ˆ̇
ψBi

of the yaw
rate:

W ˆ̇
ψBi =

(
0

sinW φ̂Bi

cosW θ̂Bi

cosW φ̂Bi

cosW θ̂Bi

)
Biω̄i = fTBi

Biω̄i, (20)

where fTBi
is the co-vector which transforms the angular

velocity in body frame into the yaw rate.
Once roll and pitch are computed and those rotations are

applied, to solve Problem 2 the system can solve a simpler
problem, consisting in retrieving the identities of the relative
bearing measurements and estimating a reduced relative con-

Preprint version final version at http://ieeexplore.ieee.org/ 9 Accepted for IEEE Transaction on Robotics 2016



zenith-distance angles
azimuth angles

bearing measurements

triangle

frame axes

Ai

Aj

b1

b2

ζ1

ζ2

Fig. 10: Three robots measuring each other and the corresponding
2D triangle.

figuration ixj = {ipj , iRj}, j ∈ N1:t
i , where

ipj = WR
T

Ci(
Wpj −Wpi) (21)

iRj = RZ(Wψi)
TRZ(Wψj). (22)

From the corresponding estimates ix̂j = {ip̂j , iR̂j}, it is
immediate to compute an estimate Bi x̂Bj

= {Bi p̂j ,
BiR̂Bj

} of
the relative configuration required by Problem 2 by setting

Bi p̂j = CiR̂
T

Bi

ip̂j (23)
BiR̂Bj = CiR̂

T

Bi

iR̂j . (24)

Hence, we now need to address the following reformulation
of Problem 2.

Problem 3: For t = 1, 2, . . . and j ∈ N1:t
i , compute the

following belief

bel(ixj) = P (ixtj | m̂
1:t
i , iB̂1:t, {m̂1:t

j , jB̂1:t}j∈N1:t
i

). (25)

with

m̂1:t
i =

{
{â1:t

i , ω̂1:t
i ,W ˆ̇

ψ1:t
i , v̂1:ti } in Scenario B

{â1:t
i , ω̂1:t

i ,W ˆ̇
ψ1:t
i } in Scenario C.

(26)

In order to solve Problem 3 we need to recover: (1) the
identities of the measurements in B̂i, (2) the relative orienta-
tions iRj , and (3) the relative distances ‖ipj‖. This will be
done by a subsystem with structure as outlined in Fig. 9.

Hence, in this case the communication packet sent at time
t by the generic robot Ai will contain, in addition to the robot
signature,

1) the rotated measurement of the motion detector m̄t
i;

2) the rotated feature set iB̂t;
3) the estimates of roll and pitch W φ̂i, W θ̂i.

note that the last ones will only be needed to compute Bi x̂Bj
,

while they are not needed to compute ixj .

B. Multiple Registration

Once the feature sets are expressed in C1, . . . , Cn, PMBR-
3D exploits the same geometrical principle of its 2D version,
hence many steps are the same. Its pseudo-code description
is given in Algorithm 2, where we have highlighted the lines
which differ or are added with respect to the 2D version.

The most important difference is that the third dimension,
through the non-π/2 zenith-distance angles, offers an addi-
tional constraint. As highlighted in Fig. 10, the projection on
any horizontal1 plane of the bearing measurements of three
robots measuring each other still draws a triangle whose in-
ternal angles are difference angles between the azimuth angles
of the bearing sets. Hence, the triangle list can be computed
as the 2D case considering only the azimuth measurements.

Assume now that in the triangle shown in Fig. 10 the
bearing measurement b1 ∈ iB and b2 ∈ jB are respectively
associated to Aj and Ai. The corresponding zenith-distance
measurements ζ1, ζ2 must comply the constraint

ζ1 + ζ2 = π ± τ2 (27)

as specified in line 2, where τ2 is a tolerance to account for
measurement noise. Although not relevant if the robots all
lie at the same altitude, in the general case this additional
constraint will consistently reduce the number of feasible
triangles in the list, leading to lower ambiguity, lower com-
putational time and improved performance. Note that each
triangle, containing 3 pairs of associations, must satisfy three
constraints in the form of eq. (27).

Another difference w.r.t. the 2D case is given in the rating of
the triangles. In fact, two lines in space do not always intersect
as it happens on the plane. Hence, it is possible to use the
number of 2-intersections as rating instead of the number of
3-intersections (see lines 3 and 10). This tends to increase the
number of features mutually seen in an elementary triangle,
thus considerably improving the rating policy. The belief rating
method must also be adapted as beliefRating3D(�) (see lines
5 and 12), which uses the following metric function instead
of equation (12):

P ({ib̂j , iR̂j})=
∑
Aj∈T

∫
p({ib̂j , iR̂j}|ixj)bel(ixj)d

ixj , (28)

where bel(ixj) comes from the corresponding particle filter.
In eq. (28) the scale is selected so as to maximize the rating.

The basic steps of PMBR-3D are also shown in the illus-
trative example of Fig. 11. Consider the situation in Fig. 11a,
where four robots are arranged in a ‘square’ formation with the
opposite vertices at the same height; the corresponding feature
sets are shown in Fig. 11b. The triangles finding process is con-
ducted as explained above. Then, the 2-intersections rating is
computed as the 2D case, but it is worth noting that in general
an n-intersection accounts for n!/2(n− 2)! = n(n− 1)/2 2-
intersections. The triangles whose rating is above a certain
threshold are collected in the triangle list Trat (Fig. 11c–e).

The rest of the algorithm follows the same conceptual steps
of the 2D case. It extracts from Trat a maximal subset of
irreconcilable triangles Tirr, and rates them through the use
of the belief. Then, an adaptive threshold of these maximum
values is enforced to select the triangles that better fit the
belief. Those triangles are collected in a set Tbest.

Each triangle of Tbest is the base of a branch of the
algorithm and constitutes the partial solution S at the first
step of its branch. In Fig. 11f the only branch has T5 as first

1i.e., parallel to XWYW .
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Fig. 11: Execution of PMBR-3D in an ambiguous situation: (a) true
configuration (b) initial feature sets (c) triangle found in the first step
containing the owner of the algorithm and their triple intersections
(d) maximal subset of irreconcilable triangles and their comparison
with the current belief (e) other triangles found in the first step of the
algorithm and their triple intersections (f) expansion of the solution
using the remaining triangles.

partial solution. Then the partial solution of each branch is
expanded joining triangles which have common edges with it
(see Fig. 11f). This recursive process is conducted in the same
way of the 2D case, using 2-intersections and the metric in
equation (28) as ratings.

In the case of Fig. 11f, the algorithm expands a partial
solution by joining to the triangle T5 the triangles T1, T4,
T7 respectively at the first, second and third iteration.

In the end, each branch finds a solution, and the best of them
are selected, again with the 2-intersection and belief criteria.
Similarly to the 2D case, the result of the algorithm is a list
of pairs ib̂j ,

iR̂j for each Aj .

C. Filtering

The overall scheme of the filtering stage is in general equiva-
lent to the 2D case. The same considerations on the choice
of particle filters and separate belief holds in 3D. Hence,

Algorithm 2: PMBR-3D - lines added with respect to
Algorithm 1 are marked with a ‘+’ on the right column;
lines with minor differences are marked with an ‘*’.

input : feature sets iBt, {jBt}j∈Nt
i
, beliefs {bel(ixt

j)}j∈Nt
i

*

output: relative bearing-orientation estimates {iξ̂
t

j}j∈Nt
i

init : Traw = ∅, Trat = ∅, Tirr = ∅, Tbest = ∅, S = ∅
foreach j ∈ {i} ∪N t

i do jDt = computeDiffAngleSet(jBt)1
foreach {D1, D2, D3} ⊆ {iDt} ∪ {jDt}j∈Nt

i
do2

foreach {d1 ∈ D1,d2 ∈ D2,d3 ∈ D3} do
if d1 + d2 + d3 = π ± τ1 then

(Ta, Tb) = computeTriangles(d1,d2,d3)
if checkZenithConstraints(Ta) then +
b Traw = Traw ∪ {Ta} *
if checkZenithConstraints(Tb) then +
b Traw = Traw ∪ {Tb} *

foreach T ∈ Traw do3
if count2Intersections(T )≥th1 then Trat = Trat∪{T} *

foreach T ∈ Trat do4
if d1 ∈ iDt and areIrreconcilable(T, T ′), ∀T ′ ∈ Tirr then
b Tirr = Tirr ∪ {T}

foreach T ∈ Tirr do5
if beliefRating3D(T )≥th2 then Tbest=Tbest∪{T} *

foreach T ∈ Tbest do S = S ∪ branch(T, Trat)6

foreach j ∈ N t
i do iξ̂

t

j = extractAziOri(S)7

function branch(partialSolution S, triangleSet Trat):8

init : Snew = ∅, Srat = ∅, Sirr = ∅, Sbest = ∅
foreach T ∈ Trat do9

if commonSide(S, T ) and T 6∈ S then
if checkZenitConstraints(S, T ) then +
b Snew = Snew ∪ {join(S, T )}

foreach S ∈ Snew do10
if count2Intersections(S)≥ th3 then Srat = Srat∪ {S}
*

foreach S ∈ Srat do11
if areIrreconcilable(S, S′),∀S′∈Sirr then Sirr=Sirr∪{S}

foreach S ∈ Sirr do12
if beliefRating3D(S)≥ th4 then Sbest =Sbest∪{S} *

if Sbest = ∅ then return S13

else foreach S ∈ Sbest do S = S ∪ branch(S, Trat)14

Ai runs one particle filter (PFj) for each Aj to retrieve the
missing relative distance ‖ipj‖. This is obtained by fusing the
depthless quantities ib̂j , iR̂j coming from PMBR-3D with the
metric information provided by the motion detectors of Ai and
Aj .

Since the two Scenarios varies for the presence of the
measurements of the velocities, the filtering stage will vary
accordingly. The kinematic equations of motion of the single
robot are

iṗj = ivj (29)
iṘj = (iRj [ωj ]× − [ωi]×)iRj (30)

where we denoted with ivj the velocity of OCj in Ci and

[ωi]× =

 0 −ωiz ωiy
ωiz 0 ωix
ωiy −ωix 0

 .
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Since

iRj = RZ(−Wψi)RZ(Wψj) = RZ(Wψj −Wψi), (31)

we can replace (30) with

iψ̇j = ψ̇j − ψ̇i = fTBj

Bjωj − fTBi

Biωi, (32)

being iψj = ψBj
− ψBi

and fTBi
, fTBj

defined by (20).
In Scenario B an estimate iv̂j of ivj is directly available

from the estimates v̂i, v̂j given by (18), through the following

iv̂j = iR̂j v̂j − v̂i . (33)

Hence, the kinematic model given by equations (29) and (32)
is sufficient for the motion update of the filter. Therefore, in
Scenario B the state of each particle is the 4-dimensional tuple
iχj = (ipj ,

iψj) ∈ R3×S1 including the relative position and
yaw of Aj w.r.t. Ai, and the motion update step of the j-th
particle filter is obtained by plugging iv̂j , ω̂i,

ˆ̇
ψi,

ˆ̇
ψj in (29,32).

In Scenario C the velocity ivj is not available from the
measurements, hence must be estimated in the filter: the state
of the robot must be augmented in order to include ivj . In
particular, the equation of the update of the velocity is

iv̇j = iRjaj − ai + [ωi]×
ivj (34)

in which iRj can be computed using (31). Therefore, in
Scenario C the state of each particle is the 7-dimensional
tuple iχj = (ipj ,

ivj ,
iψj) ∈ R3 × R3 × S1, and the motion

update step of the j-th particle filter is obtained by plugging
âi, âj , ω̂i,

ˆ̇
ψBi

,
ˆ̇
ψBj

in (29,32,34).
In both Scenarios the new state probability after the motion

update is predicted by means of a Tustin integration of the
motion measurements (velocity and acceleration respectively
in Scenario B and C) with the knowledge of the measurement
noise. Also in this case, a temporary or prolonged communica-
tion loss between two time instants (ta, tb) can be recovered
by sending all the motion measurements happened between
those times once the communication is restored.

As for the measurement update, which is the same in the
two Scenarios, each solutions ib̂j , iR̂j of PMBR-3D for Aj is
approximated as a Gaussian measurement with a covariance
proportional to its uncertainty. Therefore, similarly to the 2D
case, the measurement model is given by the normalized sum
of Gaussians centred at the solutions of PMBR-3D.

Denote with iψ̂j the estimate of iψj obtained from iR̂j .
The measurement update produces a rating of the predicted
particles by using Bayes’ law

P (iχj |ib̂j , iψ̂j) = FP (ib̂j ,
iψ̂j |iχj)P (iχj), (35)

where F is a normalization factor.
In Scenario B also the velocities of the robots are available.

Hence, another measurement update can be performed through

P (iχj |iv̂j) = FP (iv̂j |iχj)P (iχj), (36)

Note that the observability in both Scenarios is proved in [33].

VII. COMPUTATIONAL COMPLEXITY

Since PMBR and PMBR-3D are recursive algorithms which
allow multiple branches, their execution time depends mostly
on the number of branches and the depth of the recursion.
In turn, these are functions of the geometric configuration of
the multi-robot team. The dependency of the execution time
of the algorithms with respect to the number of robots and
false positives in two typical cases is reported in Table II and
explained in the following of this section.

It is easy to show that the following methods can be
executed in constant time:
• computeTriangles(d1,d2,d3)
• checkZenithConstraints(T )
• areIrreconcilable(T, T ′)
• beliefRating2D(T ) and beliefRating3D(T).

Let T, T ′, T ′′ ∈ Trat, S′ = join(S, T ′) and S′′ = join(S, T ′′).
When performing the same methods on partial solutions rather
than on triangles, the methods
• commonSide(S, T )
• checkZenithConstraints(S′)
• join(S, T )
• areIrreconcilable(S′, S′′)
• beliefRating2D(S′) and beliefRating3D(S′)

can be implemented iteratively, since only the new triangles
joined to S need to be checked for common sides with
other triangles, zenith-distance constraints, irreconcilability
and belief rating. Hence, each single call of those methods
can be executed in constant time.

Assume that N robots participate to the mutual localization,
M false positives are present in the environment, and P
is the mean value of number of features in each feature
set. As explained in Sect. V-A, the corresponding sets will
have P (P − 1)/2 difference angles, so the time needed for
computeDiffAngleSet(jBt) is P (P − 1)/2 = O(P 2), while
executing line 1 takes NP (P − 1)/2 = O(N,P 2) time.

In the triangle finding problem, there are N !/(N − 3)!3! =
N(N − 1)(N − 2)/6 combinations of three difference angles
sets. For each of these combinations, since the difference angle
inside each set can be chosen independently, there are P 3

possible combinations of difference angles to test. Then, the
triangle finding loop of line 2 takes NP 3(N−1)(N−2)/6 =
O(N3, P 3) time.

Now, let Qraw, Qrat, Qirr and H be the cardinality of
Traw, Trat, Tirr and S respectively. In each triangle, there
are P − 2 rays starting from each vertex which are not
associated. Then, there is a maximum of 3(P − 2)2 2-
intersections to be checked, and 3-intersections can be checked
by matching 2-intersections which are close to each other.
Hence, the execution of line 3 takes 3Qraw(P − 2)2 =
O(P 2, Qraw) time. Similarly, Qrat(Qrat − 1)/2 = O(Q2

rat)
calls of areIrreconcilable are needed in line 4, and Qirr calls
of beliefRating2D/beliefRating3D are executed in line 5,
while line 7 takes NH = O(N,H) time.

The execution time of the recursion in line 6 depends on
the execution time of each call, the depth of each branch and
the number of branches. Let Hn,new, Hn,rat and Hn,irr be the
cardinality of Snew, Srat, Sirr in the n-th recursion. Using the
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TABLE II: Computational complexity of PMBR and PMBR-3D.

line (main) nominal worst single-branch
1 O(N,P 2) O(N3,M2)
2 O(N3, P 3) O(N6,M3)
3 O(P 2, Qraw) O(N,P 2)
4 O(Q2

rat) O(N6)
5 O(Qirr) 1
6 eq. (37) O(N9,M2)
7 O(N,H) O(N)

line (branch)
9 O(N,P 2) O(N3,M2)

10 O(P 2, Hnew) O(N5,M2)
11 O(H2

rat) O(N6)
12 O(Hirr) 1

previous results, and being max(Hn,irr) = Hn,rat, it can be
shown that the time needed by the n-th recursion in a branch
is

(Qrat − n) +O(P 2, Hn,new) +O(H2
n,rat).

Let Q be the number of recursions in a branch. The total
execution time of that branch is

Q∑
n=1

[(Qrat − n) +O(P 2, Hn,new) +O(H2
n,rat)] (37)

A. Nominal case

In general, it is possible to consider P limited by the field
of view of the robot sensor and the size of the robots, and
N limited by the area or volume of the communication set
of each robot. This is true in particular for large numbers of
robots in the environment, such that not all the robots are close
to each other.

B. Worst single-branch case

In a worst case scenario (in terms of execution time), all
robots and false positives are visible to all other robots, hence
P = N + M − 1. In a formation without ambiguity, there
are N(N − 1)(N − 2)/6 triangles, which results in at least
twice the number of triangles in Traw (see Sect. III), such that
Qraw = N(N−1)(N−2)/3 = O(N3). The intersection rating
will be able to discriminate among the correctly matched and
the incorrectly matched triangles, hence Qrat = Qraw/2 =
O(N3), and only one irreconcilable triangle will exist, hence
Qirr = 1. Considering that in the recursion all Qrat correctly
matched triangles will be joined together, the single branch
will have depth equal to Q = Qrat − 1 = O(N3). Being
in general, in the n-th recursion, max(Hn,new) = Qraw −
n, max(Hn,rat) = Qrat − n, Hn,irr = 1, from eq. (37) the
maximum possible execution time of the whole recursion is
O(N9,M2).

C. Ambiguous configurations

In ambiguous configurations, the recursive algorithm will
have multiple branches, each with execution time similar that
computed for the single-branch worst case scenario. However,
since some call of branch(◦, �) will be common among the
different branches, the execution time of line 6 will be lower

(a) (b)

Fig. 12: Experimental platforms: (a) Khepera III robots were used
in the 2D scenario, (b) Mikrokopter quadrotors were used in the 3D
scenarios.

that the actual sum of the complexity of each branch. For
example, if two branches lead to two different solutions at the
n1-th and n2-th call respectively, and they originate by the
same branch in the n-th call, the execution time of the two
branches will be the sum of the first n calls plus the execution
time of the n1 − n and n2 − n calls.

Unfortunately, ambiguity due to symmetric configurations
usually leads to a factorial number of solutions, and hence to a
factorial number of branches. The role of the belief rating is to
avoid expansion of all these branches, allowing the algorithm
to expand only those solutions that already fit the current
belief. When no current belief is available (e.g., during the
initialization of the localization system), use of a symmetry
breaking control law [19]) is advisable.

D. Impact of noise

In general, all the geometric constraints in triangle finding,
rating and joining are checked using certain thresholds to
account for measurement noise. On the one hand, if the
noise on the measurements is larger than the thresholds, many
triplets of difference angles originating from actual triangles
in the formation may not respect the conditions (11) and (27).
The intersection rating would also be affected in a similar
way, leading to generally low ratings (hence less discrimi-
native towards triangles which are not the result of correct
associations). On the other hand, enlarging the thresholds will
cause the algorithm to identify incorrectly matched triangles
as feasible, with similar ratings to correctly matched ones.
This will result in a degradation of the algorithm performance
in terms of correct solutions found and a higher number of
branches leading to wrong solutions.

VIII. EXPERIMENTAL RESULTS

We have implemented and tested the proposed mutual
localization systems in simulations and experiments on various
robots, with the aid of the multi-robot software platform MIP2.
In particular, simulations are used to study its noise propaga-
tion characteristics, whereas experiments allow to show the
performance of the proposed method on real data.

2See http://www.dis.uniroma1.it/∼labrob/software/MIP.
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Fig. 13: Four snapshots of a 2D experiment and the corresponding estimates computed by A1 (in gray).

For Scenario A we have employed a team of four Khepera
III wheeled mobile robots (Fig. 12a), while Scenarios B and C
are realized using a flock of eight Mikrokopter quadrotors
(Fig. 12b).

A. Experimental results in 2D

We implemented and tested the proposed framework for the
2D localization problem on a team of four Khepera III robots.
The robots are equipped with a 600 MHz processor and op-
erates a minimal GNU/Linux distribution. They communicate
through a wifi link with a base station desktop computer which
performs the mutual localization off-board. Their motion capa-
bilities are well modeled through the standard differential drive
model, and motion measurements are provided by odometric
integration of the readings of the wheel encoders at 20 Hz.

The robots are retrofitted with a Hokuyo URG-04LX laser
sensor that provides range-bearing readings at 10 Hz within
a 240 deg field of view, thus leaving a 120 deg blind zone
behind the robot. The scans of the laser sensors are in-
spected by a simple feature extraction module looking for
the indentation caused by a small cardboard “hat” mounted
atop each robot. The bearing (and not the distance) of the
extracted measurements are used as to come from the robot
detector. Synchronization among the robots is not an issue,
essentially because the communication delay is not significant
at the typical robot speeds (some cm/s). The robots move with
a pseudo-random navigation strategy incorporating obstacle
avoidance. The ground truth is provided with cm accuracy
by a feature extraction and tracking algorithm on the image
streams of three USB cameras looking down on the arena.

We show in Fig. 13 four snapshots of an experiment with
four robots and five static obstacles that generate false positive
measurements. We used 500 particles for each filter and the
corresponding particle clouds computed by A1 (circled in gray
in the snapshots) are shown in the bottom. In the beginning, the
scale of the formation is unknown, hence the particle clouds
are distributed in circular sectors. With time going on, also
the scale of the formation is retrieved and the particle clouds
assume a more spherical shape. In particular, the motion of
A3 (green) is perpendicular to the trajectory of A1 from the
very beginning, hence the estimate of its pose is the faster
to converge, which happens already in the second snapshot.
On the other hand, A2 (red) moves parallel to A1 for most
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Fig. 14: Distance, azimuth and orientation errors on the estimates
computed by A4 during the planar experiment.

of the experiment, hence the estimate of its pose is the
slower to converge, which happens only in the last snapshot.
The estimate of the pose of A4 (blue) is in the middle and
converges in the third snapshot.

This behavior is clearly visible in the plots of the distance,
azimuth and orientation errors affecting the estimates of the
poses of the three robots shown in Fig. 14. Since the beginning
of the experiment the error on the estimated distance of A3

(green) is close to zero and around second 30 s most of the
error on the distance of A4 (blue) is reduced to zero. However,
due to the unfavorable motion it takes up to 120-140 s for the
error on the estimated distance of A2 (red) to converge to zero.
A video-clip of the experiment is shown in the first part of the
attached video.

B. Simulation results in 2D

In order to further validate our mutual localization system,
we have tested it with eight datasets collected in simulation
with a varying number of robots (three to five) and a varying
number of false positives (one to three). The simulation is
performed using realistic 2D Khepera models in Player/Stage
which provide simulated noise-free odometry. Each simulated
robot is also equipped with a laser range finder and the
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Fig. 15: Error probabilities (lower is better) for the estimated robots
A2, . . . , A5 of an aggregate of eight simulations for different values
of covariance of the noise on the bearing measurements: solid 0 deg,
dashed 5 deg, dotted 10 deg, dash-dotted 20 deg.

measurements are extracted with the same algorithm used in
the experiments.

We have studied the noise propagation characteristics of
the system and its robustness to noise by running each dataset
with different additional zero-mean gaussian noise either on
the measurements or on the odometry data. In particular,
each simulation has been run with an additional noise on the
measurements with covariance 5 deg, 10 deg and 20 deg. For
the odometry, we have tested the system with the following
noises respectively on the integrated linear and angular ve-
locities: 0.02 m/s and 5 deg/s, 0.05 m/s and 10 deg/s, 0.1 m/s
and 20 deg/s, for a total of 56 runs of the mutual localization
system.

The results of this simulation campaign are presented in
aggregated form in Fig. 15 and Fig. 16, which show the
error probability for the different values of noise on the
measurements and odometry respectively. Let eβ , ed and eα
be the error on respectively orientation, distance and azimuth,
their error probabilities are defined as the probabilities that
they are equal or less than a parameter:

p (eβ < b) p (ed < d) p (eα < a) . (38)

It is interesting to observe that the localization system in
general shows low sensitivity to noise on the odometry, while
it is more sensitive to high noise on the measurements. This is
probably due to the fact that the multiple registration fails or
finds many wrong geometric solutions when the noise on the
measurements becomes too high. Comparatively, the filter is
less sensible with respect to noise on the odometry, with only
the error on the reconstructed distance increasing significantly.

C. Experimental results in 3D

The proposed localization system has been experimentally
validated in Scenarios B and C using quadrotors3 as mobile

3http://www.mikrokopter.com
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Fig. 16: Error probabilities (lower is better) for the estimated robots
A2, . . . , A5 of an aggregate of eight simulations for different values
of covariance of the noise on the odometry (linear and angular
velocities): solid 0 m/s and 0 deg/s, dashed 0.02 m/s and 5 deg/s,
dotted 0.05 m/s and 10 deg/s, dash-dotted 0.1 m/s and 20 deg/s.

robots and an external Motion Capture System4 (mocap) made
up by 16 infrared cameras as ground truth, whose precision is
about 1 mm for translations and 1 deg for rotations.

Each robot Ai carries an ATmega microcontroller (µC)
board which performs the attitude control and interfaces with
the hardware. An IMU composed by three-axis LIS344ALH
linear MEMS accelerometer and three ADXRS610 angular-
rate sensors orthogonally mounted on the µC board provides
measurements of the linear acceleration Bi āi and angular
velocity Biω̄i, both expressed in body frame. In order to give
a characterization of the noise affecting the measurements
provided by the IMU, we performed a statistical analysis over
the values of Bi āi, Biω̄i registered during different experi-
ments with the quadrotor in hovering. The analysis shows a
precision of [0.019, 0.019, 0.049] m/s2, [0.29, 0.29, 0.29] deg/s
and variances [0.1, 0.1, 0.6] m/s2 and [0.64, 0.64, 1.12] deg/s
for accelerometer and gyroscope, respectively. The large vari-
ances for the accelerometer are also due to the high vibrations
induced by the motors/propellers.

The microcontroller acquires the IMU data at about 400 Hz
by means of a 10 bit digital converter and, at the same
frequency, runs online a complementary filter in order to
estimate the current attitude (see, e.g., [31]), i.e. the roll and
pitch angles. The estimates have been compared to the values
provided by the mocap system (see Fig. 17). The result of this
analysis is a mean error of around 1.92◦ for roll and 2.67◦ for
pitch.

The microcontroller can neither process nor store data;
hence, the IMU readings, as well as the complementary filter
output, have to be transferred to a GNU/Linux machine,
through two serial connections. The usage of two separated
connections, one for sending and one for receiving data
to/from the quadrotor, allows a transmission with an average

4http://www.vicon.com
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Fig. 17: True values (dashed blue) and estimates (solid red) of roll (a)
and pitch (b) during a typical experiment.

Fig. 18: Two snapshots of a 3D experiment and the corresponding
estimates computed by A1 in Scenario B.

rate of 370 Hz and a standard deviation of 4 ms. This is the
main advantage w.r.t. our previous experimental setup used in
[21], where the average IMU rate was 20 Hz due to a single
serial connection. In Scenario C, this improvement will boost
the performance of the localization system since the update
step of the filtering phase can be run with higher frequency.

The main difference between Scenarios B and C is the
device used as motion detector. In Scenario C, the mutual
localization system will use the IMU readings of linear accel-
eration in order to feed the bank of particle filters.

On the contrary, in Scenario B the particle filters are fed by
velocity measurements analytically emulated by adding zero-
mean Gaussian noise with 0.25 m/s standard deviation on the
velocity measurements provided by the mocap device. We em-
phasize that the same measurements can be obtained without
the use of external sensors integrating IMU measurements with
optical flow [28] or visual odometry algorithms [26], [27].
Note also that the IMU output has to be communicated also in
this Scenario, since the knowledge of roll and pitch estimates
is mandatory in order to solve the mutual localization problem.

To conclude, in both Scenarios the robot detector is em-
ulated by analytically computing the relative bearing from
the ground truth using equation (7). In order to have realistic
measurements, a zero-mean 5 deg standard deviation Gaussian
noise is added to the azimuth and zenith-distance angles.

0 20 40 60
−10

−5

0

5

10

a
zi

m
u
th

 e
rr

o
r

[d
eg

]

time [s]
0 20 40 60

−10

−5

0

5

10

ze
n
it

h
er

ro
r

[d
eg

]

time [s]

0 20 40 60
−1

−0.5

0

0.5

1

d
is

ta
n
ce

er
ro

r
[m

]

time [s]
0 20 40 60

−10

−5

0

5

10

ya
w

er
ro

r
[d

eg
]

time [s]

Fig. 19: Scenario C: error plots on azimuth, zenith-distance, distance
and orientation estimates for A2, . . ., A6 computed from A1.
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Fig. 20: Scenario B: error plots on azimuth, zenith-distance, distance
and orientation estimates for A2, . . ., A6 computed from A1.

Moreover, random false negatives are added to prove the
robustness of the proposed framework, while two quadrotors
(A7 and A8) act as false positives, i.e., they are detected
by the other robot detectors but do not communicate any
information. Again, those measurements are compatible with
the measurements provided by a visual tracking algorithm
working on the images provided by a calibrated camera
mounted on the robot.

During a typical experiment the quadrotors are driven to
follow pre-defined trajectories through the use of the mocap,
while the data provided to the GNU/Linux machine are stored.
At the end, the data are subsequently synchronized and the
estimation is conducted offline, but in real time. Because
of this strategy, the data needed for one experiment can
be collected by running the robots in a sequential way. In
Fig. 18 we show two snapshots of an experiment, with the
corresponding estimates computed in Scenario B.

The relative azimuth, zenith-distance, distance and orien-
tation errors on the estimates computed in Scenario C are
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Fig. 21: Scenario B: error probabilities (lower is better) for the
estimated robots A2, . . . , A6 of an aggregate of eight simulations
for different values of covariance of the noise on the bearing
measurements: solid 0 deg, dashed 5 deg, dotted 10 deg, dash-dotted
20 deg.
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Fig. 22: Scenario B: error probabilities (lower is better) for the
estimated robots A2, . . . , A6 of an aggregate of eight simulations for
different values of covariance of the noise on the motion measure-
ments: solid 0 m/s and 0 deg/s, dashed 0.02 m/s and 5 deg/s, dotted
0.05 m/s and 10 deg/s, dash-dotted 0.1 m/s and 20 deg/s.

depicted in Fig. 19. The relative distances in the filters are
initialized to 8 m w.r.t. a true distance of 3 m, showing that our
mutual localization system is able not only to maintain the true
distance but also to retrieve it. In addition, in the beginning
of the experiment, when no belief is available, the multiple
registration algorithm produces multiple solutions, causing the
initial peak of the errors which is quickly recovered. The
main improvement w.r.t. [21] is for the estimated relative
angles. In fact, the error peaks for azimuth and zenith-distance
drop from 10 deg in [21] to 5 deg of the current framework,
while the orientation error decreases from 12 deg to 3 deg.
This improvement in the performance is due to the higher
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Fig. 23: Scenario C: error probabilities (lower is better) for the
estimated robots A2, . . . , A6 of an aggregate of eight simulations
for different values of covariance of the noise on the bearing
measurements: solid 0 deg, dashed 5 deg, dotted 10 deg, dash-dotted
20 deg.
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Fig. 24: Scenario C: error probabilities (lower is better) for the
estimated robots A2, . . . , A6 of an aggregate of eight simulations
for different values of covariance of the noise on the motion mea-
surements: solid 0 m/s2 and 0 deg/s, dashed 2 m/s2 and 5 deg/s, dotted
5 m/s2 and 10 deg/s, dash-dotted 10 m/s2 and 20 deg/s.

frequency on the IMU output, as explained at the beginning
of this section.

The plots of the errors affecting the estimates computed
in Scenario B are presented in Fig. 20, and shows a similar
behavior w.r.t. Scenario C. Although the greatest improvement
in the performance is obtained on the estimates of the relative
distances, whose maximum error drops at 0.26 m, w.r.t. 0.6 m
of Scenario C, also the estimates of the angular quantities
benefits from the employment of the velocity measurements.
The improved performance can be explained considering that
the update step of the PFs with the velocity needs only one
integration in order to obtain the position, while the update
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step of the PFs, if performed using the acceleration, needs a
double integrator with a double integration of the noise acting
on the measurements.

Video-clips of the experiment and the estimates computed in
the two Scenarios are presented in the last part of the attached
video.

D. Simulation results in 3D

Similarly to the 2D scenario, we have performed several
simulations to study the behavior of our localization system
with respect to noise. Also in this case, we have collected the
data of eight simulations with varying number of robots (four
to six) and run several times the mutual localization system
with zero-mean and variable covariance additional noise either
on the bearing or on the motion measurements.

Figures 21, 22, 23 and 24 present the aggregated results of
those simulation campaigns for both Scenarios B and C. We
have studied the behavior of the system in the presence of
noise on the bearing or the motion measurements gathered by
the robots, by adding zero-mean gaussian noise. In particular,
we have added, on each simulation, noises with different
levels of covariance (5 deg, 10 deg and 20 deg) for testing
the robustness of the system w.r.t. noise on the bearing
measurements. The results are shown in Figures 21 and 23.
Regarding the robustness with respect to noise on the motion
measurements, we have tested the system by varying the
covariance on the linear and angular velocities in Scenario B
(0.02 m/s and 5 deg/s, 0.05 m/s and 10 deg/s, 0.1 m/s and
20 deg/s) and on linear acceleration and angular velocities in
Scenario C (2 m/s2 and 5 deg/s, 5 m/s2 and 10 deg/s, 10 m/s2

and 20 deg/s). The results are shown in Figures 22 and 24.
Altogether, this simulation campaign includes 56 runs of the
mutual localization system for each Scenario. As it is evident
from the plots, Scenario B outperforms Scenario C in terms
of robustness and accuracy thanks to the introduction of the
velocity measurements. The plots also show a behavior which
is consistent with the 2D case, with higher sensitivity of
the estimated distance to noise on the bearing measurements.
However, the angular quantities are more sensitive to the noise
on the motion measurements.

IX. CONCLUSIONS

In this paper, we have introduced the problem of mutual
localization with anonymous relative-bearing measurements
in multi-robot systems in three different operative scenarios,
taking into consideration different platform (2D and 3D) and
different sensors. The problem presents several challenges
due to instantaneous ambiguities in the inversion of the mea-
surement function in geometrically symmetric configurations.
Hence, we have designed, implemented and tested a two-step
system in order to solve the problem.

In the first step we apply geometrical considerations in order
to reconstruct all the formations that are compatible with the
measurements, up to an instantaneously unobservable scaling
factor. Then, a bank of particle filters is meant to eliminate
the non-time-consistent solutions and filter the noise, while
reconstructing the missing scale of the true formation through

integration with motion measurements. The system has been
extensively tested through experiments in all the considered
Scenarios.

For future work, we plan to integrate the developed mutual
localization systems into working systems, closing the loop
of the control on the produced estimates. In addition, we
plan to further investigate the role of anonymity with a
more thorough theoretical analysis and to study the noise
propagation characteristics of the developed algorithms.

REFERENCES

[1] N. Michael and V. Kumar, “Planning and control of ensembles of robots
with non-holonomic constraints,” The International Journal of Robotics
Research, vol. 28, no. 8, pp. 962–975, 2009.

[2] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa,
and R. Sukthankar, “Decentralized estimation and control of graph
connectivity for mobile sensor networks,” Automatica, vol. 46, no. 2,
pp. 390–396, 2010.

[3] A. Howard, L. E. Parker, and G. S. Sukhatme, “Experiments with a large
heterogeneous mobile robot team: Exploration, mapping, deployment
and detection,” The International Journal of Robotics Research, vol. 25,
no. 5-6, pp. 431–447, 2006.

[4] J. Fink, N. Michael, S. Kim, and V. Kumar, “Planning and control
for cooperative manipulation and transportation with aerial robots,” The
International Journal of Robotics Research, vol. 30, no. 3, pp. 324–334,
2010.

[5] P. Yang, R. A. Freeman, and K. M. Lynch, “Multi-agent coordination
by decentralized estimation and control,” IEEE Trans. on Automatic
Control, vol. 53, no. 11, pp. 2480–2496, 2008.

[6] M. Schwager, B. J. Julian, and D. Rus, “Optimal coverage for multiple
hovering robots with downward facing cameras,” in 2009 IEEE Int. Conf.
on Robotics and Automation, Kobe, Japan, May 2009, pp. 3515–3522.

[7] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira,
“Sensing and coverage for a network of heterogeneous robots,” in 47th
IEEE Conf. on Decision and Control, Cancun, Mexico, Dec. 2008, pp.
3947–3952.

[8] R. Kurazume, S. Nagata, and S. Hirose, “Cooperative positioning with
multiple robots,” in 1994 IEEE Int. Conf. on Robotics and Automation,
San Diego, CA, May 1994, pp. 1250–1257.

[9] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach
to collaborative multi-robot localization,” Autonomous Robots, vol. 8,
no. 3, pp. 325–344, 2000.

[10] S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localization,”
IEEE Trans. on Robotics and Automation, vol. 18, no. 5, pp. 781–795,
2002.
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