
Preprint version, final version at http://ieeexplore.ieee.org/ 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Hamburg, Germany

Nonlinear Observer for the Control of Bi-Tethered Multi Aerial Robots

Marco Tognon1,2 and Antonio Franchi1,2

Abstract— We consider the problem of state-observation and
control for a bi-tethered aerial system composed by a physical
chain of two underactuated aerial robots, also called UAVs.
The controlled outputs are the Cartesian position of the last
robot and the internal forces along the links. We aim at a
minimal use of sensors in order to retrieve the full state. For
this goal we propose an output transformation method whose
applicability implies the system observability. When this is the
case we prove that it is possible to design a nonlinear state
estimator based on the high gain- and Luenberger- observers
that is able to retrieve the state from any dynamic condition.
We also demonstrate how this estimator can be employed with
a nonlinear controller for the Cartesian position and the link
stresses while ensuring the stability in closed-loop. We show the
validity of the method for sensorial configurations composed
only by two accelerometers (no gyros) and just two encoders,
or two accelerometers (no gyros) and just two inclinometers. A
realistic simulative validation concludes the paper.

I. INTRODUCTION

The enormous popularity that aerial robots, commonly
called UAVs (Unmanned Aerial Vehicles), are seeing in
these days among the scientific community, but not only,
is due to their versatility and applicability in a vast range
of fields, such as search and rescue, surveillance, patrolling,
agriculture, civil monitoring and so on.

Although their use as remote and unmanned sensors is
dominant, they still present some limitations, as, e.g., short
battery life and little payload, that impede their applicability
in tasks requiring very long or even constant gathering of
measurements. To solve this problem many recent works
propose the tether solution. The use of a cable connecting
the aerial vehicle to a fixed or mobile ground station can
provide virtually endless energy and an high-bandwidth
communication link to the robot, with applications in, e.g.,
monitoring [1] communication relay [2] and safe landing [3].

For tethered flight systems, works as [4] already proposed
a controller to stabilize the elevation on a desired value using
only onboard sensors. In [5] the positivity of the tension
is also guaranteed during the transient. Finally, in [6] one
can find a dynamic controller for both the link stress and
elevation using a nonlinear observer based on inertial-only
measurements. However, since the vehicle is constrained by
the link to fly around the fixed point, the working space (a
simple circle) can result very limited for such applications.

One solution is given by adding a second vehicle and
a second link to the previous system. Indeed, in [7] is
presented a system composed by two aerial robots connected
to each others and to a fixed point by two links, forming an
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actuated chain. The similarity with a planar two links robot
immediately shows the advantages in terms of workspace,
i.e., the second aerial robot in the chain (similarly to an end
effector) can reach any point in the two dimensional working
area, limited only by the full length of the system itself.

Using the controller proposed in [7] it is then possible to
achieve the tracking of any desired Cartesian trajectory of the
position of the second aerial robot while exactly controlling
the stresses on the two links. This makes feasible its use in
applications in, e.g., search end rescue, that were limited or
impossible to accomplish with the single aerial robot case.

Though, in order to compute the control action in [7],
the knowledge of the full-state is needed. In this work
we study the observability of the full-state using a set of
minimal sensors and show the design of an observer that
can estimate the full-state from any dynamic condition using
those sensors. This allows to close the control loop without
the need of full-state measurements, thus decreasing the cost
of the solution in terms of sensorial equipment.

More specifically, we propose here a method to transform
the measurements coming from two onboard accelerometers
and two encoders connected to the links into direct measures
of a portion of the state. We then prove that the applicability
of this method gives a sufficient condition for the observ-
ability of the system. In the case that the transformation is
applicable, we propose a non linear observer that can work
in closed loop with the controller presented in [7], while still
preserving the stability of the global system. Finally we show
how the same methodology can be easily employed for two
other sensors configurations.

The paper is organized as follows. In Sec. II we recall the
dynamic model of the system and the controller presented
in [7]. The considered sensor configurations are presented
as well. Then, in Sec. III we derive in details the nonlinear
observer for a specific case, analyzing at the end the applica-
bility of the proposed method for other configurations. The
stability of the global system using the state estimation of
our observer as feedback is also proved. Simulations of a
plausible real task are presented in Sec. IV. Conclusions and
future works are reported in Sec. V.

II. MODEL, CONTROL, AND SENSORS

As in [7], we consider a multi robot system composed
by two aerial vehicles laying on a vertical plane, where the
first one is attached to the ground and to the second one by
two links, in the way of forming a chain of two elements. A
representation of the system is given in Fig. 1. Considering
the second robot as an end effector, the system appears
similar to a two-link 2-R robot where the aerial vehicles are
the actuators. In the following we utilize the notation ·i with
i= 1,2 in order to refer to the first or the second, respectively.
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Fig. 1: Representation of the system and its main variables. The system is
depicted in a possible scenario where the grey box represents a surface of
interest, e.g., for a search and rescue task.

Each robot is modeled as a rigid body with mass mRi ∈R>0
and rotational inertia JRi ∈ R>0, with i = 1,2.

As in [4]–[7], we assume that the links have negligible
mass and rotational inertia with respect the ones of the aerial
robots, and also negligible deformations and elasticity. In this
condition each link results to have a fixed length li ∈ R>0
with i = 1,2. One end of the first link is connected to the
ground and the other to the center of mass (CoM) of the first
robot. While, the second link is connected to the CoMs of
the two vehicles. The three link-robot and one link-ground
connections are made with passive rotational joints in such
a way that no rotational constraint holds.

To describe the system configuration, we define the i-th
elevation, ϕi ∈R, the angle that the i-th link forms with the
horizon. With ϑi we denote the attitude of the i-th vehicle.
Then, we define fLi ∈ R as the stress of the i-th link, i.e.,
the internal force along the link itself. If a link is pulled,
i.e., fLi > 0, the stress is called tension. On the other hand,
if a link is compressed, i.e., fLi < 0, the stress is called
compression. The methodology presented here can be applied
to any kind of links like, cables, struts or bars, that can resist
only to tension, compression, and generic stress, respectively.

Under these assumptions we want to investigate with
which different types of sensorial configurations it is possible
to observe the system state. For the configurations granting
observability we want to derive an observer able to recover
the state in any dynamic condition, in order to stably close
the loop with the controller in [7] when following any desired
trajectory of the Cartesian position of the CoM of the second
robot and any desired pair of stresses for the two links.

We define a world frame, FW with axes {xW ,yW ,zW},
and origin OW on the fixed point on the ground. Then we
define two body frames, FBi rigidly attached to the i-th robot
(i = 1,2). The origin OBi of FBi is set on the CoM the robot,
and its position is represented in FW by pBi = [xBi yBi zBi]

T ,
where yBi = 0. We denote with {xBi,yBi,zBi} the axes of FBi,
where yBi is parallel to yW , and both are perpendicular to the
vertical plane {xW ,yW} where the two robots lie. The system
is subject to the thrust forces − fRizBi ∈R3 and the moments
(torques) τRiyBi ∈R3, with i = 1,2. Their intensities, fRi ∈R

and τRi ∈ R, with i = 1,2, constitute the four control inputs
of the system.

Given the constraints, the system results completely de-
scribed by the generalized coordinates q = (ϕ1,ϕ2,ϑ1,ϑ2).

As done in [7] the dynamic model of the system is ob-
tained applying the Euler-Lagrange method to the kinematic
and potential energy, and it results to be

M(ϕϕϕ)ϕ̈ϕϕ =−c(ϕϕϕ, ϕ̇ϕϕ)+ Q̄ϕϕϕ(ϕϕϕ,ϑϑϑ)fR

JRϑ̈ϑϑ = τττR,
(1)

where ϕϕϕ = [ϕ1 ϕ2]
T , ϑϑϑ = [ϑ1 ϑ2]

T , fR = [ fR1 fR2]
T , τττR =

[τR1 τR2]
T , g≈ 9.81 is the gravitational constant, and the ma-

trices M(ϕϕϕ), JR, c(ϕϕϕ, ϕ̇ϕϕ) and Q̄ϕϕϕ(ϕϕϕ,ϑϑϑ) are fully described
in [7]. In order to control the system as a planar two-links
manipulator we exploit the control method presented in [7].
Employing a dynamic feedback linearization it is possible
to track any trajectory for the position of the last vehicle
defined in the Cartesian space, like for the end effector of a
manipulator, and any trajectory for the stress on the links.

For the single link case, in [6] it has been shown that
an accelerometer and a gyroscope mounted onboard are
sufficient in order to obtain an estimation of the state.
For the double link case we are not yet able to derive an
observer using only accelerometers and gyroscopes on each
vehicle. However, it is also extremely interesting to explore
different minimal sensorial configurations in order to retrieve
an estimation of the state. In particular, one can try to use
two accelerometers (one for each vehicle) together with,
instead of two gyroscopes, two additional sensors capable
to directly measure the relative or absolute value of the
elevation of the links or the attitude of the robots. For
example one can use i) two encoders mounted on one end
of the links to get the measurements of the elevations [3], or
ii) two inclinometers or equivalently some vision techniques
to obtain the measurements of the attitudes [8], [9].

In Tab. I all the possible sensor configurations considered
in this work are listed with the respective measurements.
With reference to the table we use the following convention:

i) Considering an inclinometer rigidly attached to FBi, we
call it absolute if it measures the attitude of the i-th robot
with respect to FW , ρ = ϑi; while we call it relative if
it measures the attitude of the other vehicle with respect
to FBi, ρ = ϑ j−ϑi, where (i, j) ∈ {(1,2),(2,1)}.

ii) An encoder rigidly attached to FW connected to the
first link directly measures the absolute elevation angle,
ρ = ϕ1. While, if it is rigidly attached to FBi and
connected to the j-th link it measures the j-th elevation
angle with respect to FBi, ρ = ϕi + ϑ j with (i, j) ∈
{(1,1),(2,1),(2,2)}.

III. OBSERVER
In this section, for the case 4 of Tab. I we present a

method to transform the original measurements into direct
measurements of the configuration q and we show that this
implies the observability of the full state, i.e., q and q̇. For
this case we propose a nonlinear estimator, based on the High
Gain Observer (HGO) [10] able to retrieve the state from any
dynamic condition. In the end we analyze the applicability
of the method to the other configurations of Tab. I.
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Config. 2nd Sensor Type Mounting Measures Applica-
Place ρ1,ρ2 bility

1 Absolute Inclinom. FB1 ϑ1 yesAbsolute Inclinom. FB2 ϑ2

2 Absolute Inclinom. FB1 ϑ1 yesRelative Inclinom. FB2 ϑ1−ϑ2

3 Encoder FW − link1 ϕ1 noEncoder FB1− link1 ϕ1 +ϑ1

4 Encoder FW − link1 ϕ1 yesEncoder FB1− link2 ϕ2 +ϑ1

5 Encoder FW − link1 ϕ1 noEncoder FB2− link2 ϕ2 +ϑ2

6 Encoder FB1− link1 ϕ1 +ϑ1 noEncoder FB1− link2 ϕ2 +ϑ1

7 Encoder FB1− link1 ϕ1 +ϑ1 noEncoder FB2− link2 ϕ2 +ϑ2

TABLE I: Possible sensors configurations. The 1st sensor type corresponds
to an accelerometer mounted on each robot.

A. Output Transformations

Assume to have an onboard accelerometer for each robot,
placed at OBi and attached to FBi. It measures the specific
acceleration, i.e., the total acceleration minus the gravita-
tional one expressed in the body fame, FBi, i.e.:

ai = RBi
W (p̈Bi +gzW ) =

[
aix 0 aiz

]T
, (2)

where RBi
W ∈R3 is the rotation matrix from FW to FBi, and

p̈Bi is the acceleration of the CoM of the i-th vehicle w.r.t.
FW . The force balance equations on each CoM read

mR1p̈B1 =− fL1d1 + fL2d2− fR1zB1 −mR1gzW (3a)
mR2p̈B2 =− fL2d2− fR2zB2 −mR2gzW , (3b)

where di = [cosϕi 0 sinϕi]
T ∈ R3 is parallel to the i-th link.

Then we assume to be in the configuration # 4 of Tab. I,
i.e., the system is equipped with two encoders, one is rigidly
attached to the ground and connected to the first link and
measures its absolute elevation relative to FW , while the
second is fixed to FB1 and connected to the second link,
and measures its relative elevation with respect to FB1, i.e.:

ρ1 = ϕ1, ρ2 = ϕ2 +ϑ1.

Now, replacing p̈B2 from (3b) into (2) for i = 2, we obtain

−mR2a2 = RBi
W ( fL2d2 + fR2zB2) = fL2RBi

W d2 +[0 0 fR2]
T, (4)

which allows to define the measurement transformation
[

w1(k)
w2(k)

]
=


sgn

(
k− 1

2
)√

(mR2a2x)
2 +
(
mR2a2z + fR2

)2

atan2
(

mR2a2z+ fR2
w1(k)

,
mR2a2x
w1(k)

)



=

[
0

ϕ2 +ϑ2 +
π
2

]
±
[

fL2π
2

]
,

(5)

where k ∈ {0,1}. Note that (i) there are two solutions for
k = 0 and k = 1 because sgn( fL2) is not retrievable from the
measurements; (ii) the transformation is allowed iff fL2 6= 0.

At every time instant t there is only one correct pair of
measurements, equal to ( fL2, ϕ2 +ϑ2), while the other is
wrong and equal to (− fL2, ϕ2 +ϑ2 +π). We define k∗ the
unique k ∈ {0,1} such that (w1(k∗), w2(k∗)) = ( fL2, ϕ2 +
ϑ2). Then, replacing (3a) into (2) for i = 1, and after

some simple algebra, we can define two additional new
measurement transformations:

ā1x = mR1a1x −w1(k∗)cosρ2 (6)
ā1z = mR2a2z −w1(k∗)sinρ2 + fR2 (7)

[
w3(k∗, j)
w4(k∗, j)

]
=


 sgn

(
j− 1

2
)√

ā2
1x
+ ā2

1z

atan2
(

ā1z
w3(k∗, j)

,
ā1x

w3(k∗, j)

)



=

[
0

ϕ1 +ϑ1 +
π
2

]
±
[

fL1
− π

2

]
,

(8)

where j ∈ {0,1}. As in (5), the previous transformation
is not possible when fL1 = 0. A practical solution for the
instantaneous zero stress case is provided in Sec. III-E.1

Since the sign of fL1 is not retrievable from the
measurements, we obtain two solutions parametrized by
j, i.e., (w3(k∗, j), w4(k∗, j)). At every time instant t
there is only one correct pair of measurements equal
to ( fL1,ϕ1 + ϑ1), while the other is wrong and equal
to (− fL1,ϕ1 + ϑ1 + π). Actually, recalling that also k ∈
{0,1}, we obtain four groups of different measurements,
i.e., (w1(k), w2(k), w3(k, j), w4(k, j)) with k, j ∈ {0,1}.
We know that at each time t there is only one couple
k∗, j∗ ∈ {0,1} such that the corresponding measurements
are correct, i.e., (w1(k∗), w2(k∗), w3(k∗, j∗), w4(k∗, j∗)) =
( fL2,ϕ2 +ϑ2, fL1,ϕ1 +ϑ1), while all the others are wrong.

Finally, exploiting the readings of the encoders, we can
define the last output transformation

η1 = ρ1

η2(k, j) = ρ1 +ρ2−w4(k, j)
η3(k, j) = w4(k, j)−ρ1

η4(k, j) = w2(k)+w4(k, j)−ρ1−ρ2.

(9)

The transformation method is represented in Fig. 2a. From
(9) one can notice that for the pair (k∗, j∗) defined be-
fore, we obtain a direct measure of the generalized coordi-
nates, i.e. ηηη(k∗, j∗)= [η1 η2(k∗, j∗) η3(k∗, j∗) η4(k∗, j∗)]T =
[ηηηT

1 (k
∗, j∗) ηηηT

2 (k
∗, j∗)]T = [ϕ1 ϕ2 ϑ1 ϑ2]

T . While, for the
pairs (k, j) 6= (k∗, j∗), ηηη(k, j) is a wrong measurement of
the configuration. From a single set of measures it is not
possible to discriminate which is the correct pair (k∗, j∗)
corresponding to the correct ηηη , nevertheless, in Sec. III-D
we show a discriminating method exploiting the dynamics.

For the purpose of proving the observability of the system
and for designing the observer we consider ηηη = ηηη(k∗, j∗).

B. Observability
In order to study the observability of the system and

to design an observer of the state, we first rewrite
the system in a state space form by defining x =
[x1 x2 x3 x4 x5 x6 x7 x8]

T = [ϕ1 ϕ̇1 ϕ2 ϕ̇2 ϑ1 ϑ̇1 ϑ2 ϑ̇2]
T ∈R8

and u = [ fR1 fR2 τR1 τR2]
T = [fR

T τττR
T ]T = [uT

1 uT
2 ]

T ∈ R4

as the state and input vectors of the system, respectively. We
can then rewrite (1) and the measurements function (9) in
the state-space form as

ẋ = Ax+B
[

σσσ(x,u1)
J−1

R u2

]
(10a)

ηηη = Cx (10b)
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where A = diag1(A1,A2,A3,A4), B = diag(B1,B2,B3,B4),
C = diag(C1,C2,C3,C4)

Ai =
[

0 1
0 0

]
, Bi =

[
0
1

]
, Ci = [1 0 ] ∀i = 1, . . . ,4

σσσ(x,u1) =−M(x)−1c(x)+M(x)−1Q̄ϕϕϕ(x)u1, (11)

since M(x) is always invertible. Writing (10) as ẋ =
f(x,u), and ηηη = h(x). the system results observ-
able if the non linear observability matrix O(x,u) =[

∂h(x)
∂x , ∂ ḣ(x)

∂x , . . . , ∂h(7)(x)
∂x

]T
∈ R4·8×8 is full rank [11]. We

can notice that

O(x,u)1 =
[

∂h(x)
∂x , ∂ ḣ(x)

∂x

]T
=
[
CT (CA)T

]T
.

Changing the order of the rows we obtain O(x,u)′1 = I8, that
is full rank for every x ∈ R8 and u ∈ R4. This implies that
also O(x,u) is always full rank, i.e.,

Proposition 1. Consider the system described by (1) with
two onboard accelerometers, mounted on each vehicles, and
two encoders, one attached to the ground and connected
to the first link, and one mounted to the first vehicle and
connected to the second link. Then, the system is observable
except for the zero stress cases, i.e., fL1 = 0 or fL2 = 0.

Although we proved Prop. 1 only for the fourth case of
Tab. I, actually, the result shows a more general sufficient ob-
servability condition. Indeed, independently from the avail-
able sensors, whenever there are some output transformations
that translate the original measurements into direct measures
of q, then the system is observable, i.e.,

Proposition 2. Consider the system described by (10a) and
a set of measurements w = h(x,u) ∈ Rp, where p ∈ R≥1.
Define X the state space and U the control inputs space.
If there exists a subspace D ⊆X ×U and an measurement
transformation function ΓΓΓ : Rp → R4 valid in D , such that
[ϕ1 ϕ2 ϑ1 ϑ2]

T = ΓΓΓ(w), then the system is observable for
every x and u in D , and can be written in the form of (10).

C. High Gain Observer
For the sets of measurements that fulfill the condition of

Prop. 2, and in particular for the case 4 of Tab. I we show in
this section the design of an observer based on HGO [10].

Considering the system (10) we define ζζζ = [ζζζ T
1 ζζζ T

2 ]
T =

[ζ1 ζ2 ζ3 ζ4]
T = [x1 x2 x3 x4]

T and z = [zT
1 ,z

T
2 ]

T =
[z1 z2 z3 z4]

T = [x5 x6 x7 x8]
T . The system (10) can be then

written as{
ζ̇ζζ = Aζζζ ζζζ +Bζζζ σσσ(ζζζ ,ηηη2,u1)

ηηη1 = Cζζζ ζζζ

{
ż = Azz+Bzu2

ηηη2 = Czz,

where Aζζζ = diag(A1,A2), Bζζζ = diag(B1,B2), Cζζζ =

diag(C1,C2), Az = diag(A3,A4), Bz = diag(B3,B4)J−1
R ,

Cz = diag(C3,C4). Having replaced ϑ1 and ϑ2 with their
measures ηηη2 in the dynamics of ζζζ , the two systems become
completely independent, moreover, the second one is linear,
therefore we can design for it a classical Luenberger observer

˙̂z = Azẑ+Bzu2 +Hz(ηηη2−Czẑ), (12)

1diag(X1, . . . ,Xn) is a block matrix having on the main block diagonal
the matrices Xi, whereas the off-diagonal blocks are zero matrices.

where Hz = diag(Hz1 ,Hz1) and Hzi = [β i
1 β i

2]
T , whose ele-

ments, β i
j ∈ R>0 can be set to place the poles of the error

dynamics, ezi = zi− ẑi. Instead, for the first system, thanks
to its particular triangular form, it is possible to use the
following HGO

˙̂ζζζ = Aζζζ ζ̂ζζ +Bζζζ σσσ(ζ̂ζζ ,ηηη2,u1)+Hζζζ (ηηη1−Cζζζ ζ̂ζζ ), (13)

where Hζζζ = diag(Hζζζ 1
,Hζζζ 1

) and Hζζζ i
= [

α i
1

ε
α i

2
ε2 ]

T , with ε ∈
R>0, and the gains α i

j ∈ R>0 are set such that the roots
of s2 +α i

1s+α i
2 have negative real part. The gains (α i

1,α
i
2)

influence the convergence rate of the estimation of the i-th
elevation angle and its derivative, i.e., ϕi and ϕ̇i. A schematic
representation of the observer is given in Fig. 2b.

D. Disambiguation of η

The output transformations described in Sec. III-A gener-
ates four different set of measurements, ηηη(k, j) with k, j ∈
{0,1}, of which only one is correct.

As represented in Fig. 2a, for each k, j ∈ {0,1}, we
implement an observer of the state, Σk j, using (12) and (13),
based on the measurements ηηη(k, j). Therefore we obtain four
estimates of the state, one for each measurement pair, x̂0,0,
x̂0,1, x̂1,0, x̂1,1, and the correct one has to be recognized.

Define ŵ = [âT
1 âT

2 ρ̂1 ρ̂2]
T as the vector that contains the

measurements computed with the estimated state, i.e.,

ρ̂1 = x̂1, ρ̂2 = x̂3 + x̂5, âi = R̂Bi
W ( ˆ̈pBi −gzW ),

where R̂Bi
W = RBi

W (x̂), and ˆ̈pBi is calculated considering the
system model (i.e., no numerical differentiation is needed)

ˆ̈pB1 =−l1d1(x̂1)x̂2
2 + l1d⊥1 (x̂1) ˆ̇x2

ˆ̈pB2 =
ˆ̈pB1 − l2d2(x̂3)x̂2

4 + l2d⊥2 (x̂3) ˆ̇x4.

In the previous equations ˆ̇x2 and ˆ̇x4 are the estimation of the
angular acceleration of the elevations calculated replacing
the estimated state into (11), i.e., [ ˆ̇x2 ˆ̇x4]

T = σσσ(x̂,u1) (no
numerical differentiation needed in this case either).

In order to choose the correct estimation among the four,
we propose a method based on the minimal prediction
error. For each observer we compute a prediction error ẽk, j
smoothed with an exponential discount factor:

˙̃ek, j = λ (
∥∥w− ŵk, j

∥∥− ẽk, j),

where λ ∈R>0 sets the discount rate and w= [aT
1 aT

2 ρ1 ρ2]
T .

Then the estimation of the observer with minimum pre-
diction error is chosen, i.e., x̂ = x̂k∗, j∗ s.t. {k∗, j∗} =
argmink, j∈{0,1}(ẽk, j). Fig. 2 shows the estimator structure.

E. Discussion on the Proposed Method

1) Zero Stress Case: As we previously noticed, if the one
stresses is zero then w2 or w4 cannot be determined. In the
very special case that the stress has to be constantly equal to
zero, the proposed observer is not applicable. Nevertheless,
if the desired stress is passing through zero for a sufficiently
short (ideally zero) time interval, then the proposed observer
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Fig. 2: Graphic representation of the observer.

can be still used in practice by updating the filter without
the correction term in that time instants, i.e., imposing

˙̂z = Azẑ+Bzu2
˙̂ζζζ = Aζζζ ζ̂ζζ +Bζζζ σσσ(ζ̂ζζ , ẑ,u1)

if w1 = 0 or w3 = 0.

In this way the error dynamics becomes non strictly stable
for a short moment since the observation is done in ‘open
loop’ only using the model dynamics. However, the dynamics
returns asymptotically stable as soon as the stress becomes
non-zero again, as it is shown in the simulations of Sec. IV.

2) Applicability: The transformation method showed for
the case 4 in Tab. I can be applied also to other sets of sen-
sors. Last column of Tab. I specifies for which configurations
the method is able to transform the original measurements
into direct measures of the system configuration.

Due to space limitation, we do not report here the detailed
output transformations for every case. However, for cases 1
and 2, they are very similar to those derived for case 4.

For the remaining configurations it is not possible to apply
the proposed method. In particular for the cases 3, 5, 7 we
cannot compute the transformation (8). While, for the case 6,
the problem lies in the last transformation (9).

F. Closed Loop Stability

For the control law described by in [7], the knowledge of
the state is sufficient in order to close the loop. Thus we can
use as feedback the state estimation provided by the proposed
observer. Being the system non-linear one cannot apply a
separation principle like in the linear case. However it can
be shown that for the kind of systems in exam, i.e., triangular
block system for which there is a direct measure of the first
state of each block, a strong property holds [10]. In fact, since
the closed loop system by state feedback is exponentially
stable for every state except the zero thrust case, then, there
exist a ε∗ such that, for every 0 < ε ≤ ε∗ in (13), the closed
loop system with the observer is exponentially stable, except
for the zero thrust and zero stress case [10].

IV. NUMERICAL SIMULATIONS

We tested the closed loop system (observer + controller)
in simulation using two aerial robots with mRi = 1 [kg] and
JRi = 0.15 [kg m2], and two links with li = 2 [m] (i = 1,2).

In order to obtain a reasonable fast tracking of the desired
trajectories we set the gains such as the error dynamics
relative to ϕ1, ϕ2 and fL1, fL2 has poles in (−3,−6,−9,−12)
and (−5,−10), respectively. Regarding the convergence of
the state estimation, we set ε = 0.1 and the gains (α i

1,α
i
2)

such as the roots of s2 +α i
1s+α i

2 are (−2,−3). Then Hzi
is set such as the error dynamics of the estimation of ϑ1,
ϑ2 has poles in (−15,−25). Finally, the discount rate of the
prediction error dynamics is set to λ = 20. These values
of the gains, replicated identically for each of the four
observers, guarantee the stability of the closed-loop system.

To show the ability of the proposed observer to expo-
nentially converge to the real state, we initialize it with an
error of 5◦ relatively to the elevation and pitch angle. We
propose two different simulations: the first, whose results are
plotted in Fig. 3, shows the performances of the observer in
the particular case of inversion of the stress. In the second
simulation, reported in Fig. 4, we replicate a plausible real
scenario where the system is controlled as a two-link robot.

To better represent the behavior of the system, Fig. 3c
and Fig. 4c show a stroboscopic evolution where the flow of
time is given by the color. To graphically represent the stress
variation, the link is drawn as a dashed line with a thinner
width when the tension is higher, and as a solid line with a
wider width when the compression is higher.

From Fig. 3 and Fig. 4 one can notice that the estimation
of the state converges to the real one in less than one second,
in any dynamic condition. Moreover, for the first simulation,
the prediction error does not increase even when the desired
stress passes through zero. Although during the transient of
the estimation the controller shows a non zero tracking error,
actually, as soon as the estimation error goes to zero, the
outputs follow the desired trajectory with high fidelity during
the remaining time of the simulation. An animation of the
simulations is also available in the attached video.

V. CONCLUSIONS

For the problem of estimating the state of the planar
aerial chain composed by two underactuated flying robots,
we proposed a method to transform the original sensors
readings to direct measures of the system configuration. For
the sensorial configurations in which the method is applicable
we designed a nonlinear observer whereby we feedback the
controller presented in [7], closing the control loop. Thus, it
is possible to control the system as a planar manipulator (but
controlling also the internal stress) without using dedicated
sensors for each state and output.

Some future works will be to derive a state observer using
only inertial sensors, solve of the problem for the 3D case
and extend it to a distributed control method.
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