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Decentralized Parameter Estimation and Observation for Cooperative
Mobile Manipulation of an Unknown Load using Noisy Measurements
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Abstract—In this paper, a distributed approach for the
estimation of kinematic and inertial parameters of an unknown
rigid body is presented. The body is manipulated by a pool
of ground mobile manipulators. Each robot retrieves a noisy
measurement of its velocity and the contact forces applied
to the body. Kinematics and dynamics arguments are used
to distributively estimate the relative positions of the contact
points. Subsequently, distributed estimation filters and nonlin-
ear observers are used to estimate the body mass, the relative
position between its geometric center and its center of mass, and
its moment of inertia. The manipulation strategy is functional
to the estimation process, and is suitably designed to satisfy
nonlinear observability conditions that are necessary for the
success of the estimation. Numerical results corroborate our
theoretical findings.

I. INTRODUCTION

Cooperative manipulation by teams of mobile robots has
been one of the hot research topics in the last decades,
with applications in the fields of search and rescue, disaster
recovering, cooperative transportation, and service robotics.
Many aspects of cooperative robotics have been recently
studied in great detail, such as optimal control [1], path
planning [2], leader-follower control schemes [3]. However,
most of the prior work models the payload with a point mass,
or with a rigid body with known dynamical parameters [4],
[5].

The real-time knowledge of inertial parameters of un-
known loads makes collective manipulation tasks more ef-
fective and is beneficial in terms of reduction of the control
effort. Thus, the benefits provided by on-line estimation
techniques are at least twofold: first, more effective con-
trol techniques for manipulation, like force control and
pose estimation [6], [7], can be applied to achieve better
performance with a reduced control effort. Second, time-
varying manipulation tasks can be effectively implemented.
For example, in transport application it is not rare that
the payload is increased by an external cause, or that part
of the load is lost during the transportation. Hence, an
effective, real-time estimate of the inertial parameters would
allow to implement adaptive control techniques, as well as
event-driven control algorithms. Finally, the benefits of the
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Fig. 1: A group of ground mobile manipulators performing a
manipulation task. Each robot exerts a force on the object using a
planar manipulator. Robots measure only the end-effector velocity
and communicate using peer-to-peer ad-hoc connections. All-to-
all communication is not possible. The objective is the distributed
observation of the position of the geometric center of all the contact
points G w.r.t. the center of mass C and the distributed estimation
of the mass, the rotational inertia, and the relative positions of the
contact points (Cy,...,C,) w.r.t. C.

estimation are even improved if they are achieved through
a totally distributed approach, which would add flexibility,
reduced computational and communication overhead, and
fault tolerance [8]. Not much work has been done in the
past concerning distributed estimation of inertial parameters.
Moreover, the main limitations of the existing research reside
in the centralization of the approaches, and in the use of
acceleration and absolute positioning measurements [6] [7].

This work seeks to overcome the limitations of the existing
approaches, by defining, to the best of our knowledge, the
first totally distributed estimation scheme for the inertial
parameters of an unknown load manipulated by a pool
of Ground Mobile Manipulators (GMMs). The proposed
approach relies on the application of contact forces to points
which neither accelerations nor relative (and, consequently,
absolute) positions are measured, and makes use of only
velocity measurements, possibly corrupted by noise, which
may deteriorate the estimation performance [10].

The proposed approach is grounded on our preliminary
results presented in [9], where noiseless measurements have
been considered.

It leverages geometrical and dynamical analysis, and the
theory of nonlinear observers to estimate the relative po-
sitions of the contact points, which are used to derive the
inertial parameters of the unknown payloads. Our algorithm
allows the full use of the proposed methodology in generic
cooperative manipulation tasks where the force has to be
chosen in a closed-loop control fashion relying on the current
center-of-mass position estimate.
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The paper is structured as follows. In Sec. II, we formalize
the distributed estimation problem. In Sec. III, we introduce
the distributed estimation procedure and describe the main
phases of the algorithm. Then, we first focus on the estima-
tion of the relative positions of the contact points in Sec. IV,
and describe in detail the procedure for the estimation of the
inertial parameters in Sec. V. The results of the numerical
simulations and the accuracy bounds are reported in Sec. VI,
and Sec. VII provides the conclusions.

II. PROBLEM STATEMENT

We consider a connected network composed of n mobile
robots able to move in a plane, see Fig. 1. The robotic
network is represented by an undirected graph ¥ = {.#, &},
where .# = {l,...,n} is the node set, corresponding to
robots, and & C & x .# is edge set, corresponding to
communication links. Notably, if (i,j) € & then robot i
can exchange data with j, and vice versa. Furthermore,
we indicate with A = {j € Z : (i,j) € &} the set of
neighbors of robot i. The team objective is to manipulate,
in a cooperative fashion, an unknown load B. The position
of the center of mass (CoM) C of the load B, with respect
to a common reference frame # = {0 —Xy}, is pc € R%.
Using a manipulator, each robot i can exert a force f; on the
load B in the contact point C; € B, whose position in # is
Pc; € R2.

Indicating with m € R-o and J € R, respectively, the
mass and the moment of inertia of B, the dynamics of B,

subject to forces f,...,f,, reads
1 n
pc=—) f; 1
Pc ml:ZI i ( )
1 T
& =) (pc;—pc) f; )

Il
R

1

where @ € R is the rotational rate of B. The linear operator
(-)L, applied to a vector v € R?, rotates it of /2, as

0 —1\ /v -
1 v— —
o= ))-(F) e
——
-0
We assume that each robot i performes noisy measurements
pci € R? of the velocity pc; of the contact point C;, i.e.,
Pc, = be; + Vi, @)
where v; ~ N(0,%;) is a white Gaussian noise with zero mean

and covariance matrix X; € R2%Z, Finally, we assume that
control inputs and communications are not affected by noise.

Problem 1 (Distributed Estimation of Inertial Parameters).
Given a network of n robots moving on a plane and manip-
ulating a load B. Design a distributed strategy such that each
robot i, for all i € .#, is able to estimate
1) the mass m of B,
2) the moment of inertia J of B, and
3) the relative positions of the contact point with respect
to the load’s center of mass, that is, pc, —pc € R2. We
remark that this quantity varies in time.

Preprint version, final version at http://ieeexplore.ieee.org/

Each robot i can only

1) locally measure the velocity EC,- of the contact point Cj;

2) locally control the applied force f; acting on C;;

3) communicate only with its one-hop neighbors, belong-
ing to the set ..

Henceforth, variables with the superimposed symbol ~
refer to noisy measurements, while variables with the su-
perimposed symbol ~ refer to estimates.

III. ESTIMATION ALGORITHM OVERVIEW

We indicate with pg = % 1 Pc; the geometric center of

all the contact points, and we use the following compact
notation for vector differences: z;; = pc; —Pc;, Zi = Pc; — PG
and zc = pg —pc. Thus, pc, —pc = z; +zc.

The following fact holds:

Fact 1. Assuming that z) and z, are the relative positions
between two points of B expressed in W, and considering
two time instants t' and t", the rigid body constraint can be
used to compute 7;(1") from z,(t'), 72(t'), and z,(¢"):

(") =T(z('), ("), 21 (")) = (3)
(z2(t) " 21(¢") 21 (") + (22() "2y (1)) 21 (1)
[z ()] '
The proposed algorithm consists of four steps that lead
the estimates performed by each robot to converge to the
real value of the inertial parameters. Each of the four steps,
described in the following, converges in a given time interval.
We indicate with #y the starting time of the algorithm and
with #;, k= 1,...,4, the end time of each step. We remark
that the steps are sequentially executed, i.e., no information
obtained at any step has to be fed back to previous steps at
any time.

Step 1: an estimation ||z;j|| of |zij|| becomes known
after t;.  Each robot i applies an arbitrary force fi(t) to
the body and uses p¢, and pcj, with j € 4, to estimate

m This is achieved through a least squares estimation
that converges at time #; and is detailed in Sec. IV.

Step 2: an estimation J of J becomes known after t». ~ For
t > 11, four concurrent substeps are executed to produce an
estimate J of the moment of inertia J. .

Sub-step 2.1 each robot i computes 2;j(t) and sign(w),
using f’cl-’ ﬁcj (with j € %)), and ||z;;|| (see Sec. IV).

Sub-step 2.2 each robot i computes Z;(t), using Z;;(r) and
the algorithm in [11].

Sub-step 2.3 each robot i applies a force fi(t) = k. 2;(t).
While the body moves, each robot i locally estimates the
rotational rate of B as

r(t) = sigm(e) L2l (©6)
(e

where j is any neighbor in .4;. Then, all robots update their
local estimates @; using a dynamic consensus algorithm [12]
to attain a common estimate @.

Sub-step 2.4 each robot performs an estimate of J, denoted
with f,~, as detailed in Sec. V-A. Then, an average consensus
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algorithm [13] is used to reach an agreement on a common
estimate J.

Step 3: an estimation pﬁc of Pc; —Pc becomes known
after t3.  Each robot applies an arbitrary nonzero force
f;(r) and produces an estimate @(¢) of the rotational rate
o(t). Then, each robot computes Zc, relying on the estimate
J previously performed, and using the nonlinear observer
detailed in Sec V-B. The applied forces must verify the weak
condition 1 Sy fi(t) #0, as stated in Proposition V.1. After
the convergence time of the observer, indicated with #3, the
unknown vector pc, — pc is estimated using the formula

(pc; (¢ ) pc(t)) =2(t) +2c(t) = @)
=2;(t) +T(2c(13),2;j(13),2;(1)),

where I is defined in (5) and j € 4.

Step 4: an estimation m of m becomes available after
t4. Each robot i estimates pc(t), by applying an arbitrary
nonzero force f;(¢) and estimates pc(t) as

Be(t) = be,(r) — ) (e @) —pc) . ®

We observe that all the quantities in the right hand side
of (8) are computed during the previous steps and are locally
available after r > 3. Based on f)c, each robot computes an
estimate 7i1;, as detailed in Sec. V-C. An average consensus
algorithm is then used to converge to a common estimate
of the mass iz, which, for ¢t > t4, will be known by all the
robots.

IV. ESTIMATION OF THE RELATIVE POSITIONS
OF THE CONTACT POINTS
Contact points C;, i € .#, belong to the rigid body B; Thus,
the following relation holds for all (i, j) € &

Z;Z, j = const. ©)]

Differentiating both sides of (9), we obtain

)2, =0,

7 (10)

which implies that z;; is perpendicular to z;;. Therefore, we
have

i
% sign(@)— | e, 2= sign(@)|zy] vij
;] ||z [
(11)
7k
where we let y;; = m Thus, robot i computes
ij
2ij = |1zi;lyij, (12)

(c Pc

where y;; = 7 and m can be computed using the

c; |
strategy detalled in the following.

It is clear that ||z;;|| cannot be estimated if @ =0, V, since
this implies z;; = 0. Thus, considering any time interval in
which o # 0 we differentiate with respect to time both sides
of (11) obtaining

z;j = sign(o)]|z;; ;- (13)
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Since y;; is not directly known, we apply a first-order low-
pass filter to both sides of (13), denoting with zl’; and ylf]
the filtered versions of z;; and y;;, respectively (refer to
the Appendix of [9] for a detailed explanation). Taking the
squared norm of both sides after filtering, we obtain

21> = 2l K llys; = ¥5I1P (14)

—2
where k is the gain of the low pass filter. Finally, ||z;;|| can
be obtained by solving the linear least squares problem

2 (e) 2 k1§ () =302
S ] : . as)

12 (1) 117 K33 (tg) — ¥, (19) 2
where ¢ ...1, are the ¢ > 0 acquisition times of the noisy

measurements.
Furthermore, an estimate of sign() at time ¢ is given by

. =\ (= ~f
sign(@) = sign | (2;(1) ) (¥i;(1) =¥i;(0) ) | -
V. ESTIMATION OF INERTIAL PARAMETERS

In this section, we describe three algorithms for estimating,
in the presented order: (i) the moment of inertia J, (ii) the
time-varying vector zZc, i.e., the position of the center of mass
C relative to the geometric center pg, and (iii) the mass m.

(16)

A. Estimation of the Moment of Inertia J

Noting that pc, — pc = z; +Z¢, we can rewrite (2) as

n
Z,Lf+ —zt Zf,,

where z; can be retrieved locally by each robot during Step 2.
Thus, the only unknown quantities in (17) are J and zc.

If each robot i applies a force f; = kzziL at each time ¢,
being k, any constant, then the second sum in (17) vanishes.
Consider, in fact

a7

%\'—*

f; zL :kz

I
™=

Il
-

k ) z (P, —Po) " kaZ (Pc; — o)

-

Il
R

I

14

n
k:Q (Z pc, — ZPG) = k;Q (npc —npc) = 0.
i=1 i=1
Thus, (17) simplifies as

w= —Zz,ﬂzil =

n
%Z [l (18)
We observe that quantity kY, ||z;||* in (18) is constant
over time. Therefore, this yields a constant angular accel-
eration, which allows the distributed identification of J by
means of the following distributed algorithm:

1) Before applying any force, each robots distributively
computes the constant value w =k, Y"_, ||2;||>. This can
be done in a distributed way by means of a standard
average consensus algorithm;

2) Each robot applies a constant force f; = k,2;-
be done only based on local information;

. This can
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3) Thanks to the local estimate @ of @, each robot
computes a local estimate J; of J using the approach
presented in the Appendix of [9];

4) When the local estimates converge, the robots run a
further consensus phase, attaining an agreement on a
common estimate J. This operation averages out the
uncertainty in the estimates J; caused by the noise in @
and Z;.

We note that no perfect time synchronization on the start
time of the application of forces f; is needed, since each
robot will eventually apply the force f; = k,2:".

We observe that design or technical constraints, such as
the necessity of keeping the angular or linear velocity of the
body bounded, may hold. In this case, the forces required
in this phase of the estimation could be applied only for a
limited time interval. In this case, the movement can be easily
stopped when needed using a pure damping force based on
a local velocity feedback. However, should the time be not
enough for estimation purposes, the process can be repeated
several times after each stop, to ensure the acquisition of the
measurements necessary to identify J.

B. Observer for the Relative Position z¢ of the CoM

Assume that during the manipulation task each robot applies
an arbitrary force f;(¢). It is straightforward to verify that
f;i(r) can be expressed as

i=1 i=1

l n
f,(t) = - Y £i(t) -+ Afi(1) = Finean (1) + AL (2). (19)
i=1
Then, (17) becomes
1 (& T n T
w:j <ZzlL )fmean(t)+ jzé fmcan(t)+
i=1
14 T 1 7
72# Af; + 7zé Y Af = (20)
n
J

T I T
~2& finean(7) + 7 Y 7 At
i=1
given that "7 | zf-T =0 and }!' | Af; = 0. Thus, (20) can be
written as

o=z, Q1)
where we let f= 2fmean and n = }):l'-’:l zf-TAf,-.

By means of standard dynamic consensus algorithms, it is
possible to reach an agreement on f. To this purpose, each
robot i needs to exchange only the local quantity f;(¢) with
its neighbors. This implies that robot i can locally compute
Af; = f; — . By exchanging the local quantity z,-LTAfi with
its neighbors and applying again the dynamic consensus
algorithm, also 1 can be locally computed in a distributed
way. Therefore, in the following we can safely assume that
both f and 1 are locally known to each robot.

Since z¢ is a vector with constant norm rigidly attached
to the object, we have

Zé = —Zc®. (22)
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Combining (21) and (22), we obtain the following au-
tonomous nonlinear system

X| = —x2x3
X2 = X143 i 23)
X3=x1fy—xf+n

y :x37

where we let z& = x|, 7. = x2, ® =x3, and f= (fi f;)".
The system output is assumed to be y = x3 = m, since the
rotational rate is locally estimated by each robot using (6).
Therefore, estimating z¢ is equivalent to observe the state of
the nonlinear system (23) with output y =x3 = w, and where
fys fr» and 1 are known inputs.

Before designing a suitable nonlinear observer, the observ-
ability of system (23) is studied.
Proposition V.1. If x3 #0 and [fi(t) f}(t)]T # 07, then
system (23) is locally observable in the sense of [14].

Proof. The observability matrix [14] is

0 0 I
0 - _]37 __fx _ O _ 9 (24)
—fxx3 —fyx?a —fax1 — fyxz

whose determinant is det(0) = —x3(f7 + f7). System (23)
is locally observable in the sense of [14] iff O is invertible,
from which the thesis follows. [

Thus, vector z¢ is observable from local velocity measure-
ments if and only if the rotational rate of the object and the
average vector of the applied forces are not identically zero.
The nonlinear observer is designed as follows.

Theorem V.1. Consider the following dynamical system

£1 = —%x3+ f(xs — £3)
) = R1x3 — fi(xs — £3)
B3 =% — B fe+ke(xs —53)+1,

where k, > 0. If x3 20 and [f;(1) fy(t)]T # 0, then sys-
tem (25) is an asymptotic observer for system (23), i.e.,
defining & = (£ % #)7 and x = (x; x x3)7, & > x
asymptotically.

.

(25)

Proof. Define the error vector as e = (ej ey e3)’ =
((x1 —%£1) (x2—£2) (x3—%3))7; the error dynamics is given
by

0 —X3 —fy
e=|x 0 f |e (26)
fy _fx _ke
Define the following candidate Lyapunov function:
1
Vie)=5 (i +e&+e3), 27)
whose time derivative along the system trajectories is
V(e) =e] (—€2X3 — fyeg)—i-
ex(xzer + frez) +e3(fyer — frea —kee3)
=—e1e2X3 —elfyf33 +exxze;+ (28)

7 7 ) 2
exfres + e3fyel —e3frer — kee3
2
= —ke€3,
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which is negative semidefinite. Considering the set ¥ =
{es.t.V(e)=0} = {es.t.e3 =0}, and generic vector &=
(é1 & 0)T € 7, it is easy to verify by means of (26) that
the first and second time derivatives of e3 along a trajectory
containing € are given by

d283 o d61

sl a7 det
dr? | dr |;

dr |- :fye_l )

e

= —x3(fyer + fre1).
(29)

Therefore, if x3 is not vanishing, then the largest invariant set
M C ¥ consists of the only equilibrium point (0 0 0). Thus,
the thesis holds due to the invariance Krasovskii—LaSalle
principle [15]. O

We remark that observer (25) can be implemented in a
distributed fashion by resorting only to local information.
The estimation error of the proposed observer vanishes
asymptotically in the ideal case of absence of noise. Actually,
— n .
each robot sets the force fg = —fiean as input for the local

observer, which is affected by noise, due to the presence of
J. Furthermore, the observer relies on the noisy estimate @,
computed using (6). Due to its asymptotic stability, we
expect that in presence of noise the estimation error will
remain bounded around the actual value of the parameter.
The definition of a formal proof of the estimation error
boundedness will be given as future work. However, in
Sec. VI, we will numerically characterize the bound of the
estimation error with respect to noise terms.

C. Estimation of the Mass

Assume that each robot applies an arbitrary force f;(¢)
and that fiean(7), defined as in (19), is not zero. Thus, (1)
becomes

n

pC = *fmean- (30)
m

We remind that each robot can distributively compute fi,cqp-
Furthermore, each robot is able to estimate the velocity of
the center of mass as

Be(t) = e, (1) + B(1) (2:(0) + 2 (1))

Therefore, similarly to J;, each robot can locally compute
an estimate 77; using the approach in the Appendix of [9].
Finally, the robots agree on a global estimation 7 using an
average consensus algorithm in order to average out the noise
of each local mass estimator.

€2y

VI. SIMULATIONS AND ACCURACY BOUNDS

We validate the estimation algorithm by running numerical
simulations. We assume n = 4 robots manipulating a C-
shaped planar rigid body with mass m =5 kg and moment
of inertia J = 8.6891 kg m?. Communications among robots
occur through the links & = {(1,2),(2,3),(3,4)}. We assume
that each robot is able to measure the velocity of the contact
point, and that the measurement is affected by a Gaussian
noise with zero mean and covariance matrix ¥; = o3I,
with 6 = 0.2 m/s, and where I € R?*? is the identity matrix.
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Fig. 2: The measured velocity difference z;,. The trends of Z3
and 734 are very similar and not reported here due to space
constraints.
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Fig. 3: Estimation errors of the distances between neighbors.

The algorithm starts with the estimation of the relative
distance between neighboring contact points: each robot sets
an arbitrary force and executes Step 1. We observe that the
estimation must stop when the measured noisy signals z;;
have a level such that the signal-to-noise ratio is too low
to perform an estimate. In this case, the estimation stops
when |[|z;;|| < 1 m/s (the measured zj, is illustrated in
Fig. 2, as an example). Figure 3 illustrates the errors in the
estimation of the distances using the strategy presented in
Sec. IV. Handling noisy measurements involves a certain
inaccuracy in the estimation process, whose standard devia-
tion is quantified in the following. Suppose to perform a least
squares estimation using 7 observations (v;, ¥;), 1 =1,...,7,
of the model y = Qv. The estimate 6 = (Y'T)~ Y7,
where Y = [v] ... 0T]" and y = [y] ... yI]T. The standard
deviation oy of the estimates 6 is

T
o

W )

Y vE— (X, v)?

where oy is the standard deviation of the observations .
Thus, the uncertainty of the estimation of the constant
parameters ||z;;||, m, and J has the form of (32) [16].
Subsequently, Step 2 is executed toward the local estima-
tion of the moment of inertia J;. The estimation process starts
as soon as robot i has locally collected a sufficient number of
samples, and yields the local estimates J; = 8.705340.0035
kg m?, J, = 8.7208 +0.0035 kg m?, J3 = 8.732040.0032
kg m?, and J; = 8.7151+0.0035 kg m?. Each robot checks
the convergence of the least squares estimation evaluating the
variance of the estimator [16]. Then, the local estimates J; are
exchanged over the network and an average consensus is run
to agree on the same estimate, that is, J=8.7183 +0.0004
kg m?. The result of such estimation is reported in Fig. 4.
The estimate of the moment of inertia J and the observation
of &(t), known thanks to the previous step, are used for the

05 = (32)
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Fig. 4: Estimation of the moment of inertia J of B. (a) Least squares
estimation of J: the estimate converges as soon as the number of
samples is sufficient. (b) After the convergence of the estimator, the
network runs an average consensus to reach an agreement on J.

- Wops [rad/s]

0 20 40 60 80

time [s]
Fig. 5: Observation of the vector z¢ and of the angular rate @:
dashed lines refer to observed values, while continuous lines refer
to real values. For the angular rate, the measure @ (continuos light
blue line) in input to the observer is also plotted.

observation of z¢. During this step, each robot applies the
same constant force f; =1, for all i=1,...,4. In Fig. 5, the
observations Z¢ and @y are illustrated.

We now characterize numerically the uncertainty of the
nonlinear observer in estimating zc, by running 1000 in-
dependent trials for different values of the variance of the
noise on the angular rate, G(%obs' For each trial, a sinusoidal
signal with random amplitude, frequency, and phase is used
for the components of the force applied by each robot. The
simulation yields a an almost constant trend and independent
from the value of Og, . Therefore, its mean value can
be considered as a good approximation of the standard
deviation, i.e., Oy, = 0.075 m and O'Z;C~ = 0.033 m. Once

the observer converges, the estimation of f)c and 7 can be
executed. The estimation of the mass, illustrated in Fig. 6, is
carried out using the estimation of the angular rate computed
by the observer, wys. First, each robot estimates locally,
respectively, /i1y = 4.8367£0.0451 kg, ity =4.849110.0455
kg, /i3 = 4.8824 +0.0453 kg, and iy = 4.8384 +0.0447 kg
and then, after the average consensus, the network agrees on
the value /i =4.8517+0.0113 kg.

VII. CONCLUSION

In this paper, we have addressed the problem of the
distributed estimation of the inertial parameters of an un-
known load manipulated by a network of robots. We as-
sume that each robot is able to control the force ex-
erted on the load and to measure only the velocity of
the point where the force is exerted. Only local commu-
nication between neighboring robots is allowed. In partic-
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ular, we have focused on the influence of the measure-
ment noise on the estimate by defining suitable strate-

= —
'i'4 "ﬁult 95
g2 & e
G0 10 20 30 40 50 50 50.01 50.02 50.03 50.04 50.05
time [s time [s
(a) (b)

Fig. 6: Estimation of the mass m of B. (a) Least squares estimation
of m: the estimate converges as soon as the number of samples is
sufficient. (b) After the convergence of the estimator, the network
runs an average consensus in order to reach an agreement on 7.

gies. The algorithm has been validated through several nu-
merical simulations.
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