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A Nonlinear Force Observer for Quadrotors and Application to
Physical Interactive Tasks
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Abstract— In order to properly control the physical inter-
active behavior of a flying vehicle, the information about the
forces acting on the robot is very useful. Force/torque sensors
can be exploited for measuring such information but their use
increases the cost of the equipment, the weight to be carried
by the robot and, consequently, it reduces the flying autonomy.
Furthermore, a sensor can measure only the force/torque
applied to the point it is mounted in. In order to overcome
these limitations, in this paper we introduce a Lyapunov based
nonlinear observer for estimating the external forces applied to
a quadrotor. Furthermore, we show how to exploit the estimated
force for shaping the interactive behavior of the quadrotor
using Interconnection and Damping Assignment Passivity Based
Controller (IDA-PBC). The results of the paper are validated
by means of simulations.

I. INTRODUCTION

The physical interaction of flying systems is a challenging
control and design problem and it became recently the
interest of many researchers. Especially quadrotor UAVs are
becoming popular tools for physical interaction tasks [1]
and flying robots are exploited for accomplishing different
goals while interacting with the environment: surface inspec-
tion [2], tool operations [3], [4], desired forces application [5]
or operation of an on board robotic manipulator [6].

One of the main challenge when flying machines are
interacting with their environment is the stabilization and
the control of this interaction in a meaningful way, i.e., they
can exploit interactive forces for achieving a desired task.
Passivity based controllers are known to be a very powerful
tool for controlling the interaction of a mechanical system
with (possibly unknown) environments [7] and, in particular,
Interconnection and Damping Assignment Passivity Based
Controller (IDA-PBC) is an effective technique to control
the physical interaction of an underactuated system with
the environment, by reshaping its physical properties (e.g.,
energetic and dissipative structure) [8], [9]. In [10] it is
shown how to use and improve IDA-PBC for controlling
the physical interaction of a quadrotor.

Another crucial issue for aerial physical interaction is
measuring the external wrenches (i.e., forces and torques)
acting on the body of the flying system. This can be done
using force/torque sensors that, on one side, give a good
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7 Avenue du Colonel Roche, 31077 Toulouse CEDEX 4, France.
antonio.franchi@laas.fr

and reliable measure but, on the other side, increase the
cost of the equipment, the need of power supply and the
weight of the robot and, consequently, can decrease the
flying time of the aerial vehicle. Another viable solution is
the use of a wrench estimator, which represents a cheaper
solution and that can give a sufficiently accurate estimate
of the wrench if the estimator is properly designed and the
necessary measurements (velocity, pose and, if available,
acceleration) are accurate enough. Furthermore, a wrench
estimator is cheaper, lighter and more power efficient than
a force/torque sensor and, therefore, it is a more viable
solution for small quadrotors, considering their low load
capabilities. Another benefit of using a wrench estimator is
that it can estimate an external wrench due to forces applied
in any point of the quadrotor, while a sensor measurement
is localized to the place of its transducer.

In [11] an unscented Kalman Filter for linearized model
of a quadrotor is proposed. Observers are a common tool for
estimating forces applied on the end-effector (see e.g. [12]).
In [13] nonlinear observers for velocity and force estimation
on a rigid body are presented.

The contribution of this paper is a novel observer for
estimating the external wrench applied on a quadrotor UAV
that is based on the full Lagrangian model of the robot
and is, therefore, very general. Furthermore, we exploit the
estimated wrench for improving the IDA-PBC controller
presented in [10] in a way that the flying system can apply
a desired force along any direction.

A summary of the paper follows. In Sec. II we present
the nonlinear wrench observer based on Lagrangian dy-
namics of the quadrotor system. It requires quadrotor po-
sition/orientation and their derivatives with applied control
inputs to estimate the external wrench acting on the quadrotor
Center of Gravity (CoG). Similar to [14], we propose a
stability analysis using Lyapunov’s direct method. In Sec. III
we show how to derive a port-Hamiltonian model for quadro-
tors from its Lagrangian dynamics and how to change its
interactive properties by applying IDA-PBC framework. In
Section IV we extend the IDA-PBC controller for exerting
a desired force at steady state. This is done by finding
equilibria conditions and shaping the rotational potential
accordingly. Section V presents extensive simulation results,
where the capabilities of force observer and force controller
are presented. The results show that regardless the presence
of noise in state estimation, the force observer gives good
approximation, if the external forces are not rapidly varying.
We also tested the observer in the non-nominal case of
high variations in the external force profile. In this case, as
expected, the estimator is less performant than in the nominal
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case. However, we show that the proposed controller can
still stabilize the system and control the physical interaction
despite non-perfect output from the observer. This is due to
the ability of passivity based control techniques to cope with
noise in the estimates and discontinuities of the disturbing
forces. Section VI concludes this work with remarks and
future works.

II. NONLINEAR WRENCH OBSERVER FOR
QUADROTORS

The knowledge of the external force and torque acting on
a quadrotor is essential to effectively control the physical
interaction with the environment. As we discussed in the
introduction it is very convenient in many cases to use a
wrench estimator rather than a force/torque sensor mounted,
e.g., at the end effector. For this reason, we designed a
force/torque observer that is inspired by the nonlinear dis-
turbance observer presented for robotic manipulators in [15]
and more general in [14].

Consider an inertial frame and a body frame attached
to the quadrotor and centered at its center of mass. Both
frames follow the NED (North-East-Down) convention. The
translational and rotational dynamics of quadrotor can be
written using the Lagrangian formalism as follows [16], [17]

mẍb = −ρR(η)e3 +mg0e3 + fe

J(η)η̈ = −C(η, η̇)η̇ + τ̄ + τe
(1)

where m > 0 is the mass of the quadrotor; g0 is the
gravitational constant; e3 = (0 0 1)T ; xb = (x y z)T ∈
R3 represents the position of the center of mass in the
inertial frame; η = (φ θ ψ)T are the roll, pitch, and yaw
angles representing the orientation of the body frame w.r.t
the inertial frame, and R(η) is the corresponding rotational
matrix; ρ ≥ 0 and τ̄ = (τ̄1 τ̄2 τ̄3)T ∈ R3 are the control
thrust amplitude and the control torque (expressed in the
body frame), respectively; fe = (fex fey fez )T ∈ R3 is the
external total force acting on the quadrotor center of mass
expressed in the inertial frame; and τe ∈ R3 is the external
torque expressed in body frame; finally, J(η) is the rotational
inertia matrix, and C(η, η̇) is the matrix representing the
Coriolis terms.

Stacking the generalized coordinates, the generalized input
and external forces we obtain the following compact expres-
sion

we = B(q)q̈ + C(q, q̇)q̇ + g −G(q)ū (2)

where

B =

(
mI 0
0 J

)
∈ R6×6 C =

(
0 0
0 C

)
∈ R6×6 (3)

g =

(
−mg0e3

0

)
∈ R6 G(q) =

(
R(η)e3 0

0 I

)
∈ R6×4

where we = (fTe τTe )T represents the external wrench acting
on the quadrotor, q = (xT ηT )T = {q1, · · · , q6} ∈ R6 is the
quadrotor configuration and ū = (ρ τ̄T )T is the control input

vector. We propose the following disturbance observer based
on [15] and [14],

˙̂we = L(q, q̇)(we − ŵe) = −L(q, q̇)ŵe+

+ L(q, q̇) (B(q)q̈ + C(q, q̇)q̇ + g −G(q)ū) (4)

where ŵe = (f̂Te τ̂Te )T ∈ R6 is the estimated wrench
and L(q, q̇) ∈ R6×6 will be designed in order to ensure
convergence of the observer. Since we do not assume any
specific model for the external force, we have no prior
information about the derivative of the external forces (or
disturbances). Therefore it is assumed that

ẇe = 0, (5)

which is inevitable if one does not know anything about the
environment geometry and dynamics. This is an important
limitation of this force observer, i.e., it will give poor
estimation in case of a rapidly varying external wrench.
This can be avoided by designing a good model for the
environment, which is however a topic of another study. By
defining the observer error

e = we − ŵe (6)

we can now calculate

ė = ẇe − ˙̂we = L(q, q̇)ŵe − L(q, q̇)we (7)

which can be expressed by considering (6) as below;

ė+ L(q, q̇)e = 0 (8)

This means that the choice of L(q, q̇) will directly affect the
asymptotic stability of the error dynamics.

In order to implement (4) one needs the knowledge of q̇,
q̇, and q̈. Measuring or estimating q and q̇ is quite standard
in current platforms (see, e.g., [18]). However, for many
applications, a reliable measurement of the acceleration q̈
(i.e., both the linear and angular acceleration) is not available.
For this purpose define the auxiliary vector:

Ψ = ŵe − p(q̇). (9)

Taking the time derivative we have

˙̂we = Ψ̇ +
∂p(q̇)

∂q̇
q̈. (10)

By equating (4) and (10) we get

Ψ̇ +
∂p(q̇)

∂q̇
q̈ = −L(q, q̇)(Ψ + p(q̇))+

+ L(q, q̇)(B(q)q̈ + C(q, q̇)q̇ + g −G(q)ū). (11)

By choosing

∂p(q̇)

∂q̇
= L(q, q̇)B(q) (12)

the dynamics of the nonlinear observer (see Fig. 1) can be
written as following

Ψ̇ = −L(q, q̇)Ψ + L(q, q̇) (C(q, q̇)q̇ + g −G(q)ū− p(q̇))
ŵe = Ψ + p(q̇) (13)
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Fig. 1. Nonlinear Force Observer.

which is not depending anymore on q̈. Therefore this
scheme (Fig. 1) can be implemented without measuring the
acceleration of the generalized coordinates q on commonly
available quadrotor platforms.

As it is seen from (8), we must choose L(q, q̇) such a way
that the error dynamics become asymptotically stable. More-
over, the decision made in (12) brings a strict dependency of
L(q, q̇) on the choice of p(q̇). Consider the following choice

p(q̇) = c

q̇1...
q̇6

 (14)

where c > 0 is an observer gain. The choice of p(q̇)
is different from the one made for robot manipulators as
shown in [15] and [14], since we are dealing with quadrotor
dynamics. We obtain that

L(q, q̇) = cB(q)−1. (15)

Proposition 1: Consider the wrench estimator (13) and
assume that the roll and pitch velocities are bounded, i.e.
|φ̇| < φ̃ and |θ̇| < θ̃, where φ̃, θ̃ ∈ R+. If (5) holds and if
L(q, q̇) is defined as in (15), then ŵe → we.

Proof: We will prove that the estimation error defined
in (6) will asymptotically vanish by showing that the error
dynamics (8) is asymptotically stable. Let

V (e, q) = eTB(q)e (16)

be a positive definite candidate Lyapunov function. Consid-
ering (8) and (15), we can write:

dV (e, q)

dt
= 2eTBė+ eT Ḃe = −2eTBLe+ eT Ḃe

=− 2ceT e+ eT Ḃe. (17)

The first component of the right hand side of (17) is
negative definite for c ∈ R+. The second component has an
indefinite sign. Nevertheless, since B(q) = BT (q), Ḃ(q, q̇)
is symmetric and, therefore, its eigenvalues are real. From
(3) we can compute:

Ḃ(q, q̇) =

(
0 0

0 J̇(η, η̇)

)
(18)

where the 0 are the zero matrices of proper dimensions.
Considering that ([16], [17]) J = TTJT with

T (η) =

1 0 −sθ
0 cθ sφcθ
0 −sφ cφcθ



where s∗ = sin(∗), c∗ = cos(∗), and J =
diag{Jxx, Jyy, Jzz} is the inertia matrix in body frame
(which is constant w.r.t. q), it is possible to write

J̇(η, η̇) = Φ(η)φ̇+ Θ(η)θ̇ (19)

where

Φ =

0 0 0
0 Φ22 Φ23

0 Φ32 Φ33

 Θ =

 0 0 Θ13

0 Θ22 Θ23

Θ31 Θ32 Θ33

 (20)

with

Φ22 = 2Jzzcφsφ

Φ23 = Φ32 = cθ(−Jzzc2φ + Jyycφcθ + Jzzs
2
φ)

Φ33 = 2c2θcφsφ(Jyy − Jzz)
Θ13 = Θ31 = −Jxxcθ

Θ22 = −2Jyycθsθ

Θ23 = Θ32 = (Jzzcφ − 2Jyycθ)sφsθ

Θ33 = (Jxx − Jzzc2φ − Jyys2φ)sθ. (21)

Since |φ̇| < φ̃ and |θ̇| < θ̃, from (21) it is easy to find two
finite numbers α, β ∈ R such that α < Ḃij < β, i, j ∈
{1, . . . , 6}. Thus, as shown in [19], it is always possible to
find a finite upper bound λB for all the possible eigenvalues
of Ḃ(q, q̇):

max
q,q̇

λM

{
Ḃ(q, q̇)

}
≤ λB <∞ (22)

where λM
{
Ḃ(q, q̇)

}
is the maximum eigenvalue of Ḃ(q, q̇).

Thus, we have that

eT Ḃe ≤ λBeT e (23)

It is therefore possible to choose a c > λB

2 which implies
V̇ is negative definite and that, therefore, e(t) → 0 which
proves the statement.
Stability (and accuracy) of the observer thus relies on the
observer gain, which should be carefully chosen depending
on the task.

Remark 1: If measurement for linear acceleration is avail-
able, such as quadrotors with Inertial Measurement Unit
(IMU), then it is possible to divide the observer in two parts.
In first part, the external force acting on the quadrotor can
simply be estimated using the first equation given in (1). In
second part, the external torque would be estimated the same
way as presented above, and the same stability conditions
would also hold for it.

III. PORT-HAMILTONIAN MODEL AND IDA-PB
CONTROL OF A QUADROTOR

In order to design a controller that is able to stably
perform interaction with the environment we decided to use
an energetic approach, which is more suited for this purpose.
Therefore it is convenient to write the quadrotor equations us-
ing the port-Hamiltonian modeling, which provides explicit
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view on the energetic flow of the system. As shown in [8],
one can write a port-Hamiltonian system as ṡ =

[
J (s)− R̄(s)

]
∂H
∂s +G(s)u

y = G(s)T ∂H∂s

(24)

where s ∈ Rn is the state and H(s) : Rn → R represents
the total amount of energy stored in the system. Square
matrices J (s) = −J (s)T and R̄(s) ≥ 0 represent the
internal energetic interconnections and the dissipation of
the port-Hamiltonian system, respectively, G(s) is the input
matrix depending on the technology of the system, and the
input-output pair (u, y) represents a power port. Any system
written in the form of (24) is passive w.r.t to this power port,
provided that H(s) is lower bounded. In [10] it is shown how
to transform Newton-Euler model of a quadrotor into a port-
Hamiltonian system with dissipation. A similar strategy can
be pursued for transforming the Lagrange dynamics given
in (1) into port-Hamiltonian dynamics with dissipation by
choosing

τ̄ = C(η, η̇)η̇ − kdJη̇ + Jτ + (J− I)τe (25)

where kd ∈ R+; τ = (τ1 τ2 τ3)T ∈ R3 and I is the identity
matrix of proper dimension. Hence, the rotational dynamics
becomes

η̈ = −kdη̇ + τ + τe (26)

which can be written as(
q̇
ṗ

)
=
[(

0 I
−I 0

)
−
(
0 0
0 R

)]( ∂H
∂q
∂H
∂p

)
+
(
0 0
G I

)(
u
we

)
(27)

where p = Mq̇ ∈ R6 be momentum variable. R =
diag(03 kdI3) ∈ R6×6 is the dissipation in rotational dy-
namics introduced by (25). Furthermore, u = (ρ τT )T ∈ R4

is the control input vector. The total energy function and the
input submatrix G are given by:

H(q, p) =
1

2
pTM−1p+ V (q) =

1

2
pTM−1p−mgq3 (28)

G =

(
G1 0
0 I

)
∈ R6×4 with G1 = −R(η)e3 ∈ R3 (29)

where

M =

(
mI 0
0 I

)
∈ R6×6 (30)

The system in (27) is cyclo-passive [10], which means it is
passive as long as the energy function is lower bounded. This
perfectly matches with the physical properties of a quadrotor
system.

In [10] we propose a controller to reshape the physical
properties of the the quadrotor dynamics that has the fol-
lowing form

u = (GTG)−1GT
(
∂H

∂q
−MM−1

d

∂Hd

∂q

)
−

−KvG
TM−TMT

d

∂Hd

∂p̄
+

+G+(MM−1
d (I −MdM

−1)we) + uh. (31)

Quadrotor
SystemIDA-PBC

ū

q̇, q

we

Desired Quadrotor System

uh

Fig. 2. Scheme for Controlled Quadrotor System Using IDA-PBC.

Under the action of (31) the original quadrotor behaves as a
different one whose dynamics that can be described by the
following port-Hamiltonian system(

q̇
˙̄p

)
=
[(

0 I
−I 0

)
−
(

0 0
0 Rd

)]( ∂Hd
∂q

∂Hd
∂p̄

)
+

+

(
0
I

)
w̃e +

(
0

MdM
−1G

)
uh (32)

where p̄ = Mdq̇ is the new momentum, associated to the
new inertia matrix:

Md =

(
mdI 0

0 N

)
(33)

where md ∈ R+ and N ∈ R3×3 is a symmetric positive
definite matrix representing the new mass and rotational
inertia, respectively; Hd is a new energy function

Hd =
1

2
p̄TM−1

d p̄+ Vd(q), (34)

where Vd is the new potential energy of the form

Vd(q) = −mdgq3 + V̄d(q4, q5, q6); (35)

Rd is the new dissipation matrix; w̃e is the partially com-
pensated external wrench; finally, uh is new control input for
controlling the physically modified quadrotor. A schematic
representation of IDA-PBC controlled quadrotor system is
shown in Fig. 2.

The exhaustive analytical derivation of the controller can
be found in [10]. In order to be implemented, controller (31)
requires the measurement of the external wrench we. The
method explained in Sec. II for estimating the external
wrench represents thus a valuable tool to allow the actual
implementation of the IDA-PBC controller in the real world,
as it will be mentioned in Sec. V.

IV. USE OF IDA-PB CONTROL TO EXERT
ARBITRARY 3D FORCES

The linear equation in (1) can be rewritten for the reshaped
quadrotor as

mdẍb = −ρR(η)e3 +mg0e3︸ ︷︷ ︸
=fne

+fe (36)

where we denoted with fne the sum of the total thrust force
and the gravity force, i.e., all the forces contributing to
the linear motion of the quadrotor except for the external
force fe. If ẍb = 0, i.e., the quadrotor moves at constant
(possibly zero) velocity, then we have that fne = −fe, i.e.,
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fne represents, in this case, the force that the quadrotor is
exerting on the external world. In this section we present a
method that allows to use the framework presented in Sec. III
in order to regulate fne to a certain desired value. At the end
of the section we show how this action can be used, e.g., to
counterbalance an external disturbance like a constant wind
or to press against a wall or an object with a certain given
force.

Denote with f∗ = (f∗x f∗y f∗z )T ∈ R3 the value of the
desired fne. Imposing fne = f∗ we obtain the following
nonlinear system of equations

ρ

sφsψ + cφcψsθ
cφsθsψ − cψsφ

cθcφ

 =

 −f∗x
−f∗y

−f∗z +mdg0

 (37)

after some straightforward algebra we obtain

ρ

cφsθ−sφ
cθcφ

 =

−f∗xcψ − f∗y sψf∗xsψ − f∗y cψ
−f∗z +mdg0

 (38)

which, assuming that also ψ is known and denoting is value
with ψss, it can be solved in the unknown ρ, φ, and θ
resulting in

ρ∗ =
√
f∗x

2 + f∗y
2 + (f∗z −mdg0)2 (39)

φ∗ = arcsin

(−f∗xcψss − f∗y sψss

ρ∗

)
(40)

θ∗ = − arcsin

(
f∗xsψss − f∗y cψss

ρ∗cφ∗

)
. (41)

Consider now the rotational dynamics of the reshaped
quadrotor. We choose V̄d(q4, q5, q6) in (35) as

V̄d(q) =
1

2
ηTe Kpηe (42)

where Kp = diag{kφp , kθp, kψp },

ηe = η − η̄ =

φ− φ̄θ − θ̄
ψ

 . (43)

and φ̄, θ̄ are parameters to be designed in order to obtain φ→
φ∗ and θ → θ∗. By virtue of (42) the rotational dynamics of
the reshaped quadrotor can be expressed as

η̈ = −kdη̇ +Kp(η̄ − η) + τ̃e (44)

where τ̃e denotes the external torque acting on the reshaped
quadrotor (that, we recall, can be estimated using the tech-
nique presented in Sec. II). Assuming that τ̃e is constant we
obtain the following equilibrium at steady state,

Kp(ηss − η̄) = τ̃e (45)

where ηss = (φss, θss, ψss) represent the steady state atti-
tude. It is straightforward to see that

ψss =
τ̃e

kψp

that can be used in (40) and (41) in order to find the exact
values of φ∗ and θ∗ that are needed to achieve the desired
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Fig. 3. Gaussian Noise added to the state measurements. Blue plots on the
left column represent the noise in position and orientation (Euler angles);
red plots on the right column show the noise in linear velocity and Euler
rates. The bias in all measurements are ignored, since they can be eliminated
using suitable techniques.

f∗. Given those values of φ∗ and θ∗ we choose φ̄ and θ̄ such
that φss = φ∗ and θss = θ∗, i.e.,

ψ̄ = ψ∗ − τ̃ex

kφp
(46)

θ̄ = θ∗ − τ̃ey
kθp
. (47)

In summary, by choosing the thrust as in (39) and the
potential as in (42), with φ̄ and θ̄ given by (46) and (47),
respectively, we can let fne converge to f∗ even in the
presence of a disturbing (but constant) external torque τ̃e.

This technique can be applied for example to balance an
external constant force fe produced by a wind or any other
external agent. To this aim one has to estimate fe using the
observer presented in Sec. II and then select f∗ = −fe,
which results in a compensation of the external force acting
on the quadrotor. In Sec. V we provide a numerical study
of this particular case. Another possible application of the
technique presented in this paper is the exertion of a constant
force to a wall or to load for the purpose, e.g., of pushing,
lifting, and so on.

V. SIMULATIONS AND RESULTS

In this section we present different simulation results to
show the capabilities of nonlinear force observer presented
in Sec. II for different case studies, in which IDA-PBC is
used for controlling the physical interaction of the quadrotor
system. In order to reproduce realistic scenarios, we added
independent Gaussian noises to the measurements of the
quadrotor state, based on our laboratory experiences (see
Fig. 3). The first simulation aims at showing the accuracy of
the force observer in an environment, where disturbing forces
and torques are acting on quadrotor CoG. In the second
simulation we consider the relevant case where a rigid tool
is attached to quadrotor CoG and the tooltip is sliding on
the surface of a ceiling (for a detailed explanation see the
Sec. V of [10]). This case study provides a highly varying
external force profile, which is a non-nominal situation for
using the force observer presented in this work. Finally, last
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Fig. 4. IDA-PBC controlled quadrotor for aerial physical interaction and force estimation using nonlinear force observer. The external wrench is directly
acting on the center of gravity of the quadrotor. First 1N of external force along the ~x axis is applied between 5 s and 10 s. Then 1N of external force
along the −~z axis is applied between 15 s and 20 s. Later a constant torque of 1Nm is applied around the ~x axis between 25 s and 30 s. Finally all of
these external disturbances are applied between 35 s and 40 s. Third column shows the exact external force and torques (black plots) and their estimations
(red plots). The observer gain for force estimation is set to c = 5, and for torque estimation to c = 0.5.

simulation presents a case where quadrotor is exposed to a
constant force (e.g., modeling a constant wind force) which
has to be balanced while being subject to other disturbances
from the environment at the same time. This is the case in
which the quadrotor is applying a desired force in order to
balance the external force, as explained in Sec. IV.

We encourage the reader to watch the video attached to
this submission that provides a visual complement to the
plots of the three simulation studies.

In simulations we used a quadrotor system with the
following parameters. The mass is m = 1 kg, grav-
ity is g0 = 9.81 m/s2 and the inertia matrix is J =
diag([0.13, 0.13, 0.22]). The legends QCi in the plots rep-
resent the quadrotor with the i-th target dynamics assigned
using IDA-PBC [10]. The environment is modeled with no
dissipation, which means the aerial drag acting on the body
of the quadrotor is not considered.

A. Testing the Observer with a Slowly Varying Force Profile
The aim of the first simulation is to show the accuracy of

force estimation, done by nonlinear force observer proposed
in Sec. II. As a case study, we choose an external force/torque
profile, where first 1 N of force applied along ~x axis; then
along −~z axis; later 0.5 Nm of torque around ~x axis of the
quadrotor; and finally all together at the same time. The force
profile can be seen in the last row of Fig. 4. The high level
control input uh is chosen such as to scale the gravity effect.

As explained in [10], IDA-PBC can be used to change the
interactive behavior of the quadrotors by assigning different

dynamic properties. In this case, our goal is to prove that
nonlinear force observer gives good external wrench estima-
tion, which can be used for a quadrotor controlled with IDA-
PBC. The first two rows of Fig. 4 present the evaluation of
quadrotor position, orientation and necessary control inputs
when interacting with the external forces. The last row of
the same figure shows the estimated forces and torques. It
can be seen that force/torque estimation (red plot) is very
accurate considering the exact forces (black plot).

B. Testing the Observer with a Rapidly Varying Force Profile

We tested the observer also in an extreme case where there
are rapidly varying external forces. The chosen case study is
a challenging one, where a rigid tool is sliding on a rough
surface. This tool is rigidly attached on a quadrotor, placed
above the center of gravity at a position d = (0.2 0 −
0.2)T [m], so the surface can be interpreted as a ceiling. This
case is shown in [10] without the use of a force observer. The
idea is to apply a constant high-level control input, uh, to the
system with a desired attitude, and let it fly while using IDA-
PBC for stable contact between this uneven ceiling surface
and tooltip, and sliding along the surface for performing such
as ceiling painting, cleaning or surface inspection tasks. The
results are shown in Fig. 5, where tz represents the tooltip
position along ~z axis. QC1 is assigned with smaller desired
inertia; and damping along the thrust direction, compared
to QC2. QC2 shows a stiffer behavior with respect to the
changes on the surface compared to QC1, which has more
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Fig. 5. Rigid tooltip on a quadrotor interacting with a rough ceiling surface. The blue plot is presenting the behavior of QC1, and the red plot the behavior
of QC2. Second row shows the force estimation of the nonlinear force observer. The observer gain is set to c = 20 for both forces and torques. In case of
rapidly varying external force profile, the observer gives a less precise estimation, as expected. However, IDA-PBC controller still stabilizes the interaction,
thanks to its ability of preserving the passivity of the controlled system.

oscillations and takes more time to reestablish the contact
with the surface. These behaviors are consistent with the
results in [10] where the exact knowledge of the external
wrench have been used instead of an estimation of it. The
main components of the exact and estimated wrench are
shown in third column of Fig. 5. As expected the estimator
cannot precisely track the rapidly varying external wrench.
However, the controller shows the capability to stabilize the
physical interaction even when the real and estimated values
of the contact force present some discrepancies. The main
reason being that our passivity based control method can
cope well with these kind of non-idealities. This result makes
us optimistic on the success of future experiments.

C. Exerting 3D Desired Force

In Sec. IV we showed how to use the proposed controller
and estimator in a way that the quadrotor can exert an
arbitrary constant 3D force on the environment. In order to
validate the theory in simulation, we consider the case of
in which a constant 1 N force is applied to quadrotor along
the ~x axis, continuously. In addition to the constant force,
we apply an impulse of a disturbance force of 1 N along
the −~z an impulse of a disturbance torque of 1 Nm about
the ~x axis. Finally all these disturbances are applied in the
same time. The controller finds a rotational equilibrium, as
explained in Sec. IV, so that the quadrotor stops accelerating
along the 3D axes by balancing both the external force and
torques. The results are presented in Fig. 6. Two different
desired dynamics are shown: QC3 is designed with smaller
desired inertia and stiffness in rotational dynamics, compared
to QC4, which reacts to external effects faster than QC3.
This generates a less travelled distance along the direction

of motion for QC4. As it is seen in Fig. 6, the quadrotor
exerts a counterbalancing force so that the components of
the accelerations along all translational axes are converging
to zero in steady state (sub figures in first row of Fig. 6).
Another sub-figure in the third row shows that fne,x rapidly
converges to f∗x = −fex in order to counterbalance it. Since
no dissipation is present in the environment (no aerial drag
is acting on the body of the quadrotor), the system floats
with a constant velocity in each direction. Similar to the
case shown in Fig. 4, the observer provides good estimation
of the external wrench.

VI. CONCLUSIONS

We presented a nonlinear force observer for quadrotors
to estimate the external wrench acting on the CoG. We
tested this observer with IDA-PBC controller, which uses
a passivity based control technique used to reshape the
physical properties of a quadrotor in a way that it behaves
with a given target dynamics. We have presented a force
observer that doesn’t require additional sensor or hardware,
and gives good approximation for slowly varying torques and
forces acting to the center of gravity of the system from any
direction. We have also shown an improvement of the IDA-
PBC controller for exerting desired forces at steady state that
can be used e.g., to balance the external disturbances. The
results show that the combination of IDA-PBC controller and
the nonlinear force observer succesfully stabilizes the system
and controls the interaction with the external environment.
Even in case of poor force estimation, the interactive behav-
ior remains stable thanks to the robustness of the IDA-PBC.

In the near future we are working toward the realization
of an experimental testbed with a real quadrotor that will
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Fig. 6. IDA-PBC controlled quadrotor is exerting desired forces and counterbalancing external disturbances. The external wrench is directly acting on
the center of gravity of the quadrotor. A constant 1N of external force along the ~x axis is applied during the whole simulation for replicating a constant
wind effect. Then 1N of external force along the −~z axis is applied between 5 s and 10 s. Later a constant torque of 1Nm is applied around the ~x axis
between 15 s and 20 s. Finally all of these external disturbances are applied between 25 s and 30 s of the simulation. Third row shows the exact external
force and torques (black plot); and their estimations (red plot). It can be seen from the first row that the accelerations in all three axes converge to zero
at steady state. The sub-figure presented in the last row is showing the desired force applied by the quadrotor to counterbalance the constant wind effect.
The observer gain for force estimation is set to c = 5, and for torque estimation to c = 0.5.

hopefully confirm the promising simulative results of the
proposed observer/controller scheme.
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[10] B. Yüksel, C. Secchi, H. H. Bülthoff, and A. Franchi, “Reshaping
the physical properties of a quadrotor through IDA-PBC and its
application to aerial physical interaction,” in 2014 IEEE Int. Conf. on
Robotics and Automation, Hong Kong, China, May. 2014, pp. 6258–
6265.

[11] F. Augugliaro and R. DAndrea, “Admittance control for physical
human-quadrocopter interaction,” in 12th European Control Confer-
ence, Zurich, Switzerland, Jul. 2013, pp. 1805–1810.

[12] L. D. Phong, J. Choi, and S. Kang, “External force estimation using
joint torque sensors for a robot manipulator,” in 2012 IEEE Int. Conf.
on Robotics and Automation, St. Paul, MN, May 2012, pp. 4507–4512.

[13] P. J. Hacksel and S. E. Salcudean, “Estimation of environment forces
and rigid-body velocities using observers,” in 1994 IEEE Int. Conf. on
Robotics and Automation, San Diego, CA, May 1994, pp. 931–936.

[14] A. Nikoobin and R. Haghighi, “Lyapunov-based nonlinear disturbance
observer for serial n-link robot manipulators,” Journal of Intelligent
& Robotics Systems, vol. 55, no. 2-3, pp. 135–153, 2009.

[15] W. Chen, D. J. Ballance, P. J. Gawthrop, and J. O’Reilly, “A non-
linear disturbance observer for robotic manipulators,” IEEE Trans. on
Industrial Electronics, vol. 47, no. 4, pp. 932–938, 2000.

[16] L. R. G. Carrillo, A. E. D. Lopez, R. Lozano, and C. Pegard, Quad
Rotorcraft Control Vision-Based Hovering and Navigation. Springer,
2013.

[17] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “An integral predic-
tive/nonlinear H-infinity control structure for a quadrotor helicopter,”
Automatica, vol. 46, no. 1, pp. 29–39, 2010.

[18] D. Abeywardena, S. Kodagoda, G. Dissanayake, and R. Munasinghe,
“Improved state estimation in quadrotor MAVs: A novel drift-free
velocity estimator,” IEEE Robotics & Automation Magazine, vol. 20,
no. 4, pp. 32–39, 2013.

[19] X. Zhan, “Extremal eigenvalues of real symmetric matrices with
entries in an interval,” SIAM Journal on Matrix Analysis and Appli-
cations, vol. 27, no. 3, pp. 851–860, 2006.

Preprint version, final version at http://ieeexplore.ieee.org/ 8 2014 AIM

www.arcas-project.eu
www.arcas-project.eu
www.airobots.eu

	INTRODUCTION
	NONLINEAR WRENCH OBSERVER FOR QUADROTORS
	PORT-HAMILTONIAN MODEL AND IDA-PB CONTROL OF A QUADROTOR
	USE OF IDA-PB CONTROL TO EXERT ARBITRARY 3D FORCES
	SIMULATIONS AND RESULTS
	Testing the Observer with a Slowly Varying Force Profile
	Testing the Observer with a Rapidly Varying Force Profile
	Exerting 3D Desired Force

	CONCLUSIONS
	References

