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Abstract: In this paper, we illustrate an open-source ready-to-use hardware/software archi-
tecture for a quadrotor UAV. The presented platform is price effective, highly customizable,
and easily exploitable by other researchers involved in high-level UAV control tasks and for
educational purposes as well. The use of object-oriented programming and full support of
Robot Operating System (ROS) and Matlab Simulink allows for an efficient customization,
code reuse, functionality expansion and rapid prototyping of new algorithms. We provide an
extensive illustration of the various UAV components and a thorough description of the main
basic algorithms and calibration procedures. Finally, we present some experimental case studies
aimed at showing the effectiveness of the proposed architecture.

1. INTRODUCTION

Quadrotors are Unmanned Aerial Vehicles (UAVs) actu-
ated by four fixed-pitch independent propellers located at
the vertexes of a cross-shaped structure [11]. In addition
to being able to take-off and land vertically, quadrotors
can reach high angular accelerations thanks to the rela-
tively long lever arm between opposing motors. This makes
them more agile than most standard helicopters or similar
rotorcraft UAVs. For these reasons, and also because of
their affordability and mechanical robustness, this plat-
form has witnessed a considerable growing interest in the
robotics and hobbyist community over the last decade,
being, in some cases, also commercialized as off-the-shelf
products [1, asc].

Nowadays, most of the research efforts are not dealing with
more accurate dynamical modeling, or novel flight control
design, as these issues have reached an adequate level of
maturity and do not need further major improvements, at
least concerning standard applications. The challenge is
rather on how to exploit these systems as a flexible plat-
form for implementing and validating complex and higher-
level tasks, often involving multiple robots interacting at
the same time in partially structured or unstructured
environments. Some examples in this sense can be found
in, e.g., [14, 12, 2].

Nevertheless, obtaining a reliable and operative quadrotor
platform for experimental purposes still requires a con-
siderable investment of time and resources for properly
tuning the system, e.g., for taking care of identification
and calibration of all the various parameters (offsets, bi-
ases, motor curves), gain tuning of the flight controller,
implementation of accurate onboard state estimation fil-

ters, and, last but not least, software development and
debugging. These issues are obviously common to any
robot, but, we believe, are particularly sensitive for flying
robots as the malfunctioning of any hardware/software
component can easily result in a severe crash and loss of
the vehicle. Because of these reasons, many ready-to-use
platforms have been proposed over the last years, each of
them with their pros/cons and spanning a wide range of
prices.

The Hummingbird and Pelican quadrotors by Ascending
Technologies are probably the most widespread platforms
in the research community (see, e.g., [14, 12]). They are
characterized by a solid flight performance thanks to their
lightweight rigid structure, but their price is still expensive
compared to other solutions. An alternative consumer-
oriented and cheaper quadrotor platform, employed in
some research projects, is the AR.Drone Parrot [1] which
is able to achieve a stable near hovering flight only using
its onboard sensors. However, being the AR.Drone an
inexpensive quadrotor designed for the general consumer
market, it possesses clearly some drawbacks when used
within a research project, e.g., 1) it does not allow for the
tuning and customization that are often required in re-
search projects, 2) it is not possible to integrate additional
sensors and high performance computational units (due
to the extremely low payload and fragile structure), and
3) the usability of the integrated sensors for testing new
algorithms is limited by their quality and the latencies at
which the corresponding signals can be accessed. Further-
more, both these architectures are closed-source and the
low-level controller cannot be freely customized to comply
with the users’ needs.



As for open-source architectures, an interesting survey
of some existing projects can be found in [7]. Many of
the referenced solutions are extremely competitive when
compared to their price. Nevertheless, in our opinion
none of them possesses enough computational resources
to run onboard the typical complex algorithms required
for a truly autonomous operation of quadrotor UAVs,
such as, e.g., intensive image processing and/or high load
communication management. Another project, similar to
the one presented in this paper, is described in [13]. The
authors exploit the same hardware used in this work, but
they do not customize the low-level controller provided
by the manufacturer and strongly rely on a ground-based
computer for all computations.

With respect to all these solutions, the goal of this paper is
to propose a open-source and relatively cheap architecture
for a quadrotor UAV characterized by the basic hardware
and software components that can be used within an
educational and research project to perform autonomous
flight and onboard implementation of complex behaviors.
For this purpose we are making the complete source code
and specs available on a freely-accessible repository for
dissemination purposes and easy re-use by other research
groups (see https://svn.kyb.mpg.de/kyb-robotics/).
From a hardware point of view, the proposed platform is
purposely simple, highly customizable and easy to main-
tain. Every component can be bought off-the-shelf, and
the use of standard software architectures and protocol
allows for some flexibility in the hardware setup. As from
a software point-of-view, the use of object-oriented pro-
gramming and the support of the Robot Operating Sys-
tem (ROS) and Matlab Simulink environments allow for
efficient customization, code reuse, functionality expansion
and rapid prototyping of new algorithms. Finally, for the
sake of completeness and re-usability, we also give hands-
on details on all the calibration procedures necessary for
identifying the dynamic parameters of the quadrotor, and
on its basic flight control algorithms.

The paper is organized as follows: Secs. 2–3 describe the
general hardware and software architecture of the pro-
posed quadrotor platform. Then, Secs. 4–6 provide details
on the implemented trajectory tracking controller, relevant
calibration procedures, and state estimation schemes. Fi-
nally, Sec. 7 reports some experimental results for some
relevant test cases meant to illustrate the potential and
performance of the proposed platform, and Sec. 8 draws
some conclusions and discusses future directions.

2. HARDWARE DESIGN

The main goals driving our hardware design can be sum-
marized as follows:

• keeping the cost of the overall components as low as
possible, when compared to equivalent solutions,
• guaranteeing a wide availability of all the components
by avoiding the use of customized hardware,
• ensuring an adequate onboard computational power,
for the reduced payload of a typical small-size quadro-
tor platform,
• ensuring that both the actuation and sensing capa-
bilities of the platform are made fully interfaced with
the ROS environment.

Taking into account the aforementioned specifications, we
found a suitable solution in using the mechanical frame,
actuators, microcontrollers, and inertial measurement unit
(IMU) of the MK-Quadro 1 platform, by nevertheless re-
placing the control layer provided by the manufacturer,
introducing new components, and completely redesigning
the interface to the platform actuation and sensing re-
sources.

The actuation system of the MK-Quadro consists of four
plastic propellers with a diameter of 0.254m, and a total
span and weight of the frame of 0.5m and 0.12 kg, respec-
tively. The avionics, attached to the center plate of the
frame, consists of: i) a Pico-ITX LP-170C motherboard
by COMMELL, equipped with a dual core Intel R©AtomTM

64 bit 1.80GHz CPU, 2GB DDR2 RAM, 16GB Compact
Flash Type-II memory and a PCIE mini wireless board,
ii) a low-level 8-bit Atmega1284p microcontroller, clocked
at 20MHz, connected to the mini-computer trough two
RS232 serial ports and a MAX232 converter. The serial
connections operate at a baud-rate of 115 200Bd iii) four
brushless controllers connected to the low-level controller
through a standard I2C bus, iv) three 3D LIS344alh
accelerometers (0.0039g0 m/s2 resolution and ±2g0 m/s2
range) and three ADXRS610 gyros (0.586 deg/s resolution
and ±300 deg/s range), directly connected to the analog to
digital 10 bit converters of the low-level microcontroller.
In addition to this, the platform is also equipped with
a pressure sensor. The whole system is powered by a
2600mAh LiPo battery which guarantees an endurance of
around 10min of flight in normal regimes. The complete
system has a weight of approximately 1.300 kg.

On top of this basic setup the system permits the easy
addition of onboard exteroceptive sensor, as done, e.g., in
[3, 2] by using onboard monocular cameras. The use of an
onboard RGB-D sensor is currently under development.

We finally note that this hardware solution should be
regarded as a suggested configuration, i.e., as a well tested
and consolidated, rather than as a mandatory one. Indeed,
other hardware choices are possible: in particular, the
high-level control software can be run on any standard
x86/64 architecture without additional effort. Moreover,
since the source code is freely distributed, it is possible
(with, probably, some more effort in this case) to compile
and run it on different architectures. Finally, concerning
the mechanical components, any equivalent configuration
can be used by suitably adjusting the control/estimation
gains.

3. SOFTWARE ARCHITECTURE

The software solution developed for our platform is meant
to comply with the following specifications:

• possibility of distributing the full open-source code,
• use of an object-oriented high-level programming
language (such as C++ or Python),
• possibility of providing the user with a working sys-
tem in terms of flight control, making the platform
ready-to-use in laboratory conditions so as to, e.g.,
test new state estimation and planning algorithms for
exploration or multi-robot formation controllers,

1 http://www.mikrokopter.de
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Fig. 1. Block diagram of the hardware and software architecture. The TeleKyb framework is used for the software part.

• possibility to customize, if desired, the single basic
functionalities, such as the controllers or the basic
state estimator provided with the platfrom,
• possibility to automatize as much as possible the
calibration procedure,
• easy integration of additional functionalities in the ar-
chitecture, and easy interface to Matlab and Simulink.

In order to comply with the first two constraints, we
opted for Ubuntu Linux Server 12.04 LTS as operating
system, as this distribution is currently among the most
widespread ones. Furthermore, for facilitating the integra-
tion and/or replacement of code parts, we adopted the
ROS framework: indeed, this is more and more becoming
a standard for robotic applications, with many common
functionalities and drivers freely available on the web.

The overall system architecture is represented by the block
diagram in Fig.1. The whole architecture is developed
within the the TeleKyb framework (see [4] for more de-
tails). TeleKyb manages the generation of the desired
trajectories from a pool of behaviors and selects the current
state estimator and the motion controller. The control loop
frequency depends on the kind of controller used and may
vary, e.g., from 60Hz to 650Hz. Both the state estimation
and the control algorithms are incapsulated in separate
plugins. It is therefore easy, if desired, to re-implement
them in a customized way.

Behaviors describe the basic operations available for the
UAV (e.g., taking-off, landing, following a trajectory, ex-
ecuting velocity commands from a joystick, and so on) at
a high level and in a parametrized way. Selection of the
behaviors is governed by the behavior controller according
to the robot state, to the experimental flow (managed by
the experiment node), and to the joystick inputs from the
user.

The experiment node is an independent ROS node running
in a remote base station and communicating with the
Atom board through a standard WiFi connection. From
here, the user can control the experiment, modify the pa-
rameters online and log data. Finally the base station can
also run Matlab Simulink models able to exchange data
with the other software components via ROS publishers
and subscribers instantiated in s-function blocks.

The MkInterface node is responsible for the communi-
cation with the low-level Atmega1284p microcontroller
throughout the two serial ports. It receives the IMU
measurements, the barometer measurements, the battery
status, and the value of other internal variables. On the
other hand it allows both to send control commands and

change the logical states of the microcontroller. This latter
can operate in two different modalities:

• In the near-hovering mode, the microcontroller re-
ceives, from the high-level control loop, a desired
total thrust force, roll and pitch angles and yaw rate.
It regulates these quantities using the information
provided by the IMU and employing a standard lin-
earized hovering controller that is described in [5];
• In the direct mode, instead, the microcontroller is

only acting as a communication interface with the
sensory and actuation hardware. It collects the IMU
readings and then forwards the motor velocity com-
mands (from the high-level control loop) to the brush-
less (BL) controllers via the I2C bus.

Additionally, an emergency mode is also possible: transi-
tions to this mode can be toggled by either the user or
by the occurrence of dangerous situations such as, e.g.,
a very low battery level or an interruption of the com-
munication link with the high-level control. In this case,
the microcontroller ignores any further command from the
Atom board and tries to land by only relying on the near-
hovering controller.

Finally, in all cases the microcontroller runs an onboard
state estimation based on a complementary filter as de-
scribed in [9]. This estimation is not strictly necessary in
the direct mode but, in order to obtain a smooth transition
to the emergency mode at any time, the estimation is
nevertheless always kept updated.

4. MODELING AND CONTROL

In this section we provide details on the implemented
control algorithm for trajectory tracking when the micro-
controller is operating in direct mode. As typically done,
we neglect the dynamics of the propeller actuation and
consider the generated thrusts as the actual control inputs
for control design. As for the control scheme itself, we chose
to employ a geometric tracking technique similar to the one
presented in [6] because of its almost global convergence
and excellent tracking capabilities.

Throughout the following, a right subscript will indicate
the reference frame to which the quantities belong, and
a left superscript the frame in which the quantities are
expressed. An omitted left superscript will indicate a quan-
tity expressed in the world inertial frameW. The mapping
between the thrusts fi generated by each propeller along
its spinning axis and the resulting total thrust u1 along
the vertical axis of the robot, and the three independent
torques u2,3,4 actuating the quadrotor body, is:
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u =

u1u2u3
u4

 =

 1 1 1 1
0 l 0 −l
−l 0 l 0
c −c c −c


f1f2f3
f4

 = Mũ, (1)

where l represents the distance of the propeller rotational
axes from the center of the robot frame and c is a constant
related to the propeller characteristics.

The robot state consists of the position and orientation
of the body frame B w.r.t. the world inertial frame W,
namely rB and WRB, together with the corresponding
time-derivatives, i.e. the linear and angular velocity (ṙB
and BωBW). Assuming that the robot barycenter is posi-
tioned in the geometric center, we obtain

mr̈B +mgzW = u1zB, (2)
J Bω̇BW + [BωBW ]×J

BωBW = (u2, u3, u4)
T , (3)

where m and J are the total mass and the (constant)
inertia tensor of the robot respectively, zB is the Z-axis
of the body frame and [BωBW ]× is the skew-symmetric
matrix associated to vector BωBW .

Given a desired trajectory (rB,t, ψt) for the robot position
and yaw angle with all necessary derivatives, and having
defined the position and velocity errors as ep = rB,t − rB
and ev = ṙB,t − ṙB, we can introduce a desired force as a
PID action plus gravity cancellation

fd = mr̈B,t+Khl
p ep+Khl∫

p

∫ t

0

epdt+Khl
v ev+mgzW , (4)

where Khl
p , Khl∫

p
and Khl

v are positive diagonal matrices.

The desired force fd can be realized by choosing u1 =
fTd zB and by aligning the body vertical axis with the
direction of fd. The desired robot attitude, described by
the rotation matrix WRB,d, can then be chosen so that
its third column is zB,d = fd

‖fd‖ . The remaining degrees of
freedom are then set so as to minimize the yaw error. This
is obtained by defining

yC,d = (− sinψt cosψt 0)
T
,

and by choosing the first and second columns of WRB,d
as:

xB,d =
yC,d × zB,d
‖yC,d × zB,d‖

, yB,d = zB,d × xB,d.

The orientation error can then be defined as

eR =
1

2

(WRT
B
WRB,d − WRT

B,d
WRB

)∨
,

where ∨ indicates the vee-map that relates a skew-
symmetric matrix to its corresponding 3-vector. The an-
gular velocity error is instead

eω = WRT
B
WRB,d

B,dωBW,d − BωBW
where B,dωBW,d can be computed as a function of the spec-
ified trajectory of the robot barycenter and its derivatives
up to the third order (see [16]). Finally the torque inputs
can be chosen as

(u2, u3, u4)
T = Khl

R eR +Khl∫
R

∫ t

0

eRdt+Khl
ω eω + [BωBW ]×J

BωBW

+ J
(WRT

B
WRB,d

B,dω̇BW,d − [BωBW ]×
WRT

B
WRB,d

B,dωBW,d
)

(5)
where Khl

R , Khl∫
R

and Khl
ω are positive diagonal matrices.

Note that this control law essentially consists of a PID

action, a cancellation of the gyroscopic force and a feed-
forward term B,dω̇BW,d that can be computed as a function
of the specified trajectory of the robot barycenter and its
derivatives up to the fourth order (see again [16]).

At this point, since matrix M in (1) has full rank, it
can be inverted to obtain the single motor thrusts fi.
As well-known, and shown in Sec. 5, these are related to
the spinning velocities of the propellers which are then
treated as references for the motor controllers. Neverthe-
less, directly feeding these references may conflict with
any internal saturations due to the limited motor power.
The resulting actuation can therefore significantly differ
from the desired one. It is then necessary to properly scale
down the control inputs in order to make them feasible
by the motor controllers. We can achieve this goal by
splitting the reference control input u in a component
ug = (mg, 0, 0, 0)T , necessary for compensating gravity in
hovering, and a second component ures = u−ug on which
a uniform scaling is applied until all the resulting propeller
thrusts lie in the admissible range [fmin, fmax]. In practice
one has to solve the following optimization problem:

min
{λ}

1

2
‖u− (ug + λures)‖2

s.t. fmin ≤ A−1(ug + λures) ≤ fmax, λ ≤ 1.

Note that an admissible solution always exists, provided
that ug is a feasible input. Moreover the use of a uniform
scaling guarantees that the direction of the control input
is maintained.

5. CALIBRATION AND IDENTIFICATION

A necessary condition for obtaining good flight perfor-
mance is a proper calibration of all the dynamic parame-
ters of the system. In this section we describe how one can
easily obtain an accurate estimation of: i) the accelerom-
eter bias, ii) the gyroscope bias, iii) the motor/propeller
characteristics iv) the mass and inertia matrix of the robot.
For the sake of simplicity we will assume that the world
Z-axis is aligned with the direction of gravity.

5.1 Gyroscope bias calibration

The bias of the gyroscope is defined as the output of the
sensor when not experiencing any rotation. This bias is
influenced by many variable factors like, e.g. the tem-
perature, and it is then affected by considerable drift.
As a consequence the calibration of this sensor must be
repeated often enough. We therefore decided to completely
automate this operation: each time theMkInterface node is
restarted, a fixed number N of gyro samples are registered.
The mean of the readings is then taken as a bias, provided
that their standard deviation is below a certain threshold.
Otherwise an error is thrown.

5.2 Accelerometer bias calibration

As well-known, an accelerometer measures its acceleration
w.r.t. the inertial frame apart from any gravity component.
Any accelerometer is affected by a bias, defined as the
output of the sensor during free-fall under gravity. In
addition, a scaling factor and a roto-translation w.r.t. the
UAV body frame can also be present after being mounted.
Differently from the gyroscope case, the accelerometer bias
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Fig. 2. Motor calibration: input/output signals (a) and
fitting model (b).

is almost constant over time, and it is thus not necessary
to repeat the calibration unless the mounting of the sensor
is changed.

To describe the employed calibration procedure, let r̈B =
WRBT (am − b) + g where b is a bias vector, matrix
T takes into account any rotation and scaling factor,
and g is the nominal value of the gravity acceleration.
When the robot is at rest (r̈B = 0), it is Tam − Tb =
−WRT

Bg. Assuming that a measure of WRB is available,
this equation is linear in the unknowns T and Tb. One can
then repeat N measurements of am for different (constant)
robot orientations and stack them in matrix form:aTm,1 −1

...
...

aTm,N −1

( TT

bTTT

)
=

−g
T WRB,1
...

−gT WRB,N

 .

If the left matrix has rank 4, a simple pseudoinversion
solves the system in a least-square sense. We note that this
requires at least four available measurements for different
orientations of the accelerometer.

As a final remark, we note that a similar rotation and
scaling factor are also in general present for the gyroscope.
Nevertheless the estimation of these quantities is more
difficult because of the absence of a reference ground
truth, as it is gravity for the accelerometer case. On the
other hand, differently from the case of the accelerometer,
any remaining miscalibration in the gyroscope sensor was
experimentally found to be negligible.

5.3 Motor calibration

We identified the static characteristics of the brushless
controller/motor/propeller system by using a Nano17
force/torque sensor 2 . The identification of the static char-
acteristic was obtained by feeding the brush-less controller
with the reference signal represented (in green) in Fig. 2a.
We recall that this reference is linearly proportional to the
desired rotational speed of the propeller. For each step,
the motor reference was kept constant for 5 s, allowing for
an attenuation of the noise by averaging the corresponding
sensor measurements. Between each phase, a resting phase
of 10 s was introduced with a low rotational speed for the
propeller. This was necessary in order to avoid a propeller
overheating which would have distorted the results. The
reference was designed in order to vary from 30 to 190 in
steps of 10.

As expected, the relationship between the rotational speed
and the generated force/torque can be well approximated
2 http://www.ati-ia.com

by a quadratic function. Since we are interested in the
inverse relation, necessary to generate the reference for
the brush-less controllers, we report the fitting curve in
Fig. 2b with the force as the independent variable. We
decided to exclude from the calibration any reference
signal smaller than 30 or greater that 180 (resulting in a
force of 0.3131 and 6.03 N respectively). This also allows to
obtain a better fitting in the range most likely encountered
during normal flight. We also note that, with the chosen
limitations on the maximum rotor speeds, and considering
the weight of the robot, the motors approximately operate
in the center of their dynamical range during hovering.

The ratio between generated forces and torques is also
quite constant in the range of interest, as well-known in
the literature, and results about 0.0174m.

Finally, the dynamics between commanded and actual
propeller speeds was found to be well approximated by
a first order linear system with a time constant of 0.047 s.
Even if present, we decided to neglect this effect in the
control design.

5.4 Estimation of the mass and inertia tensor

In order to estimate the robot mass, we made use of
an algorithm taken from classical adaptive control tech-
niques [15]. We start by considering the scalar vertical
dynamics of a UAV, obtained by projecting (2) along zW .
This can be rearranged as:

z̈ − g =
1

m
u1z

T
BzW =

1

m
υ = minvυ. (6)

For convenience, we will estimate the inverse of the mass
minv = 1/m. Equation (6) depends on the vertical acceler-
ation z̈ which, in practice, is usually a very noisy quantity.
To obtain a dependence in terms of the linear vertical
velocity ż, we multiply both sides of (6) by a low-pass
filter P (s) = a/(s+ a)

P (s)(z̈ − g) = minvP (s)υ. (7)
The term P (s)z̈ in (7) can be expanded as

a

s+ a
z̈ =

as

s+ a
ż = a

(
ż − a

s+ a
ż

)
= a (ż − P (s)ż) ,

(8)
i.e., as a function of the sole velocity ż. Now, let gfil =
P (s)g, υfil = P (s)υ, and żfil = P (s)ż. Equation (7) can
be rewritten as

a(ż − żfil)− gfil = minvυfil. (9)
Assume an estimation of the (inverse of the) mass m̂inv is
available, and let the lhs of (9) be y = a(ż − żfil) − gfil
and the rhs of (9) evaluated on the estimated mass be
ŷ = m̂invυfil. Defining the error function

V (e) =
1

2
kest (y − ŷ)2 , kest,m > 0,

one can minimize it in terms of minv by implementing the
following gradient update rule

˙̂minv = −
∂V (e)

∂m̂inv
= kest,meυfil. (10)

Note that the implementation of (10) requires knowledge
of i) the vertical (world frame) velocity ż, ii) the direction
of the axis zB, iii) the commanded thrust u1, and iv) the
evaluation of the low-pass filtered signals υfil, gfil and
żfil. In our implementation, the following values were used:
a = 0.06π and kest,m = 1.
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Finally, we note that the same algorithm can be used
for obtaining an estimation of the robot inertia tensor.
Indeed, because of the cylindrical symmetry of the robot,
the inertia matrix results practically diagonal and with
the same X and Y components. Under this assumption
the gyroscopic term in (3) becomes negligible for a small
Z component of BωBW . The rotational dynamics can then
be split among three independent scalar systems similar
to (6), with the additional simplification of the absence of
any gravity term.

6. STATE ESTIMATION

The control algorithm described in Sec. 4 requires knowl-
edge, at high rate, of the full state of the robot, i.e., of the
position rB, the velocity ṙB, the orientation WRB and the
angular velocity BωBW . In this section we describe how
to obtain an estimation of these quantities using measure-
ments of linear acceleration and angular velocity available
from the onboard IMU, and a low rate measurements of the
position and orientation provided by any possible source
(e.g., an external or onboard sensor).

6.1 Complementary filter in SE(3)

If some (possibly noisy) measurement of the robot ori-
entation is available, the translational part of the robot
dynamics χT = (rB, ṙB)

T has the linear expression

χ̇T =
d

dt

(
rB
ṙB

)
=

(
03×3 I3×3
03×3 03×3

)
χT

+

(
03×1

WRBT (am − b) + g

)
= AχT + υ.

By assuming a low-rate and possibly noisy measurement of
the position rB is available, it is straightforward to check
that the system is observable and a simple linear state
observer can be easily designed as:

˙̂χT = Aχ̂T + υ +Kest,p (rB − r̂B) . (11)
We note that one can also estimate the accelerometer
bias b. Indeed by considering the extended state χ′T =

(rB, ṙB,b)
T , one has

χ̇′T =
d

dt

(
rB
ṙB
b

)
=

(
03×3 I3×3 03×3
03×3 03×3 −WRBT
03×3 03×3 03×3

)
χ′T+

+

(
03×1

WRBTam + g
03×1

)
= A′χT + υ′.

.

It is easy to prove observability w.r.t. the position rB
measurement in this case, too, thus allowing to implement
an observer similar to (11).

As for the orientation, we implemented the complementary
filter in SO(3) described in [10], in particular the so-
called passive complementary filter without gyro bias es-
timation (already compensated for during the calibration
of Sec. 5), and using the quaternion-based formulation.
Let WqB = (WqB,s,

WqB,v) be the unit-norm quaternion
corresponding to WRB with scalar and vector part WqB,s
and WqB,v, respectively. As well-known, the kinematics of
the quaternion is given by:

Wq̇B =
1

2
WqB ⊗

(
0, BωBW

)

where ⊗ indicates the quaternion product defined as:
p⊗ q =

(
psqs − pTv qv, psqv + qspv + pv × qv

)
.

Assuming that a low-rate and possibly noisy measure
of the orientation WqB is available, we can define an
orientation error as

δq = Wq̂∗B ⊗ WqB = (δqs, δq)

where the conjugate is defined as q∗ = (qs,−qv). The
estimation of the orientation can then be updated as
follows:

W ˙̂qB =
1

2
Wq̂B ⊗

(
0, BωBW + 2Kest,qδqsδqv

)
. (12)

In order to enforce the unit-norm constraint during the
numerical integration, we slightly modified (12) by adding
a penalty term proportional to the squared norm of the
estimated quaternion:
W ˙̂qB =

1

2
Wq̂B ⊗

(
2λ(1−

∥∥Wq̂B∥∥2),ωm + 2Kest,qδqsδqv

)
where ωm is the angular velocity measured by the gyro-
scope corrected for the calibrated bias. Finally, we em-
ployed the following values: Kest,p = 126.3I3, Kest,v =
3987.3I3, and Kest,q = 62.8I3.

The last part of the state to be estimated is the angular
velocity BωBW . In principle this quantity is already pro-
vided by the onboard gyroscope. In practice the output of
this sensor during a typical flight is too noisy to be directly
fed to the controller. Therefore, we low-pass filtered BωBW
as ˙̂ω = 2πfω(ωm − ω̂) with fω = 150 Hz.

6.2 Extension to bearing-only measurements

The state estimation algorithm described above requires
a low-rate and possibly noisy direct measurement of the
position and orientation of the robot. Since these mea-
surements are not always available in a laboratory, we
here detail a ready-to-use algorithm able to recover these
quantities from a set of (at least 4) bearing measurements
from some beacons with known identity and position in
the world frame. This is, indeed, representative of many
situations involving an onboard camera extracting features
from the scene.

The reconstruction of the robot pose can be obtained by
exploiting standard techniques from geometrical computer
vision. The basic algorithm, described in [8], is here briefly
summarized: first, consider a set of N points p belonging
to the same 2D plane and assume that two bearing
measurements are available for each point, namely xi,1 and
xi,2 for i = 1 . . . N . These two bearings are associated to
two frames (in our case the world and the body frame
respectively). The plane is described by the following
equation in the first reference frame:

P =
{
X1 : nT1X1 = d

}
⇔ 1

d
nT1X1 = 1 (13)

where X1 contains the coordinates of the point p in the
first frame, n1 is the unit normal vector to the plane and
d is the distance of the plane from the origin of the first
frame. Note that, since we have assumed a known beacon
position in the world frame, all these quantities are also
available.

Letting (WRB, rB) represent the rotation/translation
among the two frames, and exploiting (13), one has
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X2 =

(
WRB +

1

d
rBn

T
1

)
X1 = HX1

where H is the so-called homography matrix. The homog-
raphy H can be directly retrieved from a set of at least
four bearing pairs (in the reference and current frame)
by means of the standard four-point algorithm for planar
scene as described in [8]. Once recovered, H can then be
decomposed back into the rotation WRB and the transla-
tion rB: let (n′1,n

′′
1) be a pair of unit-norm vectors such

that (n1,n
′
1,n
′′
1) forms a right hand frame. Note that

(n′1,n
′′
1) are a basis of the null space of n1

T . By projecting
the homography matrix along these vectors, we obtain

H (n′1 n′′1) = (m′1 m′′1) =
WRB (n

′
1 n′′1) .

By then taking m1 = m′1 ×m′′1 , WRB is finally recovered
as

WRB = (m1 m′1 m′′1) (n1 n′1 n′′1)
T
.

Once WRB has been found, t is simply given by t =
d
(
H− WRB

)
where d is assumed known, as explained

above. This then allows to recover a measurement of the
robot pose (WRB, rB) that can be used in the comple-
mentary filter described in Sec. 6.1 .

7. EXPERIMENTAL CASES STUDIES

In this section we present some experimental results ob-
tained with the proposed platform. In the first two experi-
ments we used an external tracking system 3 to provide
pose measurements directly to the estimator described
in 6.1. For the last experiment, instead, we used the
external tracking system only for simulating low-rate and
noisy bearing measurements similar to those that would
be provided by typical onboard localization systems (e.g.,
vision-based) available in the literature.

The aim of the first experiment was to prove the per-
formance of the mass estimation algorithm in hovering
conditions and during arbitrary motion. To this end, we
intentionally initialized the system from an initial guess
for the estimated mass of 1 kg, i.e. 0.308 kg less than the
nominal value. The result of the experiment is shown in
Fig. 3. At the beginning of the experiment, the controller
commanded a vertical thrust not sufficient for the robot
to take off due to the low value of the estimated mass.
After the take-off, the robot was then commanded to
hover at a constant position until the estimated mass had
reached its final value (about 1.394 kg). The convergence
of the estimation can be detected by setting a threshold
on its variance. We then manually controlled the cartesian
velocity of the robot in a random way for verifying that
the mass estimation was remaining constant despite the
erratic motion. Figure 3c shows the actual robot velocity
as estimated via the techniques illustrated in Sec. 6.

In the second experiment we show the tracking perfor-
mance of our control algorithm while following an 8-shaped
horizontal trajectory in X and Y (see Fig. 4). The 8 shape
has a bounding box of size 1m×1m and is completed in
8 s. Both the Z position and the yaw reference were varied
during motion by following sinusoidal-like trajectories with
an amplitude of 0.2m and frequency of 1 rad, respectively.
The timing law was chosen to ensure the needed smooth-
ness for the reference sent to the controller, i.e., continuous
3 http://www.vicon.com/

0 10 20 30 40 50 60

1

1.2

1.4

m
[k
g
]

(a)

0 10 20 30 40 50 60

−2

0

2

r
B
[m

]

(b)

0 10 20 30 40 50 60

−2

−1

0

1

time[s]

ṙ
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Fig. 3. Mass estimation during a normal flight. Fig. (a):
estimated mass. Fig. (b): UAV position. Fig. (c) and
UAV velocity.
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Fig. 4. Tracking of an eight shaped trajectory. Fig. (a):
UAV cartesian position. Fig. (b): UAV yaw angle.
Fig. (c): position error. Fig. (d): yaw angle error.

up to the fourth order for the position and up to the second
order for the yaw angle. In Fig. 5 some snapshots of this
experiment are shown and correspond to the phases of
maximum tilt angles for the UAV, i.e. at the four sharp
curves of the 8-shape.

As a final experiment, we report in Fig. 6 the results of
the state estimation relying on bearing measurements. For
this experiment the desired robot trajectory was generated
manually with a joystick. We emulated the presence of 4
virtual beacons placed at 10 cm above ground and forming
a square of 2m size. The bearing measurement rate was
set to 30Hz with an additional gaussian angular noise with
1.5 deg STD. The pose of the robot was calculated from
the simulated bearings by using the algorithm described
in Sec. 6.2 and implemented in a Simulink model. From
the comparison with the ground truth in the plots of
Fig. 6, one can note that the pose estimation algorithm
based on the Homography decomposition was still able to
reconstruct a high-quality estimation of the robot state,
and consequently to allow for a successful flight.

8. CONCLUSIONS

In this paper we have presented a completely open-
source, ready-to-use and cheap platform for prototyp-
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Fig. 5. Snapshots of the quadrotor executing an 8-shaped trajectory
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Fig. 6. State estimation using virtual bearings. Fig. (a):
UAV cartesian position. Fig. (b): UAV orientation in
roll-pitch-yaw representation. Fig. (c): position error.
Fig. (d): orientation error.

ing complex algorithms for single or multiple quadro-
tor UAVs, and relying on only onboard hardware. The
platform can be fully customized from high-level be-
haviors to low-level motor control. The hardware and
software architecture was described in detail with all
the needed calibration and tuning procedures. Further-
more, we also freely distribute the whole software pack-
age for the interested reader at the SVN repository
https://svn.kyb.mpg.de/kyb-robotics/. This allows
an easy porting of our solution to any other lab interested
in developing quadrotor applications for research purposes.
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