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Aggressive Maneuver Regulation
of a Quadrotor UAV

Sara Spedicato, Giuseppe Notarstefano, Heinrich H. Biilthoff, and Antonio Franchi

Abstract In this paper we design a nonlinear controller for aggressive maneuvering of a quadro-
tor. We take a maneuver regulation perspective. Differently from the classical trajectory tracking
approach, maneuver regulation does not require following a timed reference state, but a geometric
“path” with a velocity (and possibly orientation) profile assigned on it. The proposed controller re-
lies on three main ideas. Given a desired maneuver, i.e., a set of state trajectories equivalent under
time translations, the system dynamics is decomposed into dynamics longitudinal and transverse
to the maneuver. A space-dependent version of the transverse dynamics is derived, by using the
longitudinal state, i.e., the arc-length of the path, as an independent variable. Then the controller
is obtained as a function of the arc-length consisting of two terms: a feedforward term, being the
nominal input to apply when on the path at the current arc-length, and a feedback term exponen-
tially stabilizing the state-dependent transverse dynamics. Numerical computations are presented
to prove the effectiveness of the proposed strategy. The controller performances are tested in pres-
ence of uncertainty of the model parameters and input noise and saturations. The controller is also
tested in a realistic simulation environment validated against an experimental test-bed.

1 Introduction

In the recent years, the steadily growing number of applications involving Un-
manned Aerial Vehicles (UAVs), as quadrotors, has raised attention on the execution
of precise aggressive motions. This is, in fact, a fundamental requirement in several
(complex) tasks. The classical approaches used in the literature to perform such
motions fall into the categories of trajectory tracking and path following methods.
Trajectory tracking techniques, aim at limiting the error between the actual system
state and the desired state at a specified time. The system state includes position,
orientation, and linear and angular velocities. Whenever an exogenous disturb (e.g.,
wind) forces the robot to momentarily lag behind the “moving reference” of the
desired trajectory, then undesired phenomena are likely to arise, such as: (i) huge
peaks of acceleration and (ii) a poor geometric tracking of the planned path that
may lead to collisions with the surrounding world.

In order to highlight this last sensitive issue, let us consider the example depicted
in Fig. 1. A quadrotor has to fly around an obstacle tracking a given planned trajec-
tory, which is specified as a desired state at each time ¢. At f = f; strong opposing
wind significantly decelerates the actual motion of the quadrotor for a few seconds.
When the wind ceases, at t = t3, the quadrotor recovers the full control of its motion
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Fig. 1: Example of an undesired phenomenon arising using trajectory tracking.

and tries to quickly catch up with the moving desired state that is now on the other
side of the obstacle, thus dramatically crashing into it.

These drawbacks do not arise in classical path following techniques, whose ob-
jective is to have the system position follow a geometric path without a predefined
time scheduling. Since a pre-defined timing law on the path is not given, these meth-
ods consider a tracking error between the current robot position and the set of po-
sitions on the entire geometric path; while orientation, linear and angular velocities
are not usually taken into account. Classical path following techniques are able to
avoid undesired phenomena as the one described above. However, they can only
drive the center of mass of the UAV along the path without ensuring a desired ori-
entation and velocity profile along it.

To overcome the drawbacks that affect both these two techniques, we deal with
an extended version of the path following, called maneuver regulation, that aims
at satisfying additional requirements (such as assigning orientation, linear velocity,
and angular velocity on the path).

We organize the literature on quadrotor controllers in two parts. First, a vast
number of trajectory tracking techniques for quadrotors have been proposed. In [1]
a dynamic feedback controller, which renders the system linear and controllable,
has been developed. In [2] a full backstepping technique is presented, based on a
decomposition of the dynamic model into an underactuated subsystem, and a fully-
actuated subsystem. A geometric tracking control is presented in [3]. The nonlin-
ear tracking controller is developed on the special Euclidean group SE(3) and it is
shown to have desirable closed loop properties that are almost global. The trajectory
tracking controller in [3] has been successfully implemented in [4] to perform fast
aerobatic maneuvers without exogenous disturbances and precise measures from an
external motion capture system (aerobatic maneuvering is also addressed, for au-
tonomous helicopters, in [5, 6]). A sliding mode controller is proposed in [7] in
order to stabilize the quadrotor model as a class of cascaded under-actuated sys-
tems. In [8], an underactuated nonlinear .72, controller based on the six degrees of
freedom dynamic quadrotor model is designed to control the attitude and altitude in
an inner-loop. The outer-loop control is performed using a model-based predictive
controller to track the reference trajectory. Finally a trajectory tracker based on a
linear quadratic regulator (LQR) is proposed in [9].

Second, only recently, extended path following techniques for quadrotors have
been presented. In [10] the problem is solved by means of a backstepping technique.
In [11] the problem is addressed as the stabilization of the zero dynamics for a
nonlinear control system and solved using input-output feedback linearization on an
augmented quadrotor system. The technique is refined in [12] with the objective of
executing a more general class of paths “in a more general manner”. The definition

Preprint version 2 16th ISRR (2013)



Preprint version 16th ISRR, Singapore (2013)

of the position error as the distance between the actual quadrotor position and the
desired path is used in [13], where a “commanded acceleration” is computed using
a PD feedback of the position and velocity errors.

The first and main contribution of the paper is the design of a maneuver regu-
lation controller for aggressive maneuvering of a quadrotor on a three-dimensional
path with assigned orientation and velocity profiles along it. The control strategy,
inspired to the one proposed in [14] for a motorcycle on a bi-dimensional path, is
based on the idea of transverse linearization of the dynamic system. Given a de-
sired trajectory, the system dynamics is rewritten in terms of a longitudinal and a
transverse dynamics. The new system states are the arc-length s and a set of trans-
verse coordinates w(s) (defined by means of an appropriate distance between the
current state and the desired trajectory states). Differently from the (extended) path
following approaches in [10, 11, 12], we consider a space-dependent version of the
transverse dynamics. That is, we derive a differential equation in which the arc-
length s is the independent variable, so that the transverse linearization is obtained
by linearizing such a space-dependent dynamics. By solving an infinite-horizon lin-
ear quadratic regulator optimal control problem, the (space-dependent) transverse
dynamics linearization can be exponentially stabilized (under standard controllabil-
ity assumptions). Thus, the quadrotor maneuver regulation controller is a function
of the arc-length s: a feedforward term being the desired input for the given s, plus
a feedback K(s)w(s) to stabilize the (space-dependent) transverse dynamics. No-
tably, although the feedback is linear as a function of the arc-length, it turns to be a
nonlinear feedback of the original system state in the time-domain as s(¢) = s(x(¢)).

As second contribution, and preliminary step for experimental tests, we test our
maneuver regulation controller on a physical quadrotor simulator, in order to show
the performances of the proposed maneuver regulation controller in a realistic simu-
lation scenario. Furthermore, we perform numerical computations under uncertain-
ties on the model parameters and input noise and saturations. The computations
show how the controller well behaves in performing a fairly aggressive maneuver
as a barrel roll. In fact, we verified that even if the design is executed with some
nominal inertial parameters the controller is able to adapt the control effort depend-
ing to the actual inertia and to maintain the system stability even if the severe input
saturation and noise do not allow a perfect tracking of the desired maneuver.

Compared to the other extended path following approaches designed for a
quadrotor, [10, 11, 12], our maneuver regulation controller has three key differ-
ences. First, the other schemes only ensure the distance from the path and the error
on the yaw angle to converge to zero. The resulting roll and pitch angle, although
stable, cannot be assigned a priori, so that problems could arise for example in nar-
row passageways. Second, the scheme does not rely on structural properties of the
simplified quadrotor model as, e.g., flatness or non-minimum-phase-ness. Thus, it
can be applied also to more complex (possibly non-minimum phase) models. Third,
the proposed maneuver regulation scheme can be decoupled into a slow time-scale
block and a realtime one. The desired trajectory and the feedback gains can be com-
puted in a slow time-scale. In particular, the desired trajectory can be computed by
using trajectory optimization techniques as the ones proposed in [15, 16]. The on-
line computation only requires the calculation of the scheduled arc-length and the
application of the feedback gain. Due to this structure, the proposed controller can
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be seen as a preliminary step toward the development of a receding-horizon scheme
involving both trajectory generation and regulation in a coupled scheme.

The paper is organized as follows. In Section 2 the quadrotor model and the
maneuver regulation problem are introduced. Section 3 addresses the design of the
maneuver regulation controller for the quadrotor. Finally, in Section 4 numerical
computations and physical simulations are provided in order to prove the effective-
ness of the LQR based controller under parameters uncertainty and input saturation.

2 Quadrotor model and the maneuver regulation problem

In this section we present the standard quadrotor model that is instrumental to for-
mally define the maneuver regulation problem and the proposed controller.

In the following we denote vectors using bold small symbols and matrices using
capital letters. Given an inertial reference frame (with x-y-z axes oriented in a North-
East-Down fashion) and a body reference frame attached to the quadrotor center of
mass (with x-y-z axes oriented in a forward-right-down fashion), let p € R3 be the
position vector from the origin of the inertial frame to the origin of the body frame,
expressed in the inertial frame. The orientation of the body frame with respect to
the inertial frame is denoted by the rotation matrix R € SO(3), which maps vectors
in the body frame into vectors in the inertial frame. Let v € R? and @ € R? denote
respectively the linear and angular velocities expressed in the body frame.

The quadrotor is driven by four forces and torques produced by the four pro-
pellers. Each thrust force is directed along the body z-axis but pointing in the nega-
tive direction. The thrust forces produce the torques y; and 7, around the body x-axis
and y-axis respectively. A torque ;3 around the z-axis is produced by the reaction
moments acting on the propellers. The sum of the thrust forces is denoted by f and
the torques vector is denoted by Y= (71 1o 13)7.

The standard quadrotor model, see, e.g., [17], is

p—Rv ()
mv = —mQv+mgR" e3 — fes 2)

R=RQ 3)
JOo=-QJo+y ()]

where m is the quadrotor mass, J = diag(j, jy, j;) is the inertia matrix, g is the grav-
ity constant, € is the screw-symmetric matrix associated with @ and e3 = (00 1)7.

We choose to parameterize the rotation matrix R by roll-pitch-yaw angles'. From
the inertial reference frame the first rotation is taken around the z-axis by the yaw
angle y. The coordinate system is then rotated around the new y-axis by the pitch
angle 0 and finally rotated about the new x-axis by the roll angle ¢. The rotation
matrix is thus

! This parametrization of R, largely used in the literature, has a singularity when the pitch angle
reaches /2. However, the proposed techniques can be developed for any other parametrization.
Thus, given the desired maneuver, the best suited parametrization can be used to avoid singularities.
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sYch cyce +sysOs@ —sQpcy +sysOcp ®))

cych —syc@+cysOsp sysQ+cysbc
R= ;
—s6 s@pcO cOco
where for a generic angle ¢ we define c¢ := cos(¢) and s¢ :=sin(¢).
Let us define p = (p1 p2 p3)7, v= (vi v» v3)T and @ = (p g r)". Using the
roll-pitch-yaw parametrization equations (1-4) are

P1 = cWcOv) + (—syc@ + cysOsQ) vy + (sWs@ + cysOc)vs (6)
P2 = syclvy + (cye@ +sysOs@)vy + (—s@cy + sysOcp)vs @)
p3 = —sO0vi +sQcOvy +cOcpvs ®)
¢ = p+gsptan0 +rcptan 0 )
0 = gco —rs@ (10)
. 1 1
lllqu(pEJrrc(pc—e (11)
V] = rvy —qvz —gs0 (12)
vy = —rvi+ pv3+gsech (13)
V3 = qvi — pva+gcbcp — % (14
p=ar2L)+ 1 (15)
Jx Jx
q=pr(E )+ 2 (16)
y Jy
F=pg(l )+ 2 a7
Jz Jz

The equations (6-17) represent a nonlinear, time-invariant control system of the form

(1) = f(x(2),u(t)) (18)
(1) = h(x(1)) (19)

with state x = (p1 p2 p3 @ O Wvivav3 pgr)T eR2inputu= (fy »pp)’ cR
and output y = (p; p2 p3)T € R3. The equation (18) can be also written in scalar
form as

(1) = filx(t),u(t)), Vi=1,..,12,

where x; is the i-th component of x and f;(-) is the scalar i-th component of the
vector function f(+).

Given the quadrotor model, we can formalize the maneuver regulation task that
we want to solve. In the approach we propose in this paper, we can decouple the
task into two parts: (i) generation of a desired, or nominal, (state-control) trajectory,
and (ii) regulation of the corresponding desired maneuver.

Although in this paper we focus on the regulation sub-task (ii), we briefly de-
scribe the whole task. Usually, to accomplish a complex mission, the quadrotor is
required to follow a given three-dimensional path and, maybe, satisfy some (soft)
constraints on the orientation (e.g., because it has to traverse a narrow passageway).
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The trajectory generation sub-task (i) is the following. We suppose that a suitable
output curve is assigned by the mission to satisfy some geometric constraints. A rea-
sonable choice of output curve for the quadrotor is y (1) = (p1£(t) pac (1) P3¢ (NT,
t > 0. The use of the subscript & will be clear in the next lines. We say that an output
curve yg (-) is admissible, if there exists a state-control trajectory & = (x¢ (-), ug(-)),
such that

Xe (1) = fxg (1), ug(1), ye(t) = h(xg (1))

forallt >0, ||yg(-)| is bounded away from zero and [|y¢ (-)|| is bounded.

State-control trajectories for the standard quadrotor model used in this paper can
be generated by exploiting its differential flatness. For more general models or in
case state and input constraints need to be explicitly taken into account in the desire
trajectory generation, nonlinear optimal control based trajectory-generation tech-
niques, as the ones developed in [15, 16], may be used.

Given a desired (state-control) trajectory (x¢(-),ug(-)), we define a maneuver
[xe,ug] as the set of all the trajectories equivalent under time translation to the
trajectory (xg(-),ug(+)). Given a trajectory (¥g(-),ig(-)) of f(-), we say that it is
equivalent to (xg (), ug(+)) under time translation if and only if there exists A € R,
such that Xg (1) = xg(t +A) and @tg (1) = ug (t +4), vt > 0.

We are now ready to formally define the maneuver regulation problem.

Maneuver regulation problem Let an output y () and an associated maneuver
[x¢,ug] of the quadrotor be given. Find a feedback control law u = k(x; [xg, ug]) that
exponentially stabilizes the maneuver [xg, u], i.e. such that there exist A,k,A >0
such that Ny

Jim (1) ~ g 1+ 4) | ke
Remark 1. From the above definition it is clear why the maneuver regulation task
protects from dangerous situations as the one described in Fig. 1. Indeed, for the
task to be accomplished the quadrotor is not required to catch up a reference on the
desired maneuver. In the specific scenario, when the quadrotor regains control after
the disturbance has ceased, it can track a time-translated trajectory belonging to the
same maneuver, whose initial condition is close to the current quadrotor state, thus
avoiding to fall into the obstacle. (|

3 Transverse linearization based maneuver regulation controller

In order to exponentially stabilize a desired maneuver, rather than a trajectory, we
seek a controller scheduled by points on the desired output, rather than by the time.
As a first step, we rewrite the quadrotor dynamics in terms of a longitudinal and a
transverse dynamics.

The longitudinal dynamics describes the evolution of the system position along
the curve, while the transverse dynamics describes the evolution of a suitable error
between the actual state and the desired one at the current longitudinal coordinate.

We start by parametrizing the (admissible) output curve in terms of the arc-length
Og : Rg — Rg , defined as
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t
Gé(t)zl/o P2 (D) + P2 (1) 4 P (7) T, vt >0 (20)

Defining the inverse of o¢ (-) as the function 7 : Rg — Rg , the output, parametrized
using the arc-length, is y¢(0) = yg(7e(0)). We shall denote the o-parametrized
curves with a bar, and the derivatives with respect to the coordinate o with a prime
symbol.

We parameterize the position of the quadrotor center of mass y = (p; p2 p3)7 in
a tubular neighborhood of y¢ (-) using a set of coordinates (s,wi,w2) € R xR x R.
In order to do this, we construct a locally invertible function ¢ : R?> - R x R x R
such that

(s, w1,w2) = (), 2y
with ¢;,i € {1,2,3}, the i-th scalar component of the vector function ¢(-), and such
that ¢ (y¢(s)) = (5,0,0). We choose s to be the arc-length identifying the point on
the desired path at minimum distance from the quadrotor center of mass. The co-
ordinates w; and wy express the distance between the quadrotor center of mass and
the point on y¢ (-) identified by s.

Consistently, the first component of ¢(-) is defined as

¢1(y) == argmin||y — y¢ (o) |*.
oceR

The minimizing s is unique provided that y¢ (-) is locally a non-intersecting C2 curve
with non-vanishing y% (+) and that y(t) is close to y¢ (-) for all t. In order to construct
the other components of ¢ (-), let us consider the Serret-Frenet frame, which origin
has y¢(s) as coordinates, defined by the basis {?(s)7 (s), ﬁ(s)} The vectors

—- - . .
t ,E), b are respectively the tangent, normal and bi-normal vectors and they are

defined, with components in the inertial frame, as #(s) := S’/é (s), A(s) := jrg (s)/k(s),
b(s) :=1(s) x i(s), where k(s) := ||5/§’ (s)]| is the curvature of y¢ (-) at s. The position
of the quadrotor center of mass y can be written as

Y=y (s)+Rsr(s)d, (22)

where the rotation matrix Rsr = (¥ i b) maps vectors with components in the Serret-
Frenet frame into vectors with components in the world inertial frame and d :=
(0 wy wy)T is the vector from the origin of the Serret-Frenet frame to the origin of
the body frame, with components in the Serret-Frenet frame. Using the equation
(22), we define the remaining components of the function ¢(-) as

$2(y) :==n(s)" (y —ye(s)), (23)
$3(y) == b(s)" (y =y (s)). (24)

o

With the function ¢(-) in hand, we can provide a change of coordinates from
the state x to the coordinates (s, w), where s € R is the longitudinal coordinate and
w € R!! is the vector of transverse coordinates with i-th transverse coordinate, i €
{1,...,11}, denoted by w;. The longitudinal and transverse coordinates as function
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of the system state are defined as

s:=01(h(x)), ws:=@—Pg(s), we:=vi—Vg(s), wo:=p—pe(s),
wi =@ (h(x)), wyq:= Bféé(s), w7 = vy —Te(s), wio:=q—ge(s),
wy = ¢3(h(x)), ws:= I[I—I,T/,g(s , Wwg:i= V3—\73§(S , Wi = r—Fg(s).
Furthermore, we define
Uy == u— ﬁé (S), Nw =% — }_/15 (S), (25)
foi=F=fe(s), Pwi=1r—"Pels),
Vow i =13 — e (9).

The change of coordinates is used in order to write the standard quadrotor system
(6-17) in (s, w) coordinates. Deriving (22) with respect to time we have

¥ =ye$+ Rop$ d+Rsrd. (26)

Further on, for simplicity of notation, the dependency by s is omitted and all the bar
terms are evaluated with respect to s. The term on the left side of equation (26) is

y =Ry, 27

according to the definition of y and the equation (1). The first term on the right side
is
¥e$ = Rsr[$0 0" (28)

according to the definition of the tangent vector f. Furthermore we have

0 —ks 0
Ryp§=Rsp | ks 0 —7s |, (29)
075 0

where T := fib' is the torsion of ye(+) at s. The expression (29) can be derived from
the Serret-Frenet formulas [18] t' =kn, i’ = —ki +7b, b = —1n, using the def-
inition of Rgr. Multiplying both sizes of the equation (26) times RgF, using (27),
(28), (29) and the coordinate transformation from x to (s, w), we obtain

§ =1 Rv/(1—kwy),
wi = RTRv+Tswo, 30)
Wy = l_)TRv—fSwl,

where v = [(we +71¢) (w7 + Vog) (ws +73¢)]” and R is given by (5) with ¢ = w3+
P, 0 =wa+ é(g and Y = ws + . The equations (30) are equivalent to the equations
(6-8) but they are only functions of the longitudinal coordinate s, the transverse
coordinates wy,ws and the state trajectory X (-). Furthermore, the equations (9-17)
can be expressed as function of s, w and X (-), using the coordinate transformation
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from x to (s,w) and equations (25). Taking the time derivative of x; = w;_1 + %,
the equations x; = f;(x,u) can be written as

Wist = fi(Re, + Wyl +lg) — FeS, Vi=4,.12, 31)

where X¢, is the vector containing from the 4-th to the 12-th component of X and
w, is the vector containing from the 3-rd to the 11-th component of w.

The system (30-31) can be expressed in a form such that the independent variable
is the longitudinal coordinate s, rather than the time ¢. We parameterize the trans-
verse coordinates using s, i.e., w;(t) = w;, Vi=1,...,11, and by using the chain rule,
we compute the time derivatives of the transverse coordinates as w; = Wfs Thus,
equations (30-31) can be written as the transverse dynamic system

wy = (A" Rv)/s+ T2,
W) :(ETRV)/S'—’I'qu7 (32)
Wy = iR+ W)yt i) [§— %z, Vi=4,..12,

where s = Rv/(1 —kwy), v = [(We + V1g) (W74 7p¢) (Wg+73¢)]" and R is given
by (5) with ¢ = w3 + @¢, 8 = wa + 6z and ¥ = ws + V.

The system (32) is a nonlinear control system with state w € R!! and input
i,, € R*, for which s-varing control laws can be developed in order to regulate the
transverse state w to zero. We compute such control law solving a linear quadratic
regulator (LQR) problem.

Let us consider the transverse linearization

w = Ar(s)W+ Br(s)it,,,

i.e., the linearization of the transverse dynamic system (32). We design a feedback
matrix K(-) that asymptotically stabilizes the transverse linearization by solving a
linear quadratic regulator problem. If the transverse linearization is exponentially
stabilized by an s-varing linear state feedback, it,, = —K(s)w, then the nonlinear
feedback

u=1ig(s)—K(s)w (33)

exponentially stabilizes the maneuver [xg] for (6-17) [14].
The controller in (33) can be rewritten by exploiting the dependence of s from
the system output (s = ¢; (y)) as

u=ig(9:1(y)) —K(¢1(y)w-
The above expression highlights the nonlinear feedback structure of the proposed

maneuver regulation controller. In particular, the feedforward term and the feedback
matrix are nonlinear functions of the system state (the output portion).
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Fig. 2: (a) Values of the inertia matrices, used to perform the Monte Carlo simulation. The blue,
red and green markers represent the terms jy, jy, y;, respectively. (b), (c) Closed loop trajectories
for the different values of inertia matrices.

4 Numerical validation

This section provides two groups of simulations that are meant to be a preliminary
step for experimental tests. The first group objective is to test the performance and
robustness in the stabilization of an aggressive maneuver in presence of error in the
initial conditions and uncertainty in the inertia matrix parameters; while the goal
of the second group is to test the robustness on the same maneuver with respect to
noise and saturation of the four propellers forces.

For both groups, we choose a barrel roll maneuver in the p, — p3 plane with a
constant velocity profile for which the quadrotor is subject to “significant” acceler-
ations. The quadrotor center of mass is required to move along a circle of diameter
d =3 m ataspeed v =8 m/s. The desired maneuver is designed so that the roll an-
gle @ goes from 0 deg to 360 deg (i.e., the quadrotor performs a complete flip). As
a reference for the nominal inertial parameters of the model we used the data-sheet
values of the customized MK—Quadro2 that is described in [19], i.e., m = 0.749 kg,
jx = 0.0176 kg m?, j, = 0.0177 kg m?, j, = 0.034 kg m>.

In the first group of simulations we conduct a Monte Carlo analysis aimed at test-
ing the robustness against imperfect initial conditions and inertial parameters. The
desired barrel roll path is represented with a blue curve in Figs. 2b and 2c. In all the
25 + 1 simulations of this first group the quadrotor starts 1.04 m distant from the
nominal initial position, outside the p, — p3 plane. In particular, each component of
the position vector is perturbed respectively of 0.60 m from the nominal one. We
opted for using the nominal mass of the MK-Quadro in every simulation. The rea-

2 www.mikrokopter.de

Preprint version 10 16th ISRR (2013)



Preprint version 16th ISRR, Singapore (2013)

son is that in real applications the quadrotor mass is easily computable with high
accuracy and reliability either using a scale or through simple hovering calibration.
On the other hand, calibration of the inertia matrix requires a sophisticated mea-
surement equipment and can easy become outdated if the geometrical configuration
of the internal masses changes over time, e.g., whenever the battery is mounted in
a slightly different place. In real applications, this is equivalent to have a random
noise on the nominal parameters. In one simulation we used the nominal values for
Jxs Jy> J; while in each of the other 25 we used a different quadrotor model with set
of values for jy, jy, j, obtained by randomly perturbing the nominal values accord-

ing to a normal distribution where the standard deviation is % kg m* (i.e., 95%
of the samples are within (jx =+ j;, jy £ jz, j: £ j;) being j. the maximum among
Jxs Jy» Jz)- Notice that we still consider negligible the off-diagonal terms of the ma-
trix w.r.t. the diagonal ones, which is a reasonable assumption in practice. The 25
normally distributed samples of the 3 diagonal inertia coefficients are represented
in Fig. 2a, where the blue, red and green markers represent the perturbed terms j,,
Jy» Jz» respectively. The nominal values are instead represented with 3 horizontal
lines (notice that j, and j, are almost overlapping). In each of the 25 + 1 simula-
tions the maneuver regulation controller defined in (33) employes always the same
g (s), and K(s) that are computed using the nominal values of jy, jy, j.. Notice that
also the desired maneuver is designed considering the nominal value. In this way
we can test the robustness of the controller against model parameter uncertainties.
Finally, the diagonal weight matrices employed in the LQR problem in order to
compute the feedback matrix K(-) are Q = diag(100,100,9,9,9,10,10,10,3,3,3)
and R = diag(0.1,0.1, 1,0.1) referred to the state w and the input &,,, respectively.

Figure 2c presents the projection, on the p, — p3 plane, of the desired position tra-
jectory (thick blue curve), the closed loop position trajectory starting from the per-
turbed initial condition with nominal parameters (thick red curve), and the closed
loop trajectories starting from the perturbed initial condition for all the 25 sets of
perturbed inertial parameters (thin colored curve), which are actually indistinguish-
able from the red curve. After the initial transient, all the curves quickly converge
to the desired curve right before the actual barrel roll maneuver starts. It is worth
noting that even if the desired task is defined in the py — p3 plane, the perturbed
initial condition is taken outside this plane and thus the resulting maneuver involves
the whole dynamics, as can be seen from Fig. 2b.

In Figs. 3a, 3c, and 3e we show the desired roll, pith and yaw angles compared
to ones achieved during the 26 closed loop trajectories (here we use the same color
convention described before). The three components of the (body frame) linear ve-
locities are instead plotted in Figs. 3b, 3e, and 3f, still with the same color conven-
tion as before. All the quantities are plotted with respect to the arc-length ©. As
already pointed out, the maneuver regulation, as opposed to classical path following
techniques, is able to satisfy additional constraints like assigning orientation and
linear velocity. In fact, the plots clearly show how, after the transient phase these ad-
ditional constraints are fulfilled. Robustness with respect to the perturbation of the
model parameters is also manifest from the fact that all the 26 closed-loop trajecto-
ries are almost indistinguishable, despite the fact that the inertial parameters differ
from the ones used in the controller design.

Control inputs of the first group of simulations are shown in Fig. 4. Differently
from the plots presented so far, these plots show a different behavior of the torques
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Fig. 3: Attitude angles and velocity components for the Monte Carlo simulation. Thick blue lines
are used for the desired maneuver. Thick red lines are used for closed-loop maneuver with nominal
parameters. All the other lines refer to the closed-loop maneuvers with perturbed parameters.

",Y2, and 3 across the 26 closed-loop simulations of this group. This happens be-
cause the proposed controller automatically adapts to the perturbation of the inertial
parameters in order to track the desired trajectory. For example, the torque 9> in
Fig. 4c, which is responsible for the flip of the roll, is either smaller or larger in
order to automatically compensate for smaller or larger values of the perturbed j,,
respectively. Notice how all the thrusts show an almost indistinguishable behavior
instead. This is manly due to the fact that the mass is not perturbed, for the reasons
explained before, across the 26 simulations.

In the second group of simulations we show how the proposed maneuver reg-
ulation controller is able to ensure good performances also in case of input noise
and saturations, which are common in real physical systems. In order to further
validate the controller with a realistic simulator we apply the controller on Swarm-
SimX [20], a quadrotor simulator whose fidelity has been already validated several
times with respect to the test-bed described in [19] (see, e.g., [20] for a numer-
ical comparison between the real quadrotor and the simulated one). We encour-
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Fig. 4: Control inputs for the Monte Carlo simulation. Thick blue lines are used for the desired
maneuver. Same color convention as in Fig. 3

age the reader to watch the video attachments corresponding to these simulations
at antoniofranchi.com/videos/qcmaneuver.html.

The desired maneuver is the same barrel roll trajectory that has been used before
but with a negligible initial error, since we want to evaluate here the sole effect of
input noise and saturation. As it happens in the real world, we apply the actual noise
and saturations on each single force produced by the 4 propellers. Denoting those
forces with f7, 7, f4, f we have the well-known relation [3]:

1
0

f T I
| 0 —10 1! v
% —k k —kk] LfF

where [ is the distance of the propeller from the center of mass and k is a suitable
constant that mainly depends on the propeller shape.

The model parameters used in the simulations are the one of the customized
MK-Quadro, i.e., mass and inertia matrix described before and 1=0.30 m. We apply
a Gaussian noise with standard deviation equal to 0.1 N to each propeller. Three
different cases are then considered: (i) no saturation; (ii) 8.5 N saturation, and (iii)
7 N saturation. These values are consistent with the capabilities of the MK-Quadro.
Considering that (see, e.g., Fig. 4a) the barrel roll maneuver needs a 40 N peak of
total thrust (i.e., see (34), 10N per propeller on average), the chosen saturations
correspond to have about 15% and 30% less than the needed average total thrust.

Figure 5 shows the nominal force (thin black line) and actual forces commanded
to each of the four propellers in the three saturation cases (blue, red, and green
colored lines, respectively). Presence of noise and saturation is clear form the plots.

o~
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Fig. 5: Effect of the noise and saturation on the force produced by each propeller.
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Fig. 6: Effect of the force/torque saturation of each propeller on the actual trajectory.

Figure 6 shows the projection on the p, — p3 plane of the desired position maneu-
ver (black line) and the three closed-loop actual position trajectories obtained for the
three saturation cases (same color coding as the propeller forces). As expected, de-
formation of the trajectory is more pronounced for the 7 N saturation value than the
8.5 N case. However, the controller is capable of maintaining a stable behavior in all
the four cases. A similar trend is observable on the evolution of the three velocities
components shown in Figs. 7b,7d, and 7f as a function of the arc-length ©.

On the contrary, the achieved closed loop attitude angles are almost indistin-
guishable from the desired one, see Figs. 7a,7c, and 7e. The different behavior can
be explained in following way. The maximum achievable y; when the force of the
propeller is saturated at 7 N is, from (34), equal to 2/-7 N=4.2 Nm which is higher
than the maximum nominal torque y; needed by the maneuver, which is visible
in Fig. 4b (blue plot). Same discussion holds for the other torques. This shows how
the controller is able to let the saturation only affect the quantities whose degrada-
tion is unavoidable (position and velocity in this case).
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Fig. 7: Effect of the force/torque saturation on the attitude angles and linear velocity.

5 Conclusion

In this paper we have developed an LQR based maneuver regulation controller in
order to make a quadrotor UAV perform three dimensional aggressive maneuvers.
This controller overcome the drawbacks that affect both path following and trajec-
tory tracking. We have shown how our maneuver regulation controller is robust with
respect to the uncertainty of model parameters and input saturations. As a prelim-
inary step to test the controller on the real quadrotor we have performed numeri-
cal computations on a quadrotor simulator with good physical fidelity. Given the
promising performances of the controller we plan to test the controller on a real
quadrotor platform.
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