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Simultaneous Calibration of Odometry
and Sensor Parameters for Mobile Robots
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Abstract—Consider a differential-drive mobile robot equipped
with an on-board exteroceptive sensor that can estimate its own
motion, e.g., a range-finder. Calibration of this robot involves
estimating six parameters: three for the odometry (radii and
distance between the wheels), and three for the pose of the
sensor with respect to the robot. After analyzing the observability
of this problem, this paper describes a method for calibrating
all parameters at the same time, without the need for external
sensors or devices, using only the measurement of the wheels
velocities and the data from the exteroceptive sensor. The method
does not require the robot to move along particular trajectories.
Simultaneous calibration is formulated as a maximum-likelihood
problem and the solution is found in a closed form. Experimental
results show that the accuracy of the proposed calibration method
is very close to the attainable limit given by the Cramèr–Rao
bound.

Index Terms—Mobile robots, differential-drive, odometry cal-
ibration, extrinsic calibration

I. INTRODUCTION

THE operation of a robotic system requires the a priori
knowledge of the parameters describing the properties and

configuration of its sensors and actuators. These parameters
are usually divided in intrinsic and extrinsic. By intrinsic,
one usually means those parameters tied to a single sensor or
actuator. Examples of intrinsic parameters include the odometry
parameters, or the focal length of a pinhole camera. Extrinsic
parameters describe the relations among sensors/actuators such
as the relative poses of their reference frames.

This paper formulates, analyzes, and solves a calibration
problem comprising both the intrinsic odometry parameters of a
differential-drive robot and the extrinsic calibration between the
robot platform and an exteroceptive sensor that can estimate its
egomotion. The resulting method can be used to calibrate from
scratch all relevant parameters of the most common robotic
configuration. No external sensors or prior information are
needed. To put this contribution in perspective, we briefly
review the relevant literature, starting from the most common
approaches for odometry calibration.

A. Censi is with the Control & Dynamical Systems department, California
Institute of Technology, 1200 E. California Blvd., 91125, Pasadena, CA.
andrea@cds.caltech.edu.

A. Franchi is with the Department of Human Perception, Cognition and
Action, Max Plank Institute for Biological Cybernetics, Spemannstraße 44,
72076 Tübingen, Germany. antonio.franchi@tuebingen.mpg.de.

L. Marchionni is with Pal Robotics SL, C/Pujades 77-79, 08005 Barcelona,
Spain. luca.marchionni@pal-robotics.com.

G. Oriolo is with the Dipartimento di Ingegneria Informatica, Automatica e
Gestionale, Sapienza Università di Roma, via Ariosto 25, I-00185 Rome, Italy.
oriolo@dis.uniroma1.it.

A. Related work for odometry calibration

Doebbler et al. [1] show that it is possible to estimate the
calibration parameters using only internal odometry measure-
ments, if the wheeled platform has enough extra measurements
from caster wheels. Most commonly, one resorts to using
measurements from additional sensors. For example, Von
der Hardt et al. show that additional internal sensors such
as gyroscopes and compasses can be used for odometry
calibration [2]. The most popular methods consist in driving the
robot along especially crafted trajectories, take some external
measurement of its pose by an external sensor, and then correct
a first estimate of the odometry parameters based on the
knowledge of how an error in the estimated parameters affects
the final pose. This approach has been pioneered by Borenstein
and Feng with the UMBmark method [3], in which a differential-
drive robot is driven repeatedly along a square path, clockwise
and anti-clockwise, taking an external measurement of the final
pose; based on the final error, two of the three degrees of
freedom can be corrected. Kelly [4] generalizes the procedure
to arbitrary trajectories and different kinematics.

An alternative approach is formulating odometry calibration
as a filtering problem. A possibility is to use an Extended
Kalman Filter (EKF) that estimates both the pose of the robot
and the odometry parameters, as shown by Larsen et al. [5],
Caltabiano et al. [6], and Martinelli et al. [7]. Foxlin [8]
proposes a generalization of this idea, where the filter’s state
vector contains sensor parameters, robot configuration, and
environment map; further research (especially by Martinelli,
discussed later) has shown that one must be careful about
observability issues when considering such large and heteroge-
neous systems, as it is not always the case that the complete
state is observable.

The alternative to filtering is solving an optimization problem,
often in the form of maximum-likelihood estimation. Roy and
Thrun [9] propose an on-line method for estimating the parame-
ters of a simplified odometry model for a differential drive robot.
Antonelli et al. [10], [11] use a maximum-likelihood method for
estimating the odometry parameters of a differential-drive robot,
using the absolute observations of an external camera. The
method is particularly simple because the problem is exactly
linear, and therefore can be solved with linear least-squares.
Antonelli and Chiaverini [12] show that the same problem can
be solved with a deterministic filter (a nonlinear observer)
obtaining largely equivalent results. Kümmerle et al. [13]
formulate a joint estimation problem for localization, mapping,
and odometry parameters. The optimization problem is solved
using a numerical nonlinear optimization approach.

It is worth pointing out some general differences between



the approaches. UMBmark- and EKF-like methods assume that
nominal values of the parameters are known a priori, and only
relatively small adjustments are estimated. For the EKF, the
usual caveats apply: the linearization error might be significant,
and it might be challenging to mitigate the effect of outliers
in the data (originating, for example, from wheel slipping). A
nonlinear observer has simpler proofs for convergence and error
boundedness than an EKF, but does not provide an estimate of
the uncertainty. An offline maximum-likelihood problem has
the property that outliers can be dealt with easily, and it is not
impacted by linearization, but an ad hoc solution is required
for each case, because the resulting optimization problem is
usually nonlinear and nonconvex.

B. Related work for extrinsic sensor calibration

In robotics, if an on-board sensor is mounted on the robot, one
must estimate the sensor pose with respect to the robot frame,
in addition to the odometry parameters, as a preliminary step
before fusing together odometry and sensor data in problems
such as localization and mapping. In related fields, problems of
extrinsic calibration of exteroceptive sensors are well studied;
for example, calibration of sets of cameras or stereo rigs is
a typical problem in computer vision. The problem has also
been studied for heterogeneous sensors, such as camera plus
(3D) range-finder [14]–[16]. Martinelli and Scaramuzza [17]
consider the problem of calibrating the pose of a bearing sensor,
and show that the system is not fully observable as there is
an unavoidable scale uncertainty. Martinelli and Siegwart [18]
describe the observability properties for different combinations
of sensors and kinematics. The results are not always intuitive,
and this motivated successive works to formally prove the
observability properties of the system under investigation.
Mirzaei and Roumeliotis [19] study the calibration problem
for a camera and IMU using an Extended Kalman Filter.
Hesch et al. [20] consider the problem of estimating the pose
of a camera using observations of a mirror surface with a
maximum-likelihood formulation. Underwood et al. [21] and
Brookshir and Teller [22] consider the problem of calibrating
multiple exteroceptive sensors on a mobile robot. Kelly and
Sukhatme [23] solve the problem of extrinsically calibrating a
camera and an inertial measurement unit.

C. Calibration of odometry and exteroceptive sensors

Calibrating odometry and sensor pose at the same time
is a chicken-and-egg problem. In fact, the methods used
for calibrating the sensor pose assume that the odometry is
already calibrated, while the methods that calibrate the odometry
assume that the sensor pose is known (or that an additional
external sensor is present). Calibrating both at the same time is
a more complicated problem that cannot be decomposed in two
subproblems. In [24], we presented the first work (to the best
of our knowledge) dealing with the joint calibration of intrinsic
odometry parameters and extrinsic sensor pose. In particular,
we considered a differential-drive robot equipped with a range-
finder, or, in general, any sensor that can estimate its egomotion.
This is a very common configuration used in robotics. Later,
Martinelli [25] considered the simultaneous calibration of a
differential drive robot plus the pose of a bearing sensor, a

sensor that returns the angle under which a point feature is
seen. Mathematically, this is a very different problem, because,
as Martinelli shows, the system is unobservable and several
parameters, among which the relative pose of the bearing sensor,
can be recovered only up to a scale factor. Most recently,
Martinelli [26] revisits the same problem in the context of a
general treatment of estimation problems where the state cannot
be fully reconstructed. The concept of continuous symmetry
is introduced to describe such situations, in the same spirit of
“symmetries” as studied in theoretical physics and mechanics
(in which often “symmetry” is a synonym for the action of a
Lie group), but deriving everything using the machinery of the
theory of distributions as applied in nonlinear control theory.
Antonelli et al. [27], [28] consider the problem of calibrating
the odometry together with the intrinsic/extrinsic parameters
of an on-board camera, assuming the knowledge of a certain
landmarks configuration in the environment.

The method presented in [24] has several interesting char-
acteristics: the robot drives autonomously along arbitrary
trajectories, no external measurement is necessary, and no
nominal parameters must be measured beforehand. Moreover,
the formulation as a static maximum-likelihood problem
allows to detect and filter outliers. This paper is an extension
to that work, containing a complete observability analysis
proving that the system is locally observable, as well as a
complete characterization of the global symmetries (Section III);
more careful treatment of some simplifying assumptions
(Section V-B1); more comprehensive experimental data, plus
uncertainty and optimality analyses based on the Cramér–Rao
bound (Section VII). The additional multimedia materials
attached include a C++ implementation of the method and
the log data used in the experiments.

II. PROBLEM FORMULATION

Let SE(2) be the special Euclidean group of planar motions,
and se(2) its Lie algebra [29]. Let q = (qx, qy, qθ) ∈ SE(2)
be the robot pose with respect to a fixed world frame (Fig. 1).
For a differential-drive robot, the pose evolves according to
the differential equation

q̇ =

cos qθ 0
sin qθ 0

0 1

(v
ω

)
. (1)

The driving velocity v and the steering velocity ω depend on the
left and right wheel velocities ωL, ωR by a linear transformation:(

v
ω

)
= J

(
ωL
ωR

)
. (2)

The matrix J is a function of the parameters rL, rR, b:

J =

(
J11 J12
J21 J22

)
=

(
+rL/2 +rR/2
−rL/b +rR/b

)
, (3)

where rL, rR are the left and right wheel radius, and b is the
distance between the wheels. We assume to be able to measure
the wheel velocities ωL, ωR. We do not assume to be able to
set the wheel velocities; this method is entirely passive and
works with any trajectory, if it satisfies the necessary excitability
conditions, outlined in the next section.
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We also assume that there is an exteroceptive sensor mounted
horizontally (with zero pitch and roll) on the robot. Therefore,
the pose of the sensor can be represented as ` = (`x, `y, `θ) ∈
SE(2) with respect to the robot frame (Fig. 1). Thus, at any
given time t, the pose of the sensor in the world frame is q(t)⊕`,
where “⊕” is the group operation on SE(2). The definitions
of “⊕” and the group inverse “	” are recalled in Table I.

The exteroceptive observations are naturally a discrete
process mk: observations are available at a set of time instants
t1 < · · · < tk < · · · < tn, not necessarily equispaced in
time. Consider the generic k-th interval t ∈ [tk, tk+1]. Let
the initial and final pose of the robot be qk = q(tk) and
qk+1 = q(tk+1). Denote by sk the displacement of the sensor
during the interval [tk, tk+1]; this corresponds to the motion
between qk ⊕ ` and qk+1 ⊕ ` (Fig. 1) and can be written as

sk = 	
(
qk ⊕ `

)
⊕
(
qk+1 ⊕ `

)
.

Letting rk = 	qk ⊕ qk+1 be the robot displacement in the
interval, the sensor displacement can be also written as

sk = 	`⊕ rk ⊕ `. (4)

We assume that it is possible to estimate the sensor’s egomo-
tion sk given the exteroceptive measurements mk and mk+1,
and we call ŝk such estimate (for example, if the sensor is a
range-finder, the egomotion can be estimated via scan matching).
At this point, the problem can be stated formally.

Problem 1. (Simultaneous calibration) Given the wheel
velocities ωL(t), ωR(t) for t ∈ [t1, tn], and the estimated
sensor egomotion ŝk (k = 1, . . . , n− 1) corresponding to the
exteroceptive observations at times t1 < · · · < tk < · · · < tn,
find the maximum likelihood estimate for the parameters
rL, rR, b, `x, `y, `θ.

III. OBSERVABILITY ANALYSIS

It has become (good) praxis in robotics to provide an
observability analysis prior to solving an estimation problem. In
robotics, we have systems that evolve according to a continuous-
time dynamics, but observations from the sensors are typically
discrete. There are at least three ways to prove observability,
which consider different aspects of the model.

1) One kind of observability is equivalent to proving that
the system is locally weakly observable, in the control-theory
sense [30]. To apply this analysis, it is required that the system
is in the continuous-time form

ẋ = f(x,u), (5)
y = g(x),

where x contains both parameters and time-varying state, and y
are continuous-time observations. The proof usually consists in
computing successive Lie derivatives and is a proof of existence
of some exciting commands, but it is not usually constructive.
These techniques are intrinsically nonlinear. Such analysis does
not take into account the uncertainty in the observations.

2) The alternative is a “static” analysis, which supposes that
the system is in the form y = h(x,u), where y is now a vector
of discretized observations. The analysis consists in showing
constructively that, for certain values of the commands u, there
are enough constraints as to uniquely determine x.

Table I
SYMBOLS USED IN THIS PAPER

Calibration parameters to be estimated
rR, rL wheel radii
b distance between wheels
` sensor pose relative to robot frame

Robot kinematics
q robot pose relative to world frame

ωL , ωR left/right wheel velocity
v, ω driving/steering robot velocities
J linear map between wheel and robot velocities

Sensing process
mk exteroceptive measurements, available at time tk
rk robot displacement in the k-th interval [tk, tk+1]
sk sensor displacement in the k-th interval
ŝk sensor displacement estimated from mk and mk+1

ν sensor velocity in the sensor frame
Other symbols
⊕, 	 “⊕” is the group operation on SE(2):(

ax
ay
aθ

)
⊕
(
bx
by
bθ

)
=

(
ax + bx cos(aθ)− by sin(aθ)
ay + bx sin(aθ) + by cos(aθ)

aθ + bθ

)
“	” is the group inverse:

	
(
ax
ay
aθ

)
=

(−ax cos(aθ)− ay sin(aθ)
+ax sin(aθ)− ay cos(aθ)

−aθ

)

ℓ

rk

sk

ℓ

world frame

sensor frame

robot frame

qk+1

qk

Figure 1. The robot pose is qk ∈ SE(2) with respect to the world frame;
the sensor pose is ` ∈ SE(2) with respect to the robot frame; rk ∈ SE(2) is
the robot displacement between poses; and sk ∈ SE(2) is the displacement
seen by the sensor in its own reference frame.

3) A stochastic analysis based on the Fisher Information
Matrix [31] assumes that the system is in the static form

y = h(x,u) + ε, (6)

and ε is additive stochastic noise. The system is said to be
observable if the Fisher information matrix of x is full rank,
when u is chosen appropriately.

These formalizations have different properties; continuous-
time and discrete-time modeling of the same system could
reveal different aspects; also the Fisher Information Matrix
analysis corresponds to a linearized analysis, but it also allows
a quantitative bound on the uncertainty. A discrete-time
formalization is better suited for our system, as the problem is
naturally discretized by the exteroceptive sensor observations.
The following statements show that the system is observable in
the “static” sense. The uncertainty estimation for the method
is done using the Fisher Information Matrix. This allows to
check not only that the system is observable, but also how well
conditioned the constraints are.

1) Global ambiguities: There is a global ambiguity of the
parametrization.

Proposition 2. The two sets of calibration parameters
(rL, rR, b, `x, `y, `θ) and (−rL,−rR,−b,−`x,−`y, `θ+π) are
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indistinguishable.

(See Appendix A for a proof.) By convention, we will
choose the solution with b > 0, so that b has the physical
interpretation of the (positive) distance between the wheels.
We also assume throughout the paper that rL, rR 6= 0. Negative
radii are allowed, accounting for the fact that the wheel might
be mounted in the opposite direction (i.e., it spins clockwise,
rather than counter-clockwise). We will give a constructive
proof that this is the only ambiguity, as we will show that the
maximum-likelihood problem has a unique solution once the
ambiguity of Proposition 2 is resolved.

2) Observability: We will prove that the parameters are
observable from the observations of just two intervals (there
are six parameters, and each interval gives three observations),
provided that the trajectories are “independent”, as defined
below. Let the total left wheel rotation in the k-th interval be
∆k
L = ∫ tk+1

tk
ωL(t) d t, and analogously define ∆k

R. Moreover,
let Log : SE(2)→ se(2) be the logarithmic map on SE(2).

Proposition 3. All calibration parameters are observable if
and only if the data set contains at least one pair of trajectories
that satisfy the following conditions:

1) The vectors (∆1
L ∆1

R)T and (∆2
L ∆2

R)T are linearly
independent.

2) The motions r1, r2 are “independent”, in the sense that
there exist no γ ∈ R such that

Log(r1) = γLog(r2), (7)

3) The motions r1, r2 are not both pure translations.

(See Appendix B for a proof.) Note that the second property
is a generic property, in the sense that, fixed r1, almost all
displacements r2 make the parameters observable. Also note
that both conditions refer to the total displacement (of wheels
and robot, respectively), but it does not matter for observability
the exact trajectory followed by the robot. For the particular
case of trajectories with constant velocities, the conditions can
be further simplified.

Corollary 4. In the case of trajectories of constant velocity, the
parameters are observable if and only if the vectors containing
the constant wheel velocities (ω1

L ω1
R)T and (ω2

L ω2
R)T are

linearly independent (for example, a pure rotation and a pure
forward translation).

IV. MAXIMUM-LIKELIHOOD FORMALIZATION
OF THE CALIBRATION PROBLEM

Formulating the problem as a maximum-likelihood problem
means seeking the parameters that best explain the mea-
surements, and involves deriving the objective function (the
measurement log-likelihood) as a function of the parameters
and the measurements. Consider the robot motion along an
arbitrary configuration trajectory q(t) with observations at
times t1 < · · · < tk < · · · < tn. Consider the k-th interval, in
which the robot moves from pose qk = q(tk) to pose qk+1 =
q(tk+1). The robot pose displacement is rk = 	qk ⊕ qk+1.
This quantity depends on the wheel velocities ωL(t), ωR(t),
for t ∈ [tk, tk+1], as well as the odometry parameters. To
highlight this dependence, we write rk = rk(rL, rR, b). We

also rewrite equation (4), which gives the constraint between rk,
the sensor displacement sk, and the sensor pose `, evidencing
the dependence on the odometry parameters:

sk = 	`⊕ rk(rL, rR, b)⊕ `. (8)

We assume to know an estimate ŝk of the sensor displacement,
distributed as a Gaussian1 with mean sk and known covari-
ance Σk. The log-likelihood J = log p({ŝk}|rL, rR, b, `) is

J = − 1
2

n∑
k=1

||ŝk −	`⊕ rk(rL, rR, b)⊕ `||2Σ−1
k

, (9)

where ||z||2A = zTAz is the A-norm of a vector z. We have
reduced calibration to an optimization problem.

Problem 5. (Simultaneous calibration, maximum-likelihood
formulation) Maximize (9) with respect to rL, rR, b, `x, `y, `θ.

This maximization problem is nonconvex; therefore, it
cannot be solved efficiently by general-purpose numerical
techniques [32]. However, we can still solve it in a closed
form, according to the algorithm described in the next section.

V. CALIBRATION METHOD

This section describes an algorithmic solution to Problem 5.
The method is summarized as Algorithm 1 on the following
page. The algorithm provides the exact solution to the problem,
if the following technical assumption holds.

Assumption 1. The covariance Σk of the estimate ŝk is
diagonal and isotropic in the x and y directions:

Σk = diag((σkxy)2, (σkxy)2, (σkθ )2).

The covariance Σk ultimately depends on the environment
features (e.g., it will be more elongated in the x direction if
there are less features that allow to localize in that direction);
as such, it is partly under the control of the user.

If the assumption does not hold, then it is recommended
to use the technique of covariance inflation; this consists
in neglecting the off-diagonal correlations, and “inflate” the
diagonal elements. This guarantees that the estimate found is
still consistent (i.e., the estimated covariance is a conservative
approximation of the actual covariance).

Algorithm overview: Our plan for solving the problem
consists of the following steps, which will be detailed in the
rest of the section.
A. Linear estimation of J21, J22. We show that it is possible
to solve for the parameters J21 = −rL/b, J22 = rR/b
independently of the others by considering only the rotation
measurements ŝkθ . In fact, skθ depends linearly on J21, J22,
therefore the parameters can be recovered easily and robustly
via linear least squares. This first part of the algorithm is
equivalent to the procedure in Antonelli et al. [10], [11].
B. Nonlinear estimation of the other parameters.

1) Treatable approximation of the likelihood.
We show that, under Assumption 1, it is possible to write

1We treat SE(2) as a vector space under the assumption that the error of
ŝk is small. More precisely, the vector space approximation is implicit in
stating that the distribution of ŝk is Gaussian, and, later, in equation (9) when
writing the norm of the difference ‖a− b‖A for a, b ∈ SE(2).
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the term ||ŝk−	`⊕rk⊕`|| in (9) as ||`⊕ ŝk−rk⊕`||,
which is easier to minimize.

2) Integration of the kinematics.
We show that, given the knowledge of J21, J22, for any
trajectory the translation (rkx, r

k
y) is a linear function of

the wheel axis length b.
3) Constrained quadratic optimization formulation.

We use the trick of considering cos `θ, sin `θ as two
separate variables. This allows writing the original
objective function as a quadratic function of the vector
ϕ =

(
b `x `y cos `θ sin `θ

)T
, which contains all

four remaining parameters. The constraint ϕ2
4 + ϕ2

5 = 1
is added to ensure consistency.

4) Solution of the constrained quadratic system.
We show that the constrained quadratic problem can
be solved in closed form; thus we can estimate the
parameters b, `x, `y, `θ.

5) Recovering rL, rR.
The radii are estimated from J21, J22, and b.

C. Outlier removal. An outlier detection/rejection phase must
be integrated in the algorithm to deal with slipping and other
sources of unmodeled errors.
D. Uncertainty estimation. The uncertainty of the solution is
computed using the Cramér–Rao bound.

A. Linear Estimation of J21, J22

The two parameters J21 = −rL/b and J22 = rR/b can be
estimated by solving a weighted least squares problem. This
subproblem is entirely equivalent to the procedure described
in Antonelli et al. [10], [11].

Firstly, note that the constraint equation (8) implies that
skθ = rkθ : the robot and the sensor see the same rotation.

From the kinematics of the robot, we know that the rotational
displacement of the robot is a linear function of the wheel
velocities and the odometry parameters. More precisely, from
equations 1–2, we have rkθ = Lk

(
J21
J22

)
, with Lk a row vector

that depends on the velocities:

Lk =
(∫ tk+1

tk
ωL(t) d t

∫ tk+1

tk
ωR(t) d t

)
. (10)

Using the available estimate ŝkθ of skθ , with standard devia-
tion σkθ , an estimate of J21, J22 can be found via linear least
squares as(

Ĵ21
Ĵ22

)
=

[∑
k

LTkLk(
σkθ
)2
]−1∑

k

LTk(
σkθ
)2 ŝkθ . (11)

The matrix
∑
k L

T
kLk is invertible if the trajectories are

exciting; otherwise, the problem is underconstrained.

B. Nonlinear estimation of the other parameters

We now assume that the parameters J21 = −rL/b and
J22 = rR/b have already been estimated. The next step solves
for the parameters b, `x, `y, `θ. When b is known, one can then
recover rR, rL from J21 and J22.

Algorithm 1 Simultaneous calibration of odometry and sensor
parameters

1) Passively collect measurements over any sufficiently
exciting trajectory.

2) For each interval, run the sensor displacement algorithm
to obtain the estimates ŝk.
Each interval thus contributes the data sample

〈ŝk, ωL(t), ωR(t)〉, t ∈ [tk, tk+1].

3) Repeat N times (for outlier rejection):
Linear estimation of J21, J22:

a) For all samples, compute the matrix Lk using (10).
b) Form the matrix

∑
k L

T
kLk. If the condition num-

ber of this matrix is over a threshold, declare the
problem underconstrained and stop.

c) Compute J21, J22 using (11).
Nonlinear estimation of the calibration parameters:

d) For all samples, compute ckx, cky (19–20) and Qk

using (22).
e) Let M =

∑
kQ

T
kQk.

f) Compute the coefficients a, b, c using to (28–30)
and find the two candidates λ(1), λ(2).

g) For each λ(i):
i) Compute the 5×5 matrix N (i) = M −λ(i)W .

ii) If the rank of N (i) is less than 4, declare the
problem underconstrained and stop.

iii) Find a vector γ(i) in the kernel of N i.
iv) Compute ϕ(i) using (31).

h) Choose the optimal ϕ between ϕ(1) and ϕ(2) by
computing the objective function.

i) Compute the other parameters using (32).
Outlier rejection:

j) Compute the χ-value of each sample using (33).
k) Discard a fraction α of samples with the highest χ.

1) Treatable likelihood approximation: The first step is
simplifying the expression (9) for the log-likelihood. For the
standard 2-norm, the following equivalence holds:

||sk −	`⊕ rk ⊕ `||2 = ||`⊕ sk − rk ⊕ `||2.

Intuitively, the two vectors on the left and right hand side
represent the same quantity in two different reference frames,
so they have the same norm. This is not true for a generic matrix
norm. However, it is true for the Σ−1k -norm, which, thanks to
Assumption 1 above is isotropic in the x and y directions, and
hence rotation-invariant. Therefore, the log-likelihood (9) can
be written as

J = − 1
2

∑
k

||`⊕ ŝk − rk ⊕ `||2
Σ−1

k

. (12)

2) Integrating the kinematics: Let r(t) = 	qk ⊕ q(t),
t ≥ tk, be the incremental robot displacement since the time tk
of the last exteroceptive observation. We need an explicit
expression for rk as a function of the parameters. We show
that, if J21, J22 are known, the displacement can be written
as a linear function of the parameter b.

The displacement r(t) is the robot pose in a reference frame
where the initial qk is taken as the origin. It satisfies this
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differential equation with a boundary condition:

ṙ =

ṙxṙy
ṙθ

 =

v cos rθ
v sin rθ

ω

 , r(tk) = 0. (13)

The solution of this differential equation can be written
explicitly as a function of the robot velocities. The solution for
the rotation component rθ is simply the integral of the angular
velocity ω: rθ(t) =

∫ t
tk
ω(τ) d τ . Because ω = J21ωL +J22ωR,

the rotation component depends only on known quantities,
therefore it can be estimated as

rθ(t) =
∫ t
tk

(J21ωL(τ) + J22ωR(τ)) d τ . (14)

After rθ(t) has been computed, the solution for the translation
components rx, ry can be written as

rx(t) =
∫ t
tk
v(τ) cos rθ(τ) d τ , (15)

ry(t) =
∫ t
tk
v(τ) sin rθ(τ) d τ . (16)

Using the fact that

v = J11ωL + J12ωR = b (− 1
2J21ωL + 1

2J22ωR) , (17)

the final values rkx = rx(tk+1), rky = ry(tk+1) can be written
as a linear function of the unknown parameter b:

rkx = ckx b, rky = cky b, (18)

where the two constants ckx, c
k
y are a function of known data:

ckx = 1
2

∫ tk+1

tk
(−J21ωL(τ) + J22ωR(τ)) cos rkθ (τ) d τ, (19)

cky = 1
2

∫ tk+1

tk
(−J21ωL(τ) + J22ωR(τ)) sin rkθ (τ) d τ. (20)

For a generic trajectory, three integrals are needed to find ckx, c
k
y ,

given by (14) and (18). If the wheel velocities are constant
in the interval [tk, tk+1], then a simplified closed form can be
used, shown later in Section V-E.

3) Formulation as a quadratic system: We now use the trick
of treating cos `θ and sin `θ as two independent variables. If
we group the remaining parameters in the vector ϕ ∈ R5 as

ϕ =
(
b `x `y cos `θ sin `θ

)T
, (21)

then (12) can be written as a quadratic function of ϕ. More in
detail, defining the 2× 5 matrix Qk of known coefficients as

Qk =
1

σkxy

(
−ckx 1− cos r̂kθ + sin r̂kθ +ŝkx −ŝky
−cky − sin r̂kθ 1− cos r̂kθ +ŝky +ŝkx

)
, (22)

the log-likelihood function (12) can be written compactly
as − 1

2ϕ
TMϕ + constant with M =

∑
kQ

T
kQk. We have

reduced the maximization of the likelihood to a quadratic
problem with a quadratic constraint:

min ϕTMϕ, (23)

subject to ϕ2
4 + ϕ2

5 = 1. (24)

Constraint (24), corresponding to cos2 `θ + sin2 `θ = 1, is
necessary to enforce geometric consistency.

Note that so far the solution is not fully constrained: if
the vector ϕ? is a solution of the problem, then −ϕ? is
equally feasible and optimal. This phenomenon corresponds
to the symmetry described by Proposition 2. To make the
problem fully constrained, we add another constraint for ϕ
that corresponds to choosing a positive axis b:

ϕ1 ≥ 0. (25)

4) Solving the constrained least-squares problem: Because
the objective function is bounded below, and the feasible set is
closed, at least an optimal solution exists. We obtain optimality
conditions using the method of Lagrange multipliers. The
constraint (24) is written in matrix form as

ϕTWϕ = 1, with W =

(
03×3 03×2
02×3 I2×2

)
. (26)

Consider the Lagrangian L = ϕTMϕ+ λ(ϕTWϕ− 1).
In this problem, Slater’s condition holds, thus the Karush–Kuhn–
Tucker conditions are necessary for optimality:

∂L
∂x

T

= 2 (M + λW )ϕ = 0. (27)

Equation (27) implies that one needs to find a λ such that the
matrix (M + λW ) is singular, and then find the solution ϕ
in the kernel of such matrix. The value of λ can be found by
solving the equation det (M + λW ) = 0.

For an arbitrary M , the expression det (M + λW ) is a
fifth-order polynomial in λ. However, the polynomial is only
of the second order for the matrix M =

∑
kQ

T
kQk, due to

repeated entries in Qk. One can show that M has the following
structure (note the zeros and repeated entries):

M =


m11 0 m13 m14 m15

m22 0 m35 −m34

m22 m34 m35

m44 0
(symmetric) m44

 .

The determinant of (M + λW ) is a second-order polynomial
a2 λ

2 + a1 λ+ a0, where the values of the coefficients can be
computed as follows:

a2 = m11m22
2 −m22m13

2, (28)

a1 = 2m13m22m35m15 −m22
2m15

2+ (29)

+ 2m13m22m34m14 − 2m22m13
2m44 −m22

2m14
2+

+ 2m11m22
2m44 +m13

2m35
2 − 2m11m22m34

2+

+m13
2m34

2 − 2m11m22m35
2,

a0 = −2m13m
3
35m15 −m22m

2
13m

2
44 +m2

13m
2
35m44+ (30)

+ 2m13m22m34m14m44 + +2m13m22m35m15m44+

+m13
2m34

2m44 − 2m11m22m34
2m44+

− 2m13m34
3m14 − 2m11m22m35

2m44+

+ 2m11m35
2m34

2 +m22m14
2m35

2+

− 2m13m35
2m34m14 − 2m13m34

2m35m15+

+m11m34
4 +m22m15

2m34
2+

+m22m35
2m15

2 +m11m35
4 +m11m22

2m44
2+

+m22m34
2m14

2 −m22
2m15

2m44 −m22
2m14

2m44.

The two candidate values λ(1), λ(2) for λ can be found in
closed form as the roots of the second-order polynomial; one
should examine both candidates, compute the corresponding
vectors ϕ(1), ϕ(2), and check which one corresponds to the
minimizer of the problem (23).

Let λ(i), i = 1, 2, be one of the two candidates. The 5× 5
matrix (M + λ(i)W ) has rank at most 4 by construction.
Under the excitability conditions discussed earlier, the rank is
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guaranteed to be exactly 4. In fact, otherwise we would be able
to find a continuum of solutions for ϕ, while the observability
analysis guarantees the local uniqueness of the solution.

If the rank is 4, the kernel has dimension 1, and the choice
of ϕ is unique given the constraints (8) and (25). Let γ(i)

be any non-zero vector in the kernel of
(
M + λ(i)W

)
. To

obtain the solution ϕ(i), scale γ(i) by ‖(γ(i)4 γ
(i)
5 )T ‖ to

enforce constraint (8), then flip it by the sign of γi1 to satisfy
constraint (25):

ϕ(i) =
sign(γ

(i)
1 )

‖(γ(i)4 γ
(i)
5 )T ‖

γ(i). (31)

The correct solution ϕ̂ to (23) can be chosen between ϕ(1)

and ϕ(2) by computing the value of the objective function.
Given ϕ̂ and the previously estimated values of Ĵ21, Ĵ22, all
six parameters can be recovered as follows:

b̂ = ϕ̂1, (32)

r̂L = −ϕ̂1Ĵ21, r̂R = +ϕ̂1Ĵ22,

ˆ̀ = (ϕ̂2, ϕ̂3, arctan2(ϕ̂5, ϕ̂4)).

C. Outlier removal
The practicality of the method comes from the fact that one

can easily obtain thousands of observations by driving the robot,
unattended, along arbitrary trajectories (compare, for example,
with Borenstein’s method, which is based on precise observation
of a small set of data). Unfortunately, within thousands of
observations, it is very likely that some are unusable, due
to slipping of the wheels, failure of the sensor displacement
estimation procedure, and the incorrect synchronization of
sensor and odometry observations. In principle, a single outlier
can drive the estimate arbitrarily far from the true value;
formally, the breakdown point of a maximum likelihood
estimator is 0. Thus we integrate a simple outliers removal
procedure, which consists in the classic strategy of progressively
discarding a fraction of the samples [33]. For this application,
we expect the outliers to be comparatively few with respect
to the inliers. If this is the case, a simple trimmed nonlinear
optimization is easy to implement and gives good results. Call
a sample the set of measurements (wheel velocities, estimated
sensor displacement) relative to the k-th interval. Repeat N
times:

1) Run the calibration procedure with the current samples.
2) Compute the χ–value of each sample as

χk = ||ŝk −	ˆ̀⊕ rk(r̂L, r̂R, b̂)⊕ ˆ̀||Σ−1
k
. (33)

3) Discard a fraction α of samples with highest values of χk.
The fraction of samples remaining at the last iteration are
β = 1 − (1 − α)N . The value of β should be chosen as to
underestimate the number of inliers, and thus depends on the
characteristics of the data. The exact values of N and α have
less importance as long as the value of β is preserved.

The empirical distribution of the residual errors

ek = ŝk −	ˆ̀⊕ rk(r̂L, r̂R, b̂)⊕ ˆ̀ (34)

gives precious information about the convergence of the
estimation procedure. Ideally, if the estimation is accurate,

the residuals ek should be distributed according to the error
model of the sensor displacement estimation procedure. For
example, Fig. 3 shows the evolution of the residuals in one
of the experiments to be presented later. We can see that
in the first iteration (Fig. 3a) there are a few outliers; with
every iteration, larger outliers are discarded, and because the
estimate consequently improves, the residual distribution tends
to be Gaussian shaped (Fig. 3b), with x, y errors the order of
millimeters, and θ errors well below 1 deg.

D. Uncertainty estimation

The Cramér–Rao bound (CRB) can be used to estimate the
uncertainty of the solution. The maximum-likelihood estimator
is asymptotically unbiased and attains the CRB [31]. If we have
thousands of samples, we expect to be in the asymptotic regime
of the maximum likelihood estimator. The CRB is computed
from the Fisher Information Matrix (FIM). For an observation
model of the kind yk = fk(x) + εk, where f is differentiable,
x ∈ Rn, y ∈ Rm and εk is Gaussian noise with covariance Σk,
the FIM is the n×n matrix given by I(x) =

∑
k
∂fk

∂x Σ−1k
∂fk

∂x .
Under some technical conditions [31], the CRB states that any
unbiased estimator x̂ of x is bounded by cov(x̂) ≥ I(x)−1.
In our case, the observations are yk = ŝk, the state is x =
(rR, rL, b, `x, `y, `θ) and the observation model fk is given
by (8), which is differentiated to obtain ∂fk/∂x.

E. Simpler formulas for constant wheel velocities

In Sections V-A and V-B we needed to integrate the
kinematics to obtain some of the coefficients in the optimization
problem. If the wheel velocities are constant within the time
interval: v(t) = v0, ω(t) = ω0 6= 0, then the solution of (13)
can be written in a closed-form as:

r(t) =

 (v0/ω0) sin(ω0t)
(v0/ω0) (1− cos(ω0t))

ω0t

 . (35)

(For a proof, see for example [34, p. 516, formula (11.85)].)
Let ωkL , ωkR be the constant wheel velocities during the k-th
interval of duration T k = tk+1− tk. Using (35), equation (10)
can be simplified to

Lk =
(
T kωkL T kωkR

)
, (36)

and (19)-(20) are simplified to

rkθ = J21T
kωkL + J22T

kωkR, (37)

ckx = 1
2T

k(−J21ωkL + J22ω
k
R)

sin(rkθ )

rkθ
, (38)

cky = 1
2T

k(−J21ωkL + J22ω
k
R)

1− cos(rkθ )

rkθ
. (39)

Thus, if velocities are constant during each interval, one does
not need to evaluate any integral numerically.

1) Bounding the approximation error: Assuming constant
wheel velocities simplifies the implementation. However, in
practice, wheel velocities are never exactly constant. Fortunately,
we can characterize precisely the error that we commit if the
wheel velocities are not exactly constant. Suppose that we take
the nominal trajectory to be generated by the average velocities;
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for example, we read the odometer at the beginning and the
end of the interval, and we divide by the interval length to
obtain the average velocities. We obtain

ω̄L =
1

T

T

∫
0
ωL(τ) d τ, ω̄R =

1

T

T

∫
0
ωR(τ) d τ.

Furthermore, assume that the variation is bounded:

|ωL(t)− ω̄L| ≤ ε, |ωR(t)− ω̄R| ≤ ε. (40)

In these conditions, we can prove the following. Firstly,
the approximation constant velocities does not impact the
estimation of J21, J22, because the statistics that we need
are the total wheel rotations in the interval. Therefore, (10)
and (36) coincide, if we use the average velocities as nominal
velocities. The constant-velocity approximation does have an
impact for the estimation of the other parameters inasmuch
as the statistics (19)–(20) are perturbed. Fortunately, this
perturbation is bounded by the maximum deviation ε. This can
be seen by noticing from (18) that the statistics (19)–(20) are
proportional to the robot displacement rkx, rky . Therefore, their
perturbation can be bounded by the maximum perturbation
of the nominal unicycle trajectory when the real velocities
respect the bounds (40). One can see that the norm of
the difference between the nominal trajectory (rx(t) ry(t))T

corresponding to the nominal velocities ω̄L, ω̄R and the real
trajectory (rx(t) ry(t))T is bounded by ε t, by imagining two
unicycles that start from the same pose and move with different
velocities (the worst case is when they travel in opposite
directions, in which case the bound ε t is exact).

In conclusion, the approximation error derived from consid-
ering constant velocities when they are not has no effect on
the estimation of J21, J22, and an effect of the first order ε T
on the statistics used for estimating the other parameters.

VI. ON THE CHOICE OF TRAJECTORIES

The method does not impose to choose a particular trajectory.
This means, for example, that it can be run from logged
data which was not necessarily captured for the purpose of
calibration. However, if one is allowed to choose the trajectories
explicitly for calibration purposes, then there are a number
of relevant considerations, which we discuss in this section.
Firstly, we discuss those that are mathematical in nature; then,
we discuss the more practical considerations.

2) Mathematical considerations: Obviously, one should
choose commands that make the estimation problem observable.
This is not difficult, as we have seen in Section III that the
problem is observable if one chooses any two independent
trajectories. In principle, we would like to choose the trajec-
tories that are optimal, in the sense that they maximize the
information matrix of the parameters that need to be estimated.
Unfortunately, we do not have an optimality results for all
parameters, because of the nonlinearity of the problem.

For the linear part of the problem (estimation of J21, J22
in Section V-A), we can completely characterize what are the
optimal trajectories. The matrix P−1J =

∑
k L

T
kLk/

(
σkθ
)2

that appears in (11) is the inverse of the covariance matrix
for the parameters Ĵ21, Ĵ22. There are several choices to
express optimality in a statistical sense, which correspond to
different functions of the matrix P J . For example, if one

wants to minimize the volume of the uncertainty ellipsoid,
one should minimize the determinant of P J . Minimizing the
trace corresponds to minimizing the expected mean squared
error. Assuming the wheel velocities is upper bounded (for
example by the practical considerations below), one can prove
that we should choose the trajectories such that the velocity
of the two wheels are uncorrelated. This leads to the solution
to be a trajectory with alternate tracts of [+1,−1], [+1,+1]
(up to sign). Proposition 9 in Appendix C gives a more formal
statement and proof of this result.

For the nonlinear part of the analysis, we limit ourselves
to more intuitive considerations. It is interesting to notice
the following properties of pure motions2. A pure rotation
does not give any information about the wheel axis b and
the relative sensor orientation `θ, while it allows to observe
the distance of the sensor from the robot platform center
(
√
`2y + `2x) (Lemma 16). A pure translation does not give

any information about `x and `y, while it allows to observe
the sensor orientation `θ directly, as well as the wheel axis b
(Lemma 15).

These results provide a guideline for choosing the calibration
trajectories: if the estimation of the sensor orientation `θ or the
wheel axis b is more important than estimating `x, `y for the
particular application, then use more pure rotations; otherwise,
use more pure translations.

3) Practical considerations: We have seen so far what
considerations of optimality suggest for the choice of the
trajectories. There are equally important considerations based
on more practical aspects.

Obviously, the more data, the better. Therefore, it is suggested
to choose commands that result in closed trajectories in a small
confined space, so that the robot can run unattended to obtain
a large set of measurements. Because the dynamics are affine
in the parameters, imposing certain wheel velocities (ωL, ωR)
for T seconds, and then the opposite velocities (−ωL,−ωR),
will move the robot back to the starting point (up to noise),
for any parameters configuration. This technique is advised to
obtain closed trajectories, instead of programming trajectories
that close a loop (closing a loop exactly needs previous
knowledge of the calibration parameters, which is the principle
of UMBmark). One can show that these kind of trajectories
contain the optimal trajectories (Proposition 14).

By minimal tuning of the maximum velocities and the
interval length, one can make the robot stay in a small region. If
the exteroceptive sensor is a range-finder, it might be desirable
to implement some safety mechanism. In similar situations,
we have found the following simple algorithm useful: define
a safety radius for the obstacles; then, if the current motion
has led to the safety radius to be violated, interrupt the current
commands, and send the opposite commands until the robot
is in a safe zone. Because the differential-drive dynamics is
reversible, this simple algorithm allows the robot to back up
into safety without knowing the calibration parameters.

If possible, choose piecewise-constant inputs. This allows
to use the simplified formulas in Section V-E, and memorize
only one value for ωL and ωR in each interval, instead of

2Note that the commands [+1,−1] and [+1,+1] produce a pure rotation
and a pure translation, respectively, only if the wheels are the same radius.
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memorizing the entire profile ωL(t), ωR(t) for t ∈ [tk, tk+1],
which is necessary to use the formulas for the generic case.

Choose commands that lead to relatively low speeds. This
minimizes the possibility of slipping, and ensures that the sensor
data is not perturbed by the robot motion. However, do not
choose speeds so low that the nonlinear effects of the dynam-
ics become relevant, especially if using the constant speed
assumption (usually robots with DC motors are commanded in
velocities via voltage, but the platform does not attain constant
velocity instantaneously).

Figure 2. One Khepera III robot used in the experiments.

VII. EXPERIMENTS

We tested the method using a Khepera III robot with an
on-board Hokuyo URG-04LX range-finder. The software and
data logs are available as part of the supplemental materials.

4) Robot: The Khepera III is a small mobile robot suitable
for educational use (Fig. 2). It has a diameter of 13 cm
and a weight of 690 g. Brushless servo motors allow a
maximum speed of 0.5 m/s. The Khepera III has an encoder
resolution of about 7 ticks per degree. The Khepera’s on-
board CPU (DsPIC 30F5011 60 MhZ with the proprietary
Korebot extension at 400 MhZ), is too slow to perform scan
matching in real time because it does not possess a floating
point unit: a scan matching operation that would take about
10 ms on a desktop computer takes about 10 s on the Khepera
using floating point emulation. Therefore, the range-finder and
odometry measurements are transmitted back to a desktop
computer that runs the calibration procedure. Given the scan
matching results ŝk, the computational cost of the calibration
algorithm in itself is negligible, and can be implemented on
the Khepera, even with floating point emulation.

5) Environment: For calibration purposes, it makes sense
to use the simplest environment possible, in which the scan
matching operation has the maximum performance. For these
experiments, we used a rectangular environment (approximately
1.2 m × 0.7 m). In this environment, the scan matching
operation can use all readings of the sensor, with no risk
of correspondence outliers, and consequently achieve the
maximum accuracy possible.

6) Sensor: The Hokuyo URG-04LX is a lightweight range-
finder sensor [35], [36]. It provides 681 rays over a 240 deg
field of view, with a radial resolution of 1 mm, and a standard
deviation of about 3 mm. The measurements are highly
correlated, with every ray’s error being correlated with its 3-4
neighbors: this is probably a symptom of some post-processing
(interpolation) to bump up the resolution to the nominal
1024/360 rays/degrees. There is a bias exhibiting temporal
drift: readings change as much as 20mm over a period of 5
minutes—this could be due to the battery power, or the change

in temperature. There is also a spatial bias which is a function
of the distance [35]: in practice, a rectangular environment
appears slightly curved to the sensor. Fortunately, both sources
of bias have a negligible effect on this method. Because we
only use pairwise scan matching between measurements close
in time, the bias (both spatial and temporal) is approximately
the same on each range scan, and does not impact the scan
matching results. We estimated the results of a scan matching
operation to be accurate in the order of 1mm and tenths of
degrees for small (5-10 cm) displacements.

7) Estimation of sensor displacement: We used the scan
matching method described in [37] to obtain the estimates ŝk.
There are various possible ways to estimate the covariance Σk:
either by using the knowledge of the internal workings of
the scan matching method (e.g., [38]) or by using CRB-like
bounds [39], which are independent of the algorithm, but assume
the knowledge of an analytical model for the sensor.

Alternatively, if the robot has been collecting measurements
in a uniform environment, so that it is reasonable to approximate
the time-variant covariance Σk by a constant matrix Σ, one
can use the simpler (and more robust) method of identifying Σ
directly from the data, by computing the covariance matrix
of ek, after the solution has been obtained. This estimate is
what is used in the following experiments.

8) Data processing details: There is a tradeoff involved in
the choice of the interval length T . Choosing short intervals is
not recommended, as it might make the method too sensitive
to unmodeled effects, such as the synchronization of odometry
and range readings, and the robot’s dynamics. Moreover, the
longer each interval, the more information we have about
the parameters in one sample. However, the accuracy of the
scan matching procedure decreases with the length T , because
a longer time interval implies a larger displacement, which
implies less overlapping between scans, and therefore less
correspondences that can constrain the pose. In general, it is
reasonable to choose the length of the interval as the longest
for which the exteroceptive sensor gives reliable displacement
estimates. In our setting, we first chose the maximum wheel
speed to be ' 0.5 rad/s (' 30 deg/s), which made sure that the
robot does not slip on the particular terrain. We recorded range-
finder readings at 5 Hz as well as dense odometry readings
(at ' 100 Hz). Then, we used only one in 4 range readings,
which corresponds to choosing an interval of T ' 0.8 s, such
that the robot travels approximately 1 cm (in translation) and
20 deg (in rotation) per interval. These were judged reasonable
motions, because, a posteriori, the accuracy of the scan matcher
on this data, as computed by the residuals, is in the order
of σxy = 0.3 mm and σθ = 0.1 deg. Each range-finder reading
was matched to the closest odometry reading using the recorded
timestamp. It was assumed that the wheel velocities were
constant in every interval, as previously discussed.

9) Range-finder configurations: To test the method, we tried
three configurations for the range-finder pose on the same
robot. This allows to check that the estimate for the odometry
parameters remains consistent for a different configuration of
the laser. We labeled the three configurations A, B, and C.

10) Trajectories: In the experiments, we drive the robot
according to trajectories that contain an equal number of the
four pairs of “canonical” inputs (ωL, ωR) = ±ωmax (+1,+1),
±ωmax (+1,−1), ±ωmax (+1, 0), ±ωmax (0,+1). The nom-
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inal trajectories associated to these inputs are elementary, if
the wheels can be assumed to be approximately of the same
radius. In particular, the first input corresponds to a straight
trajectory; the second to the robot turning in place; the last two
to the motions originated by moving only one wheel. These
trajectories are pieced together such that, at the end of each
execution, the robot returns to the starting pose (up to drift);
in this way, it is possible for the calibration procedure to run
unattended in a confined space.

A. Results

For each of the configurations A, B, C we collected several
data logs using the aforementioned inputs. We divided the
data for each configuration in 3 subsets, named A1, A2, A3,
B1, B2, B3, C1, C2, C3, by selecting every third tuple from
the main datasets. In this way, we had 3 independent datasets
for each configuration. This division is just for the sake of a
proper statistical analysis and is not part of the method. Each
subset was composed of about 3500 measurement samples.

For each configuration, we ran the calibration algorithm both
on the complete data set, as well as on each subset individually.
Considering multiple subsets for the same configuration allows
us to check whether the uncertainty estimate is consistent: for
example, we expect that the subsets A1 and A2 give slightly
different calibration results, but those results must not disagree
more than the estimated confidence bounds predict.

The results of calibration for the parameters are shown in
Fig. 4. Subfigures 4a–4f show the estimates for the parame-
ters rR, rL, b, `x, `y, `θ. Fig. 4g–4j show the same for the
parameters J11, J12, J21, J22. The error bars correspond to
the confidence values of 3σ given by the computation of the
Cramér–Rao bound. Table II contains the data in textual form.

The results are robust to the choice of the outlier rejection
parameters. If the actual error distribution is a monomodal
distribution (inliers) superimposed with a few samples of a
larger-variance distribution (outliers), then the particular choices
of α and N does not impact the estimate as long as the final
fraction of measurements considered β = 1−(1−α)N remains
constant [33]. The results in Table II are obtained with α =
0.01 and N = 4, corresponding to β ' 96% of inliers. As
an example, we chose α = 0.005 and N = 8, for which
also β ' 96%. The ratio of the parameters obtained in the two
cases are equal to 1 to several decimal places3 (Table IV).

1) Comparison to manually measured parameters and
UMBmark: The precision of the method is in the order
of millimeters and tenths of degrees for the pose of the
laser. It is not possible for us to measure ground truth with
such a precision. For the odometry parameters, we can rely
on the nominal specifications for the robot platform, which
are rL = rR = 21 mm and b = 90 mm, as well as an alternative
calibration method. Our method estimates, for the dataset with
less uncertainty (Table II, row “C”) that rL = 20.89±0.05 mm,
rR = 20.95±0.05 mm, and b = 89.05 ± 0.21mm. For the
direction `θ of the range-finder, the values are compatible with
what we could measure manually. For the A configuration,

3One exception, highlighted in bold, is the value of `y for the dataset C2,
for which the ratio is ' 0.71. For that parameter, the confidence interval is
estimated as −0.03±0.20mm (Table II). The ratio is more variable because
the noise is much larger than the absolute value of the mean.

we had tried to mount it at 90 deg with respect to the robot
orientation, and we obtain `θ = −89.08± 1.31 deg. For the C
configuration, the range-finder was mounted aligned with the
robot, and we obtained the estimate `θ = 0.54± 0.09 deg.

We also calibrated this robot using the UMBmark method,
using a ceiling-mounted camera as the external sensor. The
camera observes the position and angular orientation in the
plane of an artificial marker placed on top of the robot.
The UMBmark method was initialized using the nominal
specifications (rL = rR = 21 mm and b = 90 mm). After 4
runs, the UMBmark result for the wheel axis was a correction
of b = 89.62 mm, lower than the initial estimate, in the same
direction as our estimate. UMBmark slightly adjusted the radii
ratio to 0.99868, a value which is statistically compatible
with our confidence intervals. Finally, the UMBmark method
maintains the average of the wheel radii constant, in this
case 21 mm. We conclude that our method can obtain accurate
results for the odometry that are compatible with the ground
truth and established calibration methods.

2) Inter-dataset comparison: We cannot measure the exact
origin of the range reading (`x, `y) with a precision comparable
with the method accuracy, because the origin of the range finder
is a point housed in an opaque compartment. Yet, we can make
the claim that the performance is very close to optimality using
an indirect verification: by processing the different subsets of
the same log, and verifying that the results agree on the level
of confidence given by the associated Cramér–Rao bound. For
example, Fig. 4 shows that, although the estimates of rL are
different across the sets A1, A2, A3, they are compatible with
the confidence bounds. In the same way we can compare the
estimates for `x, `y, `θ across each configuration. Moreover,
the estimates of the odometry parameters rR, rL, and b (and
the equivalent parametrization J11, J12, J21, J22) can also be
compared across all three configurations A, B, C. For example,
in Fig. 4g–4j we can see that, although the estimates of J11, J12,
J21, J22 change in each set, and the uncertainty varies much
as well, all the data are coherent with the level of confidence
given by the Cramér–Rao bound.

Another confirmation of the method accuracy is the distri-
bution of the residuals (Figure 3b), which is approximately
Gaussian and coincides with the scan-matching error model.

3) Correlation patterns: Note that the uncertainty (error
bars) varies considerably across configurations, even though
the number of measurements is roughly the same for each set.
To explain this apparent inconsistency, one should recall that
the confidence limits for a single variable give only a partial
idea of the estimation accuracy; in fact, it is equivalent to
considering only the diagonal entries of the covariance matrix,
and neglecting the information about the correlation among
variables. For example, the estimates of rL and b are strongly
positively correlated, because it is their ratio J21 = rL/b that
is directly observable. In this case, there is a large correlation
among the variables, and the correlation is influenced by the
sensor pose configuration. This is shown in detail in Fig. 5
where the correlation patterns among all variables are presented.
In Fig. 5b, we can see that having a displaced sensor introduces
a strong correlation between `x, `y and `θ. Comparing Fig. 5a
and 5c, we see that simply rotating the sensor does not change
the correlation pattern.
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(a) Residuals after 1 iteration
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(b) Residuals after 4 iterations

Figure 3. Residuals distribution after 1 iteration (top) and after 4 iterations (bottom). An integral part of the method is the identification and removal of
outliers, which may be due to wheel slipping, failure in the sensor displacement estimation procedure, and other unmodeled sources of noise. To identify
outliers, one first performs calibration, and then computes the residual for each sample, according to equation (34). Samples with large residuals are discarded
and the process is repeated. The distribution of residuals gives information about the quality of the estimate. (a): In the first iteration we expect large residuals.
If the procedure is correct, the residuals should be ultimately distributed according to the sensor model. (b): In this case, we see that at the end of calibration
the residuals are distributed according to the scan matching error process: approximately Gaussian, with a precision in the order of millimeters and fractions of
a degree.
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Figure 4. Calibrated parameters and confidence intervals (the same information is presented in tabular form in Table II). For each configuration, three logs are
taken and considered separately (for example, A1,A2,A3) and all together (“A”). Thus we have 12 datasets in total. On the x-axis we find the experiment
label; on the y axis, the estimated value, along with 3σ confidence bars. The confidence bars correspond to the absolute achievable accuracy as computed by
the Cramér–Rao bound, as explained in Section V-D. Note that most variables are highly correlated, therefore plotting only the standard deviations might be
misleading; see Fig. 5 for more information about the correlation.
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VIII. CONCLUSIONS

In this paper, we have presented a simple and practical
method for simultaneously calibrating of the odometric param-
eters of a differential drive robot and the extrinsic pose of
an exteroceptive sensor placed on the robot. The method has
some interesting characteristics: it can run unattended, with no
human intervention; no apparatus has to be calibrated a priori;
there is no need for nominal parameters as an initial guess, as
the globally optimal solution is found in a closed form; robot
trajectories can be freely chosen, as long as they excite all
parameters. We have experimentally evaluated the method on
a mobile platform equipped with a laser range-finder placed
in various configurations, using scan matching as the sensor
displacement estimation method, and we have showed that the
calibration accuracy is comparable to the theoretical limit given
by the Cramér–Rao bound.

Among the possible evolutions of this work, we mention the
simultaneous calibration problem for other kinematic models of
mobile platforms, such as the car-like robot. We have assumed
that the sensor orientation is planar, yet it would be interesting
to consider the case where the sensor is tilted at an arbitrary
angle, as it is sometimes the case. Another interesting extension
would be moving the problem to a dynamic setting, with a
sensor that measures forces or accelerations.

APPENDIX

A. Proof of Proposition 2

We want to prove that the two sets of calibration parameters
(rL, rR, b, `x, `y, `θ) and (−rL,−rR,−b,−`x,−`y, `θ +π) are
indistinguishable. We show that this is true because they
produce the same sensor velocity, and consequently the same
sensor displacement sk. Denote the sensor velocity in the sensor
frame by ν = (νx, νy, νθ) ∈ se(2), which can be written as(

νx
νy

)
= R(−`θ)

[(
v
0

)
+

(
0 ω
−ω 0

)(
`x
`y

)]
, (41)

νθ = ω.

The transformation rL 7→ −rL, rR 7→ −rR, b 7→ −b, `θ 7→
`θ+π, `y 7→ +`x, `x 7→ −`y, leads to the following mappings:

ω 7→ ω, (unchanged)
v 7→ −v,

R(−`θ) 7→ −R(−`θ).

Substituting these in (41) shows that the sensor velocity is
invariant to the transformation.

B. Proof of Proposition 3

From the discussion in Section V, we already know that under
the conditions of the statement, the parameters J21, J22 are
observable. We also know that we can we can estimate rkx, r

k
y

up to a constant, given by the axis length b; i.e., we can write

rkx = ckxb, rky = ckxb,

where ck1 and ck2 are observable constants. What is missing is
establishing under what conditions the remaining parameters b

and ` = (`x, `y, `θ) are observable. The following lemma es-
tablishes necessary and sufficient conditions for the parameters
to be observable from the observations from two intervals.

Lemma 6. Given the observations from two intervals, in which
the relative robot motion was, respectively,

r1 = (r1x, r
1
y, r

1
θ), r2 = (r2x, r

2
y, r

2
θ), (42)

and for which, consequently, the relative sensor motion was

s1 = (s1x, s
1
y, s

1
θ), s2 = (s2x, s

2
y, s

2
θ),

the wheel axis b and the sensor pose ` are observable if and
only if the following 4× 5 matrix has rank 4:

M =


−r1x/b 1− cos s1θ + sin s1θ +s1x −s1y
−r1y/b − sin s1θ 1− cos s1θ +s1y +s1x
−r2x/b 1− cos s2θ + sin s2θ +s2x −s2y
−r2y/b − sin s2θ 1− cos s2θ +s2y +s2x

 (43)

Proof: From the vector part of `⊕sk = rk⊕ ` we obtain

R(`θ)

(
skx
sky

)
+

(
`x
`y

)
= R(rkθ )

(
`x
`y

)
+

(
rkx
rky

)
.

By substituting (18), letting rkθ = skθ , arranging the unknown
terms in a vector ϕ, given by (21), this is a linear constraint:(

−ckx 1− cos skθ + sin skθ +skx −sky
−cky − sin skθ 1− cos skθ +sky +skx

)
ϕ = 0. (44)

Note that we are treating cos `θ and sin `θ as two inde-
pendent variables, but, of course, we have the constraint
cos2 `θ + sin2 `θ = 1. The constraints derived by two intervals
can be considered together by stacking two copies of (44):

−c1x 1− cos s1θ + sin s1θ +s1x −s1y
−c1y − sin s1θ 1− cos s1θ +s1y +s1x
−c2x 1− cos s2θ + sin s2θ +s2x −s2y
−c2y − sin s2θ 1− cos s2θ +s2y +s2x

ϕ = 0.

This is a homogeneous linear system of the kind Mϕ = 0,
where M can be written as in (43). Note that there are 5
unknowns and 4 constraints: ϕ ∈ R5 andM ∈ R4×5, therefore,
considering only the linear system Mϕ = 0, the vector ϕ can
be observed only up to a subspace of dimension 1 (kerM ):
if ϕ is a solution, also αϕ is a solution, for any α ∈ R.

The additional constraints (24)–(25) allow to determine the
solution uniquely. The absolute value of ϕ is constrained
by (24). There is still a sign ambiguity, which corresponds
to the representation ambiguity of Proposition 2. The sign is
found using the convention that b = ϕ1 > 0 (thus giving b
the physical interpretation of a distance). In conclusion, the
vector ϕ is observable if and only if M has rank 4.

The next question is clearly for which trajectories the
matrix M in (43) has rank 4. First, notice that M depends only
on the relative robot displacement at the end of the interval, that
is, on the vectors r1 and r2 in (42), as well as on the relative
sensor displacements s1 and s2, which are a function of r1

and r2, assuming ` fixed. In other words, the observability of
the parameters depend only on the final pose of the robot at
the end of the intervals, but not on how the robot arrived there.
In particular, it does not matter whether the robot velocities
were constant or variable in time.
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Proposition 7. Let Log : SE(2) → se(2) be the logarithmic
map on SE(2). Then the matrix M has rank less than 4 if
and only if 1) both s1 and s2 are pure translations, or 2) there
exists a γ ∈ R such that

Log(s1) = γ Log(s2). (45)

Proof: Let us consider first the case in which one of the
trajectories is a pure translation. Without loss of generality,
let s1θ = 0. Also assume that either s1x or s1y is nonzero, because,
if s1 is the zero motion, then the problem is unobservable, and
the proposition holds by choosing γ = 0 in (45). If s1θ = 0
then r1x = s1x and r1y = s1y, because sensor and robot saw
exactly the same total motion. In this case, the matrix M is

−
(
1
b

)
s1x 0 0 +s1x −s1y

−
(
1
b

)
s1y 0 0 +s1y +s1x

−r2x/b 1− cos s2θ + sin s2θ +s2x −s2y
−r2y/b − sin s2θ 1− cos s2θ +s2y +s2x

 . (46)

If also the second trajectory corresponds to a pure translation
(s2θ = 0), then this matrix has rank at most 2, because the second
and third column are zero, and the first column is a multiple
of the fourth. For two pure translations, the parameters are
unobservable. If the second trajectory is not a pure translation
(s2θ 6= 0), then the matrix M has rank 4, as can be seen by
looking at the determinant of the 4x4 minor

0 0 +s1x −s1y
0 0 +s1y +s1x

1− cos s2θ + sin s2θ +s2x −s2y
− sin s2θ 1− cos s2θ +s2y +s2x


which is 2(cos(s2θ)− 1)‖(s1x s1y)T ‖2 6= 0. Let us now discuss
the general case, in which none of the trajectories is a pure
translation: (ω1, ω2 6= 0). Write the poses s1, s2 using the
exponential coordinates (a1, b1, ω1) and (a2, b2, ω2):

Log(sk) = T
(

0 ωk a1
−ωk 0 bk
0 0 0

)
∈ se(2),

for ak, bk ∈ R and ωk such that |ωi| < π/T . This last
constraint, corresponding to |ωiT | < π, ensures that this is a
1-to-1-reparametrization of the data.

The vectors (a1, b1, ω1) and (a2, b2, ω2) have the interpreta-
tion of the constant velocities that would give the two final poses
in time T ; however, notice that this is just a parametrization
of the data s1 and s2; there is no assumption on the velocities
actually being constant during the interval.

We need to show that the matrix M has rank less than 4 if
and only if there exists a γ ∈ R such that

(a2 b2 ω2)T = γ(a1 b1 ω1)T . (47)

Lemma 8 gives the closed form expression for the coordi-
nates (skx, s

k
y , s

k
θ), that appear in (50) as a function of the

exponential coordinates (ak, bk, ωk):

skθ = ωkT, (48)(
skx
sky

)
=

(
sin(ωkT )
ωkT

cos(ωkT )−1
ωkT

1−cos(ωkT )
ωkT

sin(ωkT )
ωkT

)(
akT
bkT

)
=

1

ωk

(
sin(ωkT ) cos(ωkT )−1

1−cos(ωkT ) sin(ωkT )

)(
ak
bk

)
. (49)

Consider again the 4 × 4 minor of M corresponding to the
last four columns:

M̃ =


1− cos s1θ + sin s1θ +s1x −s1y
− sin s1θ 1− cos s1θ +s1y +s1x

1− cos s2θ + sin s2θ +s2x −s2y
− sin s2θ 1− cos s2θ +s2y +s2x

 . (50)

Substitute (48)–(49) in (50) to obtain the matrix M̃ as a
function of only the exponential coordinates (ak, bk, ωk). The
determinant of M̃ can be computed as:

detM̃ = T 3 sinc2 (ω1T/2) sinc2 (ω2T/2)×

×
(
(a22 + b22)ω2

1 − 2(a1a2 + b1b2)ω1ω2 + (a21 + b21)ω2
2

)
.

The zeros of sinc(x) are the same zeros as sin(x) (except x = 0,
as sinc(0) = 1), hence the determinant is zero for ωiT/2 = kπ
(|k| > 0). But these zeros can be ignored as they correspond
to ωiT = 2kπ, which are singularities of the representation. In
fact, we had already assumed that |ωiT | < π. Therefore, the
determinant is 0 if and only if the second factor

d = (a22 + b22)ω2
1 − 2(a1a2 + b1b2)ω1ω2 + (a21 + b21)ω2

2 (51)

is equal to 0. This is a polynomial of the fourth-order in the
variables (a1, b1, ω1) and (a2, b2, ω2). It is also a homogeneous
polynomial (all summands have the same order), which is a
clue that it might be further simplified. We discuss four cases:
1) If the trajectory is a pure rotation (a1, b1 = 0), then
d = (a22 + b22)ω2

1 , which is nonzero as long as the second
motion is not also a pure rotation.
2) If both coordinates are nonzero (a1, b1 6= 0), we can
reparametrize (a2, b2, ω2) using the three numbers (α, β, γ) ∈
R3, according to this particular transformation:

a2 = (αγ)a1, b2 = (βγ)b1, ω2 = (γ)ω1.

Because ω1, ω2 6= 0, necessarily γ 6= 0. Substituting these
in (51), we obtain

d = (α2γ2a21 + β2γ2b21)ω
2
1 − 2(αγa21 + γβb21)γω

2
1 + (a21 + b21)γ

2ω2
1

= (γ2ω2
1)
(
α2a21 + β2b21 − 2(αa21 + βb21) + a21 + b21

)
= (γ2ω2

1)
(
(α2 − 2α+ 1)a21 + (β2 − 2β + 1)b21

)
= (γ2ω2

1)
(
(α− 1)2a21 + (β − 1)2b21

)
.

Therefore, the determinant is zero if and only if α = 1
and β = 1, in which case it holds that (a2, b2, ω2) is
proportional to (a1, b1, ω1) by the constant γ.
3) If a1 = 0 and b1 6= 0, we need to use a simpler variation
of the proof for the previous case. In this case, use the
parametrization (x, β, γ), such that a2 = γx, b2 = (βγ)b1
and ω2 = (γ)ω1. The determinant is proportional to

d = (x2 + b22)ω
2
1 − 2(b1b2)ω1ω2 + (b21)ω

2
2

= (γ2x2 + β2γ2b21)ω
2
1 − 2(γβb21)γω

2
1 + (b21)γ

2ω2
1

= (γ2ω2
1)
(
x2 + β2b21 − 2(βb21) + b21

)
= (γ2ω2

1)
(
x2 + (β − 1)2b21

)
.

This implies that necessarily x = 0 and β = 1. Also in this
case, there must be a linear dependence like (47).
4) Finally, the case a1 6= 0, b1 = 0 is completely analogous
by exchanging the roles of a1 and b1.

To obtain the thesis in Proposition 3, we have to show
that (45) is equivalent to (7). To see this, recall that sk is
obtained from rk by conjugation (sk = 	`⊕rk⊕ `), and that
the matrix logarithm satisfies the property Log(AXA−1) =
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ALog(X)A−1. It follows that Log(sk) = Log(rk), and
therefore (45) and (7) are equivalent.

Lemma 8 (Exponential map for SE(2) [40, Lemma 1]). The
exponential map Exp : se(2)→ SE(2) can be written as

Exp
(
t
(

0 ω a
−ω 0 b
0 0 0

))
=

(
R(ωt) Ψ(ωt)( atbt )

0 1

)
,

with

Ψ(ωt) =

(
sin(ωt)
ωt

cos(ωt)−1
ωt

1−cos(ωt)
ωt

sin(ωt)
ωt

)
.

C. Optimal trajectories for estimating Ĵ21, Ĵ22

We can characterize precisely which trajectories are optimal
for the linear part of the problem.

Proposition 9. Suppose that the allowable wheels angular
velocities are bounded:

|ωL|, |ωR| ≤ ωmax. (52)

Consider the problem of minimizing the uncertainty of the esti-
mates Ĵ21, Ĵ22, either in the mean square error and uncertainty
ellipsoid size. Assume that the variation of σkθ is negligible.
Then the commands profiles containing an equal number
of piecewise constant tracts with values [±ωmax,∓ωmax]
and [±ωmax,±ωmax] (values are specified up to sign) obtain
a value which is O(1/K)-optimal (i.e., closer to optimal as
the number of intervals K grows).

Proof: The proof is based on elementary algebraic manip-
ulation of the closed-form covariance matrix, which is readily
available because estimating Ĵ21, Ĵ22 is a linear problem. The
covariance matrix of the estimates for these two parameters
is given by P−1J =

∑
k L

T
kLk/

(
σkθ
)2

(as shown in (11)).
We consider optimality with respect to the mean square error
(i.e., minimizing Tr(P J)) as well in the entropy sense (i.e.,
minimizing det(P J)).

Assume, without loss of generality, that we are considering
equispaced intervals (T k = 1). If σkθ is constant, it can be taken
to be 1. In this case, from (10) it follows that the elements
of LTk = (∆k

L ∆k
R)T are the total angular rotations of the

wheels during the k-th interval. The elements of P−1J are:

P−1J =

( ∑
(∆k

L)2
∑

∆k
R∆k

L∑
∆k
R∆k

L

∑
(∆k

L)2

)
.

Note that the entries are the sample second moment matrix
of the vector (∆k

L ∆k
R)T . This is not the sample covariance

matrix of (∆k
L ∆k

R)T , unless
∑

∆k
L =

∑
∆k
R = 0. Fortunately,

using Proposition 14, we can restrict ourselves to considering
only “balanced” trajectories, for which

∑
∆k
L =

∑
∆k
R = 0

and be O(1/K) close to optimality. (This assumption is not
strictly necessary, but it makes the rest of this proof elementary.)
Assuming

∑
∆k
L =

∑
∆k
R = 0 and for large K, we can

write P−1J as a covariance matrix
(

a2 ρ a b

ρ a b b2

)
, with a2 =

E{(∆k
L)2}, b2 = E{(∆k

R)2}, and ρ = corr(∆k
R,∆

k
L) is the

sample correlation of the wheels velocities. The trace and the

determinant of P J can be written as

Tr(P J) =
1

(1− ρ2)

1

a2b2
, (53)

det(P J) =
1

(1− ρ2)

(
1

a2
+

1

b2

)
. (54)

In either cases, to minimize the uncertainty, we need to maxi-
mize a2, b2, and minimize ρ2. The values of a2 = E{(∆k

L)2}
and b2 = E{(∆k

R)2} are maximized by choosing always the
extremal velocities in (52). The value of ρ2 is minimized by
choosing the trajectories such that, on average, the values of
left and right wheel velocities are uncorrelated. It follows that
a commands profile that alternates intervals of (ωL, ωR) =
[+ωmax,−ωmax] and (ωL, ωR) = [+ωmax,+ωmax] is a feasi-
ble solution (as it respects the constraint (52)) that is a global
minimizer of both (53) and (54); hence, it is a global optimum.
By Lemma 11, these trajectories are specified up to sign.

1) Supporting lemmas regarding balanced trajectories:
This section contains some results in support of the proof of
Proposition 9, that allow considering only “balanced” trajec-
tories as candidates for optimality. Let ∆k

L be the total left
wheel rotation during one interval, and let ∆L,∆R be the total
rotation in one trajectory: ∆L =

∑
k∆k

L, ∆R =
∑
k∆k

R.

Definition 10. A command profile is balanced if the integral
of the velocity commands sums to zero: ∆L = ∆R = 0.

Note that this does not necessarily mean that the robot
returns back to the starting position. We now show that we can
limit ourselves to consider only balanced trajectories. First, we
show that a commands profile and its opposite give the same
information matrix for the calibration parameters.

Lemma 11. The information matrix of the calibration param-
eters is symmetric with respect to a reversal of the command
profiles: the information matrix obtained using the commands
profile (ωL(t) ωR(t))T coincides with the one obtained with
the commands profile (−ωL(t) − ωR(t))T .

Proof: The ultimate reason is that the dynamics of a
differential-drive robot is reversible, in the sense that giving
the opposite command profile to the robot gives the reverse
motion of the platform. Let r be the robot displacement during
one interval according to a certain profile ω(t). From (4), the
sensor displacement is s = 	` ⊕ r ⊕ `. Let r̃ be the robot
displacement for the opposite commands profile ω̃(t) = −ω(t).
Because the dynamics is reversible, it must hold that r̃⊕r = 0,
hence r̃ = 	r. For the sensor motion, we can see that s̃ =
	`⊕r̃⊕` = 	`⊕(	r)⊕` = 	s. If the observations (s̃) for the
inverted trajectory are a function of the original observations (s),
then they give exactly the same information regarding the
calibration parameters.

As a corollary of this result, one can see that by exchanging
the sign of the commands during one of the intervals does not
change the achievable accuracy. At this point, we ask whether,
by selectively changing the signs of pieces of the commands
profile, we can obtain a trajectory which is balanced. The
answer is given by a result of Steinitz, which says that we can
rearrange the signs of a set of vectors such that the norm of
their sum is bounded.

Lemma 12 (Steinitz [41, Chapter 2]). Consider a set of m ≥ 2
vectors {vi}mi=1 in Rn, n ≥ 1, such that ‖vi‖∞ ≤ c. Then there
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exists a vector of coefficients {xi}mi=1, xi ∈ {−1,+1}, such
that ‖

∑m
i=1 xivi‖∞ ≤ nc.

Note that the bound given by this Lemma depends on the
dimension n, but not on the number of vectors m. The case n =
1 is easy to see algebraically, and the case n = 2 can be
understood geometrically. Based on Steinitz’s result, we can
show that, for each trajectory, we can find another which gives
the same information matrix, but it is approximately balanced.

Lemma 13. For each commands profile with bounded wheel
velocity (|ωL|, |ωR| ≤ ωmax) composed of K intervals of
equal length T , there is a commands profile with the same
information matrix that is approximately balanced, in the sense
that |∆L|, |∆R| ≤ 2Tωmax.

Proof: Because we can invert the signs of each inter-
val without changing the information matrix (Lemma 11),
multiplying by −1 or +1 each of the commands values in
the intervals gives a trajectory with the same information
matrix. From Lemma 12, we can choose the sign such
that |∆L|, |∆R| ≤ 2Tωmax; note that the bound does not
depend on the number of intervals.

Finally, building on the previous results, we can show that
if we limit ourselves to considering only balanced trajectories,
we can obtain any feasible information matrix with an error
which goes to zero as the number of trajectories K grows.

Proposition 14. For any commands profile of K intervals
which gives the information matrix I for the parameters, there
is a balanced commands profile giving an information matrix I ′
such that

∥∥I − I ′
∥∥ / ‖I‖ = O(1/K).

Proof: By Lemma 13, there is a commands profile which
obtains I and for which |∆L|, |∆R| ≤ 2Tωmax. We can obtain
a balanced commands profile by modifying the commands in
at most two intervals, and obtain an information matrix I ′
which is close to I . In particular,

∥∥I − I ′
∥∥ can be bound by

a constant (the information attainable during two intervals),
while ‖I‖ is proportional to the number of observations (K).
Hence, as K grows,

∥∥I − I ′
∥∥ / ‖I‖ = O(1/K).

D. Observability properties for canonical trajectories

Proposition 9 above gives a complete characterization of
the optimality of trajectories for the parameters Ĵ21, Ĵ22. For
the other parameters b and ` = (`x, `y, `θ), we cannot give a
similar complete answer, because the information matrix, albeit
it can be computed numerically, is not available in a closed
form that can be manipulated in a simple way. Nevertheless,
we can characterize several properties for the simple motions
(pure rotation and pure translation). These results cannot be
reused for the study of arbitrary trajectories, yet they provide
useful intuition about the role of each parameter.

Lemma 15. Motions corresponding to pure translation (for-
ward/backward) do not give any information about `x and `y;
but the sensor orientation `θ is observable.

Proof: We prove this by showing that for these particular
trajectories, the observations are invariant with respect to `x
and `y . The observations sk ∈ SE(2) are the solution at time
t = T k of the differential equation ṡ(t) = s(t)ν(t), s(0) = 0,

where ν(t) ∈ se(2) is the sensor velocity in the sensor frame.
By setting ω = 0 in (41), we obtain νθ = 0 and

νx = v cos(−`θ), νy = v sin(−`θ). (55)

Thus the sensor velocity ν does not depend on `x and `y,
and, consequently, the sensor displacement s(t) does not
give information about those parameters. In this case, the
observations do give information about `θ. From (55), one
obtains `θ = −arctan2(νy/v, νx/v).

Lemma 16. Motions corresponding to pure rotation do not
give any information about the wheel axis b and the sensor
orientation `θ; the distance of the sensor from the robot
platform center (‖(`y `x)T ‖) is identifiable.

Proof: Let us write (`x, `y) in polar coordinates (ϕ`, ρ`):

`x = ρ` cosϕ`, `y = ρ` sinϕ`.

The inverse relations are clearly ρ` = ‖(`y `x)T ‖ and ϕ` =
arctan2(`y, `x). Setting v = 0 and ω = νθ in (41) and using
the polar notation, we obtain

( νxνy ) = ωR(−`θ − ϕ`) ( ρ`0 ) .

By taking the modulus of both sides, we obtain ρ` =∥∥(νx νy)T
∥∥ /νθ, so that ρ` is directly observable. By taking

the phase of both vectors we obtain

arctan2(νy, νx) = −`θ − ϕ` (valid for ρ` > 0).

This means that, from just pure rotations, we can identify only
the sum of `θ and ϕ`, but not either term separately.
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Table II
CALIBRATED PARAMETERS AND CONFIDENCE INTERVALS

(THE SAME INFORMATION IS PRESENTED IN GRAPHICAL FORM IN FIG. 4.)

rL (mm) rR (mm) b (mm) `x (mm) `y (mm) `θ (deg) J11 (mm/s) J12 (mm/s) J21 (deg/s) J22 (deg/s)

A 20.74± 0.26 20.84± 0.26 88.60± 1.10 −2.65± 1.09 5.79± 0.59 −89.08± 1.31 10.37± 0.06 10.42± 0.07 −6.71± 0.02 6.74± 0.02

A1 20.67± 0.48 20.76± 0.48 88.29± 2.04 −2.66± 2.14 5.77± 1.10 −89.25± 2.60 10.34± 0.12 10.38± 0.12 −6.71± 0.04 6.74± 0.04

A2 20.62± 0.56 20.73± 0.56 88.10± 2.39 −2.46± 1.66 5.88± 1.27 −89.24± 2.02 10.31± 0.14 10.37± 0.14 −6.70± 0.03 6.74± 0.03

A3 20.91± 0.25 21.00± 0.25 89.28± 1.08 −2.86± 2.01 5.71± 0.59 −88.79± 2.48 10.45± 0.06 10.50± 0.06 −6.71± 0.03 6.74± 0.03

B 20.71± 0.30 20.79± 0.29 88.39± 1.25 −5.87± 1.26 −38.71± 0.67 −106.58± 1.20 10.36± 0.07 10.40± 0.07 −6.71± 0.02 6.74± 0.02

B1 20.67± 0.42 20.74± 0.41 88.17± 1.78 −6.21± 1.99 −38.66± 0.96 −106.77± 1.90 10.33± 0.11 10.37± 0.10 −6.71± 0.03 6.74± 0.03

B2 20.76± 0.76 20.85± 0.74 88.60± 3.20 −5.96± 3.23 −38.71± 1.73 −106.59± 3.05 10.38± 0.19 10.43± 0.19 −6.71± 0.04 6.74± 0.04

B3 20.69± 0.39 20.78± 0.37 88.39± 1.62 −5.51± 1.58 −38.78± 0.87 −106.37± 1.50 10.35± 0.10 10.39± 0.09 −6.71± 0.03 6.73± 0.03

C 20.89± 0.05 20.95± 0.05 89.05± 0.21 −5.81± 0.08 0.19± 0.11 0.54± 0.09 10.44± 0.01 10.47± 0.01 −6.72± 0.00 6.74± 0.00

C1 20.79± 0.09 20.86± 0.09 88.73± 0.37 −5.83± 0.13 0.37± 0.20 0.57± 0.16 10.39± 0.02 10.43± 0.02 −6.71± 0.00 6.73± 0.00

C2 20.91± 0.09 20.98± 0.09 89.11± 0.38 −5.70± 0.14 −0.03± 0.20 0.67± 0.16 10.46± 0.02 10.49± 0.02 −6.72± 0.01 6.75± 0.01

C3 20.95± 0.08 20.99± 0.08 89.27± 0.35 −5.95± 0.12 0.10± 0.19 0.37± 0.15 10.47± 0.02 10.50± 0.02 −6.72± 0.00 6.74± 0.00

+.95 +.97

+.97

−.01

−.01

−.01

−.03

+.01

−.00

+.03

+.02

+.01

+.02

−.13

−.11

+.99

+.95

+.97

−.01

−.03

+.02

+.95

+.99

+.97

−.01

+.01

+.01

+.95

−.09

+.11

+.12

−.01

+.10

−.01

−.09

+.11

−.09

+.11

−.11

−.00

+.07

−.01

−.09

+.11

−.07

rL rR b ℓx ℓy ℓθ J11 J12 J21 J22

rL

rR

b

ℓx

ℓy

ℓθ

J11

J12

J21

J22

(a) Correlation pattern (configuration A)

+.96 +.98

+.97

−.17

−.18

−.18

−.00

+.04

−.00

−.32

−.27

−.28

−.27

+.63

−.19

+.99

+.96

+.98

−.17

−.00

−.27

+.96

+.99

+.97

−.18

+.04

−.28

+.96

−.18

+.01

+.02

−.02

−.00

−.01

−.18

+.01

−.18

+.01

−.20

−.00

+.17

−.01

−.18

+.01

−.06

rL rR b ℓx ℓy ℓθ J11 J12 J21 J22

rL

rR

b

ℓx

ℓy

ℓθ

J11

J12

J21

J22

(b) Correlation pattern (configuration B)

+.97 +.98

+.98

−.00

−.00

−.01

−.01

+.01

−.00

−.02

−.01

−.02

−.01

−.00

−.09

+.99

+.97

+.98

−.00

−.01

−.01

+.97

+.99

+.98

−.00

+.01

−.02

+.97

−.08

+.07

+.08

−.02

+.06

−.02

−.08

+.07

−.08

+.07

−.09

+.01

+.06

−.02

−.08

+.07

−.08

rL rR b ℓx ℓy ℓθ J11 J12 J21 J22

rL

rR

b

ℓx

ℓy

ℓθ

J11

J12

J21

J22

(c) Correlation pattern (configuration C)

Figure 5. Correlation patterns between estimation errors. Fig. 4 shows the confidence intervals as 3σ error bars on each variable. That corresponds to
considering only the diagonal elements of the covariance matrix and neglecting the correlation information. As it turns out, each configuration has a typical
correlation pattern, which critically describes the overall accuracy. Subfigures (a), (b), (c) show the correlation patterns for the three configurations A,B,C.
Each cell in the grid contains the correlation between the two variables on the axes.

Table III
CALIBRATION RESULTS USING UMBMARK

b (m) rL (m) rR (m) Eb Ed Emax J11 (m/s) J12 (m/s) J21 (rad/s) J22 (rad/s)
nominal 0.090 0.021 0.021 1.0 1.0 17.8238 0.0105 0.0105 -0.23333 0.23333

after 1 trial 0.08971 0.02100 0.02099 0.996854 0.99963 8.1993 0.010501 0.01050 -0.23411 0.23403
after 2 trials 0.08970 0.02101 0.02099 0.996722 0.99883 6.5975 0.010506 0.01049 -0.23424 0.23396
after 3 trials 0.08965 0.02102 0.02098 0.996180 0.99848 4.4295 0.010507 0.01049 -0.23441 0.23405
after 4 trials 0.08962 0.02101 0.02099 0.995824 0.99868 3.8147 0.010506 0.01049 -0.23447 0.23416

Table IV
RATIO OF ESTIMATED PARAMETERS FOR DIFFERENT OUTLIER REJECTION PARAMETERS (α = 0.005, N = 8 VS. α = 0.01 AND N = 4)

rL ratio rR ratio b ratio `x ratio `y ratio `θ ratio J11 ratio J12 ratio J21 ratio J22 ratio

A 1.00001 1.00005 0.99999 0.99135 1.00347 1.00004 1.00001 1.00005 1.00003 1.00006
A1 0.99998 1.00000 0.99998 1.01479 0.99886 1.00019 0.99998 1.00000 1.00000 1.00003
A2 0.99986 0.99986 0.99998 0.99074 0.99855 1.00004 0.99986 0.99986 0.99988 0.99988
A3 1.00000 1.00000 0.99997 1.01434 1.00405 1.00004 1.00000 1.00000 1.00003 1.00003
B 1.00036 1.00029 1.00014 0.99216 0.99930 1.00011 1.00036 1.00029 1.00021 1.00015
B1 1.00000 1.00000 1.00011 1.00307 0.99954 0.99999 1.00000 1.00000 0.99989 0.99989
B2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
B3 0.99994 0.99999 0.99997 0.99152 1.00051 1.00001 0.99994 0.99999 0.99997 1.00002
C 1.00004 1.00006 1.00006 0.99902 1.00200 1.00358 1.00004 1.00006 0.99998 1.00001
C1 0.99947 0.99945 0.99942 1.00470 0.97054 0.99850 0.99947 0.99945 1.00005 1.00004
C2 1.00022 1.00024 1.00034 0.99608 0.71784 0.99223 1.00022 1.00024 0.99988 0.99990
C3 1.00081 1.00083 1.00087 1.00038 0.93306 0.96520 1.00081 1.00083 0.99994 0.99996
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