
Preprint version 3rd Int. Conf. on Simulation, Modeling, and Programming for Autonomous Robots, Tsukuba, Japan (2012)

SwarmSimX: Real-time Simulation Environment
for Multi-robot Systems

Johannes Lächele1, Antonio Franchi1, Heinrich H. Bülthoff1,2, and Paolo
Robuffo Giordano1

1 Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076
Tübingen, Germany. {johannes.laechele, antonio.franchi,

prg}@tuebingen.mpg.de
2 Department of Brain and Cognitive Engineering, Korea University, Seoul, 136-713

Korea. hhb@tuebingen.mpg.de

Abstract. In this paper we present a novel simulation environment
called SwarmSimX with the ability to simulate dozens of robots in a
realistic 3D environment. The software architecture of SwarmSimX al-
lows new robots, sensors, and other libraries to be loaded at runtime,
extending the functionality of the simulation environment significantly.
In addition, SwarmSimX allows an easy exchange of the underlying li-
braries used for the visual and physical simulation to incorporate differ-
ent libraries (e.g., improved or future versions). A major feature is also
the possibility to perform the whole simulation in real-time allowing for
human-in-the-loop or hardware-in-the-loop scenarios. SwarmSimX has
been already employed in several works presenting haptic shared con-
trol of multiple mobile robots (e.g., quadrotor UAVs). Additionally, we
present here two validation tests showing the physical fidelity and the
real-time performance of SwarmSimX. For the tests we used NVIDIAR©

PhysXR© and Ogre3D as physics and rendering libraries, respectively.

Keywords: Real-Time, Multi-Robot, Simulation Environments, Soft-
ware Framework.

1 Introduction

Software frameworks simulating the behavior of virtual environments are an
indispensable tool in most engineering sciences. Within the robotics scope, sim-
ulation environments are of paramount importance for fast development and
testing of new control algorithms for single robots or of complex behaviors for
multiple interacting robots.

In this latter case, several software suites able to simulate multiple robots at
the same time have been developed and are widely used in research. Simulators
like ARGoS [1] are capable of handling multiple robots with a pure modular
software design that allows for assigning different physics engines to different
areas of the simulation. A simulation example involving thousands of robots is
discussed, albeit only in a 2D environment. Also, the design of ARGoS is not
specialized for real-time (RT) simulation, an essential feature for hardware-in-
the-loop scenarios and for all those situations involving strict constraints on the

1



inner simulation timing (e.g., whenever requiring online processing/filtering of
signals acquired from the external world).

The crucial requirements that we identified for a robotics simulator have
been the following: real-time execution, physical realism, exchangeable visual
and physical representation, extendable software architecture, and full control
over inherent information of all simulated robots (see, e.g., [2–4]). To the best
of our knowledge, we were unable to find a solution meeting all of the require-
ments. Existing simulation environments, like OpenRAVE [5], MORSE [6] can be
used for multi-robot simulation scenarios. MORSE is based on the open source
3D content creation suite Blender [7] and its game engine architecture. Pro-
gram logic, algorithms or general extensions to the simulation software can be
implemented in Python.Python is a highly portable, open source programming
language and usually all code is being interpreted or compiled just-in-time (JIT).
Third party system libraries or high performance low-level code can to be loaded
and executed at runtime using wrapper mechanisms. Also OpenRAVE provides
an extensive Python API enabling the user to easily add functionality to the
simulation or any parts of it. However, using the Python approach may be a
source for errors that are hard to trace and resolve. Additional effort is required
to include libraries that in a later step may even prove difficult to interface with
the real robots. Other simulation environments such as V-REP [8] or Webots [9]
provide a more general simulation environment and may also be extended with
RT capabilities. Nonetheless, these two software systems are tightly coupled to
the underlying libraries used for the physical simulation, thus removing the pos-
sibility to exchange the technology being used in an easy fashion.

The only environment meeting almost all requirements is Gazebo [10], a ver-
satile simulation environment following a modular software architecture design.
Gazebo already supports a vast set of mobile robots and manipulators, as well
as their sensors and control algorithms and is developed by an active commu-
nity. Still, Gazebo is not orignally designed to run in real-time, hence colliding
with the requirements stated earlier. Although a custom built plugin may al-
ter the stepping of the simulation, the already provided libraries, plugins, and
sensors may not respect real-time execution. In addition, Gazebo currently only
supports the Open Dynamics Engine (ODE) as the core physics engine. The
authors believe that other libraries, e.g. NVIDIA PhysX engine [11], may yield
better, i.e. more precise, simulation results.

In this paper, we propose a novel Simulation environment, called SwarmSimX
(SSX), able to address all the aforementioned challenges. SwarmSimX, which is
currently available in a C++ implementation, is capable of simulating both the
visual and physical properties of robots acting in a user-defined environment in
real-time. Shared modules may be loaded at runtime, extending the simulation
with new functionalities. SwarmSimX is also designed to be independent of the
particular physics and render engines used in the simulation. The underlying
engines can be flawlessly exchanged in the variegate assortment of the current
software depending upon the user needs (e.g., realism, efficiency, open-source,
high-accuracy for a particular robotic platform, etc.). This feature also comes
particularly in handy whenever major upgrades of the engine’s library are re-
leased and the simulator has to follow these updates as well.

Preprint version 2 3rd SIMPAR (2012)



Fig. 1: Overview of the software architecture of SwarmSimX.

The rest of the paper is organized as follows: Sect. 2 illustrates the design
principles and software architecture behind the inner workings of SwarmSimX,
Sect. 3 reports the results of experiments aimed at validating the realism and
real-time capabilities of the simulation software, and Sect. 4 draws concluding re-
marks and discusses future directions. A copy of SwarmSimX can be downloaded
from the subversion repository at https://svn.kyb.mpg.de/kyb-robotics. Addi-
tional media can be found in the video section at http://laechele.eu/SwarmSimX/.

2 Software Architecture

The SSX simulation environment can be divided into three main parts: the vi-
sual representation; the physical representation; and Artifacts. Figure 1 gives an
overview of the elements used in the simulation and how they are related among
themselves. In the nomenclature of SSX, the visual representation is managed by
the RenderEngine with individual elements being represented by RenderNodes.
Symmetrically, the physical representation is managed by the PhysicEngine and
the individual parts are called PhysicNodes. Both, Physic- and RenderNodes
can be connected to form tree structures. Child nodes are defined w.r.t. the
parent node to which they are associated, and may contain information about
the position, orientation, mass, and similar quantities. Because of the abstract
nature of the RenderEngine and PhysicEngine the whole software framework is
not affected by a particular implementation using some specific Render Library
or Physics Library.

The visual and physical representations are related to each other, as the
physical representation is used to perform the actual simulation and the visual
representation displays the behaviour of the objects being simulated. This re-
lationship is expressed in the parallel structure of the design layout. At every

Preprint version 3 3rd SIMPAR (2012)



timestep of the simulation, the execution of logical modules (namely Drivers and
Sensors) is triggered. These modules can perform any kind of computation and
are used to extend the simulation with custom logic or functionalities. Drivers
implement the behaviour of objects within the simulation environment. A Driver
can represent the control program of an Unmanned Aerial Vehicle (UAV) that
applies the appropriate input forces and torques to the physical object in order
to attain the desired angles received by an external navigation algorithm. An-
other example is the logical module of an automated door that opens whenever
an object moves within a certain range and closes after a given period of time
with no new sensor input. Sensors are used whenever information concerning the
simulated environment or the simulator variables needs to be retrieved, e.g., in
order to emulate the measurements of a real transducer or to obtain the current
simulation time. For example, this allows an easy porting of a control algorithm
implemented for real hardware to the simulation by properly emulating all the
needed sensory inputs. One can also conceive virtual sensors able to measure the
global state of the simulated environment. These are not meant to represent real
sensor units, but rather to provide a helpful tool while developing and debugging
new algorithms.

All these parts are stored together into a single object called Artifact. Arti-
facts state the main concept of SwarmSimX. Everything that can be placed in
the simulation environment is represented as an Artifact. An Artifact may con-
tain multiple or no references to RenderNodes and PhysicNodes. Also, Sensors
and Drivers are not mandatory.

2.1 Main execution loop

The execution of the simulation timesteps is solely the responsibility of the
Environment. At the beginning of a timestep, the update of the PhysicEngine
gets triggered. After this event, the Drivers and Sensors of the simulation get the
chance to perform their computation. This particular step exploits the parallel
computing power of modern CPUs by triggering the execution of a separate
thread associated with each Artifact which contains at least one Sensor or Driver.
The workload of computations posed by user code is spread among the CPUs of
the system, hence increasing the performance.

The execution of the threads needs to be synchronized with the triggering of
the simulation timestep, meaning that the Environment waits until the calcu-
lation of all threads is complete before proceeding. Finally, the remaining time
until the next timestep is due is calculated as tw = td − tn, with td being the
desired simulation time, i.e., the number of simulation timesteps N times the
timestep τ , and tn the current wall-clock-time (WCT). The execution of the sim-
ulation is stopped for tw using precise wait methods, if and only if tw is positive,
otherwise the next step is triggered immediately. In this case a warning message
is issued stating the break of the RT-constraint.

It is important to note that the aforementioned wait step is most significant
for the RT-capabilities of SSX. Several different libraries support precise meth-
ods for waiting and a previously conducted experiment showed the best results
when utilizing the boost [12] library. Note also that, in the case of an offset
between simulation time and WCT, this triggering paradigm will recover this
error assuming the execution time of subsequent timesteps is smaller than τ .

Preprint version 4 3rd SIMPAR (2012)



Fig. 2: Interaction involved when creating a ConcreteDriver that implements the
Driver interface and the create, destroy functions both defined in an extern
"C" {}-block.

2.2 Extending the simulation

The goal of being able to create custom robots with sensors attached and pro-
gram logic demands that the custom parts are independent from the simulation
environment. Recompiling the whole simulation environment after adding new
robots is time consuming and redundant. Even worse, exchanging projects be-
tween different users may prove difficult, as the code is tightly coupled to a
certain simulation environment.

SwarmSimX provides the possibility to load program code of Drivers and
Sensors at runtime. In both cases an abstract interface defines methods for cre-
ating, configuring, running and destroying the class representing the program
logic. Drivers are always associated with an Artifact and only one Driver per
Artifact may be defined. Sensors are also associated with an Artifact but, in
contrast to the Driver, multiple Sensors per Artifact may be created.

Drivers, Sensors, and SimulationExtensions are loaded dynamically, i.e., at
runtime, exploiting the features of the system libraries. The C language provides
an easy to use library for loading and calling external libraries dynamically, called
dlopen. For this, two functions are defined in a extern "C" {}-block that are
responsible for creating and destroying the concrete class. The class itself derives
from the Driver, Sensor or SimulationExtension abstract class that define a
set of virtual methods.

Driver The interface definition of the Driver is very slim compared to other
classes. Methods for configuring the Driver using a Descriptor, setting the asso-
ciated Artifact and Environment, and calculating a simulation step are provided.
In addition to the interface definition, two functions need to be implemented for
every Driver. As mentioned before, these two functions are necessary to dynam-
ically load libraries and create instances of any Driver implemented by the user.

Artifacts are responsible for creating their Driver defined by the Artifact
XML file. Figure 2 shows the interaction involved in creating a Driver. First
an Artifact requests a Driver instance given the name. Then the ClassLoader
loads the library and calls the create-method. If all these steps were successful,
the ClassLoader returns an instance of the specified Driver. In a final step the
Artifact registers itself to the Driver and triggers the configuration.

Preprint version 5 3rd SIMPAR (2012)



The ClassLoader is responsible for freeing all Driver instances created during
the lifecycle of the simulation and is done when the simulation environment gets
shut down by the user. This ensures that no method call will reach an already
freed Driver, resulting in a segmentation error. Sensor Sensors provide informa-

tion about the simulation environment. Utilizing features of the Environment,
Sensors can access both engines and gain access to all created Artifacts of the
simulation. All possible information is therefore available to the Sensor. Informa-
tion provided by the Sensor is distributed to all registered SensorCallBacks. This
implementation follows the Observer Pattern [13], which allows for distributing
information without the need of polling for data. In this case the Sensor itself is
responsible for triggering the update process. Loading Sensors at runtime follows
the same paradigm as loading Drivers.

All Sensors are associated with the corresponding Artifact, but the Driver
is responsible for registering SensorCallbacks. This responsibility can either be
implemented in a separate class, which handles the Sensor output or within the
Driver itself. As described earlier, Drivers have access to the Environment and
therefore access to all Artifacts created in the virtual environment. The Sensor
class does not check affiliation of the registered SensorCallBack. Therefore it
is possible to register a callback at a Sensor that is associated with a different
Artifact. This allows for a very fast way of sharing information between different
robots represented by Artifacts, because no data needs to be copied, serialized or
transmitted to other robots. SimulationExtension Drivers and Sensors allow

Artifacts to be extended in their functionality and they may also be reused
within the context of the SSX framework. But true reusable software must not
be limited to a certain framework or even programming language [14].

SimulationExtensions provide a very simple interface with methods for ini-
tialization and shutdown of the extension. Libraries may be loaded by these
modules to form bridges to other software frameworks. This approach ensures
the reusability of SSX as a simulation environment module that is part of a more
complex Robotics Software System. The init methods of the extensions are called
by the simulation before the actual configure and start steps of the Engines. The
shutdown-method is called after all Engines have stopped their execution. This
paradigm of “first in, last out” ensures that the extensions are always valid while
the simulation is running. A common use-case of this feature is the connection
of SSX with some kind of middleware that is interacting with the actual control
program of the robot. A SimulationExtension providing ROS [15] support has
been implemented and used for the experiments performed during this work.
Drivers and Sensors may request a reference to the ROS extension at runtime
from the Environment. The ROS extension stores a main ROS node and is re-
sponsible for managing an asynchronous spinner thread. Using the main ROS
node, new topics may be published or callbacks may be registered to already
existing topics.

3 Validation

Our simulation environment SSX has been successfully employed to validate
several multi-robot control algorithms proposed in recent papers by some of the

Preprint version 6 3rd SIMPAR (2012)



Fig. 3: Three screenshots taken from different simulations. Left: simulated
quadrotor during the physical fidelity test. Center: stroboscopic sequence of a
cooperative-aerial grasping performed by a quadrotor and a ground robot. Right:
70 quadrotors performing autonomous formation control on a spherical surface
during the real-time capabilities vs. number of robots test.

authors, see, e.g., [16–18] and http://www.youtube.com/user/MPIRobotics for
the related video selection. In the majority of these works we also performed
real-robot experiments using the same algorithms and we observed a remarkable
similarity between simulative and experimental results. In addition, in these
works we effectively used SSX in two challenging scenarios requiring real-time
simulation: (1) simulation of robots interacting with one or more human oper-
ators by means of real haptic interfaces, and (2) simulation of several obstacle
sensors providing virtual measurements to the controllers of real robots in order
to simulate virtual obstacles in the real environment. We refer the reader to
those works in order to appreciate the use of SSX in an applied robotics context
where fidelity and real-time are of extreme importance. In addition to that, in
this section we report two quantitative studies investigating the fulfillment of
two cardinal requirements of any robotic simulator: the physical fidelity, and
the real-time capabilities with multiple robots. For these tests we used a single
Linux machine running Ubuntu[19] 12.04 with the generic Ubuntu Linux kernel
3.2.0. The machine has a Intel R© Xeon R© CPU W3520 (endowed with 8 cores –
HyperThreading enabled), 12 GB of main memory and a NVIDIA R© GeForce R©

9800 GT GPU. The version of SwarmSimX used for all experiments utilizes
NVIDIA R© PhysX R© [11] 3.2.0 and Ogre3D [20] 1.7.4 as the Physics Library and
Render Library, respectively.

The focus of this section is the validation of the quality of the physical simula-
tion and the RT capabilities. Profound validations of the rendering performance
of SSX in general and Ogre3D in particular have been omitted. For an impression
of the quality of the rendering performed by Ogre3D we refer to Fig. 3 showing
screenshots of different experiment scenarios.

3.1 Physical fidelity

The main purpose of a simulation environment is to test and analyze new al-
gorithms in a safe and controlled environment before porting them to the real
world case. The more the behavior of a simulated robot is comparable to that of
its real counterpart, the better the chances that an algorithm working in simula-
tion will work in reality with comparable results. This is depending almost solely
on the degree of physical fidelity of the simulation environment being used.

Preprint version 7 3rd SIMPAR (2012)



In order to test the physical fidelity of SSX we compared the tracking per-
formances of a real and a virtual quadrotor flying two different eight-shaped
trajectories, a vertical and a horizontal one, while maintaining a constant yaw
velocity. The global position, orientation, linear and angular velocities of the real
quadrotor have been recorded by means of an external motion capture system
and used for the comparison.

In order to minimize the effect of external factors in the comparison, we used
exactly the same flight-controller code and control parameters (e.g., gains) both
for the virtual and the real cases. In particular we implemented a standard cas-
caded controller composed by two nested control loops. The outer loop controls
the position of the center of mass of the robot: it reads the current robot state
(e.g., the robot position and velocity) and provides the appropriate orientation
and thrust to the inner control loop in order to track the desired centroid tra-
jectory. The inner loop lets the quadrotor achieve the appropriate orientation
by acting on the propeller speeds, i.e., on the total torque of the aerial vehicle.
Nevertheless, to simulate in real-time the extremely complex aerodynamics of
all the propellers is practically unfeasible. Therefore we experimentally identified
the non-linear map that relates the rotational speeds to the attained forces and
torques. This allowed us to efficiently simulate the UAV dynamics by directly
applying the forces and torques resulting from that map to the UAV body.

For the sake of fidelity we also used in simulation the same code executing the
inner loop on the real quadrotor. This is implemented using only integers, runs
on a fixed-point microcontroller, and uses the measurements coming from an
onboard Inertial Measurement Unit (IMU). For this purpose a virtual IMU has
also been implemented to provide linear acceleration and angular velocity with
noise characteristics similar to that of the IMU mounted on the real quadrotor.

The cumulative distribution of the tracking error (in short: cumulative error)
is a valid tool to give an overall view of the tracking behavior of a robot following
a desired trajectory. In order to define this function, consider a desired trajectory
pd defined over a time interval [t0, tf ] and the actual trajectory executed by the
robot p in the same interval, the cumulative distribution function is defined as:

Fp,pd,[t0,tf ](d) =
1

tf − t0

∫ tf

t0

H(‖pd(t)− p(t)‖ − d) dt,

where d ≥ 0 represents a distance, and H : R→ {0, 1} is the Heaviside (or unit-
step) function, which returns 0 when its argument is negative and 1 otherwise.
In other words the cumulative error returns, for every distance d, the percentage
of time in which the actual trajectory p has been closer than d to pd. The
faster F converges to 1 for increasing d the better is the tracking behavior of the
controller.

Nevertheless, here we are not interested in the absolute tracking performances
of the two controllers but in the degree of similarity between the simulated and
real behaviors. In fact, assuming the same software is controlling each quadrotor
and using similar sensor values, a good simulator should show the same tracking
behavior compared to the real case for the same desired trajectories. Only in this
way testing a new controller in simulation can give a useful insight about the
applicability of the proposed controller in reality. The results of our experimental
test, showing the fidelity of our simulation, are reported in Fig. 4. Both in the

Preprint version 8 3rd SIMPAR (2012)



Distance [m]

C
u
m
u
la
ti
ve

E
rr
o
r

Horizontal Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

Distance [m]

C
u
m
u
la
ti
ve

E
rr
o
r

Vertical Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Distance [m]

C
u
m
u
la
ti
ve

E
rr
o
r

Horizontal Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Distance [m]

C
u
m
u
la
ti
ve

E
rr
o
r

Vertical Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Fig. 4: Comparison between the cumulative distributions of the tracking errors.
(a): Real quadrotor hori. traj. (mean: 0.0919 m, std: 0.0412 m); (b): Real quad-
rotor vert. traj.(mean: 0.0654 m, std: 0.0179 m); (c): Simulated quadrotor hori.
traj. (mean: 0.1245 m, std: 0.0444 m); (d): Simulated quadrotor vert. traj. (mean:
0.0546 m, std: 0.0131 m)

case of horizontal (Figs. 4(a),(c)) and vertical (Figs. 4(b),(d)) trajectories it is
possible to appreciate the similar shape of the cumulative-error plots between
the simulated and the real cases. Note also that, as usual for the quadrotor,
the vertical tracking performs much better than the horizontal one (in both the
virtual and real case).

3.2 Real-time capabilities vs. number of robots

One feature of SSX is the capability to simulate dozens of 3D robots simul-
taneously in real-time. The possibility of obtain a real-time simulation depends
mainly upon two factors: (1) the desired simulation time-step, i.e., the resolution
of the physical integration, and (2) the size of “extra” computation that all the
artifacts in the environment require at every time-step, e.g., measurement ac-
quisition, estimation/control computation, inter-robot communication. Clearly,
the influence of the second factor increases as the number of robots increases.3

For users interested in real-time multi-robot applications, a basic information
is given by how many robots can be simulated with a given physical accuracy

3 The influence of the number of robots on the first factor is almost negligible for
NVIDIAR© PhysXR© used by SwarmSimX, up to a few thousands of rigid bodies.

Preprint version 9 3rd SIMPAR (2012)



1 10 20 30 40 50 60 70 80 90 100
Number of quadrotors N

C
a
lc
u
la
ti
o
n
ti
m
e
[s
]

Calculation time vs. number of robots

0

0.01

0.02

0.03

0.04

Fig. 5: Box-plots of the time needed for calculating a single timestep of SSX as a
function of the number of quadrotors being simulated. Red crosses, red horizontal
lines, blue boxes, and black whiskers represent outliers, median values, percentile
margins, and max-min values (without outliers), respectively. The simulation
timestep (τ = 0.02 s) is denoted with a green dashed line.

(simulation time-step) and a given multi-robot coordination algorithm (compris-
ing sensors, estimators, control, and communication). Therefore we conducted
a Monte Carlo study to evaluate how the execution time of a whole simulation
step is influenced by the number of simulated robots in SSX.

As reference scenario we considered a group of quadrotors implementing a
standard formation-control plus obstacle-avoidance algorithm based on artificial
potentials. Like in the previous experimental test, every quadrotor runs a flight
controller able to command the torques generated by every propeller in order
to stabilize the flight. In addition to that, in this test every robot runs the
coordination/avoidance algorithm and a range sensor simulator to retrieve the
relative position of other robots and objects within its neighboring environment.

Fig. 5 depicts our results of the comparison of the real-time capabilities of
SSX and the number of robots included in the simulation. In total 11 different
cases have been tested, each with a different number of robots being simulated
simultaneously for a total of about 5 thousand samples of the simulation time per
case. In all cases the simulation timestep was set to 0.02 s, i.e. 50 Hz, denoted with
a green dashed line in Fig. 5. For each case a boxplot displays the median, 25th
and 75th percentiles, and max/min values (using whiskers) of the computation
time after removing extreme data points considered outliers (also plotted in the
figure). The median lines, percentile boxes, and whiskers stay compact in almost
all the cases, showing a very small variance in the computational time needed
to calculate a timestep. This behavior is essential for the RT reliability of the
simulation. Note also, that the median calculation time increases almost linearly
with the number of robots, resulting from the distributed formation control of
the group of quadrotors. SwarmSimX was able to hold the RT-constraint of the
timestep in almost all cases except the case with 100 quadrotors. Notice that
in this case the median and percentile box is above the 0.02 s mark, resulting
in a growing error offset between simulation and wall-clock time. Although the

Preprint version 10 3rd SIMPAR (2012)



RT-constraints will always be broken in this case the simulation still produces
valid results useful for offline simulation of algorithms, e.g., formation control,
sensor fusion, etc.

4 Conclusion and Future Work

In this paper we have presented a novel simulation environment, called Swarm-
SimX (SSX), tailored for the real-time simulation of multiple robots acting
within a 3D physical environment. The software architecture is designed to en-
capsulate the main parts, namely RenderEngine, PhysicEngine, and Architect,
so as to ensure independence from the underlying libraries used for simulation.

Exploiting the features of the dlopen library, new robots and sensors can be
added to the simulation environment without the need of recompiling SSX itself.
In addition Simulation extensions may be used to directly extend the features
of the simulation, e.g., to provide an easy interface to other middleware (ROS)
or other external software packages.

Aside from the description of the internal design, we also performed several
tests aimed at validating the physical fidelity and real-time capabilities of SSX.
In particular, we showed that the tracking performance of a virtual quadrotor
following a predefined trajectory can be compared to the flight behavior of a
real quadrotor following the same trajectory. These results show a very good
performance in terms of representing the actual flight behavior of a single UAV,
and in running the simulating environment in real-time. With an acceptable
time-step of 0.02 s SSX can simulate dozens (at least 90) quadrotors with their
associated sensors/controllers simultaneously.

Currently SwarmSimX is designed to simulate rigid-body dynamics only, but
future works may focus on the inclusion of additional concepts provided by mod-
ern physics engines, e.g., joints, vehicle models, cloths, fluids. A redesign of the
software architecture to allow an online exchange of the implementation of the
main modules, e.g., RenderEngine, could increase even more the independence
from specific implementations.

Acknowledgements

The authors like to thank Martin Riedel for his valuable work on the middleware
software design used for the control programs.

This research was partly supported by WCU (World Class University) pro-
gram funded by the Ministry of Education, Science and Technology through the
National Research Foundation of Korea (R31-10008).

References

1. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, a., Brambilla, M., Math-
ews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Stirling, T., Gutierrez, a., Gam-
bardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator for hetero-
geneous swarm robotics. 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (September 2011) 5027–5034

Preprint version 11 3rd SIMPAR (2012)



2. Craighead, J., Murphy, R., Burke, J., Goldiez, B.: A survey of commercial & open
source unmanned vehicle simulators. In: Proc. IEEE Int Robotics and Automation
Conf. (April 2007) 852–857

3. Alex, A.L., Bruny, T., Sidman, J., Weil, S.A., Inc, A., Ma, W.: From gaming to
training: A review of studies on fidelity, immersion, presence, and buy-in and their
effects on transfer in PC-based simulations and games (November 2005)

4. Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In:
Proceedings of the 5th international conference on Computer graphics and interac-
tive techniques in Australia and Southeast Asia. GRAPHITE ’07, New York, NY,
USA, ACM (2007) 281–288

5. Diankov, R.: Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, Robotics Institute (August 2010)

6. Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular openrobots
simulation engine: Morse. In: Proceedings of the IEEE ICRA. (2011)

7. Blender Foundation: Blender. http://www.blender.org/ (Accessed August 2012)
8. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual Robot Experimentation

Platform V-REP: A Versatile 3D Robot Simulator. In: Simulation Modeling and
Programming for Autonomous Robots. Volume 6472 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2010) 51–62

9. Michel, O.: Cyberbotics Ltd. Webots TM : Professional Mobile Robot Simulation.
International Journal of Advanced Robotic Systems 1 (2004) 39–42

10. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. 2004 IEEERSJ International Conference on Intelligent
Robots and Systems IROS IEEE Cat No04CH37566 3 (2004) 2149–2154

11. NVIDIAR©: PhysXR©. http://www.geforce.com/hardware/technology/physx (Ac-
cessed May 2012)

12. boost: boost C++ libraries. http://www.boost.org/ (Accessed May 2012)
13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements

of Reusable Object-Oriented Software. first edn. Addison-Wesley Professional
(November 1994)

14. Biggs, G., Makarenko, A., Brooks, A., Kaupp, T., Moser, M.: Gearbox: Truly
reusable robot software (poster). In: Proc. IEEE/RSJ Int. Conference on Intelligent
Robots and Systems, Nice, France (September 2008)

15. ROS.org community: ROS Wiki. http://www.ros.org (Accessed May 2012)
16. Franchi, A., Secchi, C., Son, H.I., Bülthoff, H.H., Robuffo Giordano, P.: Bilateral

teleoperation of groups of mobile robots with time-varying topology. Accepted to
IEEE Trans. on Robotics (2012)

17. Franchi, A., Secchi, C., Ryll, M., Bülthoff, H.H., Robuffo Giordano, P.: Shared
control: Balancing autonomy and human assistance with a group of quadrotor
UAVs. IEEE Robotics & Automation Magazine, Special Issue on Aerial Robotics
and the Quadrotor Platform 19(3) (2012) 57–68

18. Robuffo Giordano, P., Franchi, A., Secchi, C., Bülthoff, H.H.: Passivity-based
decentralized connectivity maintenance in the bilateral teleoperation of multiple
UAVs. In: 2011 Robotics: Science and Systems, Los Angeles, CA (Jun. 2011)

19. Canonical Ltd: Ubuntu. http://www.ubuntu.com (Accessed October 2012)
20. Torus Knot Software Ltd: Ogre3D. http://www.ogre3d.org/ (Accessed May 2012)

Preprint version 12 3rd SIMPAR (2012)


