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Abstract: We present a method for reconstructing the relative poses among the components
of a multi-UAV system using anonymous (i.e., without identity information) robot-to-robot
measurements. We consider two cases: bearing-only and bearing+distance measurements. While
bearing can be rather directly extracted from a camera image, visual reconstruction of distances
is more elaborate and typically associated with a larger noise. Nevertheless, our experiments
show that use of such metric information improves significantly the quality of the localization.
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1. INTRODUCTION

Knowing relative poses among the members of a multi-
robot system is essential whenever the task requires some
form of cooperative perception or motion coordination.
By attaching to each robot a (moving) frame, one may
define Relative Mutual Localization (RML) as the problem
of maintaining an accurate estimate of the transformations
among the various robot frames using robot-to-robot mea-
surements. This topic has been thoroughly studied in 2-D
environments (Fox et al., 2000; Roumeliotis and Bekey,
2002; Howard et al., 2002). Recently, due to the growing
interest in multi-UAV systems, the 3-D case has been
considered; for example, Zhou and Roumeliotis (2011) find
the minimal sets of data needed to compute 3-D relative
poses, while Trawny et al. (2010) and Martinelli (2012)
have proposed specific estimators.

All the above works assume that the robot-to-robot mea-
surements come with the identity of the measured robot.
However, to achieve this, the robots should preliminarily
agree on some form of individual tagging. An alternative,
more decentralized scenario is to address the RML problem
using anonymous measurements. This situation, in which
the data association of the measures is unknown, was
first considered for 2-D RML with position measurements
(Franchi et al., 2009, 2010), and later extended to 2-D
and 3-D RML with bearing-only measurements (Stegagno
et al., 2011; Cognetti et al., 2012).

In 3-D environments, robot-to-robot measurements are
typically obtained from on-board cameras. In particular,
robot-to-robot bearing can be continuously measured by
tracking one or more features associated to the ‘other’
robot in the image stream and using simple geometry.
In principle, from the same sensory equipment one can

also reconstruct the robot-to-robot distance, e.g., by using
image moments related to the area of the robot image.
Clearly, distance measurements will be affected by larger
levels of noise with respect to bearing measurements.

The objective of this paper is to consider two different
scenarios for 3-D anonymous mutual localization, i.e., the
use of bearing-only vs. bearing+distance measurements.
The problem formulation is given in Sect. 2. A localization
system that works for both scenarios, and generalizes the
bearing-only case proposed in Cognetti et al. (2012), is
described in Sect. 3. Comparative experimental results
obtained with a quadrotor team are shown in Sect. 4.

2. PROBLEM FORMULATION

Throughout this section, refer to Fig. 1 for illustration.
Consider a system of n robots A1, . . . , An, with n un-
known and variable during operation. Each Ai is a rigid
body moving in R3 equipped with a body frame Bi :
{OBi , XBi , YBi , ZBi} attached to its center of mass, de-
fined according to the North-East-Down (NED) conven-
tion, as common in the aerospace field. Denoting by W :
{OW , XW , YW , ZW} an inertial world frame, the configu-
ration of Ai is described by the position WpBi ∈ R3 of
the origin OBi of Bi in W and by the rotation matrix
WRBi ∈ SO(3) between W and Bi. Denoting with RX(·),
RY (·), and RZ(·) the canonical rotation matrices about
the axes x, y, and z respectively, we can write WRBi =
RZ(ψBi)RY (θBi)RX(φBi), where ψBi , θBi , φBi ∈ S1 are
the roll, pitch, and yaw angles of Ai respectively.

Being interested in the RML problem, we define the rela-
tive quantities BipBj = WRTBi(

WpBj −WpBi) and BiRBj =
WRTBi

WRBj and denote by BixBj = {BipBj , BiRBj} the full
relative pose between Ai and Aj .
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Fig. 1. Problem setting: robots (triangles) are shown with
their attached frame and IMU measurements. Robot
Ai detects two actual robots whose identities are
unknown plus one false positive, resulting in three
anonymous measurements.

Each robot Ai is equipped with a motion detector, such
as an Inertial Measurement Unit (IMU), that provides
measurements Bi āi,

Bi ω̄i of its own acceleration Biai and
angular velocity Biωi in its body frame.

In addition, Ai comes with a robot detector, a sensor device
which detects other robots and returns an anonymous
measurement Bi b̄Bj of their relative bearing

BibBj = WRTBi

WpBj −WpBi
‖WpBj −WpBi‖

∈ S2 (1)

that is, the unit-norm vector in R3 pointing toward OBj ,

expressed in Bi. The measurement Bi b̄Bj is available when-

ever BipBj ∈ Dp, the perception set attached to the robot.

In addition to being subject to false positives (due to
objects that look like robots) and false negatives (due
to occlusions), relative measurements do not contain the
identity of the measured robots (see Fig. 1). Therefore,
the output of the robot detector is a set of measurements
whose ordering has no relation to the robot indexing;
in addition, each measurement may or not refer to an
actual robot. For this reason, in the following, relative
measurements will be generically referred to as features.

The robot detector can be implemented, for example, by
tracking one or more features associated to other robots in
the image stream of an on-board camera and using simple
geometry. With the same equipment, however, one may
also reconstruct robot-to-robot distances, e.g., by using
image moments related to the area of the robot image.
Hence, in addition to the relative bearing Bi b̄Bj we may
also have the relative distance:

BidBj = ||WpBi −
WpBj ||2 ∈ R. (2)

Conceivably, distance measurements reconstructed with
such a procedure will be affected by a consistent level
of noise. One may therefore wonder whether to use or
not this information in a mutual localization scheme. To
answer this question, we consider throughout the paper
two different scenarios:

Scenario I (bearing-only): the output of the robot detec-
tor is a set BBi of bearing measurements. This scenario
has already been addressed in Cognetti et al. (2012);

Scenario II (bearing+distance): the output of the robot
detector is a set CBi of bearing+distance measurements,

with the uncertainty on the distance much larger than
the uncertainty on the bearing.

Each robot is also equipped with a communication module
that can send/receive data to/from any other robot con-
tained in a communication set Dc around itself. Denote
with Ni the neighbors of Ai, i.e., the set of robots from
which Ai is receiving communication. Each message by Ai
contains: (1) the robot signature (index i), (2) the trans-
formed acceleration measurement âi, (3) the transformed

feature set B̂i/Ĉi, and (4) the partial estimates φ̂Bi , θ̂Bi ,
ˆ̇
ψi (these quantities are defined in Sect. 3).

We consider the relative localization problem from the
viewpoint of the generic robot Ai. In a probabilistic
framework, the generic robot Ai should compute its belief
about the relative poses of robots that are or have been
its neighbors, using inertial and relative measurements
coming from its own sensory equipment or obtained via
communication. The problem can be formally stated as:

Problem 1. For t = 1, 2, . . . and j ∈ N1:t
i , compute the

belief :

bel(
BixBj ) = P (

BixtBj
|Bi ā1:ti ,

Bi ω̄1:t
i , I

1:t
Bi
, {Bj āτj ,

Bj ω̄τj , I
τ
Bj

}j∈Nτ
i
,τ=1,...,t)

with

IτBj =

{
BτBj in Scenario I
CτBj in Scenario II

Superscripts t and 1 : t denote the value of a variable at
time t and the history of its values at times 1, 2, . . . , t.

3. THE MUTUAL LOCALIZATION SYSTEM

Denote with Ci : {OCi , XCi , YCi , ZCi} the frame having
the same origin of Bi and such that WR = RZ(ψBi),
so CiRBi = RY (θBi)RX(φBi). Note that the XY planes
(as well as the Z axes) of the reference frames W,
Ci, i = 1, 2, . . . n are parallel to each other. Using Ci allows
to split Problem 1 in two subproblems (see Fig. 2).

First, Ai estimates its roll and pitch angles (φBi and
θBi) using a complementary filter based on the IMU
measurements Bi āi and Bi ω̄i (Mahony et al., 2008). Then,

using this information, Ai produces an estimate CiR̂Bi =

RY (θ̂Bi)RX(φ̂Bi) of CiRBi .

Second, Ai solves a simpler problem with respect to
Problem 1, consisting in retrieving the identities of the
measurements and estimating a reduced relative pose
ixj = {ipj , iRj}, j ∈ Ni, where

ipj =WRTCi(
WpCj −WpCi)

iRj =RZ(ψBi)
TRZ(ψBj )

Denote by ix̂j = {ip̂j , iR̂j} the corresponding estimates.

When both subproblems are solved, the estimate of BixCi
can be computed as Bi x̂Bj = {Bi p̂Bj , BiR̂Bj}, where
Bi p̂Bj = CiR̂TBi

ip̂j and BiR̂Bj = CiR̂TBi
iR̂j .

In the estimation of the reduced relative pose ixj , instead
of the motion and robot detector measurements we use the
corresponding quantities in Ci, computed using the roll and
pitch estimates from the complementary filter:
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Fig. 2. Scheme of the mutual localization system that runs on the generic robot Ai

âi = CiR̂Bi(0 0 Bi āiZ )T

ω̂i = CiR̂Bi(0 0 Bi ω̄iZ )T

ib̂j = CiR̂Bi
Bi b̄j

while the distance measurements id̄j are invariant w.r.t.
rotations. Note that âi and ω̂i are computed using only
the z component of the respective vectors, implicitly
neglecting the first two components. We need to take this
approximation in order to preserve the independence of
the measurements and to avoid to use twice the x and
y components of Bi āi and Bi ω̄i, since they have already
been used to compute the estimates of roll and pitch.
For example, in a typical quadrotor this approximation
can be safely taken assuming that the linear velocities
are less than 5 m/s and the roll and pitch angles are
less than 25◦ Martin and Salaün (2010). More in general,
an independent source should be used, either a different
sensor or a model-based prediction.

Moreover, the system uses an estimate
ˆ̇
ψBi of the yaw rate:

ˆ̇
ψBi =

(
0

sin φ̂Bi

cos θ̂Bi

cos φ̂Bi

cos θ̂Bi

)
Bi ω̄i = fTBi

Bi ω̄i. (3)

Wrapping up, the second subsystem addresses the follow-
ing simplification of Problem 1.

Problem 2. For t = 1, 2, . . . and j ∈ N1:t
i , compute the

belief :

bel(ixj) = P (ixtj | â
1:t
i , ω̂1:t

i , Î1:t
i ,

ˆ̇
ψ1:t
i , {âτj , Î

τ
j ,

ˆ̇
ψτj , }j∈Nτi ,τ=1,...,t)

with

Îτj =

{
B̂τj in Scenario I

Ĉτj in Scenario II

To solve Problem 2, the subsystem must recover: (1) the

identities of measurements in Îi and Îj (2) the relative
orientations iRj (3) the relative distances idj . To this end,
we adopt a two-step approach. First, we use a multiple
registration algorithm to retrieve the identities of the
measurements and the iRj matrices. Then, its output
is used to feed a bank of Particle Filters (PF), one for
each Aj , j ∈ N1:t

i , to filter out the noise. In Scenario I
the PFs also retrieve the scale of the formation, whereas
in Scenario II this is done at the end of the multiple
registration, based on distance measurements.

3.1 Multiple Registration Algorithm

Registration is the process of computing the relative poses
between different viewpoints of the same scene. In Sce-
nario I the ‘scene’ consists only of bearing measurements,
and thus the scale of the relative poses cannot be recov-
ered. In particular, given the sets of features B̂i, {B̂j}j∈Ni
and the current beliefs {bel(ixj)}j∈Ni (see Fig. 2), P-
MultiBeaReg3D derives a set of guesses for the relative

bearing-orientation (ib̂j and iR̂j) of Aj , j ∈ Ni, w.r.t. Ai.

In Scenario II, the algorithm can retrieve an estimate id̂j
of the distances through the id̄j measurements. Thus its
output for each Aj is a set of guesses for the reduced poses
ix̂j . However, being the id̄j ’s affected by consistent noise,
we chose not to use them for recovering the identities. So,
the algorithm is similar to that developed for Scenario I,
with some adaptation to be discussed in Sect. 3.2. We
illustrate the steps of the algorithm through the example
in Fig. 3.

1) Azimuth/Zenith-Distance representation: Consider the
situation in Fig. 3a, where four robots are arranged
in a ‘square’ formation with the opposite vertices at
the same height and the corresponding feature sets in
Fig. 3b. Each bearing can be represented by an az-
imuth iαj and zenith-distance iζj pair, i.e., ibj can be
represented as (iαj ,

iζj) ∈ [0, 2π) × [0, π), since ibj =
(sin iζj cos iαj sin iζj sin iαj cos iζj)

T . The projection of

B̂i on the XY plane of Ci preserves only the azimuth. Fur-
thermore, each pair of azimuth angles in the same feature
set (i.e., belonging to the same robot) can be equivalently
represented by their difference. Then, an azimuth angle
difference represents an internal angle of a planar triangle.

2) Triangle finding: Consider a triplet of robots that ‘see’
each other, e.g., Ai, Aj , Ak, and neglect for a moment Ah,
so that each robot in the triplet sees only two features,
or equivalently one difference angle. Since the projection
of a 3-D triangle on Ci’s XY plane defines a planar
triangle, the sum of the three difference angles must be π.
The algorithm scans all the possible triplets coming from
different feature sets and looks for triplets of difference
angles (one from each feature set) whose sum is π, with
a certain tolerance. Each of these triplets defines a planar
triangle up to a scaling factor. Note that a triangle encodes
the identity of the robots at its vertices. Such triangles
must satisfy an additional condition. Since each azimuth
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Fig. 3. Execution of P-MultiBeaReg3D in an ambiguous
situation: (a) actual configuration (b) initial feature
sets (c) triangle found in the first step containing the
owner of the algorithm and their 2-intersections (d)
maximal subset of irreconcilable triangles and their
comparison with the current belief (e) other triangles
found in the first step of the algorithm (f) expansion
of the solution using the remaining triangles.

angle comes with a zenith-distance angle associated, by
building the triangle as explained we are implying that a
certain feature of a set is the equivalent of another feature
of another set. Then, the sum of the zenith-distances of two
associated bearings must be π, with a certain tolerance.

3) 2-intersections rating: When two robots in a triangle
see another robot that is not the third vertex of the
triangle, their feature sets will contain two intersecting
rays, one for each set. We will call this a 2-intersection.
A triangle can also have 3-intersections, when all three
robots forming it see a fourth robot (e.g., Ah in Fig. 3a). In
general, an n-intersection, that is, n intersecting rays from
n different robots, accounts for n!/2(n− 2)! = n(n− 1)/2
2-intersections. Hence, the algorithm rates all the triangles
by counting their 2-intersections and collects those above
a certain threshold in a set T (Fig. 3c–e).

4) Irreconcilable triangles: The algorithm extracts from T
a maximal subset Tirr (Fig. 3d) of irreconcilable triangles
containing Ai; two triangles are said to be irreconcilable if
they associate the same robot to different features of the
same set (e.g., Aj in T5 and T6), or different robots to the
same feature (e.g., Aj and Ak in T5 and T6).

5) Belief rating: The triangles in Tirr are validated (Fig. 3d)
on the basis of the current belief about the pose of the

robots. To this end, we use the metric function

P ({ib̂j , iR̂j}) =

∫
p({ib̂j , iR̂j}|ixj)bel(ixj)d

ixj (4)

where bel(ixj) comes from the particle filters. First, the
scale of each triangle is calculated so as to maximize this
function; then, an adaptive thresholding of these maximum
values is used to select the triangles that better fit the
belief. Those triangles are collected in a set Tbest.
6) Partial solutions: Each triangle of Tbest is the base
of a branch of the algorithm and constitutes the partial
solution at the first step of its branch. Let S be the
partial solution of a branch at a given step; S includes
(1) a collection of triangles (2) the change of coordinates
between them (3) the total number of 2-intersections. In
Fig. 3f the only branch has T5 as first partial solution.

7) Iterative expansion: The partial solution of each branch
is iteratively expanded looking for triangles that have
common edges with it (see Fig. 3f). Let TS = {Tm,m =
1, . . . ,M} be the set of triangles Tm ∈ T not yet in S
having a common edge with one triangle in S. Then the
algorithm builds a set of M possible partial solutions for
the next step expanding S with Tm,m = 1, . . . ,M . Each
solution is then rated counting out its total number of 2-
intersections. As in the case of the triangles, among the
best rated partial solutions of each branch the algorithm
selects a maximal subset of irreconcilable solutions. Among
those, only the solutions that fit with the current belief
according to equation (4) are used as partial solutions at
following step, expanding a branch for each of them.

In the case of Fig. 3f, the algorithm expands a partial
solution by joining to the triangle T5 the triangles T1, T4,
T7 respectively at the first, second and third iteration.

The iterative process continues in each branch until TS be-
comes empty in that branch. In the end, each branch finds
a solution, and the best of them are selected, again with
the 2-intersection and belief criteria. Since each branch of
the algorithm may in principle produce a different pair
ib̂k,

iR̂k for each Ak, each with its own weight, the result
is a list of such pairs for the generic robot Ak.

3.2 Scale estimate using the distance measurements

As stated before, each branch of the algorithm finds a for-
mation up to an unknown scaling factor λ. The knowledge
of just one distance in the formation would be enough to
produce an estimate of λ, hence of the whole formation.
However, the high level of noise affecting the distance
measurements associated to the bearing measurements in
Scenario II discourages their usage in this way.

However, id̄j can be thought of as a measurement of λ. In
this sense, each ib̄j comes with an associated measurement
iλ̄j . Hence, a more accurate estimate is

λ̂ =

∑
{i,j}

iλ̄jσdij∑
{i,j} σdij

where σdij is the standard deviation of the noise on id̄j .
Since each triangle includes at least 6 bearing measure-
ments, even the scaling factor of a formation with few
robots can be estimated quite accurately.
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This estimate of λ is used twice in the algorithm: at the
end of the algorithm to estimate the scale, and in the
step of validation through the belief, where we use the
estimated scale of each partial solution instead of the scale
that maximizes the equation (4).

3.3 Filtering

The generic Ai runs one particle filter (PFj) for each
Aj to fuse the estimates coming from P-MultiBeaReg3D
with the metric informations provided by the IMUs of
Ai and Aj . While in Scenario II the PF needs only to
filter the noise, in Scenario I it is in charge of retrieving
the distances between the robots. In both cases, the use
of separate beliefs P (iχj) instead of a single joint belief
P ({iχj}j∈N1:t

i
) is based on the independence assumption

P ({iχj}j∈N1:t
i

) =
∏
j∈N1:t

i
P (iχj). This is true in a pure

localization scenario, while in certain situations it is only
an acceptable approximation. In any case, P ({iχj}j∈N1:t

i
)

cannot be maintained, as the dimension of its distribution
grows exponentially with the number of robots. Observ-
ability of the system is guaranteed by Martinelli (2012).

The equations of motion of the system are
iṗj = ivj (5)
iv̇j = iRjaj − ai + [ωi]×

ivj (6)
iṘj = (iRj [ωj ]× − [ωi]×)iRj (7)

where ivj is the velocity of OCj in Ci and

[ωi]× =

(
0 −ωiz ωiy
ωiz 0 ωix
ωiy −ωix 0

)
.

Since
iRj = RZ(−ψBi)RZ(ψBj ) = RZ(ψBj − ψBi), (8)

we can replace (7) with

iψ̇j = ψ̇Bj − ψ̇Bi = fTBj
Bjωj − fTBi

Biωi, (9)

with iψj = ψBj − ψBi and fTBi , f
T
Bj defined by (3), and

compute iRj in (6) from (8). The state of each particle in
PFj is the 7-tuple iχj = (ipj ,

ivj ,
iψj) ∈ R3 × R3 × S1.

The motion update step of PFj is obtained by plugging

âi, âj , ω̂i,
ˆ̇
ψBi ,

ˆ̇
ψBj in (5–9). The new state probability is

predicted through the integration of the motion measure-
ments with the knowledge of the measurement noise.

As for the measurement update, P-MultiBeaReg3D may
return more than one solution per robot (i.e., more than

one pair ib̂j ,
iR̂j), each solution rated on the basis of its

uncertainty during the registration steps. Hence, each so-
lution is approximated in PFj as a gaussian measurement
with a covariance proportional to its uncertainty. The
measurement model is given by the normalized sum of
gaussians centered at the solutions of P-MultiBeaReg3D.

Denote with iψ̂j the estimate of iψj obtained from iR̂j .
The measurement update produces a rating of the pre-
dicted particles by using Bayes’ law

P (iχj |ib̂j , iψ̂j) = NP (ib̂j ,
iψ̂j |iχj)P (iχj),

where N is a normalization factor.
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Fig. 4. Bearing-only algorithm. Errors on azimuth, zenith-
distance, distance and yaw estimates for A2, . . . , A6

computed by A1, with a zoom for [10, 40] s.

In Scenario II, the only difference is in the measurement
update, since P-MultiBeaReg3D returns also an estimate

λ̂ of the scaling factor. The resulting update law is

P (iχj |ib̂j , iψ̂j , λ̂) = NP (ib̂j ,
iψ̂j , λ̂|iχj)P (iχj).

4. EXPERIMENTAL RESULTS

The mutual localization system has been tested off-line
using the data collected by an 8-quadrotor team. Ground
truth is provided by an external motion capture system.

The IMU mounted on the microcontroller board is used as
motion detector. The microcontroller acquires data from
the IMU with at 400 Hz and estimates on-line, at the same
rate, the attitude of the robot through the complementary
filter. An analysis on the estimates produced by the com-
plementary filter shows a mean error of 1.92◦ for roll and
2.67◦ for pitch. However, the microcontroller can neither
process not store mutual localization data, so it sends Bi āi,
Bi ω̄i, φ̂Bi , θ̂Bi to a GNU-Linux machine through a serial
connection with 20 Hz average rate and 4 ms standard
deviation. Hence, IMU readings and attitude estimates are
available at 20 Hz instead of the nominal 400 Hz, leading
to a much higher noise level in the update step of the PFs.

The robot detector is analytically emulated computing ibj
and idj from the measures of the motion capture system
using equations (1-2). A zero-mean gaussian noise is added
to the measurements, with σb = 5◦ standard deviation
for the bearings while we have tried different values (0.3–
1.5 m) for the standard deviation σd of the noise on the dis-
tances. False negatives are randomly introduced to prove
the robustness of the algorithm, while two quadrotors (A7,
A8) act as false positives, since they are detected by the
others but do not communicate any information.

The results of the bearing-only algorithm are in Fig. 4.
The large starting error on the distance is due to its
random initialization. We start from a large value (around
12 m while the robot distances are around 3 m) to prove
that the algorithm is able not only to maintain the right
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Fig. 5. Bearing+distance algorithm. Errors on azimuth,
zenith-distance, distance and yaw estimates for
A2, . . . , A6 computed by A1, with a zoom for [10, 40] s.

azimuth[deg] zenith[deg] distance[m] yaw[deg]

bearing only 5.50 (21.87) 6.45 (21.96) 0.13 (1.04) 0.25 (19.61)

σd=1.5 m 2.64 (21.60) 4.75 (26.45) 0.08 (0.87) 0.27 (12.48)

σd=1.0 m 2.32 (21.59) 4.46 (25.73) 0.07 (0.82) 0.32 (20.65)

σd=0.3 m 0.74 (11.99) 2.93 (12.70) 0.04 (0.43) 0.24 (12.45)

Table 1. Mean and maximum errors.

distance but also to retrieve it. The results of the algorithm
designed for Scenario II, with 0.5 m standard deviation
noise on the distance measurements, are in Fig. 5.

Table 1 shows the mean (maximum) azimuth, zenith,
distance and yaw errors w.r.t. the standard deviation of
the noise on the distance measurements. The maximum
distance error in the bearing only experiment (first row)
is considered after the first 5 s, to allow the algorithm
to retrieve the intial scale. The values show that the
usage of the distance measurements significantly improves
the quality of the estimates even when affected by large
noise. The two methods obtain comparable results only
when the standard deviation of the noise on the distance
measurements exceeds 100% of the measures.

The same conclusions can be drawn from the plots (Fig. 6)
of the circular error probable, defined as the probability

p
(
ed =

√
e2x + e2y + e2z < d

)
that the radial error ed is less

or equal to a parameter d, where ex, ey, ez are the errors
on the estimates. The plots show how the error needed to
satisfy a given probability is in general lower including the
distance measurements.

See http://youtu.be/LUCnNC2veOo for a clip of the ex-
periment.

5. CONCLUSIONS

We have presented a decentralized method for 3-D anony-
mous mutual localization in multi-robot systems. In par-
ticular, we have considered two different scenarios, i.e., the
use of bearing-only vs. bearing+distance measurements.
The latter can be extracted, for instance, from the video
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Fig. 6. Circular error probable computed for the bearing-
only (dotted) and distance with 0.3 m (solid), 1.0 m
(dashed), 1.5 m (dash-dotted) standard deviation
noise experiments.

stream of a camera. This device provides very noisy dis-
tance measurements, so that they can not be used to
retrieve the identities. However, we show how to include
them in the estimation process.

Experimentation on a team of UAVs has shown that,
in spite of the much larger uncertainty affecting it, the
use of distance information improves the performance of
the mutual localization system over the bearing-only case.
Current work is aimed at implementing the localizer on-
board of the UAVs so as to use it for higher level tasks,
such as formation control.
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