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Aerial Grasping of a Moving Target with a Quadrotor UAV

Riccardo Spica, Antonio Franchi, Giuseppe Oriolo, Heinrich H. Bülthoff, Paolo Robuffo Giordano

Abstract— For a quadrotor aircraft, we study the problem of
planning a trajectory that connects two arbitrary states while
allowing the UAV to grasp a moving target at some intermediate
time. To this end, two classes of canonical grasping maneuvers
are defined and characterized. A planning strategy relying on
differential flatness is then proposed to concatenate one or more
grasping maneuvers by means of spline-based subtrajectories,
with the additional objective of minimizing the total transfer
time. The proposed planning algorithm is not restricted to pure
hovering-to-hovering motions and takes into account practical
constraints, such as the finite duration of the grasping phase.
The effectiveness of the proposed approach is shown by means
of physically-based simulations.

I. INTRODUCTION

Small-scale Unmanned Aerial Vehicles (UAVs) are popu-
lar robotic platforms because of their low cost, versatility and
simplicity of use [1]. In addition to their usual applications
(e.g., aerial monitoring [2], teleoperation [3], and network
connectivity [4]), quadrotor UAVs have also recently proven
to be an effective platform for aerial manipulation, trans-
portation and assembly tasks [5], [6], [7], [8], [9]. Motivated
by these emerging research directions, in this paper we
address the problem of trajectory planning for a quadrotor
UAV that must grasp a moving object with an onboard
gripper while coping with limited actuation authority.

Several planning strategies have been recently proposed
for performing pure motion tasks (no intermediate grasping)
with quadrotor UAVs. In [10], [11], [12], the trajectories
are parameterized using polynomials or splines, and the
optimal values of the parameters are obtained by resorting
to numerical methods. Pontryagin’s maximum principle for
a simplified quadrotor model is used in [13], [14]. All these
approaches either assume hovering initial and final states
[11], [12], [13], or do not allow to specify the full initial
and/or final state (for instance, in [10] the final state is not
fully specified, while in [14] the yaw dynamics is neglected).
This may be a practical limitation, e.g., when a particu-
lar application requires fast switching between consecutive
grasping phases that should be performed ‘on-the-fly’.

The hovering requirement is relaxed in [15], in which the
quadrotor, after having reached a suitable launch configu-
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ration during a preliminary phase, switches to an attitude-
only controller in order to steer its trajectory towards the
desired final pose in a quasi-open-loop fashion. However,
this approach requires an experimental trial-and-error pro-
cedure to be performed in advance. This heuristic step is
crucial in order to find the appropriate launch configuration
and control parameters that will guarantee acceptable final
position accuracy for the quadrotor.

As for UAV applications focusing on grasping tasks, some
solutions have been explored in the recent literature. Control
of a gripping mechanism with compensation of the payload
effects on the system dynamics is presented in [16]. In [17],
several issues are explored related to automatic assembly and
construction of structures using flying vehicles. In both these
works the object to be grasped is assumed to be stationary,
and grasping is performed in hovering conditions. Hence,
the problem is essentially reduced to planning a rectilinear
point-to-point motion without specific optimality concerns.

With respect to the state of the art, the contributions of
this paper can be summarized as follows: i) we explicitly
consider the duration of the trajectory in order to minimize it;
ii) we allow the quadrotor to attain generic, and in particular
non-hovering, states for starting and ending the grasping
phase; iii) we take into account the fact that the target is
moving; iv) we include additional practical constraints such
as limited actuation capabilities and the requirement of a
finite time to actually lock the gripper and perform the grasp.
Although the main focus is on the planning stage, we also
discuss how to implement our proposed strategy by closed-
loop tracking control for the quadrotor motion (thus, not
relying on temporary open-loop phases as done in [15]).

The paper is organized as follows. After a formal definition
of the problem in Sec. II, in Secs. III and IV we propose two
classes of grasping trajectories and discuss how to determine,
within these classes, a time-optimal solution for connecting
generic initial and final states. In Sec. V we report physically-
realistic simulation results illustrating the performance of our
method, and we offer some concluding remarks in Sec. VI.

II. AERIAL GRASPING PROBLEM

Denote with W : {OW ; xW , yW , zW} the world inertial
frame and with B : {OB; xB, yB, zB} the body frame of
the UAV with origin at its center of mass. The quadrotor
state χ consists of the position WrB ∈ R3, linear velocity
W ṙB ∈ R3, orientation WRB ∈ SO(3) and angular velocity
BωBW ∈ R3 of B w.r.t. W , with the latter angular velocity
being expressed for convenience in the body frame B. In the
next, we will omit the left superscript whenever quantities
are assumed to be expressed in the world frame W .



As well known [18], each of the four propellers produces
a force Fi and a torque Mi along and about zB, respectively,
and both proportional to the square of the propeller rotational
speeds ωi:

Fi = kFω
2
i , Mi = kMω

2
i , kF > 0, kM > 0.

As usually done, we consider the motors dynamics to be fast
enough compared to the quadrotor dynamics, and take the
square of the 4 rotational speeds ũ = (ω2

1 ω
2
2 ω

2
3 ω

2
4)T as

actual control inputs. The following linear input transforma-
tion maps the individual propeller forces and torques to the
total thrust u1 ∈ R along zB and torques (u2, u3, u3)T ∈ R3

about xB, yB and zB applied to the quadrotor body:

u =


u1

u2

u3

u4

 =


kF kF kF kF
0 kF l 0 −kF l
−kF l 0 kF l 0
kM −kM kM −kM

 ũ = Aũ,

(1)
where l is the distance from the rotor axes of rotation to
the quadrotor center and the square matrix A is always
nonsingular.

The translational dynamics of the quadrotor is then de-
scribed by

mr̈B = −mge3 + u1zB, (2)

where e3 represents the world-frame vertical direction, and
m the total mass of the robot. Similarly, the rotational
dynamics obeys

J Bω̇BW + BωBW × J BωBW =

 u2

u3

u4

 , (3)

where J is the constant inertia matrix expressed in the body
frame B.

Consider now a gripper rigidly attached to the quadrotor
and with an associated frame G : {OG ; xG ; yG ; zG}
having a constant position BrG and orientation BRG w.r.t. B.
We assume that either the mass of the gripper is negligible
w.r.t. the UAV, or that some counterweighting mechanism is
exploited to compensate for the effect of the gripper mass on
the overall barycenter position. This assumption allows us to
take (2-3) as a good approximation of the quadrotor/gripper
dynamics. Finally, we consider, for the sake of realism, a
gripper needing a finite time Tmin

g > 0 in order to actually
grasp the target. The following (straightforward) relationship
is useful for the next developments

ṙG = ṙB + WRB
(BωBW × BrG) . (4)

We also denote with (α, β, ρ) the spherical coordinates (i.e.,
azimuth, zenith distance, and radius) of OG w.r.t. B.

The target to be grasped is modeled as a rigid body
moving along a known three-dimensional trajectory with a
constant velocity phase1 of at least Tmin

g . We let T : {OT :

1This assumption is equivalent to consider a linear approximation of the
target trajectory around the grasping instant in order to make more tractable
the planning task. Notice also that in common applications, this phase is
typically small w.r.t. the total duration of the trajectory.

G

B

T2

W
T1

Fig. 1: Reference frames involved in the aerial grasping: T1 and T2
refer to a airborne and a ground-transported target, respectively.

xT , yT , zT } be the frame attached to the target, and denote
its position rT and orientation WRT w.r.t. the world frame.
The target handle is assumed to possess a spherical symmetry
in order to neglect the effects of its orientation in space.
Figure 1 summarizes in an illustrative way the various frames
of interest.

In order for the grasping to be successful, the following
constraints must be satisfied for all t ∈ [tg, tg+Tmin

g ], where
tg represents the starting time of the grasping phase.

Constraint 1. The position and velocity of OG (the center
of grasping) must match those of OT , that is:

rG (t) = rB (t) + WRB (t) BrG = rT (t) (5)

ṙG (t) = ṙB (t) + WRB (t)
(BωBW (t)× BrG

)
= ṙT (t) .

(6)

Note that, using (5), (6) implies that

ṙB (t) = ṙT (t) + WRB (t) BωBW (t)× (rB (t)− rT (t))
(7)

must hold ∀t ∈ [tg, tg + Tmin
g ]. It is worth noting that,

during the grasping, this constraint still allows for a quadrotor
rotation around the target with an angular velocity BωBW ,
with the particular case BωBW = 0 describing a hovering
grasp.

In addition to the grasping constraint, we also impose the
following actuation constraint:

Constraint 2. The propeller angular speed are bounded:

ũ ∈ Ũ = [ω, ω]× [ω, ω]× [ω, ω]× [ω, ω] , (8)

with 0 < ω < ω.

Constraint 2 can be mapped into the space of admissible
transformed inputs through (1):

u ∈ U =
{
u ∈ R4 : u = Aũ where ũ ∈ Ũ

}
.

It is easy to verify that, because of the shape of matrix A and
of Constraint 2, the thrust input u1 is bound to be positive
at all times.

Letting Xg(t) be the set of quadrotor states χ for which
the grasping is admissible at some given time t, i.e., such
that (5) and (6) hold at t, we then state our generic grasping
problem as:
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Fig. 2: Side (a) and top (b) views of the horizontal gripper-closure
subtrajectory (Class I), with forces and relevant parameters. Note
that ξg is constant in this case, while ζ(t) = Ω(t − tg) + ζg is a
time-varying quantities starting from the initial value ζ(tg) = ζg .

Problem 1. Given an initial quadrotor state χi, an initial
time ti and a final state χf , find a feasible trajectory
χ∗(t) : [ti, tf ] → SE(3) × se(3) traveling from χi to
χf that minimizes the travel time tf − ti, and lets the UAV
perform the grasping during some intermediate time interval
[tg, tg + Tmin

g ] ⊂ [ti, tf ] (with tg to be determined). More
formally, find a χ∗(t) that solves the following minimization
problem

min
{χ∗, tg, tf}

tf − ti

s.t. χ∗ (ti) = χi, χ∗ (tf ) = χf , χ∗ (t) ∈ Xg(t) ∀t ∈
[tg, tg +Tmin

g ] ⊂ [ti, tf ], u ∈ U , and χ obeys the quadrotor
dynamics (2–3).

III. SUBTRAJECTORIES FOR GRIPPER CLOSURE

In order to render the proposed minimization problem
more tractable, we characterize and analyze in detail two
distinct classes of feasible trajectories for which Constraint 1
can be continuously satisfied inside the time interval in which
the target trajectory keeps a constant velocity. Specifically,
we present two possible classes of trajectories satisfying this
constraint, namely the horizontal circular class (Class I)
and the vertical circular class (Class II). These will form
the basis of the search space explored by the optimization
procedure discussed in Sec. IV2. Note that both classes
include the hovering trajectories as particular subcases. In the
following we denote with (ζ, ξ, ρ) the spherical coordinates
of OB in a frame parallel to W and with origin in OT ,
see Figs. 2 and 3.

A. Class I: Horizontal Circular Trajectories

Consider the class of trajectories in which the quadrotor:
i) rotates with constant angular speed ζ̇ = Ω about a vertical
axis parallel to zW and passing through OT , ii) keeps the
zenith distance ξ constant at some given value ξg , and iii) has
a certain azimuth at tg , i.e., ζ(tg) = ζg (see Fig. 2).

2These two classes do not characterize the complete set of admissible tra-
jectories continuously satisfying Constraint 1. Nevertheless, they represent
a ‘functional basis’ which can be used to span more complex admissible
trajectories by exploiting their complementarity.
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Fig. 3: Side (a) and top (b) views of the vertical gripper-closure
subtrajectory (Class II), with forces and relevant parameters. Note
that, contrarily to the previous case, here ζg is a constant parameter,
while ξ(t) and ξ̇(t) change over time with initial values ξg, ξ̇g .

The analytical relationship describing such a trajectory can
be easily obtained by imposing that the position and velocity
of OG coincide with those of OT , and that the quadrotor
control forces compensate gravity and centrifugal forces, as
depicted in Fig. 2. In particular, we obtain

u1 = − mg

cos (ξg + β)
, (9)

for the thrust module, and

Ω = ±

√
−g tan (ξg + β)

ρ sin ξg
, (10)

for the angular speed Ω. Since (10) constrains the values of
ξg and Ω, only one among these two quantities can be freely
assigned. In this work, we chose to parametrize the Class I of
subtrajectories with the quantities ξg , sign Ω, ζg , the initial
position of the target rT (tg), and the constant target velocity
during the grasping ṙT (tg).

The quadrotor torque inputs required to track these trajec-
tories can be obtained by noting that the quadrotor angular
acceleration must be null in this case, and by then apply-
ing (3). The general expression can be found in [19]. Here,
for conciseness, we only report the resulting expression for
the case of a symmetric quadrotor (Jxx = Jyy), i.e.,u2

u3

u4

 =
Ω2

2
s2ξg+2β (Jxx − Jzz)

−sαcα
0

 , (11)

where s = sin and c = cos. Finally, applying (1), we obtain
the propeller speeds needed to track a trajectory in Class I:


ω2

1

ω2
2

ω2
3

ω2
4

 =


− mg

4kF cξg+β
− Ω2

4

cαs2ξg+2β(Jxx−Jzz)

kF l

− mg
4kF cξg+β

− Ω2

4

sαs2ξg+2β(Jxx−Jzz)

kF l

− mg
4kF cξg+β

+ Ω2

4

cαs2ξg+2β(Jxx−Jzz)

kF l

− mg
4kF cξg+β

+ Ω2

4

sαs2ξg+2β(Jxx−Jzz)

kF l

 . (12)

B. Class II: Vertical Circular Trajectories

In the trajectories belonging to Class II, the quadrotor:
i) rotates with an angular speed ξ̇(t) about a horizontal axis
orthogonal to zW and passing through OT , and ii) keeps
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OB inside the plane passing through OT and orthogonal to
the chosen rotation axis (see Fig. 3). Class II represents a
complementary set w.r.t. Class I: in fact, in this case ζ = ζg
is constant and ξ = ξ(t) is time-varying as opposite to the
previous case.

The analytical expression of a generic trajectory in Class
II can be easily obtained by imposing that the position and
velocity of OG coincide with those of OT , and that, again,
the quadrotor control forces compensate for gravity and
centrifugal forces. However, as additional requirement, for
all non-hovering cases the control forces must also generate
the tangential acceleration required to produce the needed
change of ξ̇(t) over time. Indeed, after some manipulations
(available in [19]), one obtains the following differential
equation governing the evolution of ξ (t):

ρ
(
ξ̇2 sinβ + ξ̈ cosβ

)
− g sin (ξ + β) = 0 (13)

with the associated initial conditions at tg: ξ(tg) = ξg and
ξ̇(tg) = ξ̇g . Consequently, the trajectories of Class II can be
parametrized by the constant azimuth ζg , the initial values
ξg , and ξ̇g , and (as for Class I) the initial position of the
target rT (tg) and the constant target velocity during the
grasping ṙT (tg). Furthermore, using (13), one can prove
that a constant angular velocity (ξ̈ = 0) does not represent
a feasible solution for this class of trajectory apart for the
special hovering case for which ξ̇ ≡ ξ̈ ≡ 0 at all times.

As for the quadrotor inputs needed to track a Class II
trajectory, one has

u1 = mρ
(
ξ̇2 cosβ − ξ̈ sinβ

)
−mg cos (ξ + β).

Similarly to before, a general expression for the torque inputs
can also be obtained after some long but straightforward
manipulations. Here, for conciseness, we only report the
expression for a symmetric quadrotoru2

u3

u4

 = ξ̈Jxx

 sβ
−cβ

0

 . (14)

Finally, the required squared motors velocities are:
ω2

1

ω2
2

ω2
3

ω2
4

 =


u1(ξ)
4kF

+
ξ̈cβJxx
2kF l

u1(ξ)
4kF

+
ξ̈sβJxx
2kF l

u1(ξ)
4kF
− ξ̈cβJxx

2kF l
u1(ξ)
4kF
− ξ̈sβJxx

2kF l

 . (15)

C. Gripper Position and Trajectory Parameters

We now analyze how the positioning of the gripper
in the quadrotor body frame, described by the quantities
(α, β, ρ), affects the attainable horizontal and vertical cir-
cular trajectories in terms of the admissible values of the
trajectory parameters. One can immediately note that no
special restrictions are present on ζg and on the particular
target position/velocity. Therefore, we focus our analysis on
the admissible values of the quantities ξg, ξ̇g for the two
classes under consideration.
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Fig. 4: Admissible values for ξg depending on β.

1) Admissible values of ξg for Class I: From (9), note that
cos(ξg + β) < 0 for having a positive thrust, and tan(ξg +
β) ≤ 0 for Ω to be real (note that sin ξg ≥ 0). Therefore,
the only admissible interval is ξg + β ∈ (π2 , π], implying

ξg ∈
(

max
(

0,
π

2
− β

)
, π − β

]
= (ξinf

g , ξmax
g ]. (16)

The results are summarized in Fig. 4 where the admissible set
for ξg is represented by the gray shaded area. The situation
ξg = ξmax

g corresponds to hovering trajectories (see Fig. 4(a-
c,e,h), i.e., Ω = 0, and presents a singularity when β =
(0, π) since Ω becomes undefined (see Fig. 4(a,h)).

Now consider separately the two cases in which the
gripper is above or below the quadrotor horizontal plane,
i.e., β ∈ [0, π/2) or β ∈ [π/2, π], respectively. The first case
yields ξinf

g = π/2 − β > 0 making the choice ξg = ξinf
g

unfeasible, as it would imply a perfectly vertical quadrotor
with the thrust vector orthogonal to the gravity direction (see,
e.g., Fig. 4(f)). In fact, (9) becomes singular in this case. The
second case yields ξinf

g = 0 and ξg = ξinf
g , corresponding

to the situation in which OB is exactly above the target. If
β 6= π, this second case is not feasible as it would require
an infinite Ω (see (10) and Fig. 4(g)). On the other hand,
if β = π then Ω becomes indefinite, thus corresponding to
another hovering situation (see Fig. 4(h)).

It is also clear that values of β too close to π reduce the
range of admissible values of ξg , and then the number of
possible grasping trajectories. In particular, if β = π, it is
easy to verify that the sole admissible solutions reduce to
the hovering ones.

2) Admissible values of ξg and ξ̇g for Class II: Differently
from the previous case, here in general the input u1 can
remain admissible (positive) only for a finite time interval
whose length depends on β, ρ, ξg , and ξ̇g . An explicit
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Fig. 5: Thrust evolutions for different β’s in a representative case.

expression of this relationship is not available in closed-
form since (13) cannot be, in general, integrated analytically.
However, we can obtain a qualitative intuition by considering
a numerical example. In Fig. 5 we report the time profile of
the thrust input obtained by numerical integration of (13)
for given ρ, ξg , ξ̇g and several values of β. In this case
the maximum duration of the interval where the thrust
remains positive is for β around 2.7 rad. Clearly this optimum
depends upon the chosen values for ρ, ξg , ξ̇g .

D. Final considerations about the role of (α, β, ρ)

The angle α influences the way in which the control effort
is distributed among the motors in order to generate the
needed torques. For example, from (12) it follows that, when
α = k π2 , only one pair of motors is used to generate the
necessary torque. Therefore, in order to guarantee a uniform
contribution from every motor (thus reducing the individual
motor efforts), a suitable choice is α = (2k + 1) π4 .

As for β, a value too close to π/2 might require too
high torques in order to sustain the weight of the target.
Analogously, a large value of ρ (the gripper length) would
also increase the inertia contribution of the target after
performing the grasping. Furthermore, the length ρ also
determines the angular velocity Ω for a given value of ξg ,
and thus the amount of necessary torques (see (10) and (11)).

Concerning additional possible geometric constraints of
the problem, values of β larger or smaller than π/2 are
most suited for ground-transported targets or airborne ones,
respectively, see Fig. 1.

IV. TRAJECTORY PLANNING

Our proposed solution for Problem 1 is to generate a
trajectory as a composition of 3 sub-trajectories:

1) Initial transfer: move from χi to a starting state χig (to
be determined) belonging to either a Class I or a Class
II gripper-closure trajectory;

2) Gripper closure: follow the chosen gripper-closure tra-
jectory for a time interval Tg ≥ Tmin

g ;3

3) Final transfer: move from the final state χfg of the
gripper-closure trajectory to χf .

We recall that our goal is to find a time-optimal trajectory
minimizing the total travel time from χi to χf . To this
end, we execute Algorithm 1 for 3 gripper-closure trajectory
cases: Class I with Ω ≥ 0, Class I with Ω < 0, and

3Here, we purposely leave to the optimization the freedom of selecting
any Tg ≥ Tmin

g . In fact, despite intuitive considerations, we cannot provide
rigorous arguments to conclude the optimality of Tg = Tmin

g for all possible
situations.

Algorithm 1 Compound trajectory optimization
Require: Gripper-closure trajectory class, χi, χf , rT , ṙT
Require: Initial guesses for ζg , ξg , Tg (and possibly ξ̇g).

1. loop
2. Compute the gripper-closure trajectory for ζg , ξg , Tg , (ξ̇g)

and the corresponding end-point states χi
g , χf

g ;
3. Compute a minimum-time initial transfer trajectory from χi

to χi
g and denote its duration with Ti (Algorithm 2);

4. Compute a minimum-time final transfer trajectory from χf
g

to χf and denote its duration with Tf (Algorithm 2);
5. Compute the cost function Ti + Tg + Tf ;
6. if Terminating conditions are satisfied then
7. return ζg , ξg , Tg , (ξ̇g)
8. end if
9. Select new guesses for ζg , ξg , Tg , (ξ̇g) ;

10. end loop

Class II. The best solution (in terms of minimum time)
among these three cases is then selected as the sought
optimal trajectory. This decomposition is meant to avoid the
introduction of binary variables in the minimization process,
as this could negatively affect the performance of gradient-
based optimization algorithms.

Note that Algorithm 1 internally makes use of an ad-
ditional optimization module (defined in Algorithm 2 and
described in Sec. IV-B) able to generate feasible transfer
trajectories connecting the initial state with the selected
gripper-closure trajectory and, symmetrically, the gripper-
closure trajectory with the final state. We also stress again
that the initial and final states of a gripper-closure trajectory
are not bound to be hovering ones. Hovering solutions are
anyway part of the search space and could then be returned
by Algorithm 1 if found to be optimal.

Before proceeding with the illustration of Algorithm 2,
we first discuss the controllability properties of our quadro-
tor system with bounded inputs, since controllability is a
prerequisite for the existence of a solution for the optimal
control problem under consideration.

A. Controllability between non-hovering states

As already showed in several previous works, the quadro-
tor dynamics is dynamically feedback linearizable (see,
e.g., [18]) and thus differentially flat w.r.t. the flat output
σ =

(
rTB ψ

)T
, where ψ is the yaw angle4.

A differentially flat system is always controllable in ab-
sence of input limitations. Moreover a quadrotor with limited
inputs is also controllable if the initial and final states are
hovering ones. In fact, it is always possible to uniformly
increase the total completion time of the trajectory and, as
a consequence, decrease the required control effort until it
falls within given limits. This property has been extensively
used in the literature for dealing with quadrotors with limited
inputs (see, e.g., [12]).

4A dynamical system is differentially flat if it possible to express its state
and inputs as an algebraic explicit function of a flat output σ and a limited
number of its derivatives [20]. Output flatness is equivalent to exact dynamic
feedback linearizability with the flat output taken as linearizing outputs [21].
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Algorithm 2 Transfer trajectory generation
Require: ς1, ς2
Require: Initial guess for T (transfer duration).

1. loop
2. Compute the interpolating B-spline for time T ;
3. Compute the constraint function, i.e., the maximum and

minimum values of the inputs along the transfer trajectory;
4. Compute the objective function T ;
5. if Conditions for terminating are satisfied then
6. return T
7. end if
8. Select new guess for T ;
9. end loop

However, the same approach cannot be extended to trajec-
tories connecting non-hovering states as those considered in
this work. Nevertheless, by resorting to different arguments,
it is still possible to qualitatively prove the controllability of
a quadrotor with limited inputs also when considering non-
hovering states, as reported in [19].

B. Transfer Trajectory Generation

In addition to characterizing controllability, the quadrotor
flatness makes it also possible to move the problem of
planning the transfer trajectory from the control input space
to the flat output space. Let ςi, ςig , ςfg and ςf represent the
flat output values bijectively associated to the states χi, χig ,
χfg and χf . The problem then reduces to the planning of
a trajectory σ(t) for the flat outputs starting at ςi (ςfg ) and
ending at ςig (ςf ) in a minimum time Ti (Tf ) while satisfying
Constraint 2.

We express the function σ(t) as a linear combination
of a certain number of predefined basis functions. Differ-
ent parametrization techniques have been proposed in the
literature differing in the chosen basis. Among the various
possibilities, we opted for piecewise polynomials in the B-
spline form. To keep the degree of the spline as low as
possible, we made use of two different splines: one for the
position vector and another (scalar) one for the yaw angle:

rB (t) =

mrB∑
j=1

prB,jB
nrB
j (t) , ψ (t) =

mψ∑
j=1

pψ,jB
nψ
j (t) ,

where the coefficients prB,j , pψ,j are the B-spline control
points, mrB ,mψ represent the number of control points, and
nrB , nψ the degrees of the splines.

In order to ensure the needed trajectory smoothness re-
quired by the quadrotor flatness transformation, we chose
nrB = 4 for the position rB(t) and nψ = 2 for the yaw angle
ψ(t), with at least 8 control points for the position (mrB = 8)
and of 4 control points for the yaw (mψ = 4). Once the
boundary conditions and the total time T are specified, the
control points can be easily computed by solving two square
linear systems, see [22].

While the boundary conditions are determined by Algo-
rithm 1, optimization of the transfer time T pertains to the
inner Algorithm 2 which, at each iteration, solves an instance

of the following problem

min
{T>0,u∈U}

T. (17)

We finally remark that, even though B-splines represent
good approximations of feasible solutions, the possibility of
finding the optimum is obviously related to the ‘richness’
of the search space. Given our particular choices, the only
free variables in Algorithm 2 reduce to the total time T , as,
together with the existing boundary conditions, this quantity
completely specifies a candidate trajectory. However, we note
that this fact is a consequence of having considered the
smallest amount of control points for the B-spline in order
to satisfy the given boundary conditions. Using B-splines (as
any piecewise polynomial), it could be possible to introduce
more degrees of freedom (i.e., more control points) without
increasing the degree of each single polynomial. This would
allow, in principle, to increase the dimension of the search
space at will, but with a corresponding growth in complexity
for the employed minimization algorithm.

V. SIMULATIONS

We conducted an extensive simulative study of our
method. Both the general optimization in Algorithm 1 and
the transfer trajectory optimization in Algorithm 2 have
been solved using the Matlab Optimization Toolbox. Further
details about the implementation can be found in [19]. The
physical simulation of the robot dynamics and 3D rendering
of the environment has been obtained using the SwarmSimX5

simulation environment. In order to allow the quadrotor to
track the planned trajectory in a robust way, we implemented
the controller described in [23] in Matlab and used ROS as
an interface between Matlab and SwarmSimX. We encourage
the reader to watch the accompanying video where all the
presented simulations can be fully appreciated.

In the first simulation reported in this paper, the robot starts
and ends in hovering states with rB,i = (0 4 3)T ,rB,f =
(0 − 4 3)T and ψi = ψf = − 3

4π During the gripper-
closure phase, the target is at rT = (0 0 0.478)T and moving
along the yW axis at a constant velocity of 1 m/s. The initial
guesses for the optimization variables have been chosen as
ζg = π

2 , ξg = π − β, ξ̇g = 0, Tg = Tmin
g . Note that

this corresponds to the case of a hovering gripper-closure
trajectory. The optimization returned a solution very close to
the initial guess both for the vertical and for the horizontal
grasping trajectories. In these hovering conditions the two
classes of trajectories coincide among themselves and with
the final compound trajectory. If, instead, the optimization
is started from a non-hovering initial guess for the gripper-
closure trajectory (namely ξg = π−β−0.3 for the horizontal
grasping trajectory and ξg = π − β − 0.1 and ξ̇g = −0.1
for the vertical one), the optimization returns again values
very close to the initial guess. However, while for the
vertical grasping this results in a shorter trajectory duration,
for the horizontal grasping the total time grows noticeably.
This outcome is due to the presence of local minima in

5http://laechele.eu/SwarmSimX/
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Fig. 6: Vertical gripper-closure trajectory grasping: position (a)
and velocity (c) of OG (continuous line) and target (dashed line);
position (b) and orientation (d) of the robot; stroboscopic lateral (e)
and top (f) view of the simulation. The grasping interval is delimited
by 2 vertical dashed lines. A magenta dashed line is superimposed
to every plot, indicating the gripper state: from completely open
(lower value) to completely closed (upper value).

the chosen cost function, thus preventing the gradient-based
optimization routine to find the actual global optimum. The
result for the vertical gripper-closure trajectory is reported in
Fig. 6 where we can notice how the gripper is able to follow
the target for the whole duration of the gripper-closure phase.
By repeating the simulation for rB,i = (−1; 4 3)T , ψi = 0
and rB,f = (3 − 4 3)T , ψf = π

2 , the optimization returns
again a result close to the initial guess. However, in this
case the horizontal trajectory is better (w.r.t. the completion
time) than the vertical one. The resulting optimal trajectory
is shown in Fig. 7.

Besides considering the task of grasping an object at
some location in the world frame, our planning strategy can
be seamlessly adapted to the case of a quadrotor initially
carrying an object to be placed at some desired position. This
idea can be also extended to the concatenation of multiple
trajectories from the two considered classes by taking the
final state of a trajectory as the initial state of the following
one. Figure 8 presents the results of a concatenation of
two pick-and-place operations using vertical gripper-closure
trajectories. The targets are picked from and placed on some
carriers independently moving in the environment. It is easy
to note that during each grasping (placing) phase, delimited
by blue vertical lines in the plots, the gripper tracks the
same trajectory of one of the carriers present in the scene

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4

5

r
G
[m

]

t[s]

(a)

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4

5

r
B
[m

]

t[s]

(b)

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

ṙ
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Fig. 7: Horizontal gripper-closure trajectory grasping: position (a)
and velocity (c) of OG (continuous line) and target (dashed line);
position (b) and orientation (d) of the robot; stroboscopic lateral (e)
and top (f) view of the simulation. Grasping interval and gripper
state are denoted as explained in Fig. 6.

(represented by different dashed lines in the plots). Given
the increased complexity in reporting the results of this last
case, we again encourage the reader to watch the attached
videoclip where the UAV motion can be fully appreciated.

VI. SUMMARY AND FUTURE WORKS

We presented a method for planning a time-optimal trajec-
tory for a quadrotor equipped with an onboard gripper with
the goal of grasping a moving target while traveling between
generic initial and final states. We introduced and used two
complementary set of trajectories able to continuously keep
the quadrotor gripper in contact with the moving target.
The method takes into account upper/lower bounds on the
propeller speeds and the need of a finite time for the gripper
in order to successfully perform the grasping task. Extensive
physically-based simulations demonstrate the effectiveness
of the proposed strategy.

Future works can exploit global search strategies with
more degrees of freedom for the B-splines in order to tackle
the non-convexity of the optimization problem and to obtain
better solutions. We will also consider an unknown motion
for the target together with a fast on-line re-planning based
on the current measurement/estimation of the target motion.
We also plan to augment the planning constraints in order to
take into account limitations in the field of view of the robot
sensors (e.g., cameras). Finally, we are currently working
towards an experimental implementation of this method with
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Fig. 8: Multiple pick-and-place operations: snapshots of the simulation; position of OG (continuous line) and target carriers (dashed line).
Grasping intervals and gripper state are denoted as explained in Fig. 6.

a real quadrotor UAV.
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