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Decentralized Control of Parallel Rigid Formations
with Direction Constraints and Bearing Measurements

Antonio Franchi and Paolo Robuffo Giordano

Abstract— In this paper we analyze the relationship between
scalability, minimality and rigidity, and its application to
cooperative control. As a case study, we address the problem
of multi-agent formation control by proposing a distributed
control strategy that stabilizes a formation described with
bearing (direction) constraints, and that only requires bearing
measurements and parallel rigidity of the interaction graph. We
also consider the possibility of having different graphs modeling
the interaction network in order to explicitly take into account
the conceptual difference between sensing, communication,
control, and parameters stored in the network. We then show
how the information can be ‘moved’ from a graph to another
making use of decentralized estimation, provided the parallel
rigidity property. Finally we present simulative examples in
order to show the validity of the theoretical analysis in some
illustrative cases.

I. INTRODUCTION

Decentralized accomplishment of a prescribed formation
is a cardinal problem in multi-agent control, see, e.g,. [1], [2],
[3], [4]. In absence of central sensing and processing units,
every agents is only able to obtain relative measurements
and communicate with a certain subset of the whole group.
Therefore a formation control task is better defined in terms
of relative constraints, i.e., desired values for those relative
quantities processed by pairs of agents. In these cases,
in order to uniquely define a formation, a straightforward
solution is the specification of the desired relative quantities
(e.g., bearing and distances) among all the possible agent
pairs. Although successful, this solution violates scalability,
since it requires each individual agent to store a O(n) number
of desired values – with n being the total number of agents
– thus resulting in O(n2) for the whole group. Nevertheless,
exploiting the concept of rigidity theory, it is still possible
to guarantee uniqueness of the specified formation by only
resorting to a total number O(n) of constraints for the whole
group, both in the distance and bearing cases.

Rigidity is a well-known and fundamental tool in the
context of formation control based on distances [5], [6],
[7]. Parallel rigidity [8], [9], that is, the bearing counterpart
of ‘distance rigidity’, has also been recently introduced for
controlling bearing-constrained formations. In particular the
authors in [10] have presented a control strategy where
the formation is specified as a parallel rigid set of desired
bearings. However, the proposed controller was still requiring
both bearing and distance measurements in order to be im-
plemented. In principle, consensus-based approaches, such as
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those proposed in [2], could also be used in order to achieve
a desired bearing formation, but in this case measurement of
distances would be needed as well by the controller.

It is worth noting that relative bearings represent a highly
significant piece of information; in fact, bearing measure-
ments span a large spectrum of possible sensors model such
as, e.g., any monocular camera system. It is therefore inter-
esting to invest research efforts into the formalization and
suitable control strategies of bearing formations, where both
the desired formation constraints and actual measurements
are made of only bearings. Recent works have addressed
such instances of formation control, but usually considering
only a limited number of agents as, e.g., in [11], [12] where
only 3 agents are contemplated. In [13], [14] a 3D bearing-
only formation controller is presented which works in the
case of an unlimited number of agents and shares several
similarities with the the controller presented in this work.
Nevertheless, the approach presented in [13], [14] assumes
the presence of a particular class of interaction network, an
assumption that will be greatly relaxed in our setting.

It is common practice in multi-agent literature to make use
of a single interaction graph in order to model the presence
of constraints (i.e., desired values) between any two agents
as well as the presence of inter-agent sensing/communication
networks. Nevertheless, formation constraints, relative sens-
ing, and inter-agent communication usually originate from
different domains (e.g., the constraint pairs could be chosen
a priori by a high-level supervisor, while the sensing and
communication pairs may depend upon the particular range
and field-of-view of the used technology).

In this paper we study the possibility of having a more
refined model of the multi-agent network by allowing a
multiple-graph representation. While a unique graph guar-
antees the matching of all the local quantities (e.g., desired
and measured values), this fact does not hold anymore in
the case of multiple graphs. In order to compensate for
the absence of that ‘a priori’ matching, we will resort to a
decentralized estimation algorithm that is able to ‘translate’
the quantities from one graph to another graph, owing to the
rigidity property. In this regard, the presented work place
itself in the class of approaches combining decentralized
estimation with cooperative control, see, e.g., [15], [16].

To summarize, the main contributions of this work are the
following: i) we propose a decentralized formation controller
that uses both bearing-only measurements and constraints
(thus, does not make use of distances), ii) we allow for
a thorough modeling of the required interaction network,
by explicitly taking into account the conceptual difference
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Fig. 1: Computational model of a generic agent.

between, sensing, communication, control, and parameters
stored in the network, iii) by exploiting this modeling we
analyze the connection between scalability, minimality and
rigidity.

The paper is organized as follows. In Sec. II we define our
agent and network model and analyze the interplay between
scalability and parallel rigidity. We then introduce a bearing-
only controller and prove its stability in Sec. III, while in
Sec. IV we describe the multi-graph model and the associated
rigidity-based estimation algorithm. In Sec. V we provide
some numerical examples and we conclude the paper in
Sec. VI.

II. SCALABILITY AND RIGIDITY IN
BEARING-ONLY CONTROL

Consider a group of n agents and denote with pi ∈ R2

the position of the i-th agent, where i ∈ V = {1, . . . , n}.
Assume also presence of kinematic agents, i.e., ṗi = ui,
where ui ∈ R2 is the control input of agent i.

Scalability is a cardinal concept in multi-agent literature
and plays a pivotal role in our work as well. In order
to illustrate how the concept of scalability applies to our
setting, consider the computational model of a generic agent
i depicted in Fig. 1. The main goal of an agent i is to
implement a control algorithm that will steer its position
towards a desired location, defined in terms of relative quan-
tities w.r.t. neighboring agents. Since all the computations are
performed by the agent internal processing unit, the paradigm
of scalability requires that the amount of data and elementary
operations needed by the control algorithm at any time t to
be constant w.r.t. the total number of agents n. Therefore,
seen from a global perspective, the multi-agent system can
only process an amount O(n) of data per unit of time.

For the sake of generality, let us assume that the data used
by the control algorithm belongs to three distinct classes:
(i) constant parameters, (ii) relative measurements, and
(iii) communicated data. These are (conceptually) stored in
the parameter, measurements, and communication buffers,
respectively, as depicted in Fig. 1. Because of the reasons re-
ported before, the buffer size must also be constant w.r.t. the
total number of agents. By excluding typical parameters
(e.g., control gains or other constants), the data used by an
agent is always relative to other agents, that is, it represents
relative quantities1. By denoting with N s

i the set of agents
whose quantities are needed by agent i, one can then define
an interacting graph Gs = (V, Es), with Es = {(i, j) ∈

1In this setting we do not consider the interaction with an exogenous
system, as, for example, the environment, or a human operator.

V × V | j ∈ N s
i }, in order to represent all the ‘interacting’

agent pairs. In these terms, scalability requires |N s
i | and |Es|

to be O(1) and O(n), respectively, with |V| = n. Although
this formulation is, as a matter of fact, standard in most
multi-agent decentralized algorithms, it does not actually
represent the most general situation. In fact, as it will be
explained in the next sections, graph Gs can be actually
thought as the union of four distinct subgraphs: a parameter
graph, a measurement graph, a communication graph and a
control graph, which are, in the general case, not coincident
among themselves.

The following section will illustrate how these concepts
apply to our particular case, and introduce the main rela-
tive quantity considered in this work as well as additional
important properties related to scalability (minimality).

A. Relative bearings, parallel rigidity, and minimality

Given a generic vector of n distinct positions q =
(qT1 . . . q

T
n )T ∈ R2n we denote with φij(q) = φ(qi, qj) the

bearing angle that an agent at qi would measure w.r.t. an-
other agent at qj . An equivalent representation is given by
βij(q) = β(qi, qj) = (cosφij(q) sinφij(q))T ∈ S1, i.e.,
the unit vector pointing from qi to qj (bearing vector).
Note that φji(q) ≡ π + φij(q) mod 2π and that βij(q) =
−βji(q), for any q and i, j.

Given a graph G = (V, E) we define the following set:
A(q,G) = {φij(q) | (i, j) ∈ E , j > i}. We recall now some
relevant facts concerning parallel rigidity, a fundamental
property that allows to determine whether the set of bearing
angles A(q,G) contains the maximum possible information
about the position vector q (see, e.g., [10] for a more detailed
description about the topic).

Definition 1 (Point formation). A formation of points, or
just formation, is a pair (G, q) consisting of a generic graph
G = (V, E) – where V = {1, . . . n} and E ⊆ T = {(i, j) ∈
V×V | i 6= j} – and a position vector q = (qT1 . . . q

T
n )T that

assigns to every node i ∈ V the position qi. A formation is
degenerate if the n positions in q are all aligned.

This kind of ‘graph-plus-configuration’ structure is also
called framework or point-formation in the literature, see,
e.g. [8], [9] and references therein.

Definition 2 (Equivalent formations). A formation (G, r) is
equivalent or parallel to (G, q) if A(q,G) = A(r,G), i.e., if

(qi − qj)⊥ · (ri − rj) = 0 ∀(i, j) ∈ E (1)

where the operator ⊥ rotates a vector by π/2 counterclock-
wise.

Definition 3 (Similar formations). The formation (G, r) is
similar w.r.t. (G, q) if (1) is satisfied for any (i, j) ∈ T ,
i.e., if r can be obtained from q by similarity (translation
followed by dilation).

Definition 4 (Parallel rigidity). A formation (G, q) is said
to be parallel rigid if all the formations equivalent to (G, q)
are similar to (G, q).
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Consider now a trajectory defined by the time-varying
position vector r(t). The time-varying formation (G, r(t))
is equivalent to (G, q) if

(qi − qj)⊥ · (ri(t)− rj(t)) = 0 ∀(i, j) ∈ E , t ≥ 0. (2)

By differentiating (2) we obtain:

(qi − qj)⊥ · (ṙi(t)− ṙj(t)) = 0 (3)

which can be rewritten in matrix form as

R(q)ṙ = 0. (4)

Matrix R(q) ∈ R|E|×2|V| is called bearing-constrained
rigidity matrix. A well know result in graph theory is the
following:

Theorem 1. If rank[R(q)] = 2|V| − 3 then the formation
(G, q) is parallel rigid.

Therefore a necessary condition for (G, q) to be parallel
rigid is that |E| ≥ 2|V| − 3.

Definition 5 (Generically Parallel Rigid Graph). If (G, q)
is parallel rigid for any generic position vector2 q then
G is said to be generically parallel rigid, and (G, q) is a
generically parallel rigid formation.

The following theorem states that generic parallel rigidity
is a topological property (e.g., see [8], [9]):

Theorem 2. A graph G = (V, E) is generically parallel rigid
if and only if there exists a E ′ ⊆ E such that:

1) |E ′| = 2n− 3
2) ∀E ′′ ⊆ E ′, E ′′ 6= ∅ we have |E ′′| ≤ 2|VE′′ | − 3

where VE′′ denotes the vertices adjacent to the edges in E ′′.
A parallel rigid formation is a formation where the bear-

ings in A(q,G) are sufficient to uniquely define all the
other bearings φij(q) ∀(i, j) ∈ T /E , and, as a consequence,
also the shape and orientation of q (but not its scale and
translation). Rigidity has a twofold importance in multi-agent
formation control. First, it can be used to check whether
a subset of measured bearings is sufficient to reconstruct
the value of any other needed (but not measured) bearing.
Second, it can be used to check whether the stabilization of
a subset of bearings to some desired values will result in the
stabilization of all the remaining bearings of the formation
to some uniquely defined values. It is therefore interesting
to investigate whether the cardinality of these subsets can
be scalable, i.e., O(n). In this sense, one can exploit the
fact that, due to Theorem 2, the minimal number of relative
bearings needed to achieve rigidity is 2n−3, so that a O(n)
number of measured/controlled quantities is sufficient for
rigidity. This is formally stated in the following definition.

Definition 6 (Minimal Parallel Rigidity). Consider a forma-
tion (G, q) s.t. |E| = 2|V| − 3

1) (G, q) is minimally parallel rigid (m.p.r.) if
rank[R(q)] = 2n− 3

2The position vector q is generic if its coordinates are not algebraically
dependent.

2) G is minimally and generically parallel rigid (m.g.p.r.)
if it is also generically parallel rigid.

Analogously to the definition of point formation in Defini-
tion 1, we now consider the dual case of bearing formation
which will play an important role in the following develop-
ments.

Definition 7 (Bearing-formation). A formation of bearings,
or simply a bearing formation, is a pair (G,α) consisting of
a generic graph G = (V, E) and a collection of |E| bearings
α = {. . . αij . . .}(i,j)∈E ∈ R|E|, where the components of α
are listed in lexicographical order.

A bearing formation (G,α) is said feasible if all the
bearings contained in α can simultaneously exist as actual
relative bearings φij(q

α) for some configuration qα, i.e.,
such that φij(qα) = αij ∀ (i, j) ∈ E . In this case, (G, qα)
is called a realization of (G,α).

Within the class of feasible bearing formations, we define
(minimally) parallel rigid bearing formations those having
only (minimally) parallel rigid realizations, and degenerate
bearing formations those having at least a degenerate re-
alization. This also implicitly defines the cases of (feasible)
non-rigid and non-degenerate bearing formations.

B. Bearing-only Control Problem

In order to represent the set of desired bearings in a
scalable way, we assume that the multi-agent system dis-
tributively stores the desired bearings as a minimal and
non-degenerate bearing formation (Gd,φd), where φd =
(. . . φdij . . .)

T , and Gd = (V, Ed) will be denoted from now
on as parameter graph. Indicate also with N d

i the set of
neighbors of i in Gd. In other words, agent i stores in its
parameter buffer the set {. . . φdij . . .}j∈Ndi which is O(1) in
cardinality w.r.t. |V|. We also consider the alternative bearing
representation by letting βdij = (cosφdij sinφdij)

T .
By resorting to analogous arguments, we assume that the

measurement of the current bearings are distributively taken
as A(p,Gm) where the Gm = (V, Em) will be denoted as
measure graph. This implicitly defines the bearing formation
(Gm,φm) where φm = col(A(p,Gm)) and “col” denotes the
operator that stacks the elements of a set in a lexicographical
order. Note that (Gm,φm) is feasible by definition. Gm is
m.g.p.r. for the usual scalability issue (see Def. 6). Like
before, we let Nm

i represent the set of neighbors of i in
Gm. In other words agent i stores in its measurement buffer
the set {. . . φmij (p) . . .}j∈Nmi that is also O(1) in cardinality
w.r.t. |V|.

Notice that, in general, it is Ed 6= Em: considering this
possibility constitutes a novelty and generalization w.r.t. the
previous literature, and takes into account the fact that the
desired bearings can be communicated to the agents at the be-
ginning of the task (e.g., by a high-level planner/supervisor),
while the measuring graph is necessarily a function of the
actual state of the multi-agent system. Clearly, the case
Ed = Em remains still possible in our framework.

As an additional degree of freedom, we also consider the
possibility to have a distinct control graph Gc = (V, Ec) (also
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assumed m.g.p.r. for the scalability of the control algorithm).
This graph defines the set of relative bearings needed by
the controller and compared with their corresponding desired
values in order to produce the intended control action.

In literature, it is again typically assumed that Ec = Em,
as for example in [10] (where, however, also the relative
distances are used in the control law). Nevertheless, in the
general situation, a controllers may need a particular control
graph Gc in order to implement its action, and this control
graph may differ from the current measurement graph. In
fact, in the following we will present a controller based on
only bearings (no distances) measurements, and assuming
that Gc belongs to a particular class of graphs.

From a theoretical standpoint, it is clear that a necessary
condition for such a controller to be implementable is the
possibility of “translating” (Gd, φd) into a bearing formation
over Gc, i.e., (Gd, φd) → (Gc, φc), and, similarly, the possi-
bility of translating the measurements (Gm, φm)→ (Gc, φc)
(owing to the parallel rigidity property). In order to perform
such translations, we assume that the agents can commu-
nicate by means of a communication graph Gw = (V, Ew).
We denote with Nw

i the set of communication neighbors of i
and, obviously, |Nw

i | is O(1) for every i ∈ V . In other words
at any time t agent i stores in its communication buffer a
constant (small) number of values sent by every agent inNw

i .
Clearly the union of all these graph constitutes the interaction
graph, i.e., it holds that Es = Ed ∪ Em ∪ Ec ∪ Ew.

Problem 1 (Decentralized Bearing-only Control). Given
a m.p.r. and non-degenerate desired bearing formation
(Gd,φd) and m.g.p.r. measuring graph Gm, design a control
ui, ∀i ∈ V , as a function of at most {φmij}j∈Nmj and
{φdij}j∈Ndj , such that

φd − col(A(p,Gd))→ 0. (5)

III. STABILIZATION WITH COINCIDENT GRAPHS
In this section, and similarly to most previous works, we

assume that all the graphs coincide with a particular control
graph Gc defined in our case by

Ec =
{

(ι, j)|j ∈ V\{ι}
}
∪
{

(κ, j)|j ∈ V\{ι, κ}
}
, (6)

where ι, κ ∈ V are called center agents. We will relax this
assumption in Sec. IV.

First of all, for guaranteeing the well-posedness of the
problem, we prove the following:

Proposition 1. The graph Gc defined by (6) is m.g.p.r. for
every choice of ι, κ with ι 6= κ.

Proof. We will show that Gc satisfies Theorem 2. Consider
the following 3-set partition of Ec: E ιc =

{
(ι, j)|j ∈

V\{ι, κ}
}

, Eκc =
{

(κ, j)|j ∈ V\{ι, κ}
}

, and {(ι, κ)}. It is
easy to see that |Ec| = |E ιc|+|Eκc |+1 = 2(n−2)+1 = 2n−3.

Consider now any subset E ′′c ⊂ Ec, Ec 6= ∅, which we
also partition in 3 subsets: A = E ′′c ∩ E ιc , B = E ′′c ∩ Eκc , and
C = E ′′c ∩ {(ι, κ)}. In order to satisfy Theorem 2 we need
to show that

2(|VA ∪ VB ∪ VC |)− 3− (|A|+ |B|+ |C|) ≥ 0, (7)

where VA, VB , and VC are the set of vertexes adjacent to
the edges in A, B, and C respectively. If A = B = ∅ and
C = {(ι, κ)} then the lhs of (7) reduces to 2 · 2− 3− 1 = 0,
thus satisfying (7). Assume now, w.l.o.g., that B 6= ∅ and
|B| ≥ |A|. The worst case for the lhs of (7), i.e., the case in
which the gap between |VA ∪ VB ∪ VC | and |A|+ |B|+ |C|
is maximum, arises when VB contains all the vertexes of VA
different from ι. In this case |VA ∪VB ∪VC | = |B|+ 1 + σ,
where σ = 1 if |A| ≥ 1 or |C| = 1 (and σ = 0 otherwise),
i.e., σ = sign(|A| + |C|). Evaluating the lhs of (7) in this
worst case, we obtain

2(|B|+ 1 + σ)− 3− (|A|+ |B|+ |C|) = (8)
|B| − |A|+ 2 sign(|A|+ |C|)− 1− |C| = (9)
|B| − |A|+ sign(|A|+ |C|)− 1 ≥ 0 (10)

where i) the step (9)→ (10) exploits the fact that sign(|A|+
|C|) − |C| ≥ 0, and ii) (10) is based on the fact that if
|A| ≥ 1 then sign(|A| + |C|) − 1 = 0, while if |A| = 0
then |B|−1 ≥ 0. Any other case different from the reported
worst case would be more favorable to the fulfillment of
condition (7).

The proof is concluded by noting that the case A 6= ∅ and
|A| ≥ |B| can be treated in an analogous way.

Assuming that pι 6= pκ, we define the ratio between the
inter-distance among agent i and ι and that among the 2
center agents as:

γικi(p) =
‖pi − pι‖
‖pι − pκ‖

,

For the sake of brevity, we will also write γi(p) or simply
γi whenever the meaning is clear from the context.

Proposition 2. If the positions p of the agents are not
all-aligned then the γικi(p) can be computed using only
bearings.

Proof. If the 3 agents ι, κ, and i are not aligned then,
applying the law of sines to the corresponding triangle, we
obtain:

γi(p) =
‖ sin(φiι − φiκ)‖
‖ sin(φκi − φκι)‖

=
‖ sin(φiι − φiκ)‖
‖ sin(φiκ − φκι)‖

,

where we omitted the dependence on p in the bearings for
brevity. If instead ι, κ, and i are aligned then, since the
agents are not all-aligned, there exists at least an agent j not
aligned with ι, κ, and i. Rewriting γi as ‖pi−pι‖‖pι−pj‖

‖pj−pι‖
‖pι−pκ‖

and noting that, since the two triples (ι, i, j) and (ι, κ, j) are
not aligned, we can apply the law of sines twice obtaining:

γi(p) =
‖ sin(φiι − φij)‖
‖ sin(φij − φjι)‖

‖ sin(φjι − φjκ)‖
‖ sin(φjκ − φκι)‖

.

Consider a minimal non-degenerate bearing formation
(G,α). By virtue of Proposition 2 we can (uniquely) define
the quantity:

γικi(G,α) =
‖qαi − qαι ‖
‖qαι − qακ‖

,
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being (G, qα) any realization of (G,α). This allows us to
define:

γdικi = γικi(Gd,φd) = γdi .

In the following we will make use of the bearing vector
expression as a function of the agent positions:

βij(p) =

(
cosφij(p)
sinφij(p)

)
=

pj − pi
‖pj − pi‖

(11)

and of its derivative

β̇ij(p) = (I − βij(p)βTij(p))
ṗj − ṗi
‖pj − pi‖

. (12)

A useful relation, easily proven using (11), is the following:

γικi(p)βιi(p)− βικ(p) ∝ βκi(p). (13)

We are now ready to present the proposed bearing-only
control law that constitutes one of the major contributions of
this work.

Proposition 3. Consider a control graph Gc defined by (6).
If Gd = Gm = Gw = Gc then, for any two positive gains
k1, k2, the following control law solves Problem 1:

uι = 0 (14)

uκ = k1 sin
(
φdκι − φκι(p)

)
β⊥κι(p) (15)

ui = k2

(
γdi β

d
iι − γi(p)βiι(p)

)
∀i ∈ V\{ι, κ}. (16)

Proof. In the following we omit the dependency from p
for brevity. Firstly note that the inter-distance ‖pι − pκ‖
between the agents ι and κ is constant. In fact d

dt (pι −
pκ)T (pι − pκ) = 2(pι − pκ)T (ṗι − ṗκ) = 2k1 sin(φdκι −
φκι)(pι−pκ)Tβ⊥κι ∝ (pι−pκ)T (pι−pκ)⊥ = 0, where we
applied (11).

We now prove that (5) holds by using the bearing vec-
tor dynamics in (12). The closed-loop dynamics of the
bearing βκι with control (14) and (15) is β̇κι = (I −
βκιβ

T
κι)

ṗκ−ṗι
‖pκ−pι‖ = k1

‖pκ−pι‖ sin(φdκι−φκι)(I−βκιβTκι)β⊥κι,
so that:

β̇κι = − k1
‖pκ − pι‖

sin(φdκι − φκι)β⊥κι. (17)

Since ‖pκ − pι‖ = ‖pκ(0) − pι(0)‖ = const > 0, (17)
implies that βκι → βdκι for any initial condition but the
zero-measure case φκι ≡ φdκι mod π.

We now consider i ∈ V\{ι, κ}. The closed-loop dynamics
of the vector pi − pι with control (14,16) is ṗi − ṗι =

k2
‖pι−pκ‖ (‖pι − pκ‖γ

d
i β

d
ιi − ‖pi − pι‖βιi) and then:

d

dt
(pi − pι) = k̄i(p̄i − (pi − pι)),

where p̄i = ‖pι(0) − pκ(0)‖γdi βdιi is a constant non-zero
vector directed as βdιi and k̄i = k2

‖pι(0)−pκ(0)‖ is a positive
constant gain. Therefore we can conclude that pi−pι → p̄i,
which implies that βιi → βdιi, using (11).

Finally consider the vector βκi ∝ pi − pκ = (pi − pι)−
(pκ−pι) which, from the previous analysis, must converge to
p̄i−‖pκ(0)−pι(0)‖βdικ = ‖pκ(0)−pι(0)‖(γdi βdιi−βdικ) ∝

βdκi, where the proportionality derives from (13). Therefore
βκi → βdκi, thus concluding the proof.

From the proof of Proposition 3 we can conclude that,
under the action of control law (14-16), agent ι remains sta-
tionary, agent κ rotates around ι, and any other agent moves
following a straight path. The final location of the agents
is completely determined by the desired bearing formation
(Gd,φd), the initial position of agent ι, i.e., pι(0), and the
initial distance between agents ι and κ, i.e., ‖pι(0)−pκ(0)‖,
which, moreover, are constants of motion along the system
trajectories. These properties avoid indefinite contraction,
expansion or translation of the whole formation under the
action of the controller.

IV. STABILIZATION WITH GENERAL GRAPHS

In order to implement (15-16), each agent i 6= ι needs to
retrieve the two vectors γdi β

d
iι and γi(p)βiι(p). This holds

also for i = κ, since the two scalar quantities employed
in (15), φdκι and φκι(p), are straightforwardly related to
γdκβ

d
κι and γκ(p)βκι(p) (note that, in particular, γdκ =

γκ(p) ≡ 1). If both Gd, Gm Gw coincide with the particular
Gc defined by (6), then each agent can easily compute the
needed quantities from locally available information.

Now assume that Gd and Gm do not coincide with the
particular Gc defined in (6). In order to address this situation,
we will now present an estimator that can be exploited to
obtain both γdi β

d
iι and γi(p)βiι(p).

A. Scale-free Position Estimator

Consider a minimally parallel rigid formation (G, q) and
the following quantity to be estimated from A(q,G):

γικi(q)βij(q) =
qi − qι
‖qι − qκ‖

, (18)

i.e., the position of the agent i in a frame centered on qι
and suitably ‘dilated’ in order to have ‖qι − qκ‖ = 1. Let
the estimate of (18) be ξi ∈ R2, and consider the following
quantities:

ξij = ξj − ξi, ξ̂ij =
ξij
‖ξij‖

, ζij = atan2(ξyij , ξ
x
ij).

These represent the estimates of qj−qi
‖qι−qκ‖ , βij(q), and

φij(q), respectively.
Since the actual ‘real’ quantities available for the estima-

tion algorithm are only the bearing A(q,G), we consider the
following error driving the estimation update:

e(ξ, q) = col(A(ξ,G))− col(A(q,G)) ∈ R|E|,

where we recall that col(A(ξ,G)) is the lexicographical-
ordered stack of bearing estimates ζij , for (i, j) ∈ E .

It is possible to prove (see, e.g., [10]) that the Jacobian of
col(A(ξ,G)) is given by:

∇col(A(ξ,G)) = −D(ξ)−2R(ξ),

where D(ξ) ∈ R|E|×|E| is a diagonal matrix made of all
the distances ‖ξij‖ for every (i, j) ∈ E , taken in the
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lexicographical order, and R(ξ) ∈ R|E|×2|V| is the bearing-
constrained rigidity matrix computed at ξ.

The objective of the estimation algorithm can be recast as
the minimization of the scalar function

e(ξ, q) =
e(ξ, q)Te(ξ, q) + k3ξ

T
ι ξι + k4(ξ

T
κ ξκ − 1)2

2
, (19)

where the terms k3ξ
T
ι ξι and k4(‖ξκ‖ − 1)2 account for

the additional constraints: qι−qι
‖qι−qκ‖ = 0 and ‖qι−qκ‖‖qι−qκ‖ = 1,

respectively. The positive gains k3, k4 can be used to finely
tune the estimator behavior.

Minimization of (19) can be achieved by following the
antigradient of e(ξ, q), i.e., by choosing:

ξ̇ = −(∇e)Te =

= R(ξ)TD(ξ)−2e− k3

0
ξι
0

− k4

 0

(ξTκ ξκ − 1)ξ̂κ
0

,
(20)

where the terms ξι and (ξTκ ξκ− 1)ξ̂κ appear at the ι-th and
κ-th entry pairs of ξ̇, respectively.

Expanding (20) for the ι-th, κ-th, and i-th agent, we obtain
the following local estimation update rules:

ξ̇ι =
∑
j∈Nι

1

‖ξκj‖
ξ̂
⊥
ιj(ζιj − φιj)− k4ξι (21a)

ξ̇κ =
∑
j∈Nκ

1

‖ξκj‖
ξ̂
⊥
κj(ζκj − φκj)− k4(ξ

T
κ ξκ − 1)ξ̂κ (21b)

ξ̇i =
∑
j∈Ni

1

‖ξij‖
ξ̂
⊥
ij(ζij − φij) ∀i ∈ V\{ι, κ}, (21c)

where Nk = {j ∈ V | (k, j) ∈ E} k ∈ V .
Thanks to the parallel rigidity of G there is only a 2d-

point formation which is realizes the bearings A(q,G) and
satisfies also the additional constraints on translation (ξι =
0) and dilation (‖ξι− ξκ‖ = 0). Therefore by following the
antigradient law we ensure the local convergence of ζij →
φij and ξ̂i → βij for any (i, j) ∈ V × V .

The estimator (21) is intrinsically decentralized (and then
scalable) since, in order to compute ξ̇i, every agent i needs
only to receive the current estimates {ξj}j∈Ni from its
neighbors, as well as the locally available relative bearing
quantities which are measured.

B. Estimation of the Control Quantities

We obtain a decentralized estimation of γdi β
d
iι and

γi(p)βiι(p) by using in parallel two estimators of the
form (21) whose estimates are denoted with a ξd and ξm,
respectively.

In order to implement these two parallel estimators the
agents need to communicate their estimates to the neighbors
in Gd and Gm, respectively. For this reason the communica-
tion graph should at least meet the condition Ew = Ed ∪Em.
This objective can be reached with any connected communi-
cation network by using some proper routing strategy. Notice
that the pair of communicating links in Ew is still scalable,
being 2O(n) = O(n).

Notice also the similarity between the control law pre-
sented in [10] and (21). Nevertheless, while in [10] the

implementation of the control law requires to also measure
the actual agent inter-distances, the implementation of the
estimates (21) only requires relative bearings.

The estimates ξd and ξm can then be plugged in the
control law (15-16) for implementing the proposed controller.

Fact 1. Consider control graph Gc defined by (6) and any
two positive gains k1, k2. The following controller can be
used in place of (14-16) with any m.g.p.r. parameter graph
Gd and measuring graph Gm:

uι = 0 (22)

uκ = k1 sin
(
ζdκι − ζmκι

)
ξ̂
m⊥
κι (23)

ui = k2(ξdiι − ξmiι ) ∀i ∈ V\{ι, κ}. (24)

From a practical standpoint, if the dynamics of the con-
trolled system is slow w.r.t. the dynamics of the estimator,
then the estimate will have an acceptable small error even
if the bearings A are not constant. Note that is a standard
assumption which has been used also in many other works,
like [17], [16].

V. SIMULATIONS

We conducted a numerical study in order to validate the
proposed approach. We describe here 2 significant set of
simulations.

In the first simulation (reported in Fig. 2) 10 agents start
from 10 distinct initial positions (denoted with red squares
in all the plots) which are approximately arranged on a circle
and are tasked to reach a desired bearing formation which
also results in a circular formation (with no specified size
and translation). The final locations of the agents are denoted
with green circles in the plots.

In the first case the measure, parameter, and control graphs
coincide, and then this case constitutes a sort of baseline to
study the performances of the algorthm. Plot 2a shows the
trajectories of the agents in this case. As expected, all the
trajectories are straight lines except for the trajectory of agent
ι, which is stationary in the middle, and κ, which follows an
arc of circumference (and then keeps fixed its distance w.r.t
agent ι). The measure graph (coincident with the control
graph) is also shown by means of dashed lines connecting
the final locations. Plot 2c shows the corresponding bearing
formation error norm, which exponentially vanishes for all
the edges of the parameter graph.

In the second case we have chosen randomly two different
measure and parameter graphs, and therefore the control uses
the estimates provided by the estimation algorithm presented
in Sec. IV. The estimates are also initialized with random
values. Plot 2b provides the agent trajectories, that are
not perfectly straight anymore, due to the initial estimation
errors and their evolution. Plot 2d shows the corresponding
bearing formation error norm, whose trend is similar to the
previous one but presents some intermediate oscillations.
Finally Plots 2e and 2f show the norm of the estimation
errors of the vectors composing ξm and ξd, respectively.
All the components of ξd monotonically vanish, thanks
to the fact that the desired quantities are constant. The
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Fig. 2: First simulation: case of circular desired bearing formation. Red squares and green circles represent the initial and final positions,
respectively. Solid lines represent the agent trajectories and dashed lines represent the measure graph used Gm. First case (coincident
graphs): (a): trajectories, (c): regulation error. Second case (non-coincident graphs) (b): trajectories, (d): regulation error norm, (e): measure
estimation error norm, (f): parameter estimation error norm.

components of ξm present a more oscillating behavior, due
to the fact that the actual bearings are changing during the
agent motion. Nevertheless all the error eventually vanish
with an exponential trend.

The second simulation, depicted in Fig. 3 presents the
same pattern (control without and with estimation) applied to
a different desired bearing formation, which recall a pseudo-
lattice formation, (again, depicted with green circles)

The behavior of the trajectories, regulation and estima-
tion errors is totally similar to the previous case. A more
pronounced estimation error in this case is due to the fact
that we set on purpose a much worse initial state for the
estimators, in order to validate even more the robustness
of the proposed method. Nevertheless also in this case the
application of the method allows to successfully achieve
the desired bearing formation, despite the minimality of the
information available to the agents.

VI. CONCLUSIONS

In this work we investigated the relationship between
scalability, minimality and rigidity, and its application to
cooperative control. In particular, we proposed a distributed
control strategy that stabilizes a formation described with

bearing constraints, and that only requires bearing measure-
ments (instead of bearing plus distance). We also consid-
ered the possibility of having different graphs modeling the
interaction network in order to explicitly take into account
the conceptual difference between sensing, communication,
control, and parameters stored in the network.

Due to the relevant role of rigidity in formation control,
it would be interesting to study a control strategy which
ensures the parallel rigidity maintenance during motion,
despite of sensing and communication constraints, while still
allowing for a time-varying topology, as done in [7] for the
distance-based rigidity case. The extension of this framework
to different spaces and kind of relative quantities, as well
as time-varying graphs, also constitutes a promising future
development of this work.
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Fig. 3: Second simulation: case of pseudo-lattice desired bearing formation. Red squares and green circles represent the initial and final
positions, respectively. Solid lines represent the agent trajectories and dashed lines represent the measure graph used Gm. First case
(coincident graphs): (a): trajectories, (c): regulation error. Second case (non-coincident graphs) (b): trajectories, (d): regulation error
norm, (e): measure estimation error norm, (f): parameter estimation error norm.
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