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Bilateral Teleoperation of Multiple UAVs with
Decentralized Bearing-only Formation Control

Antonio Franchi, Carlo Masone, Heinrich H. Bülthoff, and Paolo Robuffo Giordano

Abstract— We present a decentralized system for the bi-
lateral teleoperation of groups of UAVs which only relies
on relative bearing measurements, i.e., without the need of
distance information or global localization. The properties
of a 3D bearing-formation are analyzed, and a minimal set
of bearings needed for its definition is provided. We also
design a novel decentralized formation control almost globally
convergent and able to maintain bounded and non-vanishing
inter-distances among the agents despite the absence of direct
distance measurements. Furthermore, we develop a multi-
master/multi-slave teleoperation setup in order to control the
overall behavior of the group and to convey to the human
operator suitable force cues, while ensuring stability in presence
of delays and packet losses over the master-slave communication
channel. The theoretical framework is validated by means of
extensive human/hardware in-the-loop simulations using two
force-feedback devices and a group of quadrotors.

I. INTRODUCTION
Teleoperation of a group of mobile robots in a bilateral way
(i.e., providing a force feedback to the human operator) is
an emerging topic which combines autonomous multi-robot
system research with the studies on human-robot interaction.
This topic received a rapidly-increasing attention in recent
years, starting from [1], [2], [3] up to [4] and [5].

The use of a system with multiple deployable agents
instead of a bulky robot presents undoubtable advantages,
since a decentralized solution increases the robustness and
flexibility of the robotic system. These advantages constitute
the main motivation between the high number of recent
publications in this field, see [6], [7], [8] just to cite a few. On
the other hand, in real scenarios, the complete autonomy of
multiagent systems is still far from being a reality because
of the complexity and unpredictability of the environment
as, e.g., in search and rescue missions. Therefore, in many
practical cases, the use of a semi-autonomous group of robots
partially guided by a human operator still represents the only
viable solution. As an alternative to unilateral teleoperation,
the use of suitable sensorial feedback has also been proved
to improve the (tele-)presence of the human operator, in
particular by exploiting the haptic (force-feedback) sense [9].
It is then interesting to study the possibility of establishing
a bilateral teleoperation channel interfacing a human oper-
ator with a remote group of agents possessing some local
autonomy, but still bound to follow the high-level human
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motion commands. We focus our attention to the particular
case of a swarm of Unmanned Aerial Vehicles (UAVs)
because of their adaptability and potential pervasiveness to
many different scenarios. Nevertheless our results may be
seamlessly extended to ground, marine and submarine robots.

In this paper, for the sake of autonomy, we designed
our system to be independent from the knowledge of the
absolute position in space of the UAVs. In addition, we
aimed for a solution using standard, light-weight, low-energy,
and cheap sensors. A camera, for example, well fits these
requirements, especially when compared to other active
sensing devices like laser/structured-light range-sensors. We
also decided to not use stereo-cameras since the typical aerial
distances would require a too large baseline in order to
extract the depth. In addition we avoid any depth estimation
and we delegate to the human operator the role of regulating
the expansion/contraction rate of the swarm. Therefore we
assume that the inter-sensing system between UAVs (e.g.,
cameras) provides only the relative bearings (i.e., the point-
ing directions in the sensor frame).

In our teleoperation scenario the slave side is made of a
group of UAVs able to only measure the reciprocal (relative)
bearings and to control their linear and angular speed. At
the beginning of the task the human user selects a set of
desired relative bearings in order to restrict the motion of the
group to a shape which is scale-, placement-, and rotational-
invariant (a bearing-formation). The desired relative bearings
are typically chosen in order to optimize some useful criteria,
e.g., guarantee inter-UAV visibility or environmental cover-
age. The swarm autonomously achieves the desired bearing-
formation without collapsing or indefinitely expanding (de-
spite the fact that the inter-distances are not measured). The
operator controls the translational velocity of the formation
and its dilation rate, by manipulating the position of two
haptic devices, and receives a force feedback proportional to
the velocity and expansion-rate tracking error of the UAVs.

The main contributions of this paper follows: we describe
and analyze rigorously the concept of bearing-formation.
We find the minimal set of bearings needed to uniquely
define a bearing-formation, with linear cardinality in the
number of robots. We design a bearing-formation control for
aerial agents which uses only the relative bearings, converges
almost globally, stabilizes the inter-distances to a finite value,
and does not need any persistent excitation to accomplish the
task. We propose a new system for the bilateral teleoperation
of a group of UAVs using only vision sensors, instead of dis-
tance ones, and we use a multi-master/multi-slave approach
where one master is used to control the translation and the
second one to regulate the expansion rate. We ensure stability



of the system in presence of delays and packet losses on
the master-slave communication channel. Finally, we validate
the theory by means of extensive human/hardware-in-the-
loop simulations with a group of quadrotors and two force-
feedback devices (as shown in the accompanying video).

The paper is organized as follows: in Sec. I-A we present
a literature review. In Sec. II we model the tele-operated
multi-robot system. In Sec. III and IV we analyze the
bearing-formation and design the controllers for the slave
side. Section V illustrates the master-side controller and
Sec. VI presents the human/hardware-in-the-loop simula-
tions. Finally, Sec. VII concludes the paper and the Appendix
provides a brush-up on polar coordinates and all the proofs.

A. Related Work

A passivity-based approach for the bilateral teleoperation
(BT) of a group of holonomic/non-holonomic ground robots
is presented in [1], [2]. In [3] UAV-BT is performed coupling
the position of a master device to the position of the centroid
of the formation. On the contrary, [5] presents a UAV-BT
scheme where the position of the master device controls
the velocity of the centroid. In [4] a decentralized UAV-
BT control strategy based on a leader-follower approach
is proposed which allows the formation to split and rejoin
in a passive way. All the aforementioned approaches need,
directly or indirectly, to measure the inter-distance between
the robots in order to ensure the slave-side formation control.

In the literature on autonomous formation control the
use of bearing measurements has been mostly considered
for groups of non-holonomic ground robots, with a special
regard on leader-follower configurations. In [10] a leader-
follower control is proposed based on input-output feedback
linearization. In [11] distance is achieved using an Extended
Kalman Filter and a neural network. In [12] a leader-follower
approach based on feedback linearization is proposed. In [13]
parallel and circular constant speed formation are obtained
using the bearing angle, optical flow and time to collision.
The control objective of all the aforementioned approaches
includes the regulation of the inter-distances (estimated from
the bearings) to a specified value Therefore, they require
the whole formation to keep moving in order to achieve
the desired bearings and inter-distances. This persistent-
excitation behavior is not needed in our approach.

Finally, a consensus-based approach [14] is also not ade-
quate for us since it would require knowledge of the inter-
distances between the UAVs.

II. THE SLAVE SIDE

The slave-side of the proposed teleoperation system is
composed of N UAVs, modeled as rigid bodies in space,
therefore the configuration of each one is described by a point
in SE(3). Denote with q?i = (p?i , θ

?
i ) ∈ R3×S1 the centroid

and the yaw angle of the UAV respectively. We assume that
the i-th UAV is able to track any smooth reference trajectory
(pi(t), θi(t)) with (p?i , θ

?
i ). A sufficient condition for the

previous assumption is that the position of the centroid and
the yaw angles are flat outputs [15], or, equivalently, that the
UAV is dynamically feedback linearizable. It is well known

that both helicopters and quadrotors meet this property [16],
[17]. A description of the particular trajectory controller used
to track the reference trajectory is outside the scope of this
paper, as an example, we refer the reader to [18], [19] where
related controllers for quadrotors are proposed. As a matter
of fact, the configuration of the real UAV will not exactly
track the reference trajectory due to, e.g., inertia, actuator
limits, sensors noise, and air drag. We assume that the UAV
is endowed with a trajectory tracking controller allowing to
follow the velocity commands with a good performance, by
keeping tracking errors small enough. This is a common
assumption in literature (e.g., see [7], [8]).

In order to produce online an effective reference trajectory
pi(t), θi(t) for the i-th UAV, we use a trajectory planner, i.e,
a kinematic system (henceforth called agent) whose state is
the pair qi = (pi, θi) ∈ R3 × S1 and inputs are the linear
velocity ui and the yaw-rate ωi:(

ṗi
θ̇i

)
=
(
Ri 0
0T 1

)(
ui
ωi

)
, (1)

where 0 = (0 0 0)T , and matrix Ri represents a rotation of
angle θi around the z axis. We denote the inverse/transpose
of Ri with iR = RTi , and the rotation between two body
frames with iRj = iRRj . The reduced configuration space
and the related kinematic model (1) stem from practical
foundation. In fact in the real world, even if no global
positioning system is given, measurement of the direction of
gravity is quite reliable and available everywhere by means
of an accelerometer, from which the UAV can obtain roll and
pitch angles. On the contrary, measurement of an additional
inertial direction (such as the the north with a compass) is
often unreliable or not available at all (e.g., indoor, or in
presence of exogenous magnetic fields).

In our context a bearing is a unit vector in R3, i.e., a point
in S2, the unit sphere. The i-th agent measures the relative
bearing, in its body frame, w.r.t. the j-th agent:

iβij = iRpij/δij , (2)

where pij = pj − pi, and δij = ‖pj − pi‖ is the inter-
distance between agent i and j. The i-th agent is not able to
measure either the inter-distance δij w.r.t. any j 6= i, or its
absolute configuration qi, i.e., its world frame configuration.
Relative bearings can be measured directly from the image
of a monocular camera and the knowledge of roll and pitch
angles. On the contrary, inter-distance is not immediately
available from the image. A possibility to recover this
information would require the exact knowledge of the real
agent dimensions to be compared with its apparent size.
Unfortunately, the computation of the apparent size is not
feasible with normal cameras in the range of the typical aerial
distances. Lastly notice that the model (1–2) may describe
both a UAV with a camera mounted on a pan unit, as well
as UAV which can turn on the z axis independently from the
direction of motion, e.g., the quadrotors used in Sec. VI.

The first objective of the slave-side is to autonomously
keep the desired bearing-formation, i.e., to stay in the equiv-
alence class of formations specified giving a set of desired
relative bearings to every agent. These kinds of formations
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are analyzed in Sec. III. The second objective of the slave-
side is to allow the operator to steer the overall motion of the
formation while keeping the desired bearing-formation. In
Sec. III, Prop. 3, we will show that the motions not affecting
all the bearings (i.e., tangent to a bearing-formation) are a
linear combination of 3 types: (1) synchronized translation,
(2) dilation, and (3) rotation around a line parallel to the
z axis of the world frame. We will also show that inter-
distances are necessarily needed to perform a synchronized
rotation, although knowledge of the bearings only is suf-
ficient to realize the other two synchronized maneuvers,
namely translation and dilation. For this reason we will allow
the human operator to translate and dilate the formation, but
not to rotate it.1

In order to achieve the two aforementioned objectives we
split the control inputs in two terms

(ui, ωi) = (µfi , ω
f
i ) + (µmi , 0). (3)

The first term (µfi , ω
f
i ) is used to reach the desired bearing-

formation and will be described in Sec. IV-A. The second
term (µmi , 0), detailed in in Sec. IV-B, allows the human
operator to control the translation and expansion of the
formation without altering the bearing-formation.

III. BEARING-FORMATIONS

In our context a formation is a vector of configurations
q = (q1, . . . , qN ) ∈ (R3 × S1)N . A bearing-formation
is specified by constraining to certain fixed values all the
relative bearings between the agents, i.e., a bearing-formation
is the equivalence class of all the formations realizing the
same relative bearings. We denote with N the set {(i, j) ∈
{1, . . . , N}2|i 6= j}. A set of N(N − 1) relative bearings
{iβij ∈ S2}(i,j)∈N is feasible if there exists a formation
realizing them (henceforth called a realization). Checking
whether a set of bearings is feasible or not means verifying
whether a system with N(N − 1) vectorial equations of the
form of Eq. (2) in 4N scalar unknowns has at least a solution.
Notice that if N < 3 any two relative bearings are feasible.
In the following we assume a group of at least 3 agents.

In this Section we address three basic points about bearing-
formations: (1) we define the remaining degrees of freedom
of a formation (Prop. 1), (2) we find a minimal set of relative
bearings sufficient to constrain all the other relative bearings,
with cardinality linear in the number of robots (Prop. 2),
and (3) we illustrate synchronized motions, i.e., the collective
motions that keep constant all the relative bearings (Prop. 3).
For the reader’s convenience, all the proofs are in App. B.

Propositon 1: (Remaining degrees of freedom with con-
strained bearings) If a feasible set of bearings has a real-
ization where the positions of at least three agents are not
aligned, then all its realizations are defined up to a translation
in R3, a rotation around the z axis, and a scale factor.

Propositon 2 (Minimal set of relative bearings): Given a
feasible set of bearings {iβij}(i,j)∈N , if ∃ i, j s.t.(
iβik

∣∣−iRjjβjk
)
∈ R3×2 is full-rank for every k 6= i, j

1Our results could be easily adapted to the case where a depth estimator
can be used to perform a synchronized rotation.

(i.e., agents i and j are not aligned with any other agent),
then the relative bearings iβij ,

jβji and iβik,
jβjk,

kβki
for every k 6= i, j are necessary and sufficient to uniquely
constrain all the remaining bearings of the formation.

Considering together Prop. 1 and 2, we can conclude that
if 2 agents are not aligned with any other agent, a set of
3N − 4 bearings is sufficient to specify the whole formation
up to a translation, scaling, and rotation.2 Therefore, although
the total number of bearings in a formation is quadratic in
the number of agents N , the bearings can be specified by
only constraining a suitable subset whose cardinality is linear
in N .

For any i, j, k with i 6= j we define p̂ij = pij

δij
, γijk = δik

δij
,

and M =
[
M ′ 0
0T 0

]
, with M ′ =

[
0 −1
1 0

]
. The following

result is instrumental for Prop. 3.
Lemma 1 (Bearing-invariant motions for 3 agents):

Given 3 non-aligned agents 1, 2 and 3, the motions that
keep the relative bearings constant are a sum the following
three primitives:

1) (ṗi, θ̇i) = (v, 0) (synchronized translation)
2) (ṗi, θ̇i) = (−ωMp1i, ω) (syn. rotation around ag. 1)
3) (ṗi, θ̇i) = (λγ12ip̂1i, 0) (syn. dilation around ag. 1)

where i = 1, 2, 3, v is any velocity vector in R3, ω and λ
are any two scalars in R.

Note that knowledge of relative-bearings (and not of inter-
distances) is sufficient to perform the synch. dilation in 3). In
fact, γiji = 0, γijj = 1, and, using cross-products, we have,

∀k 6= i, j γijk = ‖jβji×jβjk‖
‖kβki×kβkj‖ . On the other hand, knowledge

of inter-distances is needed to perform the rotation in 2).
In the following Prop. 3 we characterize the motions

keeping the same bearing-formation for any number of
agents N .

Propositon 3 (Bearing-invariant movements for N agents):
Given a bearing-formation where two agents, w.l.o.g. 1 and
2, are not aligned with any other agent, the motions that
keep the relative bearings constant are given by the linear
combination (ṗh, θ̇h) = ((vx vy vz)T , 0) + ω(−Mp1h,−1)
+λ(γ12hp̂1h, 0), for any h = 1, . . . , N , vx, vy, vz, ω, λ ∈ R,
where we assumed p̂hh = 0 by convention.

The terms vx, vy, vz represent a uniform translation in
any direction, ω a synchronized rotation around the verti-
cal axis passing through the agent 1, and λ an isotropic
dilation/contraction centered on the agent 1. By properly
combining rotation (dilation) with translation we can achieve
a rotation around any vertical axis, and a dilation w.r.t any
point. For instance, setting λ = 0 and (vx vy vz)T = Mp13

generates a rotation around the 3-rd agent.

IV. CONTROL OF THE SLAVE SIDE
A. Control of the Bearing-Formation
The slave-side controller realizes the desired bearing-
formation by solving the following control problem:

Problem 1 (Bearing-formation control): Given a set of
feasible desired bearings {ibij}(i,j)∈N , find a control

2For any other set of feasible bearings in which such a pair of indexes
i, j does not exists, a larger number of bearings would be needed.
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Fig. 1: Visual representation of the formation control law in the
case of three agents. Agent 1 and 2 are the beacon agents. Agent 1
is stationary. Agent 2 rotates around 1 and moves vertically in order
to reach the desired elevation. Agent 3 moves towards its desired
scale-free position.

law {(µfi , ωfi )}i=1,...,N , depending only on the measured
relative-bearings {iβij}(i,j)∈N , which steers iβij to ibij ,
∀(i, j) ∈ N and the distances {δij}(i,j)∈N to a constant
non-zero value.

We use the polar parametrization of a relative bearing iβij
in terms of elevation iηij ∈ [−π/2 π/2] and azimuthal angle
iαij ∈ (−π π] defined by

iβij =
(
cos iηij cos iαij cos iηij sin iαij sin iηij

)T
, (4)

denoting in brief iβij ≡ (iαij , iηij). See App. A for a
brush-up on polar coordinates. By convention we use greek
symbols for measured quantities and the corresponding latin
symbols for their desired values.

Propositon 4: Given a starting configuration described
by the bearings {iβ0

ij ≡ (iα0
ij ,

iη0
ij)}(i,j)∈N such that∥∥1β0

1i × 2β0
2i

∥∥ 6= 0, cos 1η0
12 6= 0, and a set of feasi-

ble desired bearings {ibij ≡ (iaij , ieij)}(i,j)∈N such that∥∥1b1i × 2b2i
∥∥ 6= 0, cos 1e12 6= 0 for all i = 3, . . . , N ,

control law (5–9) asymptotically, and almost globally, steers
iβij → ibij and δij → d̄1iδ

0
12 cos 1η0

12, for any (i, j) ∈ N

µf1 = 0 ωf1 = 0 (5)

µf2 =− Kp

cos 1η12

[
sin(1α12 − 1a12)M 1β12+

((
sec 1η12

1β12 − sec 1e12
1b12

)
· ẑ
)
ẑ
]

(6)

ωf2 = Kω sin(2α21 − 2a21) (7)

µfi =−Kp
iR1

(
δ̄1i

1β1i − d̄1i
1b1i

)
(8)

ωfi =
{
Kω sin(iαi1 − iai1) if cos iei1 6= 0
Kω sin(iαi2 − iai2) otherwise (9)

where i = 3, . . . , N , ẑ = (0 0 1)T , δ̄1i = γ12i sec(1η12), δ012
is the initial inter-distance between agents 1 and 2, d̄1i =
‖2b21×2b2i‖
‖ibi1×ibi2‖ sec(1e12) = d1i

d12
sec(1e12), ibij ≡ (iaij , ieij),

Kp,Kω are positive gains, and iR1 can be computed as
RT (αi1)R(π)R(α1i), denoting by R(∗) the rotation matrix
of a given angle around ẑ.

Remark 1: Because of their special role, agents 1 and 2
will be denoted in the following as beacon-agents.

Control (5-6) keeps the position of agent 1 fixed. Hence,
as it will be clear in Sec. IV-B, agent 1 is a suitable reference
agent for the steering of the whole formation, since its
translational dynamics will be affected only by the human
commands (see Fig. 1). In addition, agent 2 only changes its

altitude and rotates around agent 1 while keeping constant
the length of the projection of the line between agent 1 and 2
(namely δ12 cos 1η12). Notice also that the role of the beacon-
agents in Prop. 4 can be taken by any other pair satisfying
the Proposition hypotheses.

Communication complexity of (5–9) is linear in N since
only agent 1 (resp. 2) is required to send to each agent
i = 3, . . . , N the relative bearings 1β1i,

1β12 (resp. 2β2i,
2β21). The total number of measurements needed is linear
in N since every agent i = 3, . . . , N needs to measure only
the relative bearings iβi1 and iβi2. The number of measures
needed by every agent but 1 and 2 is constant w.r.t N .
Since each agent computes its control term (µfi , ω

f
i ) by only

using its 2 measurements and 4 additional measurements
received from 1 and 2, we can conclude that (5–9) is almost
decentralized3.

Control (5–9) is singular in some special zero-measure
cases, i.e., when the i-th agent is aligned with agents 1 and
2, and when it is placed above agent 1 or 2. The practical
approach used in Sec. VI is to apply a suitable constant
control in the neighborhood of such singular configurations
in order to quickly overcome these critical points.

B. Control of the Overall Motion

In this Section we design the term µmi of control (3) in order
to steer the overall motion of the formation without affecting
the bearing-formation. In particular we want to solve the
following control problem:

Problem 2 (Overall-motion control): Given two reference
agents, w.l.o.g. 1 and 2 (the beacon-agents), a translation
velocity vector νt ∈ R3, and an expansion speed r ∈ R,
find a control law (µmi , 0) (i = 1, . . . , N ) depending only on
the measured relative bearings {iβij}(i,j)∈N which regulates
ṗ1 to νt and δ̇12 to r while keeping all the relative bearings
{iβij}(i,j)∈N constant.

In order to solve Prob. 2 we use the following controller:

µmi = iRνt − rγ12i
iβi1. (10)

Propositon 5: Control (10) solves Prob. 2.
The human operator can control the translation and the rate

of expansion of the whole formation by manipulating νt and
r respectively. Note that if (µfi , ω

f
i ) and (µmi , 0) are solution

of resp. Prob. 1 and Prob. 2, then also (µmi + µfi , ω
f
i ) is a

solution of Prob. 1. This simple fact holds since (µmi , 0) does
not affect the relative bearings. Moreover, if the reference
agent 1 is also chosen as first beacon agent, its translational
dynamics will be only affected by the command νt, resulting
in an easier maneuverability of the swarm.

If (10) is executed by only a subset of the agents (in-
cluding 1 and 2), the human would be still able to steer the
whole group while approximately maintaining the bearing-
formation. In fact, as the operator commands remain bounded
(because of the limited workspace of the haptic devices), the

3A formation controller is called centralized if all the measurements taken
from the whole agents are needed to compute every single control term for
each agent, while is said to be decentralized if the control term of an agent
i needs only quantities relative to itself and its neighbors retrieved by local
communication and/or perception.
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bearing-formation control would keep the bearing-formation
error bounded as well. This fact has been empirically proven
in our simulations, and a rigorous characterization will be
addressed in future works.

V. THE MASTER SIDE
We use a 3DOF and a 1DOF force feedback devices in
order to control translation and expansion rates of the agent
formation. The 3DOF haptic device is modeled as

M(xt)ẍt + C(xt, ẋt)ẋt = τ t + f t (11)

where xt ∈ R3 is the configuration, M(xt) ∈ R3×3 is the
positive-definite/symmetric inertia matrix, C(xt, ẋt) ∈ R3×3

is the Coriolis matrix, and τ t,f t ∈ R3 are the control and
human forces, respectively. The 1DOF device is modeled as

mẍr = τr + fr (12)

where xr ∈ R is the position, m ∈ R+ is the mass, and
τr, fr ∈ R3 are the control and human forces, respectively.

After having chosen the beacon agents 1 and 2, the tele-
control is implemented by setting in (10)

νt = λtxt, r = λrxr, (13)

where λt > 0 and λr > 0 are used suitable scaling factors
from (xt, xr) to the desired agent velocities. Therefore the
velocity commanded by the master to the i-th agent, in its
local frame, results in:

vmi = λt
iRxt − λrxrγ12i

iβi1. (14)

which can be computed by the i-th agent using only local
measurements and the measurements from agents 1 and 2 by
means of local communication.

The UAVs are assumed to track the i-th agent velocity with
sufficient precision. However, during the transients, the UAV
actual velocity q̇?i will not track exactly the agent velocity
q̇i. In order to implement the tele-sensing, we provide the
operator with two haptic cues proportional to the translation-
velocity and expansion-speed tracking errors respectively,
defined as

et = xt − zt(t) er = xr − zr(t) (15)

zt =
1

λtN

N∑

i=1

(λrxrγ12iRi
iβi1 +Ri

iq̇?) (16)

zr =
1

γ12iλrN

N∑

i=1

iq̇? · iβi1 (17)

The i-th UAV sends to the master device its current veloc-
ity in body frame iq̇?i [k] = iRq̇?i [k], where the symbol [k]
indicates that the signal is received, sampled and discretized
over the master-slave communication channel. The master
controller uses all the received velocities in order to compute
zt[k] and zr[k], and implements the teleoperation controls as

τ t = −Btẋt −Ktxt −K?
t (xt − z̄t[k]) (18)

τr = −Brẋr −Krxr −K?
r (xr − z̄r[k]) (19)

where Bt, Br are a positive definite damping matrix whose
role is to stabilize the master devices, Kt,Kr are diagonal

(a) (b)

3
2

1

Fig. 2: Human/Hardware in-the-loop simulation setup in the case of
3 UAVs. Fig. 2-a: top-view of the physically simulated quadcopters.
Fig. 2-b: two haptic devices used to get the motion commands and
feed back the control forces.

matrix with non-negative entries (possibly all zeros) whose
role is to give to the user the perception of the distance
from the zero-commanded velocity, and z̄t(k), z̄r(k) are the
passive set-position modulation (PSPM) versions of zt(t)
and zr(t) respectively. By following the framework proposed
in [5], we exploit here the PSPM algorithm [20] to ensure
master passivity [21] w.r.t. the pairs (power ports) (τ t, zt)
and (τr, zr) with the control (18–19). Indeed, the PSPM
action can enforce a passive behavior on the master also in
presence of delays and packet losses in the communication
channel (see [20] for details). This is sufficient to guarantee
a stable interaction with a passive environment such as the
human side [22] and our kinematic system, and thus an
overall stable teleoperation.

VI. HUMAN/HARDWARE IN-THE-LOOP
SIMULATIONS

We conducted several human/hardware in-the-loop simula-
tions in order to prove the effectiveness of the proposed
approach. We simulated a group quadcopters using the 3D
engine OGRE as well as PhysX for the simulation of
forces and physical interactions (see Fig, 2-a). Each UAV
is controlled by a separate process which communicates via
network with the simulator in the same way as it would
communicate with a real robot. The translational command
νt is provided by an Omega.3 haptic feedback device, that
features 3 actuated degrees of freedom (DOF). An Omega.6
device, constrained to move in 1 DOF, is used to control the
dilation rate r. The two devices are shown in Fig, 2-b The
forces τ t in (18) and τr in (19) are presented to the human
operator with a frequency of 2.5 kHz. The simulations are
further documented in the accompanying video.

Here we present the result of a significant simulation
where 10 UAVs start far away from the desired bearing-
formation. The simulation is articulated in two phases: at
first, the formation control alone is active, driving the UAVs
to the desired bearing-formation; at the time t = 24 s
(vertical dashed black line in Fig. 3a-f), the human operator
commands are enabled (translation, dilation) and the force
feedback is activated on the haptic devices. While enabling
the operator inputs from the very beginning would have not
affected the performance of the formation control, this choice
helps to highlight the effects of the different terms of the
control. Fig. 3-e, shows the evolution of the average quadratic
error of the bearing-formation, which goes exponentially
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Fig. 3: Fig. 3-a,c: Average velocity and yaw rate tracking errors;
Fig. 3-b: Operator commands: translation velocity and expansion-
speed (dashed line); Fig. 3-d: Mismatch between commands and
executions; Fig. 3-f: Force feedback; Fig. 3-e Mean square error
w.r.t. desired bearing-formation.

to zero and does not increase when the human inputs are
enabled. Fig. 3-a,c shows the average velocity and yaw rate
tracking errors of the physically simulated UAVs w.r.t. the
reference trajectory velocities of the agents in Eq. (1). As
expected, due to the flatness of the quadrotor, the flight
controller is able to keep the tracking error small. In Fig. 3-
b the 3 components of the commanded translation velocity
νt and the commanded expansion-speed r) are depicted with
solid and dashed lines respectively. For the sake of clarity, the
simulation shows a sequence of all the elementary commands
from Prop. 3, with a sequence of rapid translations along the
main directions, followed by a dilation/contraction action.
The mismatches between the commands and the actual trans-
lational/dilation velocities are represented in Fig. 3-d, and the
force feedback provided to the operator in Fig. 3-e. The peaks
of the mismatch, and consequently of the force feedback,
correspond to high accelerations in the commands, and are
due to the inertia of the physically simulated quadcopters.
By means of this feedback the human operator is provided
with a direct feeling of the remote-UAVs performances.

VII. CONCLUSIONS AND FUTURE WORK
In this paper we presented an innovative decentralized system
for the bilateral teleoperation of groups of UAVs based on

bearing-only measurements, i.e., without relying on distance
measurements or global localization. A possible extension
would be to (i) implement the proposed approach with real
UAVs; (ii) estimate the inter-distances using the synchro-
nized rotation, and (iii) use the estimated inter-distances in
order to deal with the presence of obstacles.
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APPENDIX

A. A Brush-up on Polar Coordinates

A bearing iβij ∈ S2 (unit sphere) can be parameter-
ized in terms of the elevation angle iηij ∈ [−π/2 π/2]
and the azimuthal angle iαij ∈ (−π π] as in (4). Note
that iβij = −iRjjβji, 2η21 = −1η12, and iRj =
RT (iαij)R(π)R(jαji), with R(∗) being the rotation matrix
of a given angle along the z axis. This parametrization
exhibits a singularity when cos iηij = 0, i.e., when agents i
and j are placed on a vertical line, since iαij is not defined.

In accordance with the polar coordinate
convention, we define the unit vectors iαij =
∂ iβij/∂

iαij

‖∂ iβij/∂
iαij‖ =

(
− sin iαij cos iαij 0

)T =
(ẑ×iβij)

‖ẑ×iβij‖ and iηij = ∂ iβij/∂
iηij

‖∂ iβij/∂
iηij‖ =

(
− sin iηij cos iαij − sin iηij sin iαij cos iηij

)T =
iβij × iαij with ẑ = (0 0 1)T . The dynamic equations of
the azimuthal and elevation angles in terms of the controls
in (1) follow from equations from the definitions

iα̇ij = −ωi +
1
δij

(jαTjiuj − iαTijui) (20)

iη̇ij =
1
δij

(jηTjiuj − iηTijui) (21)

After some algebra, it is possible to find the dynamic
equations for iβij and δij , where i, j = 1, . . . , N , i 6= j

δ̇ij =− jβTjiuj − iβTijui (22)

˙iβij =− ωi iαij +
1
δij

[
(jαTjiuj − iαTijui)

iαij+

(jηTjiuj − iηTijui)
iηij

]
. (23)

B. Proofs

Proof: [of Prop. 1] To demonstrate the thesis we prove
that, if the distance δij is known for a pair i, j then the
coordinates of the realization in the body frame of the agent
i is unique.

Given a realization of the bearing formation, a translation
in R3 of this realization is a new realization. In fact, such
a translation does not modify neither the orientation of
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the agents nor their relative positions and thus the relative
bearings defined as in (2) remain unaltered.

Any relative orientation iRj can be computed directly
from the equation iRj

jβji = −iβij , except if jβji (and
hence also iβij) is parallel to ẑ. In this last case the com-
position of more than one rotations with a third additional
agent not aligned with i and j is needed. In short, as three
agents are not aligned, it is possible to compute all their
relative orientations and in particular the relative orientations
w.r.t. i. Therefore the relative yaw angles between the agents
expressed in the body frame of i are fixed, and a rotation
around ẑ of the whole formation does not change them, thus
yielding a new realization.

Finally, since we know the distance δij between i and j,
every other distance δki, δkj can be computed by solving
the triangulation equation

(
iβik

∣∣−iRjjβjk
)

(δik δjk)T =
δij

iβij which has a unique solution iff the agent k is not
aligned with i and j, i.e., iff

(
iβik

∣∣−iRjjβjk
)

is full-
rank. The existence of such an agent k is guaranteed by
the presence of three non-aligned agents. Scaling up/down
δij and every other distance δki, δkj accordingly, does not
modify the bearings in the triangulation thus resulting in a
new realization.

Proof: [of Prop. 2] The sufficiency is a direct con-
sequence of the proof of Prop. 1. The minimality comes
from the fact that the elimination of any bearing constraint
increases the number of degrees of freedom. In fact each
bearing constraint gives 2 independent equations (elevation
and azimuth), but opposite bearings give only 3 independent
equations, since the elevations are opposite in sign. Therefore
the number of independent equations implied by the bearing
constraints are: 3 for iβij ,

jβji; 3(N − 2) for iβik,
kβki

(k 6= i, j); and only (N − 2) for jβjk (k 6= i, j) since the
elevation of jβjk must sum to 0 with the elevations of jβjk
and iβij . The total number of equation is 4N − 5, which is
exactly the number of constraints needed to have 5 degrees
of freedom for a team of N agents.

Proof: [of Lemma 1] From Prop. 2, it is sufficient to
show that 1β12, 1β13, 2β21, 2β23 and 3β31 are maintained
constant to prove that a motion does not change the bearing-
formation. The time derivative of a bearing vector is ob-
tained by differentiating (2), i.e., for 1β12 it is R1

1β̇12 =
ωiM p̂12+ 1

δ12
P (p̂12)ṗ12, where P (p̂ij) = (I−p̂ij p̂Tij) with

i, j = 1, 2, 3 and i 6= j is the matrix projecting a vector in
R3 on the plane perpendicular to p̂ij . Then, by imposing
1β̇12 = 0 it results 0 = ω1Mp12 + P (p̂12)ṗ12. Similarly,
from the other bearings follow the constraints

0 = ω2Mp21 + P (p̂21)ṗ21 (24)
0 = ω1Mp13 + P (p̂13)ṗ13 (25)
0 = ω3Mp31 + P (p̂31)ṗ31 (26)
0 = ω2Mp23 + P (p̂23)ṗ23, (27)

where it has been exploited the fact that pij = −pji, ṗij =
−ṗji and p̂ij = −p̂ji for i, j = 1, 2, 3 and i 6= j.

Consider now only the constraints relative to 1β12 and
2β21. By subtracting the second from the first it results
(ω1 − ω2)Mp12 = ω12Mp12 = 0. This constraint is

satisfied if either if p̂12 = ẑ, which implies Mp12 = 0,
or ω12 = 0. Hereafter, we will assume that p̂12 6= ẑ, being
this a more general and less restrictive situation. Therefore,
constraint ω12 = 0 will be used instead of (24). This same
reasoning can be applied to replace (26) with ω13 = 0.

The constraints (24–27) and the ones on ω12 and ω13 can
be written in matrix form as26664

03×3 P (p̂12) 03×3 Mp12 0 0
03×3 03×3 P (p̂13) Mp13 0 0
03×3 −P (p̂23) P (p̂23) Mp23 0 0
01×3 01×3 01×3 0 1 0
01×3 01×3 01×3 0 0 1

37775
| {z }

A11×12

266664
ṗ1

ṗ12

ṗ13

ω1

ω12

ω13

377775
| {z }
t12×1

= 0,

where it was also exploited the fact that ṗ23 = ṗ13 − ṗ12.
Finally, the motions t that do not change the bearings of the
formation are in the kernel of A ∈ R11×12.

Consider now the first macro-row of the matrix A. The
matrix P (p̂12) spans the plane perpendicular to p̂12, so its
dimension is 2. The vector Mp12 is perpendicular to p̂12

owing to the structure of M , i.e., P (p̂12)Mp12 = Mp12.
Hence, the first macro-row of A has rank 2. With the
same reasoning it can be shown that the second macro-
row of A has rank 2 as well. The third macro-row has
at least a row which is linearly independent w.r.t. the first
macro row (since −P (p̂23) is linearly independent w.r.t.
P (p̂12). In the end, considering the two final row we
can conclude that it is rank(A) ≥ 7. Lastly, the proof
is concluded by the fact that the following 5 vectors, be-
longing to ker(A), are independent. First the vector t1 =(
ṗT 01×3 01×3 0 0 0

)T ∈ R12×3. In fact At1 = 0. Synchro-
nized translations are described by t1. Second the vector
t2 =

(
01×3 −ω(Mp12)T ω(Mp13)T −ω 0 0

)T ∈ R12. It
is At2 = −ωP (p̂12)Mp12 + ωMp12 − ωP (p̂13)Mp13 +
ωMp13 − ωP (p̂23)M(p13 − p12) + ωM(p13 − p12) = 0
where it was exploited the property P (p̂12)Mp12 = Mp12.
Synchronized rotations around 1 are described by t2. In the

end the vector t3 =
(

01×3 λp̂
T
12 λγ123p̂

T
13 0 0 0

)T
∈ R12. It

is At3 = λP (p̂12)p̂12+λγ123P (p̂13)p̂13+ λ
δ12
P (p̂23)(p13−

p12) = 0. since P (v)v = 0. Synchronized dilations around
1 are described by t3.

Proof: [of Prop. 3] Assume w.l.o.g. that i, j are two
agents not aligned with any other. By applying the same
motion primitive from Lemma 1 to all the triplets of agents
i, j and k, with k = 1, . . . , N , k 6= i, j, the relative bearings
iβij ,

jβji,
iβik, kβki and jβjk for each triplet are kept

constant. Proposition 2 then guarantees that all the remaining
bearings do not change.

Proof: [of Prop. 4] From Prop. 2, it is sufficient to prove
the convergence of 1β12, 2β21, 1β1i,

2β2i and iβi1 to prove
the convergence of all the bearings.

Consider first the dynamics of 1α12. By injecting the con-

trols (5-7) in (20) it results 1α̇12 = −KP

δ12
sin(1α12 − 1a12)

with δ12 > 0, which proves that 1α12 → 1a12 apart from the
zero-measure condition 1α12− 1a12 = ±π which represents
an unstable equilibrium for the closed-loop system. The
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dynamics of 2α21 can also be determined by applying the
controls (5-7) to (20) as 2α̇21 = −Kω sin(2α21 − 2a21) −
1
δ12

2αT21 µ
f
2 , with Kω > 0. Since 1α12 → 1a12, then

µf2 → 0 and therefore 2α21 → 2a21. Finally, we can analyze
the dynamics of 1η12. By injecting the controls (5-6) in (21)

it results 1η̇12 = − Kp

δ12 cos 1η12 cos 1e12
sin(1η12 − 1e12),

with cos 1η12, cos 1e12 > 0, hence 1η12 → 1e12. It follows
also that 2η21 = −1η12 → −1e12 = 2e21. This proves that
1β12 → 1b12 and 2β21 → 2b21.

Before proving the convergence of the other
bearings, we will show that the controls (5–6)
do not change the product δ12 cos 1η12. From the
expressions of η̇ij (21) and of of η̇ij (22) it follows
that dδ12 cos 1η12

dt = − sin 1η12
(
2ηT21u2 − 1ηT12u1

)
−

cos 1η12

(
2βT21u2 + 1βT12u1

)
. Together with the

controls (5,6) this yields that dδ12 cos 1η12
dt =

(− cos 2α21 − sin 2α21 0) (−A sin 2α21 A cos 2α21 ∗)T| {z }
µ

f
2

= 0,

hence δ12(t) cos 1η12(t) = δ012 cos 1η0
12 and δ12 →

δ012 cos 1η0
12

cos 1e12
= d12.

We consider now the convergence of 1β1i. Injecting
the control (8) in the kinematic model of the agent ith
and expressing Pi in the body frame of the 1st agent,
it results 1ṗi = −KP

(
δ1i

δ12 cos 1η12
1β1i − d̄1i

1b1i

)
. Since

δ12(t) cos 1η12(t) = δ012 cos 1η0
12, the controller steers the

position of the ith agent, 1p1i = δ1i
1β1i, so that 1β1i →

1b1i and δ1i → d̄1iδ
0
12 cos 1η0

12 = d1i.
Consider now the triangulation δ2i

2β2i = δ12
2β21 +

2R1δ1i
1β1i. Having proven that 2β21 → 2b21, δ21 → d12,

1β1i → 1b1i and δ1i → d1i, it is straightforward to prove
that 2β2i → 2b2i and δ2i → d̄2iδ

0
12 cos η0

12 = d2i. The
control law (9) acts on the dynamics of iαi1 (see Eq. (20))
as iα̇i1 = − 1

δi1

iαTi1µi −Kω sin(iαi1 − iai1) and µi → 0.
Hence, we can conclude that iβi1 → ibi1. Finally, from
Prop. 2 it follows that iβij → ibij and δij → d̄1iδ

0
12 cos 1η0

12,
for any (i, j) ∈ N .

Proof: [of Prop. 5] The command (10) is a composition
of a translation νt and a dilation rγ12ip̂1i = −rγ12ip̂i1
expressed in world frame. From Prop. 3, it directly follows
that this command does not change the relative bearings of
the formation. Consider now the dynamics of δhj , obtained
by applying (10) to (22): δ̇hj = −jβTjh(jRhνt − rjβjh) −
hβThjν

t = jβTjh
jβjhr− (jβTjh

jRh + hβThj)ν
t = r, where it

was exploited the fact that jβTjh
jβjh = I and jβTjh

jRh =
hRj

jβjh = hβjh = −hβhj . This proves the thesis.

REFERENCES

[1] D. Lee and M. W. Spong, “Bilateral teleoperation of multiple coop-
erative robots over delayed communication network: theory,” in 2005
IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, Apr.
2005, pp. 360–365.

[2] D. Lee, “Semi-autonomous teleoperation of multiple wheeled mobile
robots over the internet,” in 2008 ASME Dynamic Systems and Control
Conference, Ann Arbor, MI, Oct. 2008.

[3] E. J. Rodríguez-Seda, J. J. Troy, C. A. Erignac, P. Murray, D. M.
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