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Distributed Online Leader Selection in the Bilateral Teleoperation of
Multiple UAVs

Antonio Franchi, Heinrich H. Bülthoff and Paolo Robuffo Giordano

Abstract— For several applications like data collection,
surveillance, search and rescue and exploration of wide areas,
the use of a group of simple robots rather than a single complex
robot has proven to be very effective and promising, and the
problem of coordinating a group of agents has received a lot
of attention over the last years. In this paper, we consider the
challenge of establishing a bilateral force-feedback teleoperation
channel between a human operator (the master side) and a
remote multi-robot system (the slave side) where a special
agent, the leader, is selected and directly controlled by the
master. In particular, we study the problem of distributed
online optimal leader selection, i.e., how to choose, and possibly
change, the leader online in order to maximize some suitable
criteria related to the tracking performance of the whole
group w.r.t. the master commands. Human/hardware-in-the-
loop simulation results with a group of UAVs support the
theoretical claims of the paper.

I. INTRODUCTION

Teleoperation of a group of mobile robots in a bilateral way
(i.e., providing a force feedback to the human operator) is
an emerging topic which combines the field of autonomous
multi-robot systems and the studies on human-robot inter-
action. This topic received a rapidly-increasing attention in
recent years, starting from [1], [2], [3] up to [4], [5], [6], [7],
[8], whose theoretical setting is also shared by this work.

The use of a system with multiple deployable agents
instead of a bulky robot presents undoubtable advantages,
since a decentralized solution increases the robustness and
flexibility of the robotic system. These advantages constitute
the main motivation between the high number of recent
publications in this field, see [9], [10], [11] just to cite a few.
On the other hand, in real scenarios, the complete autonomy
of multiagent systems is still far from being a reality because
of the complexity and unpredictability of the environment as
in, e.g., the case of search and rescue missions. Therefore, in
many practical cases, the use of a semi-autonomous group of
robots partially guided by a human operator still represents
the only viable solution. As an alternative to unilateral
teleoperation, the use of suitable sensorial feedback has also
been proven to improve the (tele-)presence of the human
operator, in particular by exploiting haptic cues via force-
feedback [12]. It is then interesting to study the possibility
of establishing a bilateral teleoperation channel interfacing
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a human operator with a remote group of agents possessing
some local autonomy, but still bound to follow the high-
level human motion commands. In this respect, we focus
our attention to the particular case of a swarm of UAVs
because of their adaptability and potential pervasiveness to
many different scenarios. Nevertheless our results may be
seamlessly extended to ground, marine and submarine robots.

In our previous works, we considered the situation where a
static communication link was established between the mas-
ter and either one [4], [6], [8] or a subset [5], [7] of the total
number of UAVs. The UAVs connected to the master were
denoted as leaders of the group, and their selection was made
at the beginning of the task without an explicit criterion. This
choice was also kept unchanged during the whole task exe-
cution. Starting from this scenario, in this work we consider
the possibility of letting the agents to autonomously choose
online the leader that will be connected to the master in order
to maximize some suitable criteria related to the tracking
performance of the master motion commands. In this sense
we refer here to online leader selection, in opposition to the
static leader election which has been deeply investigated for
autonomous multi-agent systems. In the static leader election
case, the problem is to find a distributed control protocol
such that eventually exactly one agent takes the decision that
it is the leader [13]. In [14], the leader election problem is
solved by the FLOODMAX distributed algorithm using explicit
message passing among the formation. In [15], the leader
election problem is solved using fault detection techniques
and without explicit communication, like in some species
of the animal world. However, in all these works the leader
election is assumed to be performed only once and the only
objective is to select any one out of many, i.e., without
considering some suitable criteria to be optimized.

The main contributions of these notes are the following:
(i) we introduce a practically relevant variant of the static
leader election problem, namely the online leader selection
problem, where the leader can be constantly selected as
a function of the current state of the system in order to
optimize some suitable criterion; (ii) we propose a dis-
tributed algorithm able to solve this problem by considering
the tracking performance of a reference trajectory as an
optimization criterion; (iii) we implement a bilateral force-
feedback teleoperation channel to let a human operator to
control the multi-agent slave, and (iv) we prove the stability
of the overall system in presence of switching leader, discrete
and/or delayed master/slave communication, and bilateral
force feedback on the human/master-device.

The paper is organized as follows: in Sec. II we illustrate



the overall teleoperation control architecture. In Sec. III the
main results about the slave dynamics and leader selection
algorithm are presented. In Sec. IV we show how to im-
plement in a stable (passive) way the force-feedback on the
master side. In Sec. V we present some simulation results
obtained by using a real haptic device and a human in the
loop, and we conclude the paper with Sec.VI.

II. TELEOPERATION CONTROL ARCHITECTURE

The slave side of our teleoperation system consists of a group
of N Unmanned Aerial Vehicles (UAV) tracking a set of N
kinematic agents in R3. The configuration and dynamics of
the agents are described by p = (p1, . . . ,pN ) ∈ R3N , with
ṗi = ui, where pi,ui ∈ R3 are respectively the position
and the control command of the i-th agent, i = 1, . . . , N . In
practice, the configuration and velocity of the actual UAVs,
denoted in the following as qi, q̇i ∈ R3, will in general
not track exactly the configuration/velocity pi, ṗi of the
corresponding kinematic agent. This is mainly because of
the UAV inertia, actuator limits, sensors noise, air drag, etc.
For the sake of this presentation, we assume that the UAVs
are embedded with a trajectory tracking controller capable
of following the corresponding kinematic agent with good
approximation, i.e., by keeping the tracking position and
velocity errors small enough. Many UAV tracking controllers
proposed in the past literature, such as [16], [17], could be
used in this sense. We also note that equivalent assumptions
have been made in previous related works: in [10] the authors
consider the UAV a simple kinematic integrator, in [11]
the UAVs are abstracted again as kinematic integrators with
some additional details on low-level PID controls.

The master device, with which a human operator interacts,
is a mechanical system described by the following Euler-
Lagrange equations:

M(x)ẍ+ C(x, ẋ)ẋ = τ + f (1)

where x ∈ R3 is the configuration, M(x) ∈ R3×3 the
positive-definite/symmetric inertia matrix, C(x, ẋ) ∈ R3×3

the Coriolis matrix, and τ ,f ∈ R3 the control and human
forces, respectively. Furthermore, teleoperation is performed
in the following sense: the position of the master x is
transformed into a velocity reference to be followed by the
N agents, namely

u? = ρx,

with ρ ∈ R+ being a scaling factor. Since in practice
the workspace of a master device is limited, we have that
‖x‖∞ ≤ X ∈ R+ implying that ‖u?‖∞ ≤ U? = ρX .

To enforce the teleoperation scalability w.r.t. the number
of agents, we assume a limited bandwidth (i.e., constant
w.r.t. N ) for the communication channel between master
and agents. Therefore we assume that the master can only
multicast the desired velocity u? to a limited number M of
agents, called leaders, at some discrete time instant tk = kT ,
where k = 0, 1, . . ., and T > 0 is taken as the master-leader
communication sampling time. In these notes, we consider
the case M = 1 (only one leader), and we also denote with

square brackets [k] the discrete sequence obtained sampling
a signal at tk, e.g., u?[k] := u?(tk). In accordance with
Def. 1 of Sec. III-C, the N UAVs composing the slave side
will then run a distributed algorithm in order to track the
discrete signal u?[k] in an optimal way by autonomously
selecting the leader, i.e., the recipient of the master command
u?. The following Sec. III will illustrate the details of this
strategy.

Finally, the bilateral nature of our teleoperation scheme
will provide the human user with a force cue τ inform-
ing him/her about the slave side motion status, e.g., the
discrepancy between the commanded velocity u? and the
actual velocities of the agents and UAVs. The description
and analysis of the force-feedback master control will be
done in Sec. IV.

III. THE SLAVE SIDE

Hereafter, for the sake of simplicity, we consider one-
dimensional agents composing the slave-side. We then de-
note with p = (p1 . . . pN )T ∈ RN the N positions of the 1-
dimensional agents, and with u?[k] ∈ R the desired velocity
sent by the master, whose norm is bounded by U?. Since
the slave dynamics on the 3 axes are decoupled, the results
can be straightforwardly reformulated in the 3-dimensional
case by means of the Krönecker product. The first-order
kinematics of each agent is then rewritten as ṗi = ui with
i = 1, . . . , N, where ui ∈ R is the 1-dimensional control
input of the i-th agent.

A. Classical Leader-Follower Dynamics

The primary goal of the slave side is to cohesively follow
the desired velocity u?[k] received from the master. However,
since because of communication constraints the master can
unicast only to one agent, we follow the framework proposed
in [18], [19], [20] (among the others) in order to propagate
the master velocity command to all the agents in a distributed
way.

We consider homogeneous leader-follower networks with
a fixed, connected, and undirected communication graph G.
We denote with Ni the neighbors of every agent i, i.e., the
agents with which i can communicate, and with aij ∈ {0, 1},
i, j = 1, . . . , N the entries of the adjacency matrix of G.
The control strategy analyzed in [18], [19] derives from the
consensus protocol, with the difference that an agent, called
leader, is fully controlled by an exogenous signal u, while
the others, the followers, obey to the agreement protocol:

ui = −
∑

j∈Ni\l
aij(pi − pj)− ail(pi − pl) ∀i 6= l (2)

ul = u, (3)

where l is the leader index, and u ∈ R represents an
exogenous velocity signal for the multi-agent system.

Henceforth we will use the left superscript to denote the
lack of a certain index from the superscripted quantity. As an
immediate application of this notation, we denote with lp ∈
RN−1 the vector of follower positions obtained by removing
the l-th entry from p. The Laplacian matrix of the sub-graph
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obtained by G removing the leader and its adjacent edges
is denoted with lL ∈ RN−1×N−1. Lastly we denote with
lA ∈ {0, 1}N−1×N−1 the diagonal matrix which has ones
only on the diagonal entries corresponding to the neighbors
of the leader, i.e, lA = diag(la1l, . . . ,

la(N−1)l), with

lail = ail i = 1, . . . , l − 1
lail = a(i+1)l i = l, . . . , N − 1

With these definitions, (2) can be rewritten in matrix form
as

lṗ = −lLlp− lA(lp− 1pl), (4)

where 1 is the column vector of all ones of proper di-
mensions. Using the property that lL1 = 1T lL = 0, it is
straightforward to show that the position error lp̃ = lp−1pl
and the velocity error lṽ = lṗ − 1ṗl have the following
dynamics:

l ˙̃p = −lM lp̃− 1ul (5)
l ˙̃v = −lM lṽ − 1u̇l (6)

where lM = lL+ lA is a symmetric positive definite matrix
for any connected graph G and leader l (since lA has always
a non-negative entry on the main diagonal, see [21])1. In
conclusion, as well know in the literature, the velocities of
the followers converge to the velocity of the leader if u̇l ≡ 0,
while, if the stronger condition ul ≡ 0 holds, convergence
of the follower-leader positions is also obtained.

B. Leader-Follower Dynamics with Time-varying Leader

In order to let the human operator to control the velocity
of the slave side, we set ul(t) = u?[k] in (3) for any t ∈
[tk, tk+1). Therefore, ul becomes a piecewise constant signal
and u̇l in (6) cannot be evaluated t = tk. However, in any
interval [tk, tk+1), Eq. (6) still holds and can can be rewritten
as

lṽ(tk) = −lM lp̃(tk)− 1u?[k] (7)
l ˙̃v = −lM lṽ t ∈ [tk, tk+1). (8)

Departing from [18], [19], in these notes we consider the
case in which the leader is time varying, i.e., the signal
l = l(t) is switching. The adopted switching policy will
be illustrated in Sec. III-C and III-D, while here we focus
on the stability of the slave side under a switching l(t).

Proposition 1: The slave side velocity system is asymp-
totically stable for every switching signal l(t).

Proof: If the commanded velocity u? is constant we
can rewrite the error dynamics of the whole slave side (leader
plus followers) as ˙̃v = (Ωl(t) − I)Lṽ, where ṽ = ṗ− 1u? ∈
RN , Ωl ∈ RN×N is a matrix of all zeros but the entry (l, l)
set to 1, I ∈ RN×N is the identity matrix, and L ∈ RN×N
the Laplacian matrix of G. Considering the dynamics of

1The correspondent notation in [19] is lM = Lf and lA = diag(l).
Here we used a different notation mainly for two reasons: (1) in our case
the leader will change over time, hence Lf needs a reference to the current
leader, and (2) the presence of L in Lf can generate confusion with the
Laplacian of Gl.

1
2‖ṽ‖2, we have ṽT ˙̃v = ṽT (Ωl(t) − I)Lṽ = −ṽTLṽ. In fact,
since the l-th entry of ṽ is zero, it follows ṽT (Ωl(t)−I) = ṽT ,
implying that ṽ converges to the subspace generated by 1, in
this case to 01 = 0, since one entry of ṽ is constantly zero.
Therefore, we can conclude that the slave side switching
system is stable with 1

2‖ṽ‖2 taken as a common Lyapunov
function. The stability for any piecewise constant input u?

is additionally guaranteed by the fact that u? is bounded by
U? and the slave system is ISS (being a linear system).

C. Online Leader Selection Problem

We considered a switching policy l(t) aimed at improving
the convergence rate of the velocities of the agents to the
desired velocity u?[k] commanded by the master. From (8)
it follows that

‖lṽ(t)‖2 ≤ e−2 lλ
min

(t−tk)‖lṽ(tk)‖2 ∀t ∈ [tk, tk+1), (9)

where lλ
min is the smallest eigenvalue of lM , and lṽ(tk) is

defined in (7). Therefore, since at time t−k+1

‖lṽ(t−k+1)‖2 ≤ e−2 lλ
min

T ‖lM lp̃(tk) + 1u?[k]‖2, (10)

it is natural to choose l(t) in order to minimize the right side
cost function in (10).

Problem 1 (Optimal Leader Selection): Denote by lM ∈
RN−1×N−1 the matrix obtained removing the l-th column
and row from the Laplacian of a given graph G, and by
lλ

min its smallest eigenvalue. Assume a discrete-time desired
velocity signal u?[k] and the states of the agents p[k] =
(p1[k] . . . pN [k])T are given. Find the sequence of leaders
l[k] which solves, at each step k, the minimization

min
l∈{1,...,N}

e−2 lλ
min

T ‖lM lp̃[k] + 1u?[k]‖2, (11)

where T is the given sampling period and lp̃[k] ∈ RN−1

denotes the error vector obtained from p[k] − 1u?[k] by
removing the l-th entry.

Notice that Prob. 1 assumes a leader signal l(t) switching
only at times tk. However, in virtue of Prop. 1, all the results
of this paper still hold if the frequency of switching of l(t) is
higher than 1/T . We did not consider this possibility for the
sake of presentation and also because, since the exogenous
signal ul is constant in [tk, tk−1), the evolution of the system
is completely described by the initial conditions at tk.

Notice also that Prob. 1 considers an upper-bound of the
system time evolution obtained by taking into account the
slowest dynamics of lM related to its smallest eigenvalue
lλ

min. In case of complete knowledge of L, one could
perform a more accurate minimization by considering the
true evolution of the system, i.e., by knowing all the N
eigenvalues of lM . This approach, however, would require
to run a local algorithm with input size not constant with N ,
the number of agent, i.e., a not decentralized solution which
would violate one of the assumptions of our work.

Remark 1: For T → ∞, the minimization (11) tends
to be equivalent to solving maxl∈{1,...,N} lλ

min : the
current relative positions tend to lose relevance w.r.t. the
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graph topology with an infinite horizon. In fact, for any
constant c there exists a large enough t > 0 such that
ce−2tmaxl∈{1,...,N}

lλ
min

dominates any other exponential
function with a faster decreasing rate, ∀t > t.

Problem 1 can be extended in several ways depending
on the used metric in evaluating the norm in (11). When
considering the multi-dimensional case, as opposite to the
scalar case we are considering now, we suggest the following
two possibilities:

1) use of the 2-norm, i.e., minimizing, over i = 1, . . . , N ,
the sum of the three components of the cost function
in (11):

min
l∈{1,...,N}

(
e−2 lλ

min
T

∑
j∈{x,y,z}

‖lM lp̃j [k] + 1u?j [k]‖2
)
,

(12)
2) use of the infinity norm, i.e., minimizing, over i =

1, . . . , N , the maximum of the square root of the three
components of the cost function in (11)

min
l∈{1,...,N}

(
e−

lλ
min

T max
j∈{x,y,z}

‖lM lp̃j [k] + 1u?j [k]‖
)
. (13)

D. Distributed Algorithm for Online Leader Selection

At each time tk, 2N global quantities are needed in
order to solve Prob. 1: namely 1λ

min
, . . . ,Nλ

min, and
‖1ṽ(tk)‖2, . . . , ‖N ṽ(tk)‖2. A single central unit could: (i)
compute 1λ

min
, . . . ,Nλ

min at the beginning of the task
(since the topology is time-invariant), (ii) keep track of
‖1ṽ(tk)‖2, . . . , ‖N ṽ(tk)‖2, (iii) solve Prob. 1 and commu-
nicate the computed leader to the master. Unfortunately this
solution is not scalable with the number of agents.

The objective of these notes, in accordance with the large
majority of works on multi-agent systems, is to provide
an algorithm which is distributed, i.e., which satisfies the
following definition:

Definition 1: An algorithm is distributed if it satisfies at
least the following requirements:

1) the input-size of any algorithm run by an agent i is
proportional to the number of its neighbors |Ni| and
is not proportional to the total number of agents N ,

2) the velocity command from the master u?[k] is sent
only to l[k − 1] (the leader at time tk−1) and can be
used only by the new selected leader l[k] which is
locally chosen in N[k−1] = l[k − 1] ∪Nl[k−1].

In compliance with Def. 1 we state a local version of the
leader selection problem.

Problem 2 (Locally-optimal Leader Selection): Given the
definitions of Prob. 1, denote with cl[k] the cost to be mini-
mized in (11). Find a distributed algorithm which generates
a sequence of leaders l[1], . . . , l[k], . . . such that cl[k][k] ≤
ci[k] ∀i ∈ Nl[k−1].

The solution to Prob. 2 is represented by Algorithm 1,
which runs on every agent i ∈ N[k−1] and takes as inputs îλ
and v̂i(t), i.e., the distributed estimates of iλmin and ‖iṽ(t)‖2
respectively. In the following we describe how the distributed
estimations can be performed.

Algorithm 1: Distributed Leader Selection

Each agent i has an estimate îλ
min

of iλ
min and iv̂(t) of

‖iṽ(t)‖2.
At tk the previous leader l[k − 1] receives u?[k] from the
master.

Agent l[k − 1] sends u?[k] to every neighbor i ∈ Nl[k−1];1
Every agent i ∈ N[k−1] computes ĉi[k] using its own2

estimates îλ
min

and iv̂(t) and sends it back to l[k − 1] (if
i 6= l[k − 1]);
Agent l[k − 1] computes the set C = argmini∈N[k−1]

ĉi[k];3
if l[k − 1] ∈ C then

l[k] = l[k − 1];4

else
Agent l[k − 1] nominates l[k] in C, e.g., randomly;5

Agent l[k] informs the master that it is the current leader;6

1) Estimation of iλ
min: Since the graph G is time-

invariant iλmin is constant. We can then assume that before
the actual beginning of the task a preliminary phase is im-
plemented by the robots during which the 1λ

min
, . . . ,Nλ

min

are sequentially estimated in a distributed way. A possible
sketch of this procedure is: first the agents establish an order
in the network. This can be done generating a spanning tree
and exploring the three in a depth first order. After, starting
from the first in the list, the agents take sequentially the role
of the leader in a round-robin fashion. An agent i informs
its neighbors as soon as it becomes a leader and starts the
estimation of iλ

min. When the estimate has converged, the
agent informs its neighbors that it is not a leader anymore
and the next agent on the list becomes the leader. This
initialization procedure is done until all the agents have
estimated their iλmin.

The estimations of the individual iλmin can be obtained
by exploiting the distributed version of the continuous-time
power iteration method [22]. This method allows to estimate
the smallest eigenvalue lλ

min of lM by implementing the
following estimation dynamics:

ξ̇ = −k1
lMξ − k2(θi − 1)ξ (14)

where ξ is the estimate of the eigenvector associated to
lλ

min, and θi is the distributed estimate of Ave (ξi)2 ob-
tained through a PI average consensus estimator [23]. The
estimator (14) can be implemented in a distributed way since
lMξ is a distributed operation.

2) Estimation of ‖iṽ(t)‖2: The term ‖iṽ(t)‖2 represents
the rightmost part of the cost function in (11). Expand
‖iM ip̃(t) + 1u?(t)‖2 as the three terms:

‖iṽ‖2 = (iM ip̃)T (iM ip̃) + 2u?1T (iM ip̃) +Nu?2, (15)

where we omitted the time dependency for conciseness. The
third term can be computed by the l-th agent (the leader)
knowing the number of agents and the master command
u?, and the computed value is then communicated to its
neighbors i ∈ Nl before Algorithm 1 is run. The second
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term can be rewritten as

2u?1T iM ip̃ = 2u?
∑
j∈Ni

aij(pj − pi) (16)

which can also be computed online by every agent i ∈ {l}∪
Nl, i.e., the current leader l and its neighbors, by relying only
the the neighbor information. The first term can be rewritten
as

(iM ip̃)T (iM ip̃) = ζ − η2
i , (17)

where ηi =
∑
j∈Ni

aij(pi − pj) and ζ = (Lp)T (Lp) =∑N
i=1 η

2
i . The unique quantity ζ does not depend on the

current leader and can be continuously estimated by every
agent by only using local information, for instance via the PI
average consensus estimator (PI-ace) [23]. The PI-ace allows
N agents, each of which measures the time-varying scalar
η2
i (t), to compute an approximation of 1

N

∑N
i=1 η

2
i (t) using

only local communication. The estimate of ζ runs in parallel
to the motion of the agents and the leader selection algorithm,
which use the estimated ζ whenever is needed.

Remark 2: In practice, in order to have a good estimate, a
certain bound on the maximum norm of ζ̇ will be required.
However this condition will be typically satisfied in our
scenario for two main reasons: (i) the agent dynamics (and
therefore the dynamics of ζ) cannot be too fast, since it is
assumed to be feasible for a real UAV which possess a certain
inertia, and (ii) the estimator of ζ runs only on the local
network of the slave-side which has normally much more
bandwidth compared with the master-slave link.

IV. THE MASTER SIDE

In Sec. II we explained how the multi-agent system is
driven by commanding the velocity of the current leader with
u? = ρx, where x is the position of a 3DOF force feedback
device whose dynamic model is given by (1). In this section
we describe how the control force τ in (1) is implemented, in
order to provide a suitable haptic feedback to the user while
ensuring the stability of the overall teleoperation system
during the interaction with the slave side the the human
operator.

Henceforth we call leader UAV the UAV which is tracking
the (kinematic) leader agent pl. In a similar fashion we will
refer to the neighbor UAVs. At each time tk, the leader UAV
sends to the master controller a signal z(t) = z1(t) +z2(t),
where

z1(t) =
1
ρ
q̇l (18)

z2(t) =
1
ρ

(
pl −

1
‖Nl‖

∑
i∈Nl

qi

)
. (19)

In (18) q̇l is the actual velocity of the leader UAV and (19)
implements the difference between the position of the leader
and the positions of its neighbor UAVs. The master device
is then controlled by means of:

τ = −Bẋ−K1x−K2(x− z̄(k)), (20)

Fig. 1: Human/Hardware in-the-loop simulation setup: human driv-
ing a 3DOF haptic device (left) + physical simulation of 8 quad-
rotors (right).

where B is a positive definite damping matrix whose role
is to stabilize the master device, K is a diagonal matrix
with non-negative entries (possibly all zeros) whose role
is to give to the user the perception of the distance from
the zero-commanded velocity, and z̄(k) is the passive set-
position modulation (PSPM) of z(t). By following the
framework proposed in [5], we exploit here the passive set-
position modulation (PSPM) algorithm [24] to ensure master
passivity [25] w.r.t. the pair (power port) (τ , z(t)) with the
control (20). Indeed, the PSPM action can enforce a passive
behavior on the master also in presence of delays and packet
losses in the communication channel (see [24] for details).
This is enough to guarantee a stable interaction with a passive
environment such as the human side [26] and our kinematic
system, and thus an overall stable teleoperation.

The meaning of the terms z1 and z2 is explained as
follows. Even though we assumed that a UAV is able to
track the velocity of its own kinematic agent with a negligible
error, during the transients the UAV velocity will generally
not match exactly with the agent velocity because of the
reasons reported in Sec. II. The term z1 can then provide
the operator with a force cue related to the velocity tracking
error of the leader, namely x− 1

ρ q̇l. However the contribution
of x− 1

ρ q̇l can be appreciated only during the transients and
is not informative of the overall multi-agent dynamics. On
the other hand the term z2 stabilizes to a constant nonzero
value when the commanded velocity is kept constant because
of the consensus-like dynamics (5). In particular, this term
is related to the position difference between the leader and
its neighbors.

V. HUMAN/HARDWARE IN THE LOOP
SIMULATIONS WITH A GROUP OF UAVS

We tested the proposed approach using an Omega.62 force-
feedback device as 3-DOF master robot (see Fig. 1, left).
The master controller runs at about 2.5 kHz on a dedicated
GNU-Linux machine and communicates via ethernet with
one of the UAV flight controllers (FCs) – the leader, which
runs on separate GNU-Linux machine. Each FC controls
a simulated quadcopter within a custom developed virtual
3D environment (VE) based on the Ogre3D engine3 for the

2http://www.forcedimension.com
3http://www.ogre3d.org/
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Fig. 2: Result of the first human/hardware in-the-loop simulation,
response to full-left/full-right command: (a) Leader selected online
(solid line) vs. leader selected a priori (dashed line); (b) Corre-
sponding costs ṽmax representing the velocity tracking error of the
whole team in the two cases, online (solid line) vs. a priori (dashed
line).

graphics side and PhysX4 for the physical simulation of the
UAVs (see Fig. 1, right). The FC is able to track a 3D
reference trajectory similar to those generated by the multi-
agent system on the slave side. This VE simulation runs at
60 Hz on a Windows Machine.

We present two comparative simulations in which we
considered a group of 8 UAVs and a sampling time T =
1 second for the master-leader communication. A different
offset has been added to every agent in order to distribute the
UAVs in a collision free formation, following an approach
similar to the use of biases in the consensus protocol [27].

In the first simulation (Fig. 2), we compare the online
leader selection algorithm to an a-priori leader selection
when receiving the same (simple) command sequence: a full-
speed command to the left followed by a full-speed command
to the right. The online leader selection chooses the 3-rd
agent during the first phase and the 1-st agent in the last
phase. On the contrary, the a priori selection keeps the 7-
th agent as leader during the whole operation (Fig. 2a). In
Fig. 2b the costs defined in (13) (denoted here ṽmax for the
sake of brevity) represents the velocity tracking error of the
whole team in the two cases. It is evident that the online
leader selection outperforms the a priori leader selection.
Only for a brief moment during the commutation of the
velocity command from left to right, the tracking error of
the online leader selection is worse than the a priori one.
This behavior is due to the better tracking performance of
the online leader selection case. Indeed, these two cases
obviously follow two different time histories because of the
different choice made for the leader: (i) in the a priori case
(dashed line) the slave system reacts more slowly and, when
the command switch takes place at time t ' 8 seconds, the
group is still far from having reached the desired velocity,
while (ii) during the online case (solid line) the slave
system possesses a faster response behavior and, when the
command switch takes place, the group is much closer to
having reached the desired velocity. Therefore, the change of
commanded velocity induces a larger transient in this case,

4http://www.nvidia.com/object/physx\_new.html
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Fig. 3: Result of the second human/hardware in-the-loop simulation,
response to a complex velocity command: (a) The 3 components of
the velocity command u?; (b) Leader selected online (solid line)
vs. leader selected a priori (dashed line); (b) Corresponding costs
ṽmax representing the velocity tracking error of the whole team in
the two cases, online (solid line) vs. a priori (dashed line).
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Fig. 4: Result of the second human/hardware in-the-loop simulation,
response to a complex velocity command: (a) UAV velocity tracking
error w.r.t. the agent ‖ṗ− q̇‖; (b) Components of the control force
τ given to the operator.

resulting in the (transitory) higher peak in the ṽmax index.
However, this effect is quickly recovered as it is clear from
Fig. 2b.

In the second pair of simulations (Fig. 3 and Fig. 4)
we compare the online leader selection algorithm with the
a priori selection in the response to a more complex 3D
command u?, whose components are depicted in Fig.3a.
Figure 3b shows the online (solid line) and a priori (dashed
line) leader selection, and Fig. 3c represent the correspondent
costs ṽmax defined in (13). The behavior is similar to the
previous experiment. In order to show the tracking capabil-
ities of the UAV flight controller, in Fig. 4a we show the
tracking velocity error averaged among the 8 UAVs, and in
Fig. 4b we show the 3 components of the force τ reflected to
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the human operator. In this plot we can appreciate two basic
features of the haptic cue. First, the presence of peaks due
to the velocity tracking error in response to quick changes
of the commanded velocity. This cue informs the operator
about the inertia of the leader UAV. Second, the fact that the
force tends to converge to a steady state value in response to
a constant commanded velocity. The absolute amount of this
cue informs the operator about the total number of UAVs
in the group, in fact the more the UAVs, the more the
elongation (for a constant number of leader neighbors). The
rate of change of the same cue informs the operator about
the agreement of the whole group to the desired velocity.
In fact, the closer the rate to zero, the more the group has
reached the velocity agreement.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper we have shown how to design a leader-follower
control strategy to allow the bilateral teleoperation of a fleet
of UAVs by means of a single remote human operator while
optimizing online the leader selection in a decentralized way.
To this end, we proposed a distributed algorithm which works
in conjunction with two distributed estimators. The stability
of the overall scheme is preserved ensuring the passivity of
the master control which provides a force feedback to the
human operator. The presence of this haptic cue informs the
user about the salve-side motion status. The approach is val-
idated by means of human/hardware in the loop simulation.

We are currently investigating the possibility of dealing
with more leaders at the slave side in order to have a better
control of the motion of the UAVs.
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