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Abstract— Recent research on multi-agent systems has pro-
duced a plethora of decentralized controllers that implicitly
assume various degrees of agent localization. However, many
practical arrangements commonly taken to allow and achieve
localization imply some form of centralization, from the use of
physical tagging to allow the identification of the single agent to
the adoption of global positioning systems based on cameras or
GPS. These devices clearly decrease the system autonomy and
range of applicability, and should be avoided if possible. Follow-
ing this guideline, this work addresses the mutual localization
problem with anonymous relative position measures, presenting
a robust solution based on a probabilistic framework. The
proposed localization system exhibits higher accuracy and lower
complexity (O(n2)) than our previous method [1]. Moreover,
with respect to more conventional solutions that could be
conceived on the basis of the current literature, our method
is theoretically suitable for tasks requiring frequent, many-
to-many encounters among agents (e.g., formation control,
cooperative exploration, multiple-view environment sensing).
The proposed localization system has been validated by means
of an extensive experimental study.

I. INTRODUCTION

Recently, the problem of controlling multi-agent (in partic-
ular, multi-robot) systems has attracted increasing attention
in view of their wide field of application. Among the most
studied topics, one may mention consensus [2], flocking
[3], [4], formation control [5], connectivity maintenance [6],
[7], distributed estimation [8] and sensing [9], [10]. Most
techniques proposed for solving these problems implicitly
assume that the system is localized, i.e., that estimates
of agent configurations (position, orientation, or both) are
available. In real-world applications, external tools such as
GPS may be unavailable or unreliable. An alternative strategy
aimed at increasing the system autonomy is to perform
localization in a cooperative fashion, i.e., broadcasting agent-
to-agent measurements (such as relative distance, bearing and
orientation) via communication and using this information
to jointly estimate the agent configurations. This approach
requires that each agent is equipped with an agent detec-
tor providing relative measurements, and a communication
system to exchange information with other agents.

Some authors have focused on the localization of static
agents, commonly referred to as network localization [11],
[12], [13], [14], [15]. Other works have dealt with moving
agents, with the objective of estimating the poses of the
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agents in a common fixed frame [16], [17], [18], [19],
[20], and have generally shown that the agents’ ability of
sensing each other can improve the localization of the entire
system. In the literature, this kind of multi-agent localization
is usually referred as cooperative localization. However,
agreeing on a common fixed frame already implies a form
of centralization. A more decentralized approach to this
problem can consider either a moving frame attached to
each agent as in [21], or a different fixed frame for each
agent as in [1]. We define relative mutual localization (RML)
as the problem of estimating the relative poses among the
moving frames attached to the agents, and absolute mutual
localization (AML) as the problem of estimating the relative
poses among the various fixed frames. RML and AML are
equivalent if each agent is localized w.r.t. its own fixed frame.

In most previous works it is assumed that relative measure-
ments include the identity of the agents. However, this may
be difficult to achieve using simple sensors such as range
finders, as it requires the identification of some distinctive
feature for each agent, an ability that typically calls for
more sophisticated sensors, such as cameras. Moreover, the
definition of an identity tagging (such as a chromatic code)
amounts to a form of centralization. In [1], we studied AML
with anonymous relative position measurements, where the
agent detector does not provide the identity of the sensed
agents. In particular, we proposed a localization system based
on two components: (1) MultiReg, a multiple registration
algorithm that computes the change of coordinates among the
relative frames of the agents using geometrical arguments to
invert the measurement map (2) a multi-hypothesis Extended
Kalman Filter (MH-EKF) that uses the output of MultiReg
and the motion displacements to estimate the change of
coordinates among the fixed frames of the agents.

In [22] we have shown that anonymity of the position
measures causes a combinatorial ambiguity in the geometri-
cal computation of coordinate changes when the formation is
rotational symmetric. In this case, or even when the forma-
tion is ‘almost’ symmetric, the complexity of the MultiReg
algorithm becomes exponential with the number of agents.
Since in many applications (e.g., entrapment or escorting)
multi-agent systems are required to move in regular, possibly
rotational symmetric formations, this worst-case complexity
may indeed materialize, severely affecting the performance
of localization systems based on MultiReg.

In this paper, we address the RML problem with anony-
mous position measures. Rather than pursuing a relatively
straightforward adaptation of our previous method in [1], we
significantly modify the localization system in a probabilistic
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Fig. 1. Mutual localization with anonymous position measures. (a) A group
of robots with the associated moving frames (b–e) the feature sets detected
by each robot at time t.

sense to overcome the aforementioned difficulties. The key
ideas are (1) to use a particle filter to directly estimate the
probability function of the agents’ relative pose (in other
words, to solve RML also in the filter) and (2) to modify
MultiReg so that is can use this information as a feedback.

The benefits of our choices are threefold. First, the direct
estimation of the relative pose avoids the amplification of
the angular error. Second, the particle filter is intrinsically
multi-modal and therefore it does not require the use of
heuristics for data association. Third, the new framework
allows MultiReg to focus on solutions that are most likely
according to the current belief, filtering out the effects of
rotational symmetries that may arise in the system and
avoiding the associated complexity increase.

The paper is organized as follows. Sections II and III
present the problem formulation and the localization system
architecture, respectively. The novel multiple registration
algorithm is introduced in Section IV, while Section V
describes the particle filters for estimating the probability
density functions of the agent configurations. Section VI
reports experimental results, and Section VII outlines a
discussion and some future work.

II. PROBLEM FORMULATION

Consider a system of n ≥ 2 agents (henceforth called robots)
R1, . . . ,Rn, with n unknown (hence, it may change during
the operation). Denote by N = {1, . . . , n} the robot index
set, and let Ni = N/{i}. The robots move in the plane and a
moving frame Fi is rigidly attached to each Ri (see Fig. 1a).
We describe the localization problem from the viewpoint of a
generic Ri, as in [21] and [23]. The superscripts t and 1 : t
denote the value of a variable at the discrete time instant
t and all its values at time instants 1, 2, . . . , t, respectively.
The 3-vector describing the position and orientation of Fj
w.r.t. Fi is the relative pose xj of Rj , j ∈ Ni. We use the
operators ⊕ and 	 for the composition of poses [24].

Each robotRk, k ∈ N , has a motion detector that provides
utk, a measure of its displacement between t− 1 and t. The
motion detector is characterized by a probabilistic motion
model p(u′|u), where u′ and u are, respectively, the ‘true’
and the measured displacement. In addition, each Rk is
equipped with a robot detector, a sensor device that measures
the relative position (typically, as bearing and distance) of
other robots in Fk, without the associated identity (see
Fig. 1b–e). Robot Rh, h ∈ Nk, is detected if it is placed
in a perception set Dp that is rigidly attached to Fk. No
assumption is taken on the shape Dp. As shown in Fig. 2,
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h
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Fig. 2. Robot detection and communication. Triangles are robots, black
polygons are occluding objects, the grey region is the perception set and
the white region is the communication set.

the robot detector is prone to false positives (it can be
deceived by objects that look like robots) and false negatives
(robots belonging to Dp which are not detected, e.g., due to
line-of-sight occlusions). A probabilistic description of the
robot detector is given in the form of a perception model
p(z|xh 	 xk), where z is the measured relative position of
Rh in Fk, and xh 	 xk is the relative pose of Fh with
respect to Fk. In our method, p(z|xh	xk) does not account
for false positives/negatives, because the multiple registration
algorithm provides robustness to these outliers.

The measures coming from the robot detector will be
generically referred to as features, as a reminder of the fact
that they are anonymous and, in addition, may or may not
represent actual robots. We denote by Ztk the set of features
detected by Rk at time t (Fig. 1b–e).

Finally, each robot Rk, k ∈ N , comes with a communi-
cation module that can send/receive data to/from any other
robot Rh, h ∈ Nk, contained in a communication set Dc

rigidly attached to Fk. We will assume that Dp ⊂ Dc, so
that if Rk can detect Rh it can also communicate with it.
Each message sent by Rk contains: (1) the robot signature
(the index k), (2) the current composition of the motion dis-
placements u1:t

k = u1
k⊕ . . .⊕utk incrementally obtained from

the elementary measures provided by the motion detector
(3) the feature set Ztk. False negatives may also affect the
communication (robot belonging to Dc that do not receive
messages), whereas false positives in the communication
may be easily avoided by appropriate message coding. We
denote by Ctk the set of robots which communicate with Rk
at time t (neighbors of Rk) and we let C1:t

k = ∪tτ=1C
τ
k .

In a probabilistic framework, the RML problem with
anonymous position measures requires the generic robot Ri
to compute, at each time instant t, its belief about the relative
poses of those robots with which Ri has communicated, on
the basis of the position measures gathered directly by itself
or obtained via communication with other robots.

Problem 1: (Probabilistic RML with anonymous position
measures) For each t = 1, 2, . . . and j ∈ C1:t

i , compute the
belief

bel(xtj) := p(xtj |u1:t
i , Z1:t

i , {uτj , Zτj }τ=1,...,t, j∈Cτi ),

given u1:t
i , Z1:t

i , uτj and Zτj , ∀(τ, j) s.t. τ = 1, . . . , t and
j ∈ Cτi .
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Fig. 3. Scheme of the mutual localization system that runs on Ri.

III. PROPOSED APPROACH

The distinctive aspects of Problem 1 with respect to standard
versions of the mutual localization problem (e.g., those
in [16], [21], [25]) are the anonymity of the measures and the
presence of false positives/negatives. A classical approach
to deal with these issues would be to guess the identity
of the measured robot using a data association technique,
such as Maximum Likelihood [26] or Joint Compatibility
Test [27], apply an outlier rejection method, and use the
labeled measures to feed a recursive estimation algorithm,
e.g., a particle filter or an MH-EKF. These approaches are
reasonably successful provided that robot encounters are
occasional and primarily pairwise, so that the feature sets Ztk,
k ∈ N , include few or no elements for most of the time. In
fact, data association techniques do not take into account the
mutual exclusion constraint of simultaneous measures, e.g.,
the fact that two different features measured at the same time
cannot represent the same robot.

Here, we would like to design a mutual localization
method that is effective for tasks requiring frequent, not nec-
essarily pairwise encounters among robots (e.g., formation
control, cooperative exploration, multiple-view environment
monitoring). With this objective, we adopt the approach
outlined in Fig. 3. The generic robot Ri applies a multiple
registration algorithm to compute the most likely relative
poses of the robots belonging to Cti , on the basis of the
sets of features Zti , {Ztj}j∈Cti , and the current beliefs about
{xtj}j∈Cti . The relative poses thus obtained, together with
the motion detector measures uti and {u1:t

j }j∈Cti , are used by
|C1:t
i | particle filters to update the belief about the pose of

each robot in C1:t
i . The multiple registration and the particle

filters are respectively described in Sections IV and V.
The advantages of our two-stage approach with respect to

the more classical possibilities discussed above are:

1) the mutual exclusive structure of the set of features is
exploited in the registration phase;

2) the increased dimension of the measures (the relative
angle is also provided) results in a faster convergence
of the estimation process;

3) the multi-robot system achieves, in a distributed way,
a result comparable with the outcome of a single
centralized sensor taking simultaneous snapshots of the
same scene from different viewpoints. This expands
the perception capabilities of the system members
beyond those of the individual robots, without asking
for a central data processor. For example, Ri can now

estimate the pose of robots which are occluded by an
obstacle or in a blind region of the robot detector,
provided that they are seen by other robots.

These advantages come at an acceptable price. In fact, the
increased complexity experienced when the initial1 arrange-
ment of the system is close to being ambiguous (rotational
symmetric) would still be unavoidable with the classical
approaches (e.g., using a Mahalanobis-distance data asso-
ciation). In any case, as will be shown, the particle filter
copes flawlessly with the multiple hypotheses computed in
this situation by the registration algorithm for the relative
pose of the robots.

IV. PROBABILISTIC MULTIPLE REGISTRATION

At each time instant t, the generic robotRi runs Probabilistic
MultiReg (abbreviated as P-MultiReg), a multiple registration
algorithm that is based on MultiReg [1] and represents the
part of the localization system which directly interfaces with
the particle filters (see Fig. 3). In general, registration is
the process of computing the relative pose between two
or more different viewpoints of the same scene. In our
case, P-MultiReg derives an estimate x̂tj of each relative
pose xtj , j ∈ Cti , given the sets of features Zti , {Ztj}j∈Cti ,
and the beliefs {bel(xtj)}j∈Cti , which are obtained from the
motion model blocks of the particle filters (see Fig. 3).
In particular, P-MultiReg uses RANSAC [28] to identify
the most likely correspondences between tuple of features
belonging to Zti , {Ztj}j∈Cti and a least squares estimation to
compute the poses x̂tj that best fit those correspondences, i.e.,
that maximize the likelihood of the measures. A pseudo-code
description of P-MultiReg is given in Algorithm 1. Below,
we describe in some detail its operation.

The first iteration of P-MultiReg goes as follows. First,
the algorithm adds a feature in (0, 0), labeled as Rk, to
every Ztk, k ∈ Cti ∪ {i}, in order to include the sensing
robot in the picture. Since all other features are unlabeled,
the feature sets are now partially labeled. Then, P-MultiReg
performs |Cti | binary registrations2 (see Fig. 4) between Zti
and every set in {Ztj}j∈Cti . The intermediate results obtained
from these registrations are: (1) a group of aggregate sets of

1The situation is completely different if the system comes from a steadily
non-ambiguous situation so that the localization method has been able to
reduce uncertainty to a minimum, as in the experiment of Fig. 9. In this case,
the arising of rotational symmetries does not affect the complexity of the
algorithm. A control law that breaks symmetry so as to allow non-ambiguous
mutual localization may be used to recover this kind of situation [22].

2Our implementation of binary registration is inspired to the algorithm
presented in [29] and can be found in [30].
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Algorithm 1: P-MultiReg

input : feature sets Zt
i , {Zt

j}j∈Cti
, beliefs bel{xj}j∈Cti

output: estimate relative poses {x̂t
j}j∈Cti

for i← 1 to |Ct
i | do1

perform binary registrations among Zt
i and all the2

Zt
j , j ∈ Ct

i , not registered yet;
select a maximal subset of irreconcilable solutions;3
select the partial solutions whose metric (1) is above a4
certain threshold;
foreach selected solution S do5

expand the aggregated set of feature with S;6
tune all the already estimated relative poses taking7
into account new correspondences;
create a new branch of the algorithm if more than8
one solution;

features (now with two labeled features) obtained from each
binary registration (2) a group of (temporary) relative poses,
one for each aggregate set. Then, the algorithm prunes the
results, discarding those which are either redundant (non-
irreconcilable in the terminology of [1], see Fig. 5) or
do not fit adequately the corresponding current belief in
{bel(xtj)}j∈Cti according to the metric function∫

p(x̂tj |xtj)bel(xtj)dx
t
j (1)

and a suitable threshold. In the above function, p(x̂tj |xtj) is
the probability to measure x̂tj given that the robot is in xtj , as
computed from the perception model of the robot detector.

Assume for a moment3 that, at the end of this first iteration
(binary registrations plus pruning), a single aggregate set
of features Ztik (k ∈ Cti ) survives, with the associated
temporary estimate of x̂tk. The algorithm then performs a
second iteration consisting of |Cti | − 1 binary registrations
between Ztik and every set in {Ztj}j∈Cti\{k}, followed by
a pruning of their outputs. The intermediate result is an
aggregate set of features Ztikl (l ∈ Cti\{k}), now with three
labeled features, and two temporary pose estimates x̂tk and
x̂tl . Note that x̂tk is updated to account for new correspon-
dences between features of Ztk and Ztl in the aggregate set
Ztikl. The algorithm then repeats the basic iteration until no
feature sets from {Ztj}j∈Cti are left, producing in the end a
pose estimate x̂tj for each j ∈ Cti with which registration was
successful4 and sufficiently consistent with a current belief.

To gain a deeper understanding of how P-MultiReg works,
consider now the more complicated situation of Fig. 6. Here,
the robots are arranged in a formation close to be rotational
symmetric, so that the system configuration is ambiguous
from the registration viewpoint (Fig. 6a). The objective of
the algorithm is to register the directly perceived feature set
Zti with the communicated feature sets {Ztj , Ztk} (Fig. 6b). At
the start, P-MultiReg performs |Cti | = 2 binary registrations
between Zti and Ztj , Z

t
k, respectively (Fig. 6c), obtaining a

3This is indeed the normal situation when the uncertainty is small.
4The registration had at least a solution.

(a)

(c)(b)

R2

R4

R2

R3

R1 R5

R2

R4

R3

R1 R5

R3

R1 R5

R4

Fig. 4. An example of a binary registration between partially labeled sets of
features: (a) initial feature sets Z1 and Z2 (b) proposed association (involved
features are circled in red) (c) aggregate set Z12 and estimated relative pose
between R1 and R2 (the displacement between the two triangles).
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Fig. 5. Three non-redundant (irreconcilable) intermediate results (note that
the feature sets come from different binary registrations and therefore do
not coincide). The first and the second are irreconcilable because R2 is
assigned to different features, while the first and the third are irreconcilable
because the same feature is assigned to different robots (R4 and R5).

maximum subset with two irreconcilable solutions (Fig. 6d).
These are rated on the basis of their fitness w.r.t. the current
belief according to the metric function (1); for example,
assume that in this case the current belief indicates that
only the solution placing Rj at the rightmost feature can
be accepted5. The result of the first iteration is therefore
the aggregate set of features Ztij (Fig. 6e) together with a
temporary estimate for the relative pose of Rj . In the second
iteration, the algorithm performs a single binary registration
between Ztij and the remaining feature set, i.e., Ztk (Fig. 6f),
and checks the fitness of the result w.r.t. the current belief; if
it is above the threshold, the final solution and the associated
estimates x̂tj and x̂tk are produced (Fig. 6g).

The running time of P-MultiReg, which accounts for most
of the cycle time of our mutual localization system, depends
on the number |Cti |+1 ≤ n of feature sets it receives as input.
In normal operation (no ambiguity, or ambiguities that can be
resolved based on the belief function), P-MultiReg expands
only one branch, which executes (|Cti |−1)(|Cti |−2)/2 binary
registrations to produce a solution: moreover, each binary
registration requires constant time. This leads to a worst-case
complexity O(n2), while the average-case complexity can be
significantly lower if the number of communicating robots
is smaller than n. Clearly, the complexity of P-MultiReg is
the same of MultiReg (i.e., exponential in n) in the presence
of ambiguities that cannot be resolved.

5If both solutions pass the fitness test (for example, because the current
belief on the poses of Rj and Rj is uniform), the algorithm would expand
two branches, leading to two different solutions. In this case, P-MultiReg
would behave exactly as MultiReg.
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Fig. 6. Execution of P-MultiReg in a simple ambiguous situation: (a) actual
configuration (b) initial feature sets with the addition of the labeled features
at the origin (c) results of the binary registrations between Zi and Zj , Zk ,
respectively (d) selection of a maximal subset of irreconcilable solutions (e)
selection of the solutions with sufficient fitness w.r.t. the belief (f) result of
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V. PARTICLE FILTERS

The generic robot Ri maintains one particle filter for each
Rj . The use of separate beliefs p(xtj), with j ∈ C1:t

i , instead
of a single joint belief {xtj}j∈C1:t

i
relies on the indepen-

dence assumption, i.e., p({xtj}j∈C1:t
i

) =
∏
j∈C1:t

i
p(xtj). The

assumption is true in a pure localization scenario, while in
certain situations, e.g., distributed control, it is an acceptable
approximation. However, maintaining p({xtj}j∈C1:t

i
) is not

feasible from a computational point of view, since it would
lead to a distribution whose dimension grows exponentially
with the number of robots.

At time t, the j-th filter (j ∈ C1:t
i ) receives as inputs the

motion displacement ui of Ri plus, for each j ∈ Cti :
1) the motion displacements u1:t

j (sent by Rj);
2) the relative pose estimate x̂tj (computed by P-MultiReg).

In particular, x̂tj is approximated as a gaussian measurement
with a covariance which reflects the uncertainty in the
registration steps of the algorithm.

The update rule that accounts for the motion of Ri is

p(xj |ui) = Ni

∫
p(u′|ui)p(xj ⊕ u′)du′, (2)

where Ni is a normalization factor and p(u′|u) is the motion
detector model. Equation (2) leads to the following update
for the single particle:

xj = xj 	 (ui ⊕ nu), (3)

where nu is a sample taken by p(u′|u). Similarly, the update
rule that accounts for the motion of Rj is

p(xj |uj) = Nj

∫
p(u′|uj)p(xj 	 u′)du′, (4)

where Nj is a normalization factor, and the update equation
for the single particle is

xj = xj ⊕ (uj ⊕ nu). (5)

Updates due to the motion of Ri and Rj cause a translation
of p(xj), while the additive noise introduces a blur. Using
Bayes law, the measurement update is given by

p(xj |x̂j) = Np(x̂j |xj)p(xj), (6)

where N is another normalization factor.
Normally, Ri uses u1:t

j 	 u1:t−1
j as motion measurement

for the motion update of the robot Rj . However, when Ri
and Rj do not communicate for a time interval [ta+1, tb−1]
(e.g., due to the fact that the robots are far from each other)
the motion update of Rj cannot be performed. When, at
tb, the communication is resumed, Ri uses u1:tb

j 	 u1:ta
j as

motion measurement for the motion update. This explains
why the robots send u1:t

j instead of utj .
A number of standard practical techniques have been

used to improve the performance of the filter. For example,
the initial prior distribution is generated using the first
measurements. Moreover, at each step a small percentage of
particles are re-initialized using the new measurements; this
enables the localization system to deal with the kidnapped
robot situation (see the next section). We have also reduced
the frequency of the measurement update with respect to the
motion update to guarantee the independence of subsequent
measurements.

VI. EXPERIMENTAL RESULTS

The proposed system for mutual localization with anony-
mous position measures has been implemented and tested
on a team of four Khepera III robots using MIP, a multi-
robot oriented software platform6 that minimizes the porting
effort required to go from simulated to real robots.

Each robot is equipped with a Hokuyo URG-04LX laser
sensor that provides range readings at 10 Hz within a 240◦

field of view (thus leaving a 120◦ blind zone behind the
robot). The robot detector is a simple feature extraction mod-
ule that inspects the laser scan, looking for the indentations
given by the small ‘hat’ mounted atop each robot. Motion

6See http://www.dis.uniroma1.it/labrob/software/MIP .
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Fig. 7. First experiment. Top: snapshots of the scene; bottom: sample
distributions computed by R1 (circled).

Fig. 8. Second experiment (kidnapping). Top: snapshots of the scene;
bottom: sample distributions computed by R1 (circled).

measurements are computed by odometric integration over a
0.1 s time interval to match the robot detector refresh rate.
Communication introduces no significant delay. The whole
mutual localization system runs at 10 Hz, showing that the
associated computations (P-MultiReg and particle filters) can
be easily performed in real time.

Results from the first experiment are shown in fig. 7. The
robots move in a free arena under the action of a simple
pseudo-random control law that includes obstacle avoidance.
The sample distributions computed by R1 clearly indicate
the progressive uncertainty reduction. The orientation of the
robots, which is included in the samples, is not shown. In the
fourth snapshot, one of the robots (barely visible in the lower
right corner) is actually in the blind zone of all the others;
still, thanks to P-MultiReg, an estimate for its relative pose
is computed and used to update the particle filter.

During the second experiment, shown in Fig. 8, one of
the robots is kidnapped (second snapshot) and released in a
different position (third snapshot). The localization system
quickly recovers the correct formation, as confirmed by the
sample distributions in the last frame.

We have also performed extensive mutual localization
experiments among obstacles and robot-like objects, con-
cluding that the proposed method exhibits the same kind of
robustness seen in [1] with respect to false positives and
negatives. While we do not show these results here, we
present a different experiment that highlights the specific
advantages of the new approach, and in particular the benefit
of using P-MultiReg rather than MultiReg for registration.

In the third experiment (Fig. 9) three robots are station-

Fig. 9. Third experiment. Top: snapshots of the scene; Middle: sample
distributions computed for R2 by R1 (circled) using MultiReg; Bottom:
sample distributions computed for R2 by R1 (circled) using P-MultiReg.
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Fig. 10. Execution time of P-MultiReg (solid, blue) and MultiReg (dashed,
red) during the third experiment.
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Fig. 11. Noisy simulation. Solid (blue): distance, bearing and orientation
errors affecting the pose estimate generated by the proposed method. Dashed
(red): the same errors as generated by the method in [1].

ary while the fourth (R2) is driven towards a rotational
symmetric (hence, ambiguous) configuration of the system.
R1 (circled) estimates the pose of R2. When the system
gets close to a symmetrical formation (last frame), the
mutual localization system that uses MultiReg computes a
three-modal sample distribution. As expected, the use of P-
MultiReg allows instead to solve the ambiguity.

The execution times of MultiReg and P-MultiReg during
the third experiment are shown in Fig. 10. They are compa-
rable until the configuration is far from being symmetrical.
When the ambiguity starts to increase, the execution time
of MultiReg grows exponentially, while that of P-MultiReg
remains unchanged, corroborating our theoretical prediction.
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Finally, in the absence of a ground truth system for our ex-
perimental setup, we resort to a noisy simulation (including,
in particular, a substantial odometric drift) to gather some
numerical data on the localization accuracy. Figure 11 reports
error data for the pose estimate of a certain robot as generated
by the proposed method and by the method in [1]. The
former produces a smoother, more accurate position estimate,
essentially due to the regularizing effect of feeding back the
predicted beliefs to the multiple registration module and to
the averaging action over the sample distribution. The larger
error on the orientation can be probably reduced with a more
careful tuning. The MH-EKF module of the method in [1],
which selects the best current pose based on a ranking of the
hypotheses, produces instead a more erratic estimate.

See http://www.dis.uniroma1.it/labrob/research/mutLoc.html for
additional material, including video clips of the experiments.

VII. CONCLUSIONS
We have presented a decentralized and experimentally-
validated system for the mutual localization of multi-agent
systems with anonymous position measures. We have ob-
tained significant improvements with respect to our previous
work on this topic. In particular, the use of a particle filter
and the feedback of beliefs in the registration phase have
been effective in solving both the ambiguity and complexity
issues that affected previous solutions.

An interesting extension of this work would be the devel-
opment of a similar framework for 3D agents (i.e., in SE(3)),
for the application to swarms of flying robots, possibly
equipped with more limited (e.g., bearing-only) sensors.
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