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Abstract: This paper presents a control scheme for localizing and encircling a target using a
multi-robot system. The task is achieved in a distributed way, in that each robot only uses local
information gathered by on-board relative-position sensors assumed to be noisy, anisotropic,
and unable to detect the identity of the measured object. Communication between the robots is
provided by limited-range transceivers. Experimental results with stationary and moving targets
support the theoretical analysis.
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1. INTRODUCTION

This paper addresses the problem of localizing and en-
circling a target by means of a multi-robot system, a
task which appealed to the robotics literature in view of
the large number of potential applications, among which
we mention observation (retrieve and merge data about
an object from different viewpoints), escorting (protect a
member of the system from unfriendly agents) and entrap-
ment (prevent the motion of an alien object).

Several control techniques have been recently proposed
to achieve encirclement or similar formation control ob-
jectives. Leonard and Fiorelli (2001) make use of virtual
points to deform the shape of the formation and take care
of collision avoidance. Gazi and Passino (2002) analyze the
performance of a swarm approaching a goal and its cohe-
sion in the presence of attractive and repulsive profiles.
Moreau (2005) presents a control law whose convergence
is based on the topology of the communication graph. Lin
et al. (2005) consider a fixed-topology algorithm based
on the concept of α−stability, while consensus results are
applied to formation control by Ren (2007). In (Sepulchre
et al., 2007) a group of unicycles is steered in a regular
formation around a common point. Strictly related to this
approach is the work presented in (Moshtagh et al., 2009)
where a centralized vision system is used for the experi-
mentation. In (Ceccarelli et al., 2008) a controller for encir-
clement with nonholonomic robots with directional sensors
is designed using a Lyapunov approach. Noisy measure-
ments and distributed estimation have been considered
only in recent works such as (Yang et al., 2008), where the
passivity property of the system is used, and (Sepulchre
et al., 2008), where a controller based on the quality of
the estimate is analyzed. A different approach is used
in (Antonelli et al., 2008), where a global vision system
provides the configuration of each robot to a centralized

controller. A loosely related problem is pursuit-evasion,
addressed, among the others, in (Bopardikar et al., 2009).

In our solution, target localization and encirclement are
achieved in a distributed way, i.e., each robot acts only
on the basis of the local information gathered by on-board
transceivers and sensors, both limited in range. We assume
that each robot measures the relative position of other
robots and of the target with a single sensor which is noisy,
anisotropic. Moreover, the sensor is unable to provide
the identity of the measured object or any information
to identify the target among the measured robots. We
exploit the mutual localization method introduced in our
previous work (Franchi et al., 2009) to localize the robots
and the target, overcoming the geometric limitations of
our minimal sensor model, i.e., limited range, blind spots,
anisotropy. To our knowledge, this is the first work that in-
cludes experiments on a set-up in which localization is not
provided by a centralized module, such as a vision system
that uses tags to discriminate the robots. This shows that
our approach is viable in a real unstructured context in
which each robot needs to estimate the quantities needed
by the control law on the basis of local information only.

The paper is organized as follows. In Sec. 2, the encir-
clement problem is formally defined. In Sec. 3 we de-
scribe the proposed system architecture, while in Sec. 4
its control module is thoroughly analyzed. Conditions for
effective task execution are derived in Sec. 5, while Sec. 6
presents some experimental results. Finally, Sec. 7 hints at
on-going and future work.

2. PROBLEM FORMULATION

Consider a group of identical mobile robots with unicycle
kinematics and a target, all moving on the plane. The
target may be an inanimate object, a robot, or even a living



agent. The task assigned to the robots is to encircle the
target, i.e., move around it in a regular circular formation,
also called a splay state formation (Sepulchre et al., 2008).
The target is assumed to be stationary for the sake of
analysis, but we will experimentally show in Sect. 6 that
‘slow’ movements may be accommodated. No a priori
information is available about the cardinality of the group,
the initial configuration the robots, and the position of the
target. In addition, the task must be realized on the basis
of local sensory information only.

Clearly, the encirclement task requires each robot of the
group to be able to localize the target as well as the other
robots. We may distinguish between two cases, depending
on whether the appearance of the target is identical to
or different from that of the robots. In the first case, the
robots and the target may be detected by a single sensory
device, whereas two separate detectors (a robot detector
and a target detector) must be used in the second case.
In this paper, we shall consider in detail the first case;
however, the proposed technique can be trivially extended
to the second.

A target that appears to be identical to the robots may
be an unfriendly agent in disguise that must be made
inoffensive, or actually one of the robots that must be
guarded or escorted by the others. An unfriendly tar-
get does not communicate with the other robots (non-
cooperating target), while communication with a friendly
target is obviously possible (cooperating target).

We assume that each robot is equipped with:

(1) A robot detector, a sensor device that measures the
relative position (not the orientation) of other robots
and of the target w.r.t. the detector, provided that
they fall in a perception setDp that is rigidly attached
to it. The shape of Dp is arbitrary, and in particular it
may contain blind zones. The relative position mea-
sures provided by the robot detector are anonymous,
i.e., they do not convey the specific identity of the
detected robot (hence, the target is detected as a
robot).

(2) A communication module that can send/receive data
to/from any other robot contained in a communica-
tion set Dc such that Dp ⊆ Dc.

Under the above assumptions, it may happen that one
robot can detect another, but not vice versa; in other
words, the robot detection graph is directed (and includes
the target as a sink). However, if one robot can detect an-
other it can also communicate with it; the communication
graph is therefore undirected and contains the detection
graph, with the exception of the target and its in-arcs. In
the following, two robots that can communicate with each
other are simply called neighbors.

3. SYSTEM ARCHITECTURE

The encirclement system installed on each robot, shown in
Fig. 1, consists of two main modules. The mutual localizer
is in charge of computing the configuration of the robot in
a reference frame centered at the target. This information
is passed to the encirclement controller, that generates a
reference trajectory for the robot and the feedback control
inputs that guarantee its tracking.
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Fig. 1. The structure of the encirclement system that runs
on the i-th robot.

The mutual localization module implements the method
proposed by Franchi et al. (2009), to which the reader
is referred for a detailed description. The inputs to this
component are (1) the anonymous relative position mea-
sures (which include the target, if this is contained in
Dp) coming from the robot detector (2) an estimate of
the configuration of the robot in its own frame, computed
by any self-localization (position tracking) algorithm (3)
the same information (i.e., anonymous relative position
measures and robot configuration in its own fixed frame)
obtained via communication from each neighbor. A mul-
tiple registration algorithm followed by a multi-EKF are
used to process these data and compute an accurate es-
timate of the configuration of each robot in a common
fixed frame. While a cooperating target is directly iden-
tified and localized with this procedure, it is interesting
to note that a non-cooperating target can still be singled
out by the mutual localization module as the only ‘robot-
like’ object that does not communicate its data. From the
mutual localization results, each robot can directly derive
an estimate of its configuration (position and orientation)
with respect to a common target-centered frame.

The encirclement control module generates the control
inputs to the robot using the target-centered configuration
of the robot computed by the mutual localizer as well
as information coming from the neighbor robots. The
structure of this module is discussed in detail in the
following section.

4. ENCIRCLEMENT CONTROLLER

In view of the encirclement objective, it is convenient to
express the configuration of the generic i-th robot in polar
coordinates with respect to a reference frame centered at
the target, as in Fig. 2. In particular, these coordinates
are the distance ρi of the unicycle wheel center from the
origin, the angle γi that the sagittal (forward) axis of the
robot forms with the line joining the unicycle wheel center
to the origin, and the angle φi between the same line and
the x axis. In the following, φi is also called phase of the
robot). The kinematic model of the unicycle is then written
as (Aicardi et al., 1995)

ρ̇i = −vi cos γi
γ̇i = (sin γi)/ρi − ωi
φ̇i = vi(sin γi)/ρi,

where vi and ωi are respectively the driving and steering
velocity inputs.
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Fig. 2. Polar coordinates for the i-th robot and the cyclic
ordering defined by phases.

It is assumed that the robot index i refers to the cyclic
counterclockwise ordering of the robots defined by their
increasing phase angles (see Fig. 2). For the i-th robot,
denote by φ̄i the mean between the phases of the successor
(robot i+1) and the predecessor (robot i−1) of the robot.
Correct execution of the encirclement task requires that

lim
t→∞

ρi(t) = R lim
t→∞

φi(t) = φ̄i(t) lim
t→∞

φ̇i(t) = Ω ∀i,
(1)

where R and Ω are respectively the encirclement radius
and angular speed, which must be the same for all robots.

The entrapment control module (see Fig. 1) works as fol-
lows. The initial configuration (ρ0

i , γ
0
i , φ

0
i ), provided by the

mutual localization module 1 is used to plan a reference
trajectory for the robot. In particular, such trajectory is
specified by an exosystem that assigns reference evolutions
ρri , φ

r
i to the coordinates ρi, φi. In fact, it is easy to verify

that these two are flat outputs (Fliess et al., 1995) for
the unicycle in polar coordinates, i.e., once an evolution is
assigned to them it is possible to compute algebraically the
corresponding evolution γri of the remaining variable γi as
well as the reference inputs vri , ω

r
i . The reference outputs

ρri , φ
r
i are fed to a feedback controller based on Dynamic

Feedback Linearization (DFL), that generates the control
inputs vi, ωi so as to guarantee global exponential tracking
of the reference trajectory (Oriolo et al., 2002). It should
be noted that ρri , φ

r
i are initialized at ρ0

i , γ
0
i , so that

the transient is extremely fast. During its operation, the
DFL tracker uses the current estimate of the target-frame
robot configuration (ρi, γi, φi) computed by the mutual
localization module.

In the following, we consider three slightly different ver-
sions of the basic encirclement task entailed by (1), and
give the appropriate form of the trajectory planner (ex-
osystem). In all versions, the encirclement radius R is
assigned in advance. The reference radius ρri (t) is therefore
always generated by

ρ̇ri = Kρ(R− ρri ) ρri (0) = ρ0
i , (2)

where Kρ is a positive gain. As a consequence, ρri (t)
exponentially converges toR for any initial condition. Note
that ρri (t) does not depend on the reference radius of any
other robot.
1 This assumes that the configuration estimate is immediately
reliable. In practice, it may be necessary to perform a preliminary
motion of the multi-robot system aimed at improving the accuracy
of the estimate. To this end, the anti-symmetry control law proposed
in (Franchi et al., 2010) may be used.
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Fig. 3. Reference trajectories corresponding to the flow
of (2),(3) for a generic initial configuration of a 6-
robot system, with a target located at the origin.
The configuration of each reference robot along its
trajectory is explicitly shown at six equispaced time
instants, identified by 1, . . . , 6.

The three versions of the encirclement task differ on the
procedure used by the robots to agree on the common
value of the angular speed Ω in (1). They are analyzed in
detail below.

Encirclement – Version 1. In the first version, the
angular speed Ω is also specified in advance. The reference
phase φri (t) for the i-th robot is generated by

φ̇ri = Ω +Kφ(φ̄ri − φri ) φri (0) = φ0
i , (3)

where Kφ is a positive gain and φ̄ri is the mean between
the reference phases of the predecessor and the successor
(in accordance with the counterclockwise cyclical ordering
of the reference phases). We have the following result (the
proofs of all the propositions are in the Appendix).

Proposition 1. The flow of (2),(3) yields exponential con-
vergence of ρri to R, of φri to φ̄ri , and of φ̇ri to Ω, for any
assigned R, Ω and any initial ρ0

i , φ
0
i .

An example of reference robot trajectories corresponding
to the flow of (2),(3) is shown in Fig. 3. The robots
approach the circle in such a way that the ‘insertion points’
are almost uniformly spaced, and actually achieve the
required formation very quickly.

Encirclement – Version 2. In the second version, the
robots are assigned an escape window s, i.e., the time
interval in which a point on the circle remains unvisited
at the steady state corresponding to the asymptotic con-
ditions (1). Being s = 2π/nΩ, where n is the number
of robots, the robots can in principle easily compute the
required value of Ω as Ω = 2π/ns; however, since n is not
known a priori, an estimate n̂ of this number is required.

Assume that each robot instantaneously computes its own
estimate as n̂i = 2π/∆r

i , where 2∆r
i is the reference phase

difference between the successor and the predecessor. The
required angular speed for the robot is then computed as
Ωi = 2π/n̂is = ∆r

i /s. Using this expression for Ω in (3)
we obtain the following exosystem for the reference phase:

φ̇ri = ∆r
i /s+Kφ(φ̄ri − φri ) φri (0) = φ0

i . (4)



Proposition 2. The flow of (2),(4) yields exponential con-
vergence of ρri to R, of φri to φ̄ri , and of φ̇ri to 2π/ns, for
any assigned R, s and any initial ρ0

i , φ
0
i .

Encirclement – Version 3. In the third version, only the
radius R is assigned, and the robots must autonomously
agree on a common value of the angular speed Ω. The
reference phase exosystem for the i-th robot is

Ω̇ri = KΩ(φ̄ri − φri ) Ωri (0) = 0 (5)

φ̇ri = Ωri +Kφ(φ̄ri − φri ) + ξi φri (0) = φ0
i (6)

where ξi is a costant forcing term. Denote by ξ̄ the average
of the forcing terms ξi over the multi-robot system.

Proposition 3. The flow of (2), (5–6) yields exponential
convergence of ρri to R, of φri to φ̄ri , and of φ̇ri to ξ̄, for any
assigned R and any initial ρ0

i , φ
0
i .

An interesting feature of this third scheme is that the
common frequency of the phase reference trajectories can
be regulated by acting on a single robot; to this end, it is
sufficient to let ξi = 0 for all the robots but one.

To allow the implementation of (3), (4), or (5–6) all
the robots must broadcast their current reference phase
through the communication system. However, each robot
computes its reference trajectory and control inputs au-
tonomously on the basis of local information, i.e., its own
configuration and data coming from the neighbors.

5. CONDITIONS FOR TASK ACHIEVEMENT

The proposed method will achieve the encirclement task
provided that the robots can localize the target and each
other. In this section, we briefly discuss the conditions
under which these two requirements are actually satisfied.
Recall that the mutual localization module used in our
encirclement scheme is effective within weakly connected
components (simply called subnets in the following) of the
robot detection graph, provided that Dp ⊆ Dc and multi-
hop communication is used (Franchi et al., 2009).

The first condition may be derived from the analysis of
the desired steady state of the system, in which the n
robots are uniformly distributed along a circle of radius
R. In this formation, the whole detection graph must be
weakly connected, i.e., a single subnet must exist. In view
of the circle topology, this property is certainly guaranteed
if each robot can detect the target and the successor robot
with respect to the cyclic phase ordering (that is actually
the predecessor if Ω is positive). For example, this is true
if Dp is a frontal circular sector with central angle at least
π+ε wide, with ε any positive number, and radius at least
max{R, 2R sinπ/n}.
The second condition is instead obtained considering the
beginning of the encirclement task. To localize the target
at t = 0, each subnet of the detection graph must contain
at least one robot that detects the target. From that
moment on, all the robots will get closer to the target
in view of the reference evolution (2) for ρ, and therefore
target detection is guaranteed throughout the task (this
is easy to show if Dp has the shape discussed above).
In particular, all the subnets will merge into a single
connected component that includes the whole graph.

Note that the first condition (on Dp) concerns the robot
detector, whereas the second (on the detection graph at
t = 0) restricts the admissible initial arrangements of the
robots with respect to the target. Taken together, they
are a sufficient condition for task achievement — less
demanding requirements may be enforced (in particular,
on the shape of Dp) but their efficacy would be more
difficult to prove.

6. EXPERIMENTS

We have experimentally validated our encirclement scheme
with a system of five Khepera III robots. Each robot
is equipped with a wi-fi card and a Hukuyo URG-04LX
laser sensor with an angular range of 240◦ and a linear
range artificially limited to 2 m. The robot detector is
a simple feature extraction algorithm that inspects the
laser scan searching for the indentations made by the
vertical cardboard squares mounted atop each robot (in
the blind zone of the range finder). Since each square can
give indentations of the laser scan that are 1 ÷ 12 cm
wide, depending on the relative orientation between the
measuring and the measured robot, the detector cannot
distinguish among robots, the target and obstacles whose
size is in the same range. The encirclement scheme has
been implemented using the MIP architecture 2 which
provides a multi-tasking estimation/control framework, a
realistic simulation environment, and allows direct porting
for execution on real robots.

A typical experimental result is summarized in Fig. 4. Here
we are considering version 1 of the encirclement task, and
hence (2–3) as a trajectory planner, with R = 0.5 m and
Ω = 0.06 rad/s. One of the robot is used as a stationary
(cooperating) target. At the start (snapshot 1), only three
robots are active. At t1 = 200 s, with the three robots
rotating around the target in a regular formation, another
robot is added (snapshot 2); the four robots then achieve
a regular formation (snapshot 3). At t2 = 310 s one of
the robot is kidnapped and powered off (snapshot 4).
The three remaining robots rearrange themselves in a
regular formation (snapshot 5). Finally, at t4 = 600 s
another robot is kidnapped and the formation becomes
a 1 m wide dipole. The evolution of the experiment is also
illustrated by Fig. 5, that shows the plots of the distances
between consecutive robots, the distances between each
robot and the target, and the robot angular speeds. The
fact that during each phase the correct regular formation
is promptly reached shows the reactivity of the proposed
encirclement scheme.

We have also run experiments with moving targets, ob-
taining satisfactory results as long as the speed of the
target remains at least one order of magnitude smaller
than that of the robots. One such experiment is shown
in Fig. 6. Video clips of the experiments are available at
http://www.dis.uniroma1.it/labrob/research/encirclement.html.

7. CONCLUSIONS

We have presented a distributed control method for en-
circling a target by means of a multi-robot system. The
proposed scheme integrates a mutual localization module
2 http://www.dis.uniroma1.it/∼labrob/software/MIP/index.html



Fig. 4. Encirclement of a stationary target (solid red circle).
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Fig. 5. Plots for the previous experiment: distances be-
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each robot and the target (center), angular speeds of
the robots (bottom).

based on the developments in (Franchi et al., 2009). The
theoretical proof of its effectiveness is supported by exten-
sive experimental results.

Future work will be aimed at:

• proving that the reference trajectories never meet,
so as to provide grounds for identifying a collision
avoidance condition for robots of finite size;
• performing a theoretical analysys of a trajectory

generation scheme based on continuous replanning,
in which the actual robot coordinates (estimated
through the mutual localization module) are used in
place of their reference value (we already implemented
such a variant with encouraging results);
• integrating a consensus mechanism among the robots

on the results of the mutual localization, and espe-
cially the configuration of the target.
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Appendix A. PROOFS

We index the robots accordingly to the ordering of the
initial reference phases, and we use the following notations:

1 = (1 · · · 1)T , b = (−π 0 · · · 0 π)T , g = (π 0 · · · 0 π)T ,

φr = (φr1 · · · φrn)T , φ̄r = Cφr + b, ∆r = Dφr + g,

Ωr = (Ωr1 · · · Ωrn)T , ξ = (ξ1 · · · ξn)T ,
where C and D are the circulant matrices with first rows
(0 1/2 0 · · · 0 1/2), and (0 − 1/2 0 · · · 0 1/2) respec-
tively. The presence of b and g in the definition of φ̄r and
∆r takes into account the fact that

φ̄r1 = (φr2 + φrn − 2π)/2, φ̄rn = (φr1 + 2π + φrn−1)/2,
∆r

1 = (φr2 − φrn + 2π)/2, ∆r
n = (φr1 + 2π − φrn−1)/2,

and allows to encode the topology of S1 in R. Also, denote
by eφ = φ̄

r−φr = (C−I)φr+b and eΩ = Ωr+ξ− ξ̄1 the
phase and pulsation error vectors, where I is the identity
matrix.

Proof of Proposition 1. Writing (3) for all the robots
we obtain

φ̇
r

= Ω1 +Kφ(φ̄r − φr).
In order to prove the statement, it is sufficient to show that
eφ goes to zero. Note that 1T (C − I) = (C − I)1 = 0,
i.e.,C is balanced; ker(C−I) = span{1} and the algebraic
multiplicity of 0 is 1; all the other eigenvalues are negative,
i.e., C − I is negative semidefinite 3 . Writing the error
dynamics we obtain

ėφ = Kφ(C − I)eφ + Ω(C − I)1 = Kφ(C − I)eφ.
Hence, the error converges to its initial average, which is
zero for any initial condition, since

1Teφ(0) = 1T (C−I)φr(0) +1T b = 0.

Proof of Proposition 2. Writing (4) for all the robots,
and letting f = 1/s, we obtain

φ̇
r

= f∆r +Kφ(φ̄r − φr).
The error dynamics in this case is

ėφ = Kφ(C − I)eφ + f(C − I)(Dφr + g).
Since C − I and D commute, we have

ėφ = (Kφ(C − I) + fD)eφ + f((C − I)g −Db),
3 It is the Laplacian of the undirected ring with weights 1/2.

and being (C − I)g −Db = 0 we conclude that
ėφ = (Kφ(C − I) + fD)eφ.

The matrix Kφ(C − I) + fD has the same properties 4 of
Kφ(C − I) which was used to show the convergence of eφ
to 0 in the Proof of Proposition 1. This implies also that
φ̂ri converges to 2π/n and φ̇ri to 2π/ns.

For the proof of Proposition 3 we need a preliminary result.

Lemma. Consider a 2n× 2n matrix of the form

A =
(

0 k1I
B k2B

)
where 0 is the n × n null matrix, I is the n × n identity
matrix, B is a n × n matrix, and k1, k2 are non-zero
real numbers. For any eigenvalue µ of B associated to
the eigenvector u, the two roots of λ2 − k2µλ − k1µ,
denoted with λ1,2, are eigenvalues of A associated to the
eigenvectors

(
k1u

T λ1,2u
T
)T .

Proof. A vector
(
v1

T ,v2
T
)T is an eigenvector of A

associated to λ if
k1v2 = λv1 (A.1)

Bv1 + k2Bv2 = λv2. (A.2)

Hence, from (A.1), the eigenvectors have the structure
(k1v λv). Letting v = u in this structure, and substi-
tuting it into (A.2) we obtain k1µu+k2λµu = λ2u, which
establishes the Lemma.

Proof of Proposition 3. Writing (5),(6) for all the robots
we obtain

Ω̇
r

= KΩ(φ̄r − φr), Ωd(0) = 0 (A.3)

φ̇
r

= Ωr +Kφ(φ̄r − φr) + ξ. (A.4)

Let us consider the dynamics of the error e = (eTφ e
T
Ω)T

ė =
(

KΩeφ
(C − I)(Ωr + u) +Kφ(C − I)eφ

)
=

=
(

0 KΩI
C − I Kφ(C − I)

) (
eΩ

eφ

)
= Ãe,

where we have made use of the fact that ξ̄ = (1/n)(1T ξ)
and (C − I)1 = 0. Recalling that C − I is balanced, neg-
ative semi-definite, and noting that its smallest eigenvalue
is −2, and applying the Lemma to Ã we can conclude that
all the real parts of its eigenvalues have the same sign of
the eigenvalues of C − I (in fact, they are simply related
by a 1/2 factor). Furthermore, the algebraic multiplicity
of the eigenvalue 0 of Ã is 2, and its generalized eigen-
space is generated by span{(1T 0T )T , (0T 1T )T }. Since,
by construction, 1TeΩ(0) = 0 and 1Teφ(0) = 0, there is
no evolution over this unstable eigenspace, which implies
that e goes exponentially to zero.

Note that Propositions 1, 2, and 3 imply that the reference
phases are asymptotically in the same order as the initial
reference phases. It can be proved that the same property
actually holds along the whole duration of the trajectories
of (3) and (4); the proof is lengthy and therefore omitted.
Presently, this is only a (likely) conjecture for (5–6).

4 It is the Laplacian of the undirected ring with different weights.


