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Abstract— This paper formulates and investigates a novel
problem called Mutual Localization with Anonymous Position
Measures. This is an extension of Mutual Localization with
Position Measures, with the additional assumption that the
identities of the measured robots are not known. A necessary
and sufficient condition for the uniqueness of the solution is
presented, which requires O(n2/ log n) to be verified and is
based on the notion of rotational symmetry in R2. We also
derive the relationship between the number of robots and the
number of possible solutions, and classify the solutions in a
number of equivalence classes which is linear in n. A control law
is finally proposed that effectively breaks symmetric formations
so as to guarantee unique solvability of the problem is also
proposed; its performance is illustrated through simulations.

I. INTRODUCTION

The Mutual Localization problem (i.e., determining the rel-
ative locations in a group of sensing agents) has received
a lot of attention in recent years [1], [2], [3], due to the
fact that its solution is essential to perform many multi-
robot tasks, e.g., coverage and deployment [4], exploration
and map building [5], formation control [6], surveillance and
monitoring [7], escorting and entrapment [8]. Great relevance
has been given in the literature to the determination of
conditions for the uniqueness of the solution given the type
of available measures, represented with a measuring graph.
In [1] the range measurement case is addressed and the
uniqueness of the solution is connected to various concepts of
rigidity, while in [2] this analysis is extended to the position
measurement case. In [3], the determination of the sensor
orientation is included in the problem formulation, and it
is proven that the uniqueness of the solution is guaranteed
if the measuring graph is complete. While all these papers
address a static (i.e., instantaneous) version of the mutual
localization problem, a dynamic version is studied in [9] via
the analysis of observability properties.

In this paper, we consider an extension of the above
static problem, called Mutual Localization with Anonymous
Position Measures, by adding the assumption that the set
of relative position measurements of each robot is not
labeled, in the sense that each measurement comes without
the identity of the measured robot. This situation typically
arises when the robot detection system is based on a feature
extraction module that looks for physical characteristics that
are common to all robots, e.g., size, color, or shape in a group
of identical robots. For example, in [10] we have made use of
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a robot detector based on a laser range finder, that is unable
to provide the identity of the measured robot.

In practical applications, adverse environmental conditions
(unstable light or darkness, rain, fog, etc.) may hide the
distinguishing features which are commonly used for iden-
tification. Hence, the possibility of relying on a localization
system which does not require the identities of the robot
makes the system more robust. On the other hand, resem-
blance of the group members can be essential in missions
where the leader identity must remain secret for security or
disguising purposes, e.g., in escorting or intrusion.

In opposition to the standard Mutual Localization with
Position Measures, the problem of Mutual Localization with
Anonymous Position Measures may have more than one so-
lution even if the measuring graph is complete. For example,
consider the case of n robots that are arranged over the
vertexes of a regular n-gon, aiming their ‘noses’ cyclically at
each other. Since the measures of all robots are identical, all
the n! vertex associations corresponding to the permutations
of the sequence {1, . . . , n} are feasible. Even considering
solutions obtained by roto-translations to be equivalent, as
they clearly are in the absence of absolute localization, there
are still (n− 1)! feasible labeled formations.

The importance of this problem goes beyond the determin-
istic case. In fact, if the localization problem is formulated
in a stochastic setting to take into account measurement
noise, the cases with multiple solutions correspond to large
uncertainties in the probability density of the solution. This
happens already when the group is close to a configuration
that gives rise to multiple solutions in the deterministic case.
It is also worth noting that multiple solutions appear, in
particular, when the group is arranged along a regular pattern;
this situation is not rare in multi-robot systems, since many
collective motion controllers attempt to achieve exactly this
kind of formation, see e.g. [6].

A loosely related problem is the registration of multiple
representations of the same scene [11] and the unknown data
association of landmarks in SLAM [12].

The paper is organized as follows. The problem under
consideration is formalized in Sect. II. In Sect. III we
characterize the situations in which the problem has multiple
solutions, establish the relationship between the number of
possible solutions and the number of robots, and propose
an efficient representation of the solutions. A control law
that breaks symmetric formations so as to guarantee unique
solvability of the problem is proposed in Sect. IV, and is
validated through simulations in Sect. V. Finally, some on-
going work is discussed in Sect. VII.
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Fig. 1. Mutual Localization with Anonymous Position Measures. (a) Each
robot expresses its measures in an attached frame Fi (b-e) P1, . . . , P4

are the observations of the robots R1, . . . ,R4, respectively (f) with the
reference frame F chosen w.l.o.g. to be F1, the problem is to reconstruct
the formation (including orientations and identities) of the robots.

II. PROBLEM FORMULATION

We have a group of n single-body robots in a certain spatial
arrangement on the plane. Each robot is equipped with a
sensor that provides the positions (not the orientations) of
the other robots with respect to itself; these positions are
anonymous, i.e., they are not labeled with the identity of the
robots. We want to identify conditions under which the spa-
tial arrangement of the group can be uniquely reconstructed
(up to roto-translations) from the knowledge of all sensory
data. Below, we give a formal statement of this problem.

The i-th robotRi, i = 1, . . . , n, is a planar rigid body with
an attached frame Fi (see Fig. 1a). The pose xi = (pi, θi) of
Ri is an element of R2×S1, with pi representing the origin1

of Fi expressed in a reference frame F and θi the orientation
of Fi w.r.t. F . Since R2 × S1 is homeomorphic to SE(2),
any pose may also be interpreted as a roto-translation.

A formation is a set of n poses {x1, . . . , xn} in F , with
xi assigned to Ri. Since we are interested in computing the
group formation up to roto-translations, we can set w.l.o.g.
F = F1, so that x1 = ((0 0)T , 0). This means that all
formations will be expressed in the frame attached to R1.
Clearly, all results can be expressed in another frame F ′
provided that the pose of R1 w.r.t. F ′ is known.

Let R(φ) ∈ SO(2) denote the rotation matrix associated
to an angle φ. As in [11] and [13], we denote by xa ⊕ xb
and xa 	 xb, respectively, the composition and the inverse
composition of two poses, defined by the following formulas:

xa ⊕ xb = (pa +R(θa)pb, θa + θb)
xa 	 xb = (R(−θb)(pa − pb), θa − θb).

Operators ⊕ and 	 are also used to compose two-
dimensional position vectors with three-dimensional poses.

1For simplicity, we use the same symbol (e.g., p) to indicate a point and
its Cartesian coordinates; the actual meaning will be clear from the context.

In particular, given the coordinates p of a point expressed in
Fi, whose pose w.r.t. F is xi, the operation xi⊕ p gives the
coordinates of the same point expressed in F . Conversely,
given xi and the coordinates p of a point expressed in
F , the operation p 	 xi gives the coordinates of the same
point expressed in Fi, whose pose w.r.t. F is xi. These
operators may also be used with a set P of points, by letting
xi⊕P := {xi⊕p | p ∈ P}, and P 	xi := {p	xi | p ∈ P}.

An observation Pi is a set of n distinct points in R2,
one of which is always the origin. It represents the positions
of the robots as measured by the i-th robot, i.e., relative to
Fi. Apart from the origin, which stands for Ri itself, Pi
does not convey any information about the identity of the
robot located at a certain point (anonymity), nor about its
orientation. Note also that all the observations of a given
group are the same up to roto-translations. See Fig. 1b–e for
examples of observations.

Problem 1 (Mutual Localization with Anonymous Position
Measures). Given n observations P1, . . . , Pn, find all the
possible pairs of functions

p̂ : {2, . . . , n} → P1\(0 0)T

θ̂ : {2, . . . , n} → [0, 2π),

with p̂ bijective, such that

P1 	 x̂i = Pi i = 2, . . . , n, (1)

where x̂i := (p̂(i), θ̂(i)).

Function p̂ assigns each point of P1 (with the exception
of the origin) to one and only one robot in {R2, . . . ,Rn},
whose orientation is then defined by θ̂ (see Fig. 1b). Note that
R1 is directly associated to the origin, with orientation equal
to zero, in all solutions to the problem. Stated differently,
Problem 1 consists in finding all the formations {x̂1 =
((0 0)T , 0), x̂2 . . . , x̂n} that are compatible with the given
observations, i.e., satisfy (1) (see Fig. 1f).

In general, a solution to Problem 1 may exist or not. In the
following, we assume that each observation Pi, i = 1, . . . , n,
has been gathered by robot Ri with reference to the same
spatial arrangement of the group. This is sufficient to claim
that Problem 1 admits at least one solution.

III. UNIQUE SOLVABILITY, STRUCTURE AND NUMBER
OF SOLUTIONS

In this section we give a necessary and sufficient condition
for the unique solvability of Problem 1 (Proposition 1), an
associated test (Proposition 2), and a quantitative and quali-
tative characterization of the solutions (Propositions 3 and 4).
In particular, we show that the problem is uniquely solvable
if and only if the set of points represented by observation
P1 does not have a rotational symmetry (remember that all
observations are the same up to roto-translations). Further-
more, we show that in the case of non-unique solvability the
number of solutions increases factorially with n, the number
of robots. To establish these results, we first recall a few
basic concepts on rotational symmetry.

3194



Fig. 2. Three rotational symmetric sets of points. From left to right, the
associated proper symmetric groups are respectively C2, C3 and C4. Note
that only the second set contains its centroid. Solid line segments join points
that belong to the same set of the rotational symmetric partition. Dotted line
segments show the presence of partial higher-degree symmetries which are
not relevant for the analysis: from left to right, they identify respectively
a square, an hexagon and an octagon. Dashed line segments meet at the
centroid of each set.

A. A brush-up on rotational symmetry

Consider a set of n points P ⊂ R2. Let SP denote the proper
symmetry group of P , i.e., the subgroup of its orientation-
preserving isometries (roto-translations) under which it is
invariant. It is known from symmetry group theory [14]
that, since P is a bounded set, SP can be represented as
a subgroup of SO(2) (the group of planar rotations), by
choosing the origin to be its fixed point, i.e., the centroid2

of P . In particular, there exists a positive integer l such
that SP = Cl, where Cl is the cyclic group of order l,
whose generator is the rotation of 2π/l. P is said to be
rotational symmetric if SP 6= C1, where C1 is the trivial
group containing only the identity operation.

Assume that SP = Cl and let c be the centroid of P .
Denote by qφ = (c − R(φ)c, φ) the rotation by an angle φ
around c, and in particular by

qk := (c−R(2kπ/l)c, 2kπ/l), (2)

the rotation by 2kπ/l, for k = 0, 1, . . . , l− 1. We have then
P = P 	 qk = qk ⊕ P , for k = 0, 1, . . . , l − 1. Note that
rotational symmetry is invariant under isometries: if P is
rotational symmetric, also P 	x is rotational symmetric, for
any x ∈ SE(2). Examples of rotational symmetric sets of
points are shown in Fig. 2.

The following Lemma establishes a property which is valid
for any finite set of points and has an important role in the
study of the unique solvability of Problem 1.

Lemma 1 (Rotational Symmetric Partition). For each set
P of n points for which SP = Cl, there exists a partition
EP = {E1, . . . , Em} of P such that Ej , j = 1, . . . ,m, is
invariant under any rotation in Cl around the centroid c, i.e.,

Ej = Ej 	 qk , k = 0, 1 . . . , l − 1.

If c 6∈ P , then l divides n, m = n/l, and the cardinality of
each subset of the partition EP is l. If c ∈ P , then l divides
n− 1, m = 1 + (n− 1)/l and the cardinality of each subset
in EP \{c} is l.

2Since after any rotation in SP the set of points P remains the same,
also the centroid remains the same, hence the centroid is the fixed point.

n possible values of l
1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 4 5
6 1 2 3 5 6
7 1 2 3 6 7
8 1 2 4 7 8
9 1 2 3 4 8 9

10 1 2 3 5 9 10
...

...
. . .

Fig. 3. The possible values of the integer l for the cyclic groups Cl that
can be the proper symmetry groups of a set P of n points. Note that, since
P can always be non-rotational symmetric, l = 1 is ubiquitous. Also, l = 2
is always possible since for any odd value of n one point can be always
placed in the centroid.

Proof: Suppose w.l.o.g. that c is the origin. Chosen a
point p ∈ P\{c}, the set E(p) of all points obtained applying
an element of Cl to p is a subset of P by definition. Clearly,
E(p) has cardinality l and is invariant under Cl. Now choose
a point p′ in P\E(p), repeat the above construction to obtain
E(p′), and proceed as before. If c 6∈ P , the collection of
all the distinct sets E(p) for all p ∈ P gives the subsets
E1, . . . , Em of the partition EP , with m = n/l. On the other
hand, if c ∈ P then set E(c) is a singleton and must be
added to the previous collection, which consists in this case
of (n− 1)/l subsets.

Figure 2 shows the partitions for three different rotational
symmetric set of points, while in Fig. 3 the possible values of
l are tabulated for sets of n = 1, . . . , 10 points. Limit cases
are l = 1 (the set of points is not rotational symmetric, and
the partition consists of n singletons) and l = n (the set of
points may be a regular n-gon, and the partition consists if
a single set containing all the points in P ).

B. Unique solvability of Problem 1

In the rest of this section, we assume that SP1 = Cl
and denote by c the centroid of P1. The role of rotational
symmetry in the unique solvability of Problem 1 is clarified
by the following result.

Proposition 1 (Unique Solvability). Assume that Problem 1
admits a solution. The solution is unique if and only if P1 is
not rotational symmetric.

Proof: Assume that Problem 1 admits multiple solu-
tions. Then there exists i and two poses x̂′i and x̂′′i 6= x̂′i such
that P1	x̂′i = Pi and P1	x̂′′i = Pi. Then P1 = x̂′′i ⊕P1	x̂′i,
i.e., there exists a non-zero roto-translation which transforms
P1 in itself; this means that P1 is rotational symmetric.
On the other hand, assume that P1 is rotational symmetric.
Since a solution {x1, . . . , xn} exists, i.e., P1 	 x̂i = Pi,
i = 1, . . . , n, there exists a non-zero roto-translation x which
transforms P1 in itself, i.e., P1 = P1 	 x. This means that
{x	 x1, . . . , x	 xn} is also a solution.

Proposition 1 implies that the number of solutions to Prob-
lem 1 is invariant with respect to changes in the orientations
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of the robots in the formation (in spite of the fact that the
observations change).

Unique solvability may be tested with the aid of the
following result.

Proposition 2 (Unique Solvability Test). Denote with P1(φ)
the set of points obtained by rotating the observation P1 by
an angle φ around its centroid c, i.e.:

P1(φ) := {R(φ)(p− c) + c | p ∈ P1}. (3)

If c 6∈ P , Problem 1 has a unique solution if and only if

P1 6= P1(2π/m) ∀m prime factor of n. (4)

If c ∈ P , n must be replaced by n− 1 in (4).

Proof: Since P1 has n points, its proper-symmetry
group SP1 can only be one of the cyclic groups C1, . . . , Cn.
In addition, since Cl, 2 ≤ l ≤ n, also belongs to any Cm
with m prime factor of l, and l can only be a divisor of n
(if c 6∈ P1) or n− 1 (if c ∈ P1), it is sufficient to check the
rotations that are generators of the cyclic groups Cm, with
m prime factor of n or n− 1.

Assume that c 6∈ P1. Since condition (4) requires n checks
for any value of m, the overall complexity of the test is
O(n · π(n)), where the prime-counting function π(n) can
be approximated by n/ log(n). If c ∈ P1, the complexity is
O((n− 1) · π(n− 1)).

C. Structure and number of multiple solutions

We now turn our attention to the case when there are multiple
solutions to Problem 1.

Proposition 3 (Structure of the Solutions). Let i = 2, . . . , n.
If x̂i is a feasible pose for Ri, in the sense that x̂i = (p̂i, θ̂i)
satisfies (1), then all the non-zero poses obtained as qk⊕ x̂i,
with k = 0, 1, . . . , l − 1 and qk defined by (2), are feasible
for Ri, and vice versa.

Proof: Being P1	 x̂i = Pi and P1 = P1	qk, we have
(qk ⊕ P1)	 x̂i = Pi. Developing the pose compositions for
an element p of P1 we have that

(qk ⊕ p)	 x̂i = (ck +R(φk)p)	 x̂i
= R(−θ̂i)(ck +R(φk)p− p̂i)
= R(−θ̂i)R(φk)(p−R(−φk)(p̂i − ck))
= p	 (x̂i 	 qk).

Hence (qk⊕P1)	x̂i = P1	(x̂i	qk) and x̂i	qk is a feasible
solution, for k = 0, 1, . . . , l − 1, which is equivalent to say
that qk ⊕ x̂i is a feasible solution, for k = 0, 1, . . . , l − 1.
Similarly, it is simple to show that for any other feasible
pose x′ ⊕ x̂i, x′ must belong to {qk}k=0,1,...,l−1.

Proposition 3 essentially states that if the observations of
Problem 1 are generated by a formation {x1, . . . , xn}, then
Ri can be assigned to position pi as well as to all the other
positions of the subset of EP1 which contains pi. This leads
to the following results.

Proposition 4 (Number of Solutions). The number of solu-
tions to Problem 1 is

(l − 1)! · (l!) n
l −1 if c 6∈ P1 (5)

(l!)
n−1

l if c ∈ P1. (6)

Proof: Remember that in all solutions R1 is at (0 0)T .
If c 6∈ P1, EP1 has n/l sets, each consisting of l positions.
Each set of EP1 has l robots associated, and, in each solution,
each of these robots (except for R1) can be placed in any
position of the set, provided that this position is not occupied
by another robot. Hence, (l − 1)! possible permutations
correspond to the set of EP1 associated to R1, and l! possible
permutations correspond to the remaining n/l − 1 sets of
EP1 . Multiplying these possibilities we obtain (5). A similar
analysis leads to (6) if c ∈ P1, noting that Ri associated to
the set {c} of EP1 has l possible poses if i 6= 1.

Corollary 1. For a given n, the maximum number of possible
solutions to Problem 1 is (n− 1)! . This number is actually
reached when P1 is a regular n-gon if c 6∈ P1, and when
P1\c is a regular (n− 1)-gon if c ∈ P1.

Proof: If c ∈ P1 and l = n−1 then (l!)
n−1

l = (n−1)!
and P1\c is a regular (n− 1)-gon. If l < n− 1, then l is a
factor of n− 1 and m = (n− 1)/l ∈ N. Both the numerator
and denominator of

r =
(l!)m

(n− 1)!
=

(l!)m−1

(n− 1)(n− 2) . . . (l + 1)

are products of l(m−1) factor,s and the smallest factor of the
denominator is larger than the largest factor of the numerator.
Then r < 1, and we can write (l!)

n−1
l < (n−1)!. For c 6∈ P1,

a similar reasoning leads to (l − 1!)(l!)
n
l −1 < (n − 1)! if

l < n, while if l = n the number of solutions is (n − 1)!
and P1 is a regular n-gon.

Summarizing, each point of P1 can be assigned to one
and only one subset of partition EP1 . If c 6∈ P1, Lemma 1
implies that each subset of EP1 has l positions and l robots
assigned to it. Conversely, each robot can assume l different
poses which correspond to all the l positions in its subset,
with l different orientations that differ by a multiple of 2π/l.
The robots associated to the set to which R1 is associated
have only l− 1 possible poses instead of l. Note that all the
robots associated to the same set have the observations equal
up to a pure rotation. If c ∈ P1 then Ri (i 6= 1) associated
to {c} has l different possible poses with the same position.

All the solutions are generated by independently permut-
ing the possible poses of each robot, with the constraint that
two robots cannot be at the same position. Hence, the set of
solutions of Problem 1 is implicitly represented by (1) the
set P1 (2) the partition EP1 of P1 (3) the association between
each robot Ri, i = 1, . . . , n, and the corresponding set of
EP1 . This compact representation of the solutions may be
used, e.g., to reduce the complexity of MultiReg [10], an
algorithm which solves a general class of mutual localization
problems that includes Problem 1 as a special case.
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IV. AN ANTI-SYMMETRY CONTROL LAW

Assume that a group of robots must perform a collabo-
rative task which requires mutual localization, and that only
anonymous position measures are available. If the robots are
initially arranged in a formation resulting in observations
that are rotational symmetric, mutual localization will be
computationally heavier and will not provide a single solu-
tion. In the stochastic case, as mentioned in the introduction,
problems will arise whenever the observations are close to
being rotational symmetric. For this reason, we introduce in
this section a continuous function that measures the distance
of sets of points from rotational symmetry. This will be used
to design a control law aimed at keeping the solution to
Problem 1 unique. We mention that the symmetry distance
function proposed in [15] is not practical for our purposes
because its computation cannot be executed in real time.

Given the set of points P1 and an angle φ ∈ [0, 2π), define
the symmetry metric function

γP (φ) := e(P1, P1(φ)),

where P1(φ) is defined in (3) and

e(P ′, P ′′) :=
∑
p′∈P ′

min
p′′∈P ′′

‖p′ − p′′‖2

is the closest point metric between P ′ and P ′′.

Proposition 5 (Properties of γP ). The following statements
are true:

1) γP1(0) = 0 .
2) γP1 is zero only at {2kπ/l, k = 0, . . . , l− 1}, where l

is the integer such that SP = Cl.
3) P1 is rotational symmetric if and only if γP1 is zero

for some φ other than 0.
4) There exist φ1, φ2, with 0 < φ1 < φ2 < 2π, such

that γP1 is strictly increasing in [0, φ1) and strictly
decreasing in (φ1, 2π).

Proof: 1) is true by definition. Moreover, γ(φ) = 0 if
and only if for any p′ ∈ P1 exists p′′ ∈ P1(φ) s.t. p′ = p′′.
Hence, P1 = P1(φ), i.e., the rotation R(φ) belongs to Cl.
This implies 2). Also, 2) implies 3). Finally, consider the
function γ̂P (φ) =

∑
p∈P1

‖(p− c)− R(φ)(p− c)‖2, which
is equal to

∑
p∈P1

(2(p−c) sin(φ/2))2, that is monotonically
increasing in [0, π] and monotonically decreasing in [π, 2π].
For each p ∈ P1 there is a neighborhood of φ = 0 in which
minp′∈P1(φ) ‖p − p′‖2 = ‖(p − c) − R(φ)(p − c)‖2, i.e., in
which γP (φ) = γ̂P (φ). Denote by Φ ⊂ [0, 2π) the set in
which γP (φ) = γ̂P (φ). Then, 4) is proven by taking φ1 =
maxΦ∩[0,π] φ and φ2 = minΦ∩[π,2π] φ.

As in the proof, define φ1 = maxΦ∩[0,π] φ and φ2 =
minΦ∩[π,2π] φ. According to Proposition 5, the minimum
value of function γP1 in the interval [φ1, φ2] (called internal
minimum value in the following) is a continuous measure of
the distance of P1 from being rotational symmetric. If the
minimum is zero, P1 is actually symmetric. A control action
aimed at keeping Problem 1 uniquely solvable can then be
based on the strategy of increasing such minimum value.
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Fig. 4. The symmetry metric function γ for the three set of points of
Fig. 2, in the same order from left to right.

In particular, assume for simplicity that the position of
each robot obeys an omnidirectional kinematic model:

ṗi = ui, i = 1, . . . , n,

where ui is the two-dimensional vector of velocity inputs for
Ri. Consider the following anti-symmetry control law

ui = α
p̄i − pi
‖p̄i − pi‖

i = 1, . . . , n, (7)

where α is a positive gain and

p̄i := argmin
p∈P1(φ̄)

‖pi − p‖ φ̄ := argmin
φ∈[φ1,φ2]

γP1(φ).

This control law has a simple interpretation. Once the
rotation angle φ̄ that minimizes γP1 in [φ1, φ2] has been
identified (e.g., numerically), P1(φ̄) is built by rotating P1

by φ̄. The closest point p̄i ∈ P1(φ̄) is found for any pi ∈ P1,
and the velocity input is chosen so as push Ri away from
p̄i along the segment pip̄i, leading to an increase of γP1(φ̄).

Note that (7) is undefined if P1 is rotational symmetric.
In this case a simple randomized control can be used for the
small time sufficient to break the symmetry.

V. SIMULATIONS

We have validated the results of Sections III and IV through
extensive simulations of the anti-symmetry control law.

The results of the first simulation are shown in Fig. 5
(above). The 9-robot system starts in a lattice formation
whose proper symmetry group is C4, and moves under the
action of the anti-symmetry control. Symmetry is readily
broken, as shown by change in symmetry metric function
γP1 , which has 3 internal zeros at start. As the simulation
proceeds, the internal minimum value of γP1 increases.

Figure 5 (above) also shows the consequence of mea-
surement noise on the accuracy of the estimated solution
in the neighborhood of the initial rotational symmetric for-
mation. To compute the solutions of Problem 1, we have
used MultiReg, a probabilistic robust estimation algorithm
that performs a multiple registration among a set of noisy
observations [10]. At each step, we have obtained multiple
sets of noisy observations by adding a gaussian noise to the
observations of the current arrangement. The figure shows
all the possible poses of the circled robot as estimated by
MultiReg on the basis of these data. At the start, when the
formation is rotational symmetric, the estimated solutions
are evenly distributed in 4 clusters of poses. The clusters are
centered on all the feasible positions of a single subset of
the partition EP1 , as predicted by Proposition 3. The number
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Fig. 5. Above: the use of the anti-symmetry control law to break up a
9-robot lattice formation whose proper symmetry group is C4; 4 snapshots
of the formation (top), the estimated positions for the circled robot (center),
the symmetry metric function γP1 (bottom). Below: the same results with
a random control law.

of solutions (576) found by MultiReg matches with the one
theoretically derived in Proposition 4. When the symmetry
is completely broken, at t = 4.0 s , the surviving estimates
have a gaussian distribution centered on the real pose and a
covariance comparable to that of the additive noise.

In the intermediate frames, in which the formation is close
to being rotational symmetric, the solutions of MultiReg are
distributed in more than one cluster, but not evenly. The
largest cluster is centered on the real pose of the estimated
robot. The other clusters, with less solutions, become feasible
configurations only when the additive noise on the observa-
tions restores the rotational symmetry.

For comparison, we have also simulated the same 9-robot
system under the action of a random control law (Figure 5,
below). In fact, since the subset of symmetric configurations
has zero measure in the configuration space, a random
control law can be expected to break the symmetry. However,
the results show that the anti-symmetry control is much more
effective in achieving this than the random control. In fact,
the increase of the internal minima of γP1 with the random
control is slower and non-monotonous. Correspondingly, the
multiple clusters of the estimation do not disappear.

Other simulations starting from rotational symmetric con-
figurations are shown in Figs. 6–7 and in the accompany-
ing video. See also http://www.dis.uniroma1.it/labrob/

research/mutLoc.html for other material.
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Fig. 6. As in Fig. 5 for a starting formation with proper symmetry group
C2.
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Fig. 7. As in Fig. 5 for a starting formation with proper symmetry group
C6.
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Fig. 8. (a) An example of non-complete measuring graph due to sensor
range limitations (b-d) observations of R1, R2 and R3 (e-f) the two
possible solutions, none of them rotational symmetric.

VI. NON-COMPLETE MEASURING GRAPH

We now sketch an extension of our problem to the case of
non-complete measuring graph, i.e., observations that include
only subsets of the group of the robots. This situation arises
when limited-range or anisotropic sensors are used, or when
line-of-sight occlusions occur due to obstacles or robots [10].

Problem 2 (Mutual Localization with Anonymous Position
Measures - Generic measuring graph). Given n observations
P1, . . . , Pn, with |Pi| = mi ≤ n, find all the sets P̂ ⊃ P1,
with |P̂ | = n, together with the associated pairs of functions
p̂ : {2, . . . , n} → P̂\(0 0)T , θ̂ : {2, . . . , n} → [0, 2π), with
p̂ bijective, such that

P̂ 	 x̂i ⊃ Pi i = 2, . . . , n, (8)

where x̂i := (p̂(i), θ̂(i)).

Proposition 6 (Necessary Condition for Unique Solvability).
If Problem 2 admits a solution in which P̂ is rotational
symmetric, this solution is not unique.

This result is obvious since a solution for which P̂ is
rotational symmetric generates (by permutation of the robots
in the same subset of EP̂ ) additional feasible solutions of
Problem 2 that differ for the associated functions p̂ and θ̂.

The condition of Proposition 6 is not sufficient. As shown
by Fig. 8, there are cases in which multiple solutions exist,
but none of them is associated to a rotational symmetric P̂ .

VII. CONCLUSION AND FUTURE WORKS

We have theoretically formulated and investigated a novel
problem called Mutual Localization with Anonymous Posi-
tion Measures. This is an extension of Mutual Localization
with Position Measures, with the additional assumption that
the identities of the measured robots are not known. Through
the use of the concept of planar rotational symmetry, we
have established a necessary and sufficient condition for the

uniqueness of the solution, providing also an associated test.
Furthermore, we have studied the structure of multiple so-
lutions, classifying the solutions in a number of equivalence
classes which is linear with n, and determined as (n−1)! the
upper bound to the maximum number of possible solutions.

Through the introduction of a continuous function that
measures the distance of sets of points from rotational
symmetry, we have designed a control law aimed at keeping
the solution to Problem 1 unique. Its superior performance
in comparison with a random control was confirmed by
extensive simulation. The application of a multiple registra-
tion algorithm (Multireg) corroborates the theoretical results
about number and structure of the solutions and suggests
some interesting probabilistic considerations.

Current work is aimed at a comprehensive treatment of
the case of generic measuring graph as well as at the design
of a decentralized anti-symmetry control.
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