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Abstract

Research on multi-robot systems have received a lot of interest during recent
years. In this thesis, a group of methods addressing some relevant multi-
robot problems are presented. The first part deals with three environmental
coverage problems. Chapter 1 describes the Sensor-based Random Graph
(SRG) method for cooperative robot exploration. Chapter 2 describes the
distributed visibility patrolling method, which can be viewed as a recurrent
version of the exploration and is aimed to find optimal trajectories for a team
of robots that must periodically visit a set of viewpoints in an environment
with obstacles. In Chapter 3 the visibility-based pursuit-evasion method is
presented, where a team of searchers must coordinate to guarantee detection
of all evaders in an unknown environment while using only local information.
The second part deals with localization and control problems in presence of
anonymous measures. In particular Chapters 4 and 5 address the mutual
localization, i.e., the estimation of the change of coordinates among the
team members, using anonymous distance-bearing measures affected by false
positives and false negatives. In Chapter 6 the anonymous-measurement
setting is applied to the formation control field, addressing the encircling
task.
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Introduction

Introduction

The research on multi-robot systems have received a lot of interest during
recent years, e.g., roughly 9-10% of the titles in IEEE International Confer-
ence on Robotics and Automation in the last decade refer to this topic. The
field of application is large. The more common applications are exploration
and map building, sensor networks, surveillance, localization and tracking,
transportation, and mobile infrastructures (e.g., for communication).

Some of the main advantages in using a team of robots instead of a single
robot are: improved time and space performances, due to the distributed
task execution; a higher degree of robustness, due to a certain amount of
independence between task completion and number of robots; the construc-
tional simplicity of the hardware, based on the bio-inspired concept that
many simple interacting units can act as a more complex organism. On the
other hand, the development of algorithms for a practically effective multi-
robot system is more complex and the related theoretical proofs are often
harder to obtain. In fact, the concurrent evolution of many sub-systems
and their mutual interaction, in the form of implicit physical relationships
or explicit communication, must be taken into account. As a consequence,
relevant design techniques for such robotics systems include decentralized
control from control theory, distributed algorithms from computer science,
wireless communication from telecommunications, multiagent cooperation
from artificial intelligence, an so on.

In this thesis, a group of methods addressing five relevant multi-robot
problems are presented. Chapter 1 describes the Sensor-based Random
Graph (SRG) method for cooperative robot exploration, which performs
a frontier-based exploration. It incrementally builds an exploration graph
consisting in a fusion of many subgraphs created individually by each robot.
The cooperation issues and the spatial conflict management are addressed
in a distributed way. The sharing of portion of maps among different robots
is essential in this algorithm. For this reason an estimate of the relative
pose (mutual localization) is needed. This problem, which emerges also in
many different contexts, is addressed in Chapters 4 and 5, in its relative
and absolute version. In particular, inspired by the fact that our robots are
equipped only with a range finder which is unable to distinguish the identity
of the measured object, we have considered a more general class of mutual
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Introduction

localization problems. The mutual localization with anonymous position
measures concerns the estimation of the whole team configuration using
anonymous distance-bearing measures affected by false positives and false
negatives. A multiple registration algorithm, a robust statistical paradigm
called RANSAC, online data-association and EKF-filtering are used to dis-
ambiguate the team configurations and to reject erroneous measurements.
On the other hand, Appendix A presents a classification of the ordinary mu-
tual localization problems, in which identity is assumed known. In Chapter 6
we apply the anonymous-measurement setting to the formation control field,
addressing the encircling task. In this case the mutual localization system
result to be also useful to detect a non collaborative object which becomes
a target to encircle. While the exploration is a batch task, since has a
termination, the patrolling is a related task which requires to continuously
monitor an area to detect intruders or other events. Chapter 2 describes the
distributed visibility patrolling method. It finds optimal trajectories for a
team of robots that must periodically visit a set of viewpoints in an environ-
ment with obstacles. This viewpoints may be though as a result of the SRG
exploration algorithm. The robots are supposed to communicate only in vis-
ibility. The refresh time of the viewpoints (the maximum time between two
consecutive visits) and the latency (the maximum time needed to transfer an
information from each robot to any other robot) are considered as objective
functions. Chapter 3 deals with another coverage task, the visibility-based
pursuit-evasion method, where one or more searchers must coordinate to
guarantee detection of all evaders in an unknown environment while using
only local information. This task can be used to perform intruder detection,
search and rescue, and other related security or monitoring tasks. The algo-
rithm is based on the idea of maintaining complete coverage of the frontier
between cleared and contaminated areas while expanding the cleared area.
All these methods need a platform to be implemented on a real team of
robots. Appendix B briefly describes the Multi-robot Integrated Platform
we have implemented to make our experiments in a modular and efficient
way.

Each chapter is organized in a similar self-contained way. First the sce-
nario of the problem and its background in the literature are introduced.
Second, the problem is stated in a formal way. Third the solution is pre-
sented, theoretically demonstrated and practically validated with simula-
tions and/or experiments. Fourth the open points and new ideas are pre-
sented.

7



Part I

Cooperative Environmental
Coverage
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This part presents three multi-robot problems related by the common
goal of covering an environment with the sensors.

In Chapter 1 the cooperative exploration problem is considered:

Problem (Cooperative Exploration) Given a team of mobile robots with
limited sensing and communication range

• cover once each point of an unknown area with at least one robot

• eventually build a model of the covered area (e.g., a map, a roadmap)

Possible applications of the cooperative exploration are the discovering of
static objects, map building, and planetary missions.

In Chapter 2 the cooperative optimal patrolling is considered:

Problem (Cooperative Optimal Patrolling) Given a team of mobile robots
with limited sensing and communication range

• continuously cover each point of a known area

• design the patrolling trajectories in order to minimize the maximum
time

– in which a point of the area remains unvisited (refresh time)

– needed to exchange a message between any two robots using multi-
hop (latency)

The main differences with the exploration are that the environment is known
(e.g., from a previous exploration) and hence the focus is on optimal time-
planning, i.e., scheduling. Some possible application are the in the field of
area keep-watching (e.g. oil-spill monitoring, forest-fire detection, track of
border changes, surveillance of an explored area).

In Chapter 3 the cooperative pursuit evasion is considered:

Problem (Cooperative Pursuit-evasion) Given a team of mobile robots with
limited sensing and communication range

• cover once each point of an unknown area with at least one robot

• eventually detect any moving object in the covered area (e.g. lost per-
son)

The main differences with the exploration are that the presence of moving
objects implies that the solutions must take care of recontamination and
that the fact that no map is required implies that a finite-memory solution
is expected. The main applications are the in the field of the discovering
of moving objects (e.g., rescue (moving objects are victims to be saved),
security (moving objects are invaders to be caught)).

9



1. SRG Exploration

Chapter 1

The Sensor-based Random
Graph Method (SRG) for
Cooperative Robot
Exploration

This chapter presents the decentralized cooperative exploration strategy for a team
of mobile robots equipped with range finders described in [1], endowed with recent
improvements. A roadmap of the explored area, with the associate safe region, is
built in the form of a Sensor-based Random Graph (SRG). This is expanded by the
robots by using a randomized local planner which automatically realizes a trade-off
between information gain and navigation cost. The nodes of the SRG represent
view configurations that have been visited by at least one robot, and are connected
by arcs that represent safe paths. These paths have been actually traveled by the
robots or added to the SRG to improve its connectivity. Decentralized cooperation
and coordination mechanisms are used so as to guarantee exploration efficiency and
avoid conflicts. Simulations and experiments are presented to show the performance
of the proposed technique.

1.1 Introduction

Exploration of unknown environments is one of the most challenging prob-
lems in robotics. This task typically requires a mobile robot to cover an
unknown area while learning, at the same time, a model of the environment
or locating a given object. A wide range of applications are conceivable, in-
cluding automated surveillance, search-and-rescue operations, map building
and planetary missions.

Using a multi-robot system has a number of potential advantages [2, 3].
A team of robots is expected to be able to complete an exploration task
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1. SRG Exploration

faster than a single robot. Moreover, if a map of the environment is to be
built, the redundant information provided by multiple robots can be used
to increase the map accuracy and the quality of the localization [4]. To
achieve these objectives, some sort of task decomposition and allocation is
required. In practice, strategies to conveniently distribute robots over the
environment should be devised so as to prevent the occurrence of spatial
conflicts [5] and take advantage of the multi-robot architecture. Clearly,
communication plays a crucial role in achieving a cooperative behavior with
improved performance [6].

In most exploration strategies, the boundary between known and un-
known territory (the frontier) is approached in order to maximize the infor-
mation gain. A pioneering work for the multi-robot case is [7]: the robots
merge the acquired information in a global gridmap of the environment,
from which the frontier is extracted and used to plan individual robot mo-
tions. While this basic scheme lacks an arbitration mechanism preventing
robots from approaching the same frontier region, in [8] it is proposed to
negotiate robot targets by optimizing a utility function which takes into
account the information gain of a particular region, the cost of reaching it
and the number of robots currently heading there. The same decentralized
frontier-based approach is used in [9], where a large-scale heterogenous team
of mobile robots is used for exploration, mapping, deployment and detection
tasks. In [10], the utility of a particular frontier region from the viewpoint of
relative robot localization is also considered. In the incremental deployment
algorithm of [11], robots approach the frontier while retaining visual contact
with each other. An interesting multi-robot architecture in which robots are
guided through the exploration by a market economy is presented in [12],
whereas [13] proposes a centralized approach which uses a frontier-based
search and a bidding protocol to assign frontier targets to the robots.

The present method builds on previous work [14, 15] on cooperative
robot exploration based on local information only. In particular, the robots
of the team cooperatively build a map of the environment in the form of a
graph, called Sensor-based Random Graph (SRG), which is an evolution of
the Sensor-based Random Tree (SRT) defined in [16, 17].

A node of the SRG contains a view configuration and the Local Safe
Region (LSR) perceived from that location; an arc between two nodes rep-
resents a safe path between the corresponding configurations. The paths
stored in the arcs may have been actually traveled by at least one of the
robots, or added by joining directly connectable nodes to improve the con-
nectivity of the roadmap. These special arcs are called bridges and essen-
tially provide shortcuts.

With respect to [7, 8, 9, 10, 11, 12, 13], the distinctive aspects of the
SRG method are the following.

• Complete decentralization. Each robot independently selects its next
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1. SRG Exploration

destination towards the local frontier of its current LSR, thus ap-
proaching areas that appear to be unexplored on the basis of all the
available information. This simple cooperation strategy is very effi-
cient and automatically achieves a trade-off between information gain
and navigation cost, without the need of defining and optimizing mixed
utility functions.

• Continuous replanning. Since the LSR is bounded by the sensor per-
ception range, the next destination of each robot is always nearby.
These short-term plans are more secure, less binding and result in a
more flexible decentralized task allocation, which can quickly adapt to
new information that becomes available through communication. This
also eliminates the necessity of enforcing artificial timeout conditions
on the individual task execution.

• Guaranteed coordination. Another consequence of the short span of
each robot plan is that coordination is needed to avoid conflicts only
when the robots are close to each other. In particular, we are able
to explicitly characterize this situation and provide guaranteed coor-
dination strategies. In addition, a lower bound on the communication
range that is needed to implement these strategies can be derived.

The chapter is organized as follows. Section 1.2 lists the assumptions
under which the SRG method is presented. The SRG data structure is de-
scribed in Sect. 1.3 . The architecture of the software implementing the
exploration method on each robot is described in Sect. 1.4. Central in this
architecture is the action planner, described in Sect. 1.5. The information
encoded in the SRG stored in the memory of each robot is updated as ex-
plained in Sect. 1.6. The robots exchange information according to the
communication protocol given in Sect. 1.7. In Sect. 1.8, some implementa-
tion issues are discussed. Finally, Sects. 1.9 and 1.10 present simulation and
experimental results, respectively, of the proposed strategy.

1.2 Problem formulation

The cooperative SRG exploration method is presented under the following
Assumptions.

1. The robots move in a planar workspace W ⊆ IR2.

2. Each robot is a disk of radius ρ, whose configuration q is described by
the cartesian position of its center.

3. Each robot is path controllable, i.e., it may follow any path in its con-
figuration space with arbitrary accuracy. This assumption is verified
for free-flying as well as (most) nonholonomic mobile robots.
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1. SRG Exploration

4. The robots are equipped with an omnidirectional sensory system which
provides the Local Safe Region LSR(q), a description of the free space
surrounding the robot at q. The LSR is a star-shaped subset of IR2,
whose maximum radius is bounded by the robot perception range Rp
(Fig. 1.1).

5. Each robot can broadcast the information stored in its memory (or
relevant portions of it) within a communication range Rc at any time.
The robot ID number is included in the heading of any transmis-
sion. The robot is always open for receiving communication from
other robots located inside Rc.

Many of these assumptions are only taken for simplicity and can be re-
laxed. The assumption of planar workspace is obviously not restrictive: 3D
worlds are perfectly admissible as long as the sensory system allows the re-
construction of a planar LSR for planning the robot motion. Assumption 2
implies that the configuration space of each robot is a copy of the workspace
with the obstacles grown so as to allow for the robot size [18]. This as-
sumption is only taken for ease of presentation: the proposed method is
readily applicable to robots with arbitrary shape. In Assumption 3, path
controllability can be replaced with (simple) controllability provided that a
regional path planner (i.e., an algorithm that generates feasible paths in a
limited region) is available. Assumption 4, and in particular the star-shaped
hypothesis, is consistent with the physics of the most common proximity sen-
sors, i.e, range finders, but it also applies to more sophisticated perception
techniques (e.g., panoramic vision).

At this stage, our exploration task can be informally defined as fol-
lows: the objective is to cooperatively cover the largest possible portion of
the workspace with sensor perceptions. A more formal definition will be
given in the following in connection with the termination condition for our
method.

1.3 The sensor-based random graph (SRG)

The Sensor-based Random Graph (SRG) is a compact data structure used
to represent the area explored by the team of robots as well as with the
history of the exploration process in the form of a roadmap. Each node
of the SRG represents a collision-free configuration q that has been visited
by at least one robot. The result of the perception process at q is the
associated Local Safe Region LSR(q). An arc between two nodes represents
a collision-free path between the two configurations. This path may have
been actually traveled by at least one robot, or added to the SRG to improve
its connectivity (in this case it is called bridge, see Sect. 1.6).
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1. SRG Exploration

Figure 1.1: The lightly colored (green/yellow) area is the Local Safe Region
(LSR) at the current configuration. Its lighter (yellow) subset is the Local
Reachable Region (LRR). Obstacles are darkly colored (blue).

It should be emphasized that the SRG is a ‘virtual’ data structure, whose
knowledge is distributed in the team [19]. The i-th robot knows its own
version SRGi of the graph. SRGi is built by the robot on the basis of data
acquired either by the robot itself or via communication with other robots.
The SRG, which is the union of all the SRGi’s, is not explicitly represented
at any level.

Each robot incrementally builds its own SRGi by extending it in the most
promising direction via a biased random mechanism. In doing this, it uses a
local coordination strategy that takes into account the information coming
from other robots in order to guarantee that the distributed knowledge is
increased. As a result, the SRG as a whole is simultaneously extended in
several directions towards currently unexplored areas.

For planning robot motions, the SRG method makes use of three struc-
tures that are directly derived from the LSR: the Local Reachable Region
LRR(q), the Local Frontier LF(q) and the Local Informative Region LIR(q).

1.3.1 The local reachable region (LRR)

In the SRG method, the action planning domain is the robot configuration
space and in particular the Local Reachable Region LRR(q), defined as the
set of configurations that can be reached from q with the robot staying in
LSR(q) (Fig. 1.1). Under Assumptions 2 and 3, the LRR(q) can be obtained
by eroding the LSR(q) with the robot disk as structuring element [20], and
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1. SRG Exploration

Figure 1.2: Frontier arcs (thick lines) and free arcs (thin lines) of the current
LSR boundary.

then extracting the connected component containing q. The LRR is not
star-shaped in general.

1.3.2 The Local Frontier (LF)

To identify promising exploration actions from the available information,
the robot identifies the portion of the current LSR boundary leading to un-
explored areas. To this end, the boundary ∂LSR is partitioned in obstacle,
free and frontier arcs (see Fig. 1.2). An obstacle arc is a portion of the
boundary of the obstacle region as detected from q. Under Assumption 4,
these are reconstructed from the range scan by identifying contiguous read-
ings that are smaller than the perception range Rp. Points of ∂LSR which
fall in other LSRs stored in the SRGi belong to free arcs. Any arc which is
neither obstacle nor free is a frontier arc, and by construction identifies the
transition from explored to unexplored regions. The union of the frontier
arcs of LSR(q) is the Local Frontier LF(q).

A frontier arc of LSR(q) is computed from the whole SRGi, which in
turn is built using all the information available to the robot. This is the
key to our decentralized cooperation mechanism aimed at optimizing the
exploration performance of the team. Such mechanism is inherently local
and contingent because it relies on communication between the robots.

1.3.3 The local informative region (LIR)

Given an LSR(q) and its LRR(q), a q′ ∈ ∂LRR(q) is called a local informative
configuration if there exists a point p on the Local Frontier LF(q) such that
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1. SRG Exploration

p
q02

q01

   LRR
boundary

 Local
Frontier

Figure 1.3: While q′1 is a local informative configuration, q′2 is not.

(see Fig. 1.3):

1. the open line segment (also called the line of sight) joining p and q′

does not intersect the boundary ∂LSR(q);

2. ‖p− q′‖ < Rp.

The first condition guarantees that p ∈ LF (q) is ‘visible’ from q′ through
a line of sight contained in LSR(q), while the second ensures that p is con-
tained in the perception range at q′. Together they guarantee that a sensor
scan taken from q′ will ‘push forward’ the frontier arc containing p, thereby
increasing the information about the explored workspace.

Conditions 1 and 2 may be satisfied also at configurations that belong
to the interior of LRR. However, the above definition, according to which
local informative configurations must be on the LRR boundary, aims at
maximizing the information gain. A local informative configuration has
positive information gain in the sense of [21, 22].

The Local Informative Region LIR(q) is the set of all local informative
configurations; LF(q) = ∅ implies LIR(q) = ∅.

1.4 Functional architecture

For the sake of clarity, the SRG exploration will be described with reference
to the functional architecture of the software running on each robot of the
team, shown in Fig. 1.4. Blocks with thick edges represent processes, those
with thin edges represent threads, and dashed rectangles represent data.
Arrows indicate an information flow: thick for interprocess communication,
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1. SRG Exploration

action
planner

robot driver

rob
ot exp
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 i-th robot
state

i
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broadcasterlistener

network

Figure 1.4: Functional architecture of the software implementing the SRG
method on the i-th robot.

thin for communication between threads, dashed for read/write operation
on data structures.

The robot explorer implements the SRG exploration algorithm, while the
robot driver provides low-level primitives for motion, localization and per-
ception (not discussed here). The two processes communicate through the
TCP protocol, allowing a distributed instantiation of the architecture and
providing a flexible integrated environment for simulation and experimental
validation. With this architecture, in fact, the explorer and the driver do
not need to run on the same machine, and the latter can be a real or a
simulated robot.

The robot explorer is realized by four threads: the action planner, the
SRG manager, the broadcaster and the listener. The action planner is the
core of the robot explorer: it is in charge of choosing the next exploration
action in a cooperative and coordinated way. The task of the SRG manager
is to elaborate and continuously update the data stored in the SRGi on the
basis of the information received from the action planner or, through the
listener, from the rest of the team. In particular, the action planner makes
available the LSRs acquired by the robot, while the listener provides the
SRGj ’s built by other robots of the team with which communication has
taken place. The SRG manager incorporates these data so as to maintain
the consistency of local representations. To this end, self-localization and
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mutual localization information coming from the robot driver (and, through
the listener, from other robots) are used. Finally, the broadcaster transmits
all the information currently available to the robot.

1.5 Action planner

The action planner for the i-th robot is described in pseudocode in Fig. 1.5.
Its basic steps are first briefly discussed, and then detailed in the rest of the
Section.

At the beginning, the robot is stationary in a position corresponding
to a node of the SRGi. The first operation that the robot performs is the
identification of the Group of Engaged Agents (GEA), i.e, the other agents
of the team with which cooperation and coordination are necessary. This is
achieved by first building the Group of Pre-engaged Agents (GPA), i.e., the
robots which are candidate to belong to the GEA, and synchronizing with
them (line 1). These computations are performed by the robot on the basis
of the information stored in its SRGi and data coming from other robots (see
Fig. 1.4). Once synchronization has been achieved, the action planner sends
a ‘perceive’ command to the robot driver, receives from it the current LSR
and makes it available to the SRG manager (line 2). When the perceptions
of all the robots in the GPA have been received, the actual GEA can be
built using simple geometry. Lines 1–3 are detailed in Sect. 1.5.1.

If the Local Informative Region LIR (computed by the SRG manager)
of the current LSR is non-empty, the action planner selects a target configu-
ration (also called view configuration in the following) on the LIR according
to a randomized mechanism (line 5). A path reaching the target is then
planned inside the current LRR (this guarantees that the path is safe, i.e.,
collision-free on the basis of the available knowledge). If the current LIR
is empty, the action planner verifies whether there exists in SRGi a node
with non-empty LIR (line 6). In the positive case, it first finds the closest
node with a non-empty LIR and plans a path leading to it on SRGi (line 7).
Then, it selects as target the first adjacent node on such path (line 8). See
Sect. 1.5.2 for a commentary of lines 5–8.

After the target is selected, the robot checks if its GEA includes other
robots. In the negative case, the robot directly moves to its target. Other-
wise, the prospective paths of the robots in the GEA are checked for mutual
collisions and accordingly classified in feasible and unfeasible paths (line 12,
Sect. 1.5.3). If there are unfeasible paths, a GEA coordination phase takes
place. A master robot is selected in the GEA, which may either confirm or
modify (see Sect. 1.5.4) the current target of the robot. In particular, the
robot move may be simply forbidden by resetting the target to its current
configuration. Last, the target is received from the master (line 15) and the
robot moves towards it (line 16).
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Procedure Action Planner

build GPA and synchronize;1

perceive LSR;2

build GEA;3

if LIR is non-empty then4

select a target configuration on LIR and5

plan a path leading to it in the LRR;
else if there exists a node of SRGi with non-empty LIR then6

find the the closest node with non-empty LIR and7

plan a path on SRGi leading to it;
set as target the first adjacent node on the path;8

else9

terminate exploration: homing;10

if |GEA| > 1 then11

check feasibility of the GEA robot paths;12

if there are unfeasible paths then13

choose a master in the GEA;14

wait target from master;15

issue ‘move to target’ command;16

Figure 1.5: A pseudocode description of the action planner.

The action planner terminates the exploration process when the condi-
tion of line 9 is verified, i.e., when the LIRs of all nodes in the SRGi are
empty (hence, no local informative configurations remain in SRGi). At this
point, the robot enters a homing phase, in which it plans and follows a path
on the SRGi leading back to its starting configuration.

If all nodes of the SRGi have empty Local Frontier, the above termination
condition is obviously met. However, such condition may also be satisfied
in the presence of non-empty LFs, as in the case of Fig. 1.6. Here, there is
no further exploration action that will allow the robot to move/remove the
LF (a typical situation when the workspace contains ‘windows’ across which
the robot can ‘see’ but cannot ‘pass’).

It is also interesting to point out that, although our exploration task is
cooperative in nature, the above termination condition is consistent with a
decentralized approach, as it can be computed by each robot on its own. In
fact, when no local informative configurations are left in its SRGi, a robot
can safely exit the exploration process, as it will never be able to contribute
new perceived areas to the distributed SRG. Actually, our simulations and
experiments have shown that, on the average, all robots tend to perform
homing simultaneously, thereby supporting a claim of efficient exploration.
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  Local 
Frontier

     LRR
boundary

Figure 1.6: A typical situation in which the Local Informative Region is
empty while the Local Frontier is not. Once the robot is in contact with
the narrow passage boundary, no further exploration action will allow to
move/remove the LF (the robot can ‘see’ but cannot ‘pass’ through the
passage).

1.5.1 GPA/GEA construction

At the start of the action planner algorithm, the robot is stationary and
needs to identify other robots whose LSRs may overlap with its own, in order
to cooperate (avoid inefficient actions) and coordinate (avoid collisions) with
them. The other robots may be stationary as well (in this case, their targets
coincide with the current configuration) or moving towards a target; hence,
a synchronization phase is needed.

Two robots are said to be GPA-coupled if the distance between their
targets is at most 2Rp, i.e., twice the perception range. The GPA of the
robot is then built by grouping together all the robots to which it can be
connected through a chain of GPA couplings (see Fig. 1.7, left). To achieve
synchronization, the GPA is computed and updated until all its members are
stationary; when this is achieved, the robot exits from this synchronization
phase. If T is the maximum time required to reach the target, the upper
bound of the waiting time is (N − 1)T , where N is the number of robots of
the team. T is bounded; in fact, the target configuration is at a distance at
most Rp − ρ, since it is always in the current LIR.

The communication range Rc clearly plays a role in the GPA construc-
tion. Since the maximum distance between the robot and any other robot
with which it is GPA-coupled is 3Rp−ρ (the other robot may still be moving
to its target, which however cannot be farther than Rp− ρ from the current
configuration), it is sufficient to assume Rc ≥ 3Rp− ρ to guarantee that the
GPA accounts for all the robots that are candidate to belong to the GEA.

Once the robot is synchronized with its GPA (and all the LSRs of the
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Figure 1.7: An example of GPA/GEA construction. Left : The GPA of robot
4 consists of robots 1,3,4,7: robot 1 is still moving towards its target point,
while robots 3, 4 and 7 are stationary. The perception areas of the robots
(prospective in the case of robot 1) overlap in pairs. Right : Once the LSR
have been computed, only robots 3, 4, and 7 belong to the GEA of robot 4
since their LSRs overlap in pairs.

other robots in the GPA are available), it builds the GEA, i.e., the robots
with which cooperation and coordination are actually necessary. If we define
two robots to be GEA-coupled when their LSRs overlap, the GEA of the
robot (see Fig. 1.7, right) is composed by all the GPA robots to which it can
be connected through a chain of GEA couplings. Synchronization guarantees
that all the GPA robots are stationary when the GEA is computed. The
GEA is symmetric, i.e., it is the same for all robots in the group.

The GEA is a cornerstone of our method, as it identifies a group of
robots that, in view of their vicinity, spontaneously agree to cooperate and
coordinate with each other on a temporary basis. Such agreement can be
reached with a limited communication range (Rc ≥ 3Rp − ρ).

1.5.2 Target and path generation

If the current Local Informative Region is non-empty, the action planner
chooses a target configuration in the LIR using a randomized mechanism.

In particular, the LIR is in general the union of disjoint arcs a1, a2, ..., am.
First, one of these arcs is selected with a probability proportional to its
length. Let a be the selected arc and s be the arc length parameter along
a, with s ∈ [0, L]. The target configuration is selected on a by generating
a random value s∗ according to a normal distribution with mean value L/2
and standard deviation σ = L/6, and taking the configuration identified by
s = s∗. At this point, a path to the target can be planned in the current
LRR; note that, in view of Assumption 3, any such path can be executed
by the robot (and is collision-free by definition).

A deterministic version of this target selection procedure can be envis-
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aged, in which a specific configuration in the LIR is selected according to
some fixed criterion, e.g., maximum information gain. However, our expe-
rience indicates that using this strategy the computational load is 4 or 5
times worse than our randomized version, which is not justified by the im-
provement in performance (traveled distance and number of views), which
is lower than 5% on the average.

Thanks to the GPA synchronization phase, all the robots in a GEA plan
at the same time, and therefore the cooperation mechanism encoded in the
notion of Local Frontier is enforced on all the group. This ‘agreement of
intents’ is realized without any centralized decision module.

1.5.3 GEA path feasibility check

Although the current Local Frontier of a robot cannot belong to the LSR
of another robot of the GEA (see Fig. 1.2), the two prospective paths may
still intersect (see Fig. 1.8).

Let G be the set of robots in the GEA. The prospective paths of the
robots of G are checked to establish whether they are simultaneously feasible,
i.e., they do not lead to collisions (for simplicity, the possibility of velocity
scaling along the paths is not considered). All pairs of paths that intersect
are identified, and the corresponding robots stored in the GEA unfeasible
subset Gu. The remaining robots are the GEA feasible subset Gf . The
complexity of this check is O(|G|2).

1.5.4 Coordination

If the subset Gu of robots with unfeasible paths is non-empty, a coordination
phase takes place locally. At first, a master robot within G is elected1. This
can be accomplished in many ways through a deterministic procedure known
by all the robots; for instance, the robot with the higher ID number can be
chosen. Two cases are then possible:

1) If the robot is the master, it builds the vector of targets QG which
collects the target configurations received from the GEA robots. Then, it
rearranges this vector so as to obtain a feasible collective motion. Here,
rearrange may mean either simply accepting/resetting the target of a robot
to the current configuration (i.e, authorizing/forbidding the move) or adding
a third option, i.e., changing it to a new target. Correspondingly, we have
devised two strategies, i.e., coordination via arbitration and coordination via
replanning (see below).

2) If the robot is not the master, it waits for until the receipt of a specific
signal from the master.

1A master robot is not actually needed when a deterministic coordination algorithm
is chosen; in fact, in this case each robot can run the algorithm on its own, reaching the
same solution as the others.
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Figure 1.8: The prospective paths of robots belonging to the GEA may
intersect as each of them tries to move towards its LF.

The final operation is to retrieve and return the robot’s (possibly modi-
fied) own target from QG .

Coordination via arbitration

This strategy implements a simple arbitration mechanism on G. All the
robots contained in the feasible subset Gf are allowed to move (their target
configuration is left unchanged). The robots in the unfeasible subset Gu are
not allowed to move (their target is reset to the current configuration) with
the exception of a single one whose motion is authorized (by construction,
this strategy is guaranteed not to produce conflicts).

The selection of the authorized robot in Gu may be done on the basis
of various criteria. The one we have used chooses randomly one of the
robots (if any) whose LIR is empty. This strategy is motivated by the fact
that, if their move is not authorized, such robots will have to wait for their
path to become clear, as they cannot change their target (as opposed to
robots whose LIR is non-empty, to which the random planner may propose
a different target in the next cycle). An antithetical criterion would be to
use a probability proportional to the LIR extension to choose randomly a
robot in Gu.

Coordination via replanning

This strategy tries to modify the targets of the robots in G so as to maximize
the number of simultaneous feasible moves. This may be done by formalizing
the problem as follows.
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Consider the set of targets QG associated to the GEA G. Two targets in
QG are called compatible if they can be reached by the corresponding robots
with paths that do not intersect. Let G be the compatibility graph associ-
ated to (G,QG) and defined as the indirect graph whose nodes represent the
robots in G and whose arcs join pairs of nodes with compatible targets. A
maximum clique of G is a complete subgraph of G with maximum cardinal-
ity, corresponding to a maximum subset of robots with compatible targets.
The identification of a maximum clique is a well-known NP-complete prob-
lem in the context of the graph theory [23, 24].

The ideal objective of the replanning strategy is to modify the set of
targets QG so as to maximize the cardinality of the associated maximum
clique(s), with the constraint that the target of each robot is either accepted,
changed to another configuration on the LIR (if this is non-empty) or to
the current robot configuration (the move is not authorized). This is a very
complex problem whose solution would require the computation of maximum
cliques as a subproblem. To find a satisfactory solution in a given amount
of time, we have adopted a randomized search technique, performed by the
master as a sequential game with complete information.

1.6 SRG manager

The SRG manager updates SRGi on the basis of the new information it
receives, which consists of one or more nodes to be added to the graph. A
node is a view configuration and comes with the associated LSR, a list of
adjacent nodes and the corresponding arcs. Information may reach the SRG
manager via two different routes (see Fig. 1.4). Views gathered by the i-th
robot itself come from the robot driver through the action planner whereas
those collected by other robots are received through the listener. Since each
robot uses its own reference frame, views arriving via the second route must
undergo a preliminary rototranslation, which is computed on the basis of
mutual localization data.

For each new node, the SRG manager:

1. adds the node to SRGi or, if it is already present, updates its LSR;

2. computes the LRR, the LF and the LIR;

3. updates the LF and the LIR of the nodes in SRGi whose LSRs have a
non-empty intersection with LSR(q).

After updating the SRGi, an important operation is performed aimed at
improving the connectivity of the graph. In particular, for each new node
v that has been added, the SRG manager identifies the set W made of all
nodes w of SRGi that satisfy the following conditions:
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Figure 1.9: The importance of adding bridges should be clear from this
example. Empty circles represent SRG nodes, while solid line segments are
SRG arcs. Without the bridge (which is shown as a dashed line segment)
the robot would have to trace back its path around the central obstacle in
order to exit the room and continue the exploration.

1. the graph distance between v and w is greater than a certain threshold
(typically, a small multiple of Rp);

2. LRR(v) ∩ LRR(w) 6= ∅.

A bridge is then created for each pair (v, w), with w ∈ W , by planning
a path joining the two nodes; note that a safe path between them certainly
exists in view of the second condition. The first condition guarantees that
only significant improvements to the graph connectivity are enforced; this
avoids an excessive increase of the graph complexity.

Once a bridge has been created, it may be mapped to the SRGi in
two different ways, depending on the euclidean distance between v and w,
which is bounded by 2(Rp − ρ). If ‖v − w‖ < Rp − ρ, the bridge directly
becomes an arc. Otherwise, it is encoded as an arc-node-arc sequence, with
the intermediate node placed inside LRR(v) ∩ LRR(w). In this way, we
preserve the property that the distance between two adjacent nodes on the
graph is bounded by Rp−ρ (which we have used, for example, in Sect. 1.5.1).

At the time of its creation, a bridge has not been crossed by any robot of
the team. Similarly, when a bridge is encoded as an arc-node-arc sequence,
the intermediate node has not yet been visited by any robot.

Bridges essentially represent shortcuts that are very useful for performing
an efficient exploration. In fact, as shown Fig. 1.5, every time the LIR of
the current node is empty, the robot transfer itself to another node of the
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SRGi moving along the arcs of the SRGi. If no bridge were added at all,
as in Fig. 1.9, the connectivity of the free space would remain unexploited,
resulting in longer paths during those transfers.

1.7 Broadcaster and listener

On each robot, the broadcaster and the listener respectively transmit and
receive information. Conceptually, such information is organized in three
possible messages:

• the robot state, i.e., its current configuration, target, GPA/GEA and
step of the action planner being executed;

• the nodes between which an arc is to be created;

• the node, either new or already present in the SRGi, with the associ-
ated LSR.

Each robot broadcasts its state on a regular basis, whereas its SRG data
structure is only transmitted as new data is made available by the SRG
manager. The listener receives asynchronous messages from the network
and makes them available to the action planner (as other robot states) and
the SRG manager. See again Fig. 1.4.

1.8 Implementation issues

Before presenting simulation and experiment results, we provide in this Sec-
tion some details about our implementation of the SRG method.

Each Local Safe Region is stored in the form of an array of range read-
ings, as returned by the robot range finder. Such an array is a discrete rep-
resentation of the polar function which describes the LSR boundary. The
corresponding Local Frontier LF can then be extracted as described in [17].

The Local Reachable Region can be efficiently built if a gridmap is used
to represent the LSR (or the whole workspace). In this case, the LRR at q
can be computed as follows:

1. represent the boundary and the interior of the LSR as occupied cells
and empty cells, respectively;

2. apply an euclidean distance transform [25] to identify the set E of
empty cells whose distance to the closest occupied cell is larger than
ρ (the robot radius);

3. compute the LRR as the connected component of E which contains q.
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Once the LRR is computed, the LIR can be obtained via a ray casting
procedure. In particular, for each cell representing a configuration q′ on the
LRR boundary, the local frontier LF is inspected until a point p is found (if
it exists) which satisfies the two conditions which identify local informative
configurations (see Sect. 1.3.3). Heuristics can be used to speed up the
search for such points at contiguous configurations.

In the implementation of the SRG method, it is also necessary for each
robot to detect and remove occlusions, i.e., obstacle arcs that are caused by
other robots rather than by environment obstacles. Candidate occlusions are
identified directly from the range scan profile as protrusions of compatible
size. They are then validated using the mutual localization method proposed
in [26] and described in Chapter 5: occlusions that are attributed to actual
robots are removed and re-classified as frontier arcs.

Other relevant implementation issues concern data transmission among
the robots. First, we emphasize that the transmission of GPA/GEA infor-
mation is necessary (and hence, performed) only if the communication range
Rc is limited. Second, consider that the limitation of Rc does not mean that
the cooperation and coordination area is accordingly limited — robots be-
longing to the same GPA/GEA may be farther than the communication
range. In this case, a chain of communication is established to propagate
the information between robots that are not in direct communication.

Moreover, in the broadcaster thread, it is not necessary to broadcast
the whole SRGi whenever it is modified. Simple strategies may be used to
minimize the amount of transmitted information; for example, timestamps
can be used by a robot to identity the portion of data which have been
received so far. In this case, specific peer-to-peer communication strategies
can be used to transmit and receive only new information.

1.9 Simulations

We present some simulations results to evaluate the performance of the SRG
method. To assess the effectiveness of the notion of ‘bridge’, we have also
implemented a version which does not add such structures; such version is re-
ferred to as SRT in the following, and essentially corresponds to the method
described in [14]. The simulations are performed in Move3D [27], a software
platform developed at LAAS-CNRS and dedicated to motion planning. The
exploration team is composed of a varying number of MagellanPro robots.
Each robot has a diameter of 0.40 m and carries a 360◦ laser range finder,
with a perception range of 1.60 m. The communication range is set to its
minimum admissible value, i.e., Rc = 3Rp − ρ = 4.60 m. Two nodes are
candidate to be connected by a bridge if their graph distance is at least 3Rp.
Coordination is achieved via replanning.

The performance of the methods are evaluated in terms of exploration
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time (the time required by the last robot of the team to return home) and
traveled distance (the average distance traveled by each robot). These values
are respectively expressed as a percentage of the values obtained with a team
composed by a single robot using an SRT method. Environment coverage is
not reported because it was complete in all cases. In view of the randomized
nature of our method, numerical results for each scenario are averaged over
10 simulation runs.

The first two groups of simulations are performed in the same garden-
like environment, which is a square area with a side of 17 m, and refer
to different initial deployments of the team. In the first, the robots are
initially scattered in the environment (as if they had been parachuted). In
the second, more realistic for environments with a single main entrance, the
exploration is started with the robots grouped in a cluster.

Figure 1.10 shows the progress2 of a typical SRG exploration with a
team of 8 robots and a scattered initial deployment. Green areas repre-
sent the region so far explored. The robots are represented by red circles
with the ID number. The view configurations are marked by black points.
Yellow segments represent paths traveled by the robots during the explo-
ration. Bridges are depicted in blue and may or not have been traversed
by the robots. Exploration time and traveled distance for teams of different
cardinality are shown in Fig. 1.11. Average results are shown for both the
SRG (squares) and the SRT (crosses) method; in all simulations, variance
for these data was less than 5%. As the number of robots in the team in-
creases, the exploration time quickly decreases and tends asymptotically to
zero (consider that an increment in the number of evenly deployed robots
corresponds to a decrement of the individual areas they must cover, until
no motion at all is necessary). A similar behavior is observed for the trav-
eled distance. The performances of the two methods for a scattered start
tend to become similar as the number of robots increases. This is due to
the scattered initial deployment, which leads each robot to perform most of
the exploration ‘on its own’. As a result, the bridges present in SRG are
rarely traversed and the performance of the SRG method does not improve
significantly over the SRT method.

Figure 1.12 shows the progress of another SRG exploration in the garden-
like environment, now with a team of 4 robots and a clustered initial de-
ployment. Figure 1.13 summarizes the performance of the SRG and SRT
methods for teams of different cardinality. In this case, the exploration time
asymptotically tends to a nonzero value, which approximately represents the
time required by a single robot to perform a roundtrip between the cluster
center and the farthest point in the environment. Instead the average dis-
tance traveled by each robot still tends to zero. The results show that, on

2Video clips of all simulations and experiments are available at the web page http:

//www.dis.uniroma1.it/~labrob/research/multiSRG.html.
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Figure 1.10: Simulation 1: SRG garden exploration with scattered start.

Figure 1.11: Garden exploration with scattered start: exploration time
(above) and traveled distance (below) with teams of different cardinality.
Results for SRG (squares) and SRT (crosses) explorations are shown.
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Figure 1.12: Simulation 2: SRG garden exploration with clustered start.

Figure 1.13: Garden exploration with clustered start: exploration time
(above) and traveled distance (below) with teams of different cardinality.
Results for SRG (squares) and SRT (crosses) explorations are shown.

30



1. SRG Exploration

Figure 1.14: Simulation 3: SRG corridor exploration with clustered start.
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Figure 1.15: Corridor exploration with clustered start: exploration time
(above) and traveled distance (below) with teams of different cardinality.
Results for SRG (squares) and SRT (crosses) explorations are shown.
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Figure 1.16: Garden exploration with a team of 8 robots and a clustered
start: SRG exploration time (above) and traveled distance (below) for dif-
ferent values of the communication range Rc.

the average, the SRG method introduces a significant improvement in both
the exploration time and the traveled distance.

This improvement becomes even more evident in the corridor environ-
ment (same size as the garden) used in the third group of simulations. Fig-
ure 1.14 shows the typical progress of an SRG exploration obtained with a
team of 4 robots and a clustered initial deployment. From the numerical
results in Fig. 1.15, obtained considering teams of different cardinality, it
is clear that the marginal utility of an increase in the number of robots is
higher for teams of small cardinality.

To investigate the influence of the communication range on the perfor-
mance of the SRG method, we have repeated the first simulation with a
team of 8 robots for increasing values of Rc (all satisfying the condition
Rc ≥ 3Rp − ρ). The results, shown in Fig. 1.16, indicate that a moder-
ate improvement is obtained both in terms of exploration time and traveled
distance. As Rc becomes comparable to the size of the square environ-
ment, however, an all-to-all communication condition is approached and the
marginal utility of an increase in Rc tends to zero.

The cost associated to our coordination mechanism can be quantified
by considering that in all our simulations the average cardinality of the
GPA/GEA resulted to be lower than 2, and the percentage of exploration
time spent by each robot in a waiting mode was around 15%.
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1.10 Experiments

The SRG method has been experimentally validated using a team of Khepera
III robots.

1.10.1 Description of the robots

Khepera III is the latest release of a family of two-wheel differentially driven
mobile mini-robots developed by K-TEAM Corporation. The chassis of the
robot is 7 cm high and 13 cm wide. It contains two motors, transmission
elements, electronics, and a battery pack. A passive caster provides static
stability to the vehicle. Each wheel is driven by a DC brushed servomotor
coupled to the wheel via a 43.2:1 reduction. An embedded incremental
encoder, placed on the motor axis, gives 16 pulses per revolution of the
motor. Considering that the diameter of each wheel is equal to 4.1 cm,
this results in a resolution of 691 pulses per revolution of the wheel, that
correspond to 54 pulses per 0.1 cm of robot motion. The encoder resolution
is by default set to the mode 4×, which corresponds to 2764 measures per
wheel revolution.

In addition to the standard suite (infrared and ultrasonic sensors, serial,
and USB communication), each robot has been equipped with a WiFi card
for communication between robots of the team and/or with a remote com-
puter, and a Hokuyo URG-04LX laser range finder, which is the sensor used
for implementing the SRG method. Laser scans are acquired at a 10 Hz rate
and are characterized by an angular resolution of 0.36◦, radial resolution of
0.1 cm, maximum perception range Rp of 4 m. Since the scanning angle
of the Hokuyo URG-04LX is 240◦, when perceiving the robots perform a
rotation on the spot to gather a 360◦ view.

1.10.2 Software and control architecture

Each Khepera III includes an Intel XSCALE PXA-255 400MHz processor,
with embedded Linux operating system, a 64 MB RAM and a 32MB Flash
memory, that allow to implement on-board the SRG method (according to
the software architecture of Fig. 1.4). In the debugging phase, however,
only the robot driver runs on the robot, while the explorer process runs on
a remote computer. During the exploration, an additional process, called
visualizer, is in charge of ‘sniffing’ and storing all the packets exchanged
among the explorer processes in order to visualize and monitor the task
progress.

A two-level architecture is adopted for controlling the motion of the
robots. High-level velocity commands are issued at a 50 Hz rate by a trajec-
tory tracking control scheme based on dynamic feedback linearization [28]
and sent to the low-level PID controller of Khepera III, which is realized
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with a PIC18F4431. The reference trajectories are the SRG arcs generated
by the action planner. In particular, in the following experiments, each arc
is mapped to a 2-phase maneuver, in which the robot first rotates so as to
point to the next node, then travels to it along a line segment. A trapezoidal
velocity profile is assigned over each phase.

Although a preliminary calibration of robot odometry and sensor pa-
rameters [29] was performed, dead reckoning proved to be inaccurate over
relatively long paths, resulting in a degradation of the SRG method perfor-
mance. Therefore, each robot has been provided with a basic self-localization
module, in which incremental scan matching is used to correct odometric
localization [30]. The information thus obtained is integrated in the high-
level control law every 5 control cycles, due to the 10 Hz bound imposed
by the scan acquisition frequency. In the presented experiments, the robots
know their relative configurations at the start of exploration. Hence, mu-
tual localization is maintained on the basis of this initial knowledge and
self-localization data.

From a computational viewpoint, it is worth mentioning that the criti-
cal operations for the explorer process are graph managing and path search,
while the most onerous operations for the robot driver are laser data acqui-
sition and scan matching. Bandwidth is not an issue in our case, since the
number of robots is limited. The used bandwidth is about 8 Kbyte/s times
the number of robots in the same subnetwork.

1.10.3 Results

The exploration environments were built inside a rectangular arena measur-
ing 1.90×3.70 (m). In view of the relatively small workspace, the perception
range has been artificially limited to 1 m. The maximum cartesian velocity
was set to 0.15 m/sec. The robot communication range was unlimited (this
is not required by the SRG method). In all the experiments, the workspace
was completely covered and the robots terminated the exploration task by
completing the homing phase.

Figure 1.17 shows the environments used for the first two experiments,
while Figs. 1.18 and 1.19 show the progress of the exploration and the SRG
as reconstructed by the visualizer (a large red circle represents a robot, a
small red point represents a node of the SRG) . The first environment is
simply connected and its topology is correctly captured by the resulting
SRG in the form of a tree (Fig. 1.18). Instead, the multiply connected
environment of the second experiment results in an SRG that is a proper
graph (Fig. 1.19). Note how the number of bridges (shown as dashed blue
segments) in the second experiment is higher than in the first.

The overall performance of the SRG method in the two experiments
is summarized in Table 1.20. The first three rows of data quantify the
contribution of each robot of the team to the exploration task, in terms of
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Figure 1.17: Left : Experiment 1. Right : Experiment 2.

Figure 1.18: Experiment 1 as reconstructed by the visualizer.

Figure 1.19: Experiment 2 as reconstructed by the visualizer.
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first experiment
robots aggregate data

1 2 3 4 mean st dev total

# nodes 5 7 2 3 4 2 17

# total arcs 5 7 1 5 5 3 18

# bridge arcs 6 4 0 0 2 2 7

traveled distance (m) 3.34 2.65 1.28 2.35 2.41 0.86 9.62

exploration time (sec) 240 228 92 174 184 67 240

homing error (m) 0.053 0.055 0.036 0.022 0.042 0.016 0.166

second experiment
robots aggregate data

1 2 3 4 mean st dev total

# nodes 4 5 7 3 5 2 19

# total arcs 4 5 9 3 5 3 21

# bridge arcs 2 2 6 2 3 2 12

traveled distance (m) 3.42 4.05 3.98 1.27 3.18 1.30 12.72

exploration time (sec) 265 259 264 179 242 42 265

homing error (m) 0.020 0.074 0.018 0.156 0.067 0.065 0.268

Figure 1.20: Table of numerical results for the first and second experiment.

Figure 1.21: Experiment 3.

Figure 1.22: Experiment 3 as reconstructed by the visualizer.
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number of nodes, arcs and bridges created by the robot. We also report
the traveled distance, exploration time and homing error for each robot.
These data collectively indicate that a good degree of collaboration has
been achieved by the team, as robots that added less nodes to the SRG
traveled a shorter distance and terminated the exploration in less time (this
means that there was no time wasted in visiting already explored regions).
Also, the aggregate data statistics show that the exploration task has been
distributed on the individual robots with a satisfactory degree of uniformity.
The homing error is reasonably small and (obviously) tends to increase with
the traveled distance.

The third experiment was carried out in the exploration environment
shown in Fig. 1.21, using a team of only two robots starting from a clustered
formation. Again, the topology of the environment was correctly captured
by the resulting SRG which has the structure of a tree (see Fig. 1.22). Note
how, during the exploration, one of the two robots moves along the main axis
of the rectangular area, pushing the frontier of the explored region towards
the boundary of the arena; the second robot trails along and completes the
exploration by moving Local Frontiers that were created but not approached
by the first robot.

1.11 Open issues

In this chapter we have presented a decentralized strategy for cooperative
robot exploration. A roadmap of the explored area, with the associated safe
region, is built in the form of a compact data structure, called Sensor-based
Random Graph (SRG). As it grows, the connectivity of the SRG is enhanced
by adding bridges.

A simple and efficient decentralized cooperation mechanism is at the core
of our method. This consists in an appropriate definition of the local fron-
tier, by which each robot plans its motion towards areas that appear to be
unexplored by the rest of the team on the basis of the available information.
Local coordination guarantees that the collective motion of the team does
not lead to collisions. Simulation and experimental results on a team of real
robots have shown the satisfactory performance of the method both in ideal
and practical conditions, even in the case of limited communication range.

We are currently working towards several objectives, among which we
mention:

• To develop a version of the SRG method for the case of non-omnidirectional
sensors along the lines of [31], by extending the configuration vector
so as to include the orientation of the robot.

• To devise an SRG method for a team of heterogeneous robots, with
different sensor capabilities and/or communication ranges.
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• To perform a quantitative study of the robustness and scalability prop-
erties of the method.

1.11.1 Optimal bridge adding

An open issue is the optimal bridge adding, that arise when we have two
graphs: a big graph and a smaller subgraph, and we want to expand the
subgraph by mean taking edges and vertexes from the bigger one, in or-
der to improve connectivity of the subgraph until a certain threshold, but
maintaining as smaller as possible the size of subgraph.

Let G = (V,E,W ) be a graph with weighted edges. Let G′ be a sub-
graph, G′ = (V ′, E′,W ′) ⊂ G, i.e. i) V ′ ⊂ V , ii) E′ ⊂ E and iii) the same
edges have the same weights. Given two vertices v1, v2 ∈ V ′, we denote with
dG′(v1, v2) the distance between v1 and v2 on G′ (intended as the weight
sum of the minimal path). Moreover we denote the edges weights sum with
L(G′) :=

∑
w∈W ′

w.

Consider a, not necessarily connected, undirected graphGt = (Vt, Et,Wt),
with weighted edges. Consider a subgraph Ge = (Ve, Ee,We) ⊂ Gt. More-
over, let be given a problem parameter m ∈ R+, called desired distance. Let
be defined the following graph set, that we call D:

{G| Ge ⊂ G ⊂ Gt}⋂
{G| ∀v1, v2 ∈ Ve, dG(v1, v2) ≤ max(m, dGt(v1, v2))} (1.1)

Problem 1.1. Find a graph G∗ ∈ D such that:

L(G∗) = min
G∈D

L(G)

In other words we have to find an intermediate graph between Ge and
Gt, say G∗, that i) satisfies the constraint that, if possible, the distance on
G∗ between two vertexes of Ge must be less than or equal to m, and ii)
minimize L.

Some remarks:

1. We must add a technical requirement that prevents to have solutions
with not useful isolated vertices:

|V ∗| = min
D
|V ′|

2. Requirement 1.1 is equivalent to say that, ∀v1, v2 ∈ Ve, if dGt(v1, v2) ≥
m than it must be dG∗(v1, v2) = dGt(v1, v2), otherwise it must be
dGt(v1, v2) ≤ dG∗(v1, v2) ≤ m.
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Figure 1.23: Gt = {{v1, v2, v3}, {e12, e13, e23}}, the weights are euclidean
distances between vertexes, and Ge = {{v1, v2}, {e12}}.

3. If m → ∞ than G∗ = Ge. Instead it is not true that if m = 0 than
G∗ = Gt. Consider as counterexample the graph Gt in figure 1.23
where it is considered that weights are euclidean distances and that
Ve = {v1, v2}, and Ee = {e12}. In this case G∗ = Ge ∀m.

4. Connected components of G∗/Ge are called bridges.
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Chapter 2

Optimal Patrolling with
Communication Constraints

The problem of designing optimal trajectories to patrol an environment is the subject
of this chapter. In both civil and military applications, it is of increasing impor-
tance to design strategies for a team of autonomous agents to detect the presence
of intruders in a certain region of interest, or to monitor the topological changes of
an environment. We start by presenting time optimization criteria, and by showing
some fundamental properties of the patrolling problem. In the first part of the chap-
ter, we present a distributed strategy the robots can implement to optimally patrol
an environment described by a one dimensional graph. In the second part, we derive
a heuristic for a more general situation, in which the environment is described by a
general graph, and in which an optimal solution can not be computed in polynomial
time. We conclude the chapter by showing some simulations on a realistic case.

2.1 Introduction

The recent development in the autonomy and the capabilities of mobile
robots greatly increases the number of application suitable for a team of
autonomous agents. Particular interest has been received by the tasks re-
quiring continual execution, as the monitoring of oil spills [32], the detection
of forest fires [33], the track of border changes [34], and the patrol or surveil-
lance of an environment [35]. The surveillance of an area of interest requires
the robots to continuously and repeatedly travel the environment, and the
challenging problem consists of scheduling the robots trajectories. Indeed,
depending on the environment and on the number of available robots, the
design of the optimal trajectories may require the computation of the short-
est tour visiting all the location of interest, in other words a TSP tour of the
locations [36], or an optimal partitioning of the environment, a task which
is also know as geometric covering [37]. Since both problems are well known
to be NP-hard, also the design of a team trajectory falls into this class of
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problems.
Several criteria have been proposed to evaluate the performance of a

certain patrolling policy, and, often, the time gap between any two visits
of a region, or the time needed to inform the whole team about a certain
event is considered. Following [38], we will call refresh time and latency
respectively the time between any two visits of the same location, and the
time to inform the entire team of robots about an event. We will focus on
the worst case analysis, even though the average refresh time and average
latency cases remain of interest.

Because of the difficulty of finding optimal patrolling strategies, many
existing solutions rely on heuristics, whose performance strongly depend
upon the shape of the environment [39]. In [40] two type of strategies are
presented, namely the cyclic and the partition-based strategy. In the cyclic
strategy, the robots computes a closed route through the viewpoints, and
travel repeatedly the route at maximum speed. Clearly, in the case of a single
robot, the cyclic strategy has an optimal refresh time. In the partition-
based strategy, the viewpoints are partitioned into M subsets, and each
robot is responsible for a different partition. Once all the partitions have
been assigned, each robot computes a closed tour visiting all the viewpoints
it is responsible for, and repeatedly moves along that tour at maximum
speed. As a result of [40], cyclic strategies are to be preferred whenever the
patrolled graphs do not have long edges, while, otherwise, partition-based
policies exhibit better performance.

Despite the general case, if the patrolling environment is one dimensional,
optimal trajectories can be derived in polynomial time. In [35] it is shown
that the optimal refresh time is obtained by equally dividing the region
among the robots, and it is shown that an optimal latency is achieved by
synchronizing the motion of the robots. In [38] a distributed algorithm, with
optimal refresh time and latency, is proposed to spread and synchronize the
robots. In particular, if L is the length of the perimeter to be patrolled, and
M is the number of robots, the optimal refresh time is L/M while, assuming
that two robots communicate only when they collide, the optimal latency is
L.

The robots are usually considered to be identical and capable of sensing,
communicating, and moving. We depart from the existing patrolling litera-
ture in the following ways. First, instead of considering that two robots can
communicate only when they collide, as in [38], we assume that they are
able to communicate whenever certain constraints are satisfied, e.g, when
they see each other, or when they lie within a certain distance. It is worth
noting that our communication assumption is general, since it takes advan-
tage of a possible nonzero communication range, and it includes the previous
case as a particular situation. Second, we represent the environment to be
patrolled with an undirected graph G, and we assume that the robots are
able to independently build such graph by exploring the environment. The
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vertices of G correspond to a set of locations from which the sensors can
entirely cover the environment, and each edge (i, j) reflects the possibility
of both communicating and traveling between the locations i and j. Third
and finally, we do not force the team of robots to patrol all the locations
of the environment, and we leave the possibility to specify some particular
points of interest.

The main contribution of this chapter are as follows. We characterize
optimal refresh time and latency strategies for patrolling an environment
described by a one dimensional graph. Our distributed algorithm allows to
specify a discrete set of locations to be monitored, and it converges in finite
time to an optimal solution also when the regions assigned to the robots have
different length. For a perimeter of length L and a nonzero communication
range, we show that, for a team of M robots moving at unitary speed, the
refresh time of our policy is in general less that L/M , and the latency is
less than L. As a preliminary step to characterize the optimal refresh time
of a team trajectory, we present a distributed polynomial time algorithm to
compute a clustering of a set of adjacent points, such that the maximum
diameter of the clusters is minimized. Finally, we construct and characterize
the performance of a heuristic to be applied when the graph describing the
environment is not one dimensional.

The rest of the chapter is organized as follows. In Section 2.2 we define
the notation and the problem under consideration. Sections 2.3 and 2.4
contain our main results. They present an optimal team trajectory for an
environment described by a one dimensional graph, with respect to the
refresh time and the latency criterion. In Section 2.5 a distributed version
of the proposed procedure is implemented, and in Section 2.6 a heuristic to
patrol an environment represented by a general graph is described. Finally,
Sections 2.7, ??, and 2.8 contains respectively some simulation results, some
experiments, and our conclusions.

2.2 Problem formulation

We will be using the standard motion planning notation, and we refer the
reader to [41] for a comprehensive treatment of the subject. We are given
a team of M > 2 identical robots, capable of sensing, communicating, and
moving in a connected environment.

Regarding sensing, we assume that the environment can be completely
covered by simultaneously placing a robot at a set of N > 3 viewpoints in
the configuration space. In other words, if M = N robots were available and
placed at the N viewpoints, then the union of the sensor footprint of each
robot would provide complete sensor coverage in the environment. However,
we assume N > M so that at least one robot needs to visit more viewpoints
for the entire environment to be monitored over time.
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Figure 2.1: A polygonal environment and a graph with N = 12 viewpoints
as nodes and shortest paths as edges. The M = 3 robots are holonomic and
disk-shaped (the dotted circles grey-filled), and their centers must lie on the
graph. The robot sensors are omnidirectional cameras, and the communi-
cation is specified by an r-limited visibility graph with respect to the center
of the robots. The weight of the edge (i, j) coincides with the shortest path
between i and j. Since the robots are not points, some paths are not straight
lines.

.

Regarding communication, we associate with the environment an undi-
rected graph G, whose vertices are the given N viewpoints, and in which
there is an edge between two vertices if two robots placed at those viewpoints
are able to communicate. We assume that the graph G is connected.

Regarding motion, we assume that the robots are holonomic, i.e., first
order integrators, and move at speed upper bounded by 1. Additionally,
we turn the graph G into a robotic roadmap [41] as follows: to each pair of
viewpoints that are neighbors in G, we associate a unique shortest path con-
necting them. We assume that each robot remains always in the roadmap.
(Notice that each edge of G corresponds to both a communication edge as
well as a motion path.)

Remark (The graph G may arise from a distributed exploration algorithm)
The set of viewpoints may be the result of an exploration algorithm on a
generic environment, as described in [42] and [1]. As an example, Fig. 2.1
shows the graph G for a scenario in which the robots are disk-shaped, the
configuration space coincides with R2, the environment is polygonal, and
the sensors are omnidirectional cameras. The communication graph is the
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Figure 2.2: A set of N = 11 viewpoints V = {v1, . . . , v11}

r-limited visibility graph with respect to the center of the robots [43], and
the weights of the edges equal the shortest paths between the viewpoints.
Note also that, in order to avoid collisions, the admissible paths joining two
viewpoints are not always straight lines.

The problem of scheduling the trajectories of a team of autonomous
robots to patrol an arbitrary environment is generically NP-hard. To see
this, note that the patrolling problem requires sometimes to find an optimal
clustering of a set of viewpoints disposed in the plane. Since the geometric
clustering is NP-hard [37], also the problem of determining a set of optimal
trajectories to navigate and patrol an environment is not solvable in poly-
nomial time. In some special cases however, for instance when the graph G
is a chain, the patrolling problem can be solved efficiently. We focus first
on this simpler case, and we explain in Section 2.6 how to deal with more
complex situations.

Assumption 2.1. The undirected graph G is a chain.

Under the Assumption 2.1, the patrolling problem is intrinsically one
dimensional and can be easily mapped on the real line. Let vi ∈ R≥0 denote
the distance in the roadmap from the viewpoint of the first vertex to the
viewpoint of the i-th vertex. We denote with V = {v1, . . . , vN} the set
of those positive real numbers, and, for simplicity, we call them viewpoints
(see Fig. 2.2). Similarly, the position of the robot i at time t, denoted with
xi(t) ∈ R≥0, is the distance in the roadmap from the viewpoint of the first
vertex to the current robot configuration, that is, the length of the union
of the paths in the roadmap joining the position of the robot and the first
viewpoint in the environment. Because of the design of the roadmap, note
that 1) the i-th and the j-th robot are allowed to communicate when xi(t) =
vk and xj(t) = vk+1 for some k ∈ {1, . . . , N − 1}, and 2) the distance xi(t)
does not generally coincide neither with the Euclidean distance, nor with
the length of the shortest path between the robot i and the first viewpoint.

A team trajectory x is a collection of M continuous and piecewise-
differentiable functions xi : R → [0, vN ], for i ∈ {1, . . . ,M}, satisfying the
constraint −1 ≤ ẋi ≤ 1 at almost all times. Denote with X(t) the image
of a team trajectory at time t, i.e., the union of the M positions of the
team ∪Mi=1{xi(t)}. The refresh time of a team trajectory x, with respect
to a set of viewpoints V , is the largest interval I ⊂ R≥0 such that at least
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one viewpoint does not belong to X(t), for every t ∈ I. Clearly, two team
trajectories with the same image X(t) have an equal refresh time.

Problem 2.1 (Minimize refresh time). Given a set of viewpoints V , find a
team trajectory that minimizes the refresh time with respect to V .

For a team trajectory, the latency is defined as the minimum time inter-
val L necessary for a message generated at any time by any robot to reach
all the other robots.

Problem 2.2 (Minimize latency with an optimal refresh time). Given a set
of viewpoints V and a family of team trajectories that minimize the refresh
time, find, within such family, a team trajectory that minimizes the latency.

Note that, without any constraint on the refresh time, the problem of
minimizing the latency is trivially solved by a team trajectory in which
xi(t) = xj(t) for all i, j ∈ {1, . . . ,M}, because, since the robots communicate
at any time, the latency is zero. Notice also that the setup in [38] is obtained
as a special case of our setup, by setting the communication radius to zero,
and by assuming that the set of viewpoints is dense.

2.3 Optimal refresh time

We characterize in this Section a solution to Problem 2.1. A team trajectory
x is ordering invariant if the order of the robots positions remains constant
with respect to time, i.e., if there exists an indexing of the robots such that
xi(t) ≤ xi+1(t), for each i ∈ {1, . . . ,M − 1}, and for every instant t, as
shown in Fig. 2.3. The following proposition restricts the search space for a
solution to Problem 2.1 to the set of ordering-invariant team trajectories.

Proposition 2.1 (Ordering invariance). For every team trajectory, there
exists an ordering-invariant team trajectory with the same refresh time.

Proof. Let x be a team trajectory, and consider the permutation matrix
function Px(t), that keeps track of the ordering of x at time t, i.e., such
that the (i, j)-th entry of Px(t) is 1 if, at time t, the i-th robot occupies
the j-th position in the chain of robots, and it is 0 otherwise. Since x is
continuous, anytime the function Px(t) is discontinuous, the positions of the
robots directly involved in the permutation overlap. Therefore, the ordering
invariant team trajectory P−1

x (t)x(t) is feasible, and it has the same refresh
rate as x, since the two team trajectories have the same image. An example
is in Fig. 2.3.

Given a team trajectory and an index i ∈ {1, . . . ,M}, the i-th cluster
Ci ⊂ V is the set of viewpoints covered at least once by the trajectory of
the i-th robot. The diameter di of Ci is the maximum distance among the
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Figure 2.3: The team trajectory x = {x1, x2, x3} (red on top) has the clusters
C1 = {v6}, C2 = {v7, v8}, and C3 = {v7, v8, v9, v10, v11}. Their diameters are
respectively d1 = 0, d2 = v8 − v7 and d3 = v11 − v7. It is ordering invariant
but their clusters are not disjoint. Furthermore, since C1∪C2∪C3 6= V , the
team trajectory x does not guarantee a finite refresh time. On the contrary,
the team trajectory x̄ = {x̄1, x̄2, x̄3} (blue at the bottom) is not ordering
invariant.

viewpoints of Ci (see Fig. 2.3). Notice that, if a team trajectory has a finite
refresh time, then the clusters cover the whole set V , i.e, V = ∪Mi=1Ci. In the
following Proposition, we show that an ordering invariant team trajectory,
whose clusters form a partition of the viewpoints V , can be a solution to
Problem 2.1.

Proposition 2.2 (Partitions). For every ordering invariant team trajectory
x with bounded refresh time, there exists an ordering invariant team trajec-
tory x̄, which has a not greater refresh time, and in which the clusters are a
partition of the viewpoints V .

Proof. Let C1, . . . , CM be the clusters associated to the team trajectory x.
Since x has a bounded refresh time then V = ∪Mi=1Ci. Consider the partition
of V defined as

C̄1 = C1

C̄i = Ci \ ∪i−1
i=1Ci i ∈ {2, . . . ,M},

and let l̄i = b̄i− āi, where āi = min C̄i and b̄i = max C̄i, with i ∈ {2, . . . ,M}.
Consider the viewpoint āi, and note that, by construction, it is visited by the
robot i and possibly by the robots j, j > i. Because the robots trajectories
are ordering invariant, then xi(t) ≤ xj(t), and hence the refresh time of
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v3 − v1 v5 − v4 0 v11 − v7
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Figure 2.4: Two 4-partitions of the set of viewpoints V of Fig. 2.2. In
2.4(a) an optimal 4-partition with dimension v7 − v6. Sweeping trajectories
with this partition as clusters have a minimum refresh time. In 2.4(b) a
minimum average diameter 4-partition, with dimension v11 − v7 > v7 − v6.
A minimum average diameter 4-partition is obtained by removing the 3
among the longest edges.

the viewpoint ai is no less than 2l̄i, i.e., the time needed by the robot i to
traverse its entire cluster Ci at maximum speed. It follows that the refresh
time of the team trajectory x is lower bounded by 2 maxi l̄i. To conclude the
proof, note that a refresh time of 2 maxi l̄i is obtained by the team trajectory
x̄, in which each the i-th robot periodically sweeps the set C̄i with a period
non greater than 2 maxi l̄i.

Given a set of viewpoints V , an M -partition is a partition of V formed by
M clusters. The dimension of an M -partition is largest diameter among its
M clusters. We call an M -partition optimal if its dimension is the smallest
among all the M -partitions of V , and we denote with dV,M the optimal
dimension. For sake of simplicity, we will write dM whenever the set V is
clear from the context. As an example, for the viewpoints of Fig. 2.2, an
optimal 4-partition is in Fig. 2.4(a).

Theorem 2.1 (Minimum refresh time). Given a set of viewpoints V , the
minimum refresh time achievable with a team of M robots is 2dM , where
dM is the dimension of an optimal M -partition of V .

Proof. The Theorem is a direct consequence of Propositions 2.1 and 2.2.

To conclude this Section, a minimum refresh time team trajectory to
patrol a set of viewpoints V is obtained by 1) computing an optimal M -
partition of V , and 2) letting each robot sweep a cluster of the optimal
M -partition with a period no less than 2dM . In the remaining part of this
Section we show an algorithm to efficiently find an optimal partition.

Remark An M -partition that minimizes the average length of the diame-
ters of the clusters, or equivalently the sum of the diameters of the clusters,
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is obtained by removing the M−1 longest edges. Note that, in general, such
partition does not minimize the dimension of the M -partition, and hence is
not optimal in our sense. An example is in Fig. 2.4(b).

2.3.1 Optimal M-partition

Because the viewpoints lie on a line, the optimal M -partition is computed
in polynomial time. We focus now on a centralized version of the clustering
algorithm, and we present in Section 2.5 a distributed version of the same
procedure.

Given a set of viewpoints V , we call left-induced partition of length l the
partition defined as

C li = {v ∈ V : ai ≤ v ≤ ai + l}, i ∈ {1, . . . ,Ml}, (2.1)

where

a1 = v1

ai = min{v ∈ V : v > ai−1 + l}, i ≥ 2,

and Ml is the smallest number such that the set {v ∈ V : v > aMl
+ l} is

empty, i.e., the cardinality of the left-induced partition of length l. Notice
that, since the set V is clear from the context, we omit the dependence of
Ml from V. As an example, for the set of viewpoints of Fig. 2.2, two left
induced partitions are in Fig. 2.5(a). The cardinality of the left-induced
partition Ml is monotonically non-increasing with l, and it is assumed to
be right continuous, as it is shown in Fig. 2.5(b). Clearly 1 ≤ Ml ≤ N ,
and, in particular, if l > vN , then Ml = 1, and, if l < mini=2,...,N vi − vi−1,
then Ml = N . Also, if l = vN/M , then Ml ≤ M . Let {l1, . . . , lN−1} be the
discontinuity points of the function Ml, we have

Ml ≤ k, if l ≥ lk,
Ml > k, if l < lk,

(2.2)

where k ∈ {1, . . . , N − 1}. Note that two or more discontinuity points of Ml

may coincide, so that the function Ml may not assume all the values of the
set {1, . . . , N}, as in Fig. 2.5(b) for Ml = 9.

Theorem 2.2 (Optimal partition). Given a set of viewpoints V , let dM
be the dimension of an optimal M -partition. Then dM coincide with the
smallest dimension of the left-induced partition of cardinality M , i.e., lM =
dM .

Proof. We want to show that dM is one of the discontinuity points of the
function Ml, i.e., that dM verifies the conditions (2.2). By contradiction, if
Ml = M and l < dM , then the left-induced partition of length l would be
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Figure 2.5: In 2.5(a) two left induced partition of the set of viewpoints of
Fig. 2.2, corresponding to two different length l′ and l′′, with l′′ < l′. The
cardinalities are respectively Ml′=4, and Ml′′ = 5. In 2.5(b) the cardinality
Ml of the left-induced partition of the set of viewpoints in Fig. 2.2, plotted
as a function of the length l.

a partition of smaller dimension. If Ml < M and l < dM , then M clusters
can be obtained from the left-induced partition of length l, and the resulting
M -partition would still have shorter diameter than dM . Therefore, if l < dM ,
then Ml > M . Suppose now that l ≥ dM , and let C = {C1, . . . , CMl

} and
C̃ = {C̃1, . . . , C̃M} be respectively the left-induced partition of length l and
the optimal partition. Note that |C1| ≥ |C̃1|, since the cluster C1 contains all
the viewpoints within distance l from v1, and hence also within distance dM .
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Algorithm 2: Optimal left-induced M -partition
input : V ∈ RN

≥0, M ∈ {1, . . . , N − 1}, ε > 0;

Set a = 0, b = vN
M , l = (a+b)

2 , and let Copt be the left-induced1

partition of length b;
while (b− a) > 2ε do2

if Ml > M then3

a = l, l = a+b
2 ;4

else5

Copt = C, Mopt = Ml, b = l, l = a+b
2 ;6

if Mopt < M then7

Convert Copt into an M -partition;8

It follows maxC1 ≥ max C̃1, and also that minC2 ≥ min C̃2. By repeating
the same reasoning to the remaining clusters, we obtain that maxCM ≥
max C̃M , so that, if |C̃| = M and l ≥ dM , then |C| = Ml ≤M .

As a direct consequence of Theorem 2.2, an optimal M -partition of the
set V , which coincides with the optimal left-induced M -partition, can be
found by means of Algorithm 2.

Lemma 2.1 (Convergence of Algorithm 2). For a set of viewpoints V =
{1, . . . , vN} and a number 1 ≤M ≤ N − 1, Algorithm 2 returns the optimal
left-induced M -partition with precision ε.

Proof. Algorithm 2 looks for the minimum length l∗ that generates a left-
induced partition of cardinality M . The length l∗ coincides with one of the
discontinuity points of Ml, and it holds l∗ ∈ (0, vn/M). Indeed, l∗ has to
be positive because the desired cardinality M is smaller than the number
of viewpoints. Also, l∗ < vN/M , because (vN/M)M = vN , i.e., M clusters
of length vN/M cover, on the real line, the whole distance expressed by
the viewpoints V . Since the function Ml is monotone, and l∗ is such that
Ml > M for every l < l∗, the interval [a, b], as updated in Algorithm 2,
contains the value l∗ at every iteration. Finally, the length of the interval
[a, b] is divided by 2 at each iteration, so that, after log2((vN/M)/ε), the
value l∗ is computed with precision ε.

Remark (Approximation factor ε) Given the set of viewpoints V , the value
of ε that yields the exact length lM of the optimal left-induced M -partition
can be computed, but such computation requires a factorial number of op-
erations.
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Figure 2.6: Communication instants for the routing of the m-th message
from the first to the last robot (black points) and the m̄-th message from
the last to first robot (squares). The number of robots M is 10, the instant
t6m is in common.

2.4 Optimal latency

We describe a team trajectory that minimizes the latency of the commu-
nication among the robots, while maintaining an optimal refresh time, i.e.,
we propose a solution to Problem 2.2. Given an optimal M -partition of
the viewpoints V , as described in Section 2.3, let d1, . . . , dM be the diame-
ters of the clusters, and recall that the minimum refresh time is 2d, where
d := maxi∈{1,...,M} di. Each robot is confined within the two extremal view-
points of its assigned set of the M -partition, and the M − 1 edges dividing
the assigned sets are not traveled by the robots.

The latency of a team trajectory is defined as the minimum time interval
necessary for a message generated at any time by any robot to reach all the
other robots, or, equivalently, because the communication graph among the
robots has a chain structure, as the minimum real number L such that, at
any time t, a message generated at one extreme of the chain is delivered to
the opposite side within time t + L. Clearly, a message generated by the
first robot needs to go through all the robots in the chain before reaching
the M -th robot. Let m ∈ N, we denote the routing instants of the m-th
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message sent by the first robot as

t1m < . . . < tM−1
m , , (2.3)

where tim is the instant in which the i-th robot passes the m-th message to
the (i+ 1)-th robot. In a similar way, let m ∈ N, and denote with

t̄M−1
m < . . . < t̄1m, (2.4)

the routing instants of the m-th message generated by theM -th robot, where
t̄im is the instant in which the (i + 1)-th robot passes the m-th message to
the i-th robot, as in Fig. 2.6. Suppose that the first robot wants to send
a message to robot M at time t ∈ (t1m−1, t

1
m]. The minimum time that

guarantees the delivery of such message is

Lu(m) := tM−1
m − t1m−1 = (t1m − t1m−1) + (tM−1

m − t1m). (2.5)

Similarly, for a message generated by theM -th robot at time t ∈ (t̄M−1
m−1 , t̄

M−1
m ],

the delivery time is at most

Ld(m) := t̄1m − t̄M−1
m−1 = (t̄M−1

m − t̄M−1
m−1 ) + (t̄1m − t̄M−1

m ). (2.6)

In terms of the above expressions, the latency becomes

max
m,m∈N

(max (Lu(m), Ld(m))) . (2.7)

It is worth noting that the expressions (2.5) and (2.6) underlines two different
components that form the latency. In particular, the terms (t1m− t1m−1) and
(t̄M−1
m − t̄M−1

m−1 ) correspond to the time between the generation, and the
first passage of the message, i.e., they reflect the frequency of delivery of
the messages. On the other hand, the terms (tMm − t1m) and (t̄1m − t̄M−1

m )
characterize the transport time along the chain of robots.

Let the diameter of the j-th set of the M -partition be maximum, i.e.,
dj = d. Note that the exchange of messages between the pair of robots (j−
1, j) and (j, j+1) has a frequency no greater than 1/(2d), because the speed
of the robots is at most unitary, and the refresh time of the team trajectory
needs to be 2d. Hence, the j-th robot (as well as every robot assigned
to a set of maximum diameter) represents a bottleneck for the frequency
of delivery of the messages. It follows that a solution to Problem 2.2 can
be searched among the team trajectories that are 2d-periodic, since the
frequency of delivery remains the maximum achievable, since the transport
time is independent of the frequency of delivery. Finally, the minimization
of the latency consists of finding the trajectories that optimize the maximum
transport time for the two ways of the chain of robots.
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Figure 2.7: A 2d-periodic framework of common instants. Since the 4-th
robot has to patrol the cluster of maximum length, it represents a bottleneck.

Theorem 2.3 (Optimal latency). Let d1, . . . , dM be the diameters of the
partitions obtained with Algorithm 2 on the viewpoints V = {v1, . . . , vN},
and let d = maxi∈{1,...,M} di. Consider the set S of the partial sums1 of
{di}Mi=1, and the set F ∗ = {f∗0 , . . . , f∗C∗+1} defined as

f∗0 = 0
f∗i = arg min

f∈S,f−fi−1≤d
(d− (f − fi−1)), i ∈ 1, . . . , C∗ + 1, (2.8)

where fC∗+1 =
∑M

i=1 di. The latency of a 2d-periodic team trajectory is
lower bounded by

(C∗ + 1)d+ (f1 − d1) + (fC∗+1 − fC∗ − dM ) (2.9)

Proof. If the trajectories are periodic, then any pair of routing sequences can
be obtained by shifting the sequences (2.3) and (2.4) of a multiple of 2d. In
particular, tim+1 = tim+2d and t̄im+1 = t̄im+2d ∀m ∈ N, and ∀i ∈ {1,M−1}.
Also, because the communication instants among the robots {2, . . . ,M − 1}
do not affect the latency, as underlined in the expressions (2.5) and (2.6),
we consider team trajectories where the robots behave symmetrically while
sweeping their cluster, so that the time needed to transfer a message from the
robot i− 1 to the robot i+ 1 equals the time needed to transfer a message
from the robot i + 1 to the robot i − 1, for all i ∈ {2, . . . ,M − 1}. The
symmetric framework describing the routing sequences has the form of Fig.
2.7, where the intersections between the up-going and down-going routing

1Sums of the form
Pm

i=1 di, with m ≤M .
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sequences are marked. Note that the maximum time to transfer a message
generated at any time t from the robot 1 to the robot M equals the time
needed to go from the robot M to the robot 1. Since the team trajectory is
2d-periodic and symmetric, the number of intersection instants C and the
following time intervals are constant: 1) the time interval τ1 between t1m and
the first intersection instants, 2) the time intervals between the intersection
instants, that are all equal to d, and 3) the time interval τM between the
last intersection point and tM−1

m . Therefore the latency is at least

2d+ (C − 1)d+ τ1 + τM . (2.10)

Indeed, the term 2d is the maximum time necessary for the robot 1 to pass
the message to robot 2, and (C − 1)d+ τ1 + τM is the minimum time neces-
sary for the robot 2 to communicate with the robot M . The minimum value
for the expression (2.10) is achieved by a team trajectory that minimizes
the number C of intersection points between the up-going and down-going
routing sequences, i.e., by the expression (2.9). Indeed for each added in-
tersection point the term (C − 1)d of (2.10) increases by d, and the term
τ1 + τM can at most decrease by d.

Remark (Equally spaced viewpoints) The lower bound (2.9) implies that
the latency is lower bounded also by

2d+
M−1∑
i=2

di. (2.11)

The lower bounds (2.9) and (2.11) coincides if and only if the viewpoints V
are equally spaced, i.e., fi = id for all i ∈ {0, C∗ + 1}. As a particular case,
if the communication range is zero, and di = d for all i ∈ {1, . . . ,M}, then
L =

∑
i di, i.e., the optimal latency equals the length of the environment to

be patrolled.

In Section 2.5 we present a team trajectory that achieves the bound in (2.9),
and that is therefore optimal.

2.5 Distributed algorithms

In order to distributely achieve the performce described in Sections 2.3 and
2.4, the robots need to solve two main tasks. First, the optimal left induced
M -partition has to be found, and then a synchronization algorithm has to
be implemented over the M sets of the M -partition.

The computation of the optimal left induced M -partition follows from
Algorithm 2, by letting the robots compute the left-induced partition of
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Figure 2.8: Optimal trajectories for the viewpoints in Fig. 2.12. The set of
location F determines the behavior of the robots at the extreme viewpoints
of their cluster. The communications are marked with dashed lines. Note
that the communication radius is nonzero.

length l in a distributed way. Such computation can be performed with sim-
ple programming operations and it is not described here in details. Assume
that the robots gather initially at the leftmost viewpoint of the environ-
ment, and suppose that the robots are able to explore the environment,
measure the traveled distance, and recognize the viewpoints of the environ-
ment. The left-induced partition of length l can be computed by letting the
robots move along the environment, and using the information coming from
the odometer. In particular, if vi is the leftmost viewpoint of i-th set of the
partition, then the right extreme is the last viewpoint within distance l from
vi. If the last robot reaches the rightmost viewpoint, then Ml ≤M , and the
successive action according to Algorithm 2 can be computed.

We focus now on the synchronization task. As usual, let the viewpoints
be denoted with V = {v1, . . . , vN}, let the robots be ordered from 1 to M ,
and assign to each robot a contiguous subset of the viewpoints. We say
that a viewpoint vi belongs to the set (2.8) if a communication occurs at
vi, and if such communication coincides with an intersection point of two
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routing sequences. As an example, consider the viewpoints corresponding
to the intersection points of the framework in Fig. 2.7. Let li and ri be
respectively the leftmost and rightmost viewpoints patrolled by the i-th
robot, the following motion primitives are useful to define a team trajectory.

Definition 2.1 (Default-sweeping). The robot i implements the default-
sweeping behavior if its actual position belongs to (li, ri). The default-sweeping
consists of sweeping at maximum speed the segment (li, ri). When either li
or ri is reached, the i-th robot stops, and it waits until a communication
with the neighbor occurs. As an exception, the robots 1 and M do not stop
respectively at v1 and vN , because there is no neighbor to communicate with.

The behavior of the robots after the communication with the neighbor
depends upon the set (2.8), and it is described as follows.

Definition 2.2 (Naive-sweeping). The robot i implements the naive-sweeping
behavior if its actual position coincides with li (ri), and if li (ri) does not
belong to the set (2.8). After communicating with the neighbor, if the i-th
robot posses a communication token, then it passes the token to the neighbor,
and waits until the token is returned to it. If the i-th robot does not have the
communication token, then it waits until a communication token is passed
to it. After receiving the token, the robot i moves toward the other side of
its partition.

Definition 2.3 (Left-sweeping). The robot i implements the left-sweeping
behavior if its position coincides with li, and if li belongs to the set (2.8). The
i-th robot moves toward the rightmost viewpoint of its partition immediately
after communicating with its left neighbor. The robots whose leftmost view-
point belong to the set (2.8) posses a communication token at the beginning
of the team trajectory.

Definition 2.4 (Right-sweeping). The robot i implements the right-sweeping
behavior if its position coincides with ri, and if ri belongs to the set F de-
fined in (2.8), i.e., there exists fj ∈ F such that ri = fj. Let d be the largest
diameter of the partitions, then the i-th robot wait ∆ = d− (fj − fj−1) units
of time after communicating with the right neighbor, and then moves toward
the leftmost viewpoint of its partition.

The lower bound in (2.9) is achieved by the following team trajectory,
which is therefore optimal.

Theorem 2.4 (Optimal team trajectory). The team trajectory generated
by the policies default-sweeping, naive-sweeping, left-sweeping, and right-
sweeping solves the Problem 2.2.

Proof. We start by showing that the team trajectory x described by the
policies default-sweeping, naive-sweeping, left-sweeping, and right-sweeping
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Algorithm 3: Minimum latency team trajectory
input : Patrolled sets, set of points F

The agents continuously sweep their cluster at maximum speed ;1

if a communication with the neighbor occurs then2

if position == left and left ∈ F then3

go right4

;5

if position == right and right ∈ F then6

wait ∆ units of time and then go left;7

if right, left 6∈ F then8

wait for the neighbor to come back, then go towards the9

other end of the patrolled set;

has an optimal refresh time. Let d be the largest diameter of the parti-
tions, and let F be the set defined in (2.8). Recall that F is such that the
distance between any two consecutive elements is not greater than d, and
note that, because of the waiting time ∆ introduced in the right-sweeping,
each viewpoint is visited at most every 2d instants of time. Because 2d is
the time needed to sweep the partition of largest diameter, the team tra-
jectory x has an optimal refresh time. For what concerns the latency, note
that the time needed to transfer a message between any two consecutive
points fi, fi+1 ∈ F equals d, and that the robots always move at maximum
speed. It follows that the latency is given by the expression (2.10), and it is
therefore optimal.

For completeness, Fig. 2.8 shows the typical shape of the team trajectory
described in Theorem 2.4. Notice that the trajectories of the robots are
symmetric and periodic, and that F = {v1, v6, v14, v19, v24, v30}. Also, the
pseudo code of a distributed algorithm that converges to the team trajectory
generated by the motion primitives default-sweeping, naive-sweeping, left-
sweeping, and right-sweeping is in Algorithm 3.

Lemma 2.2 (Convergence of Algorithm 3). Algorithm 3 converges to the
team trajectory generated by the motion primitives default-sweeping, naive-
sweeping, left-sweeping, and right-sweeping.

Proof. A necessary and sufficient condition for the convergence of the pro-
posed synchronization procedure is the connectivity of the communication
graph, i.e., the possibility to send messages from the leftmost robot to the
rightmost one. Indeed, if robot i does not communicate with robot i + 1,
then no synchronization can be achieved among the two robots, and hence,
because of the linear communication topology, among the robots {1, . . . , i}
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Figure 2.9: A chain graph obtained from the communication graph of Fig.
2.1. The tour that visits all the vertices has been computed starting from a
spanning tree of the communication graph. Notice that 3 vertices (3 edges)
are repeated twice in the chain graph, so that the refresh time and latency
performance decreases.

and {i+ 1, . . . ,M}. Since from the partitioning procedure the robots know
whether or not the viewpoints they are patrolling belong to the set defined
in 2.8, as soon as two robots communicate, they are able to synchronize
according to the motion primitives default-sweeping, naive-sweeping, left-
sweeping, and right-sweeping. Trivially, the connectivity of the communica-
tion graph is guaranteed by Algorithm 3, because each robot waits until a
communication with the corresponding neighbor occurs.

2.6 Application to a generic graph

The optimal team trajectory described in Algorithm 3, as is, can not be im-
plemented if the graph describing the environment has not a chain structure.
For a general communication graph, optimal solutions can usually not be
computed in polynomial time, and therefore effective heuristic behaviors are
to be preferred. For instance, as it was pointed out in [38], one can always
obtain a one dimensional communication graph by simply computing a tour
visiting all the vertices. On the same note, let G be the undirected graph
defined in Section 2.2, where the N vertices correspond to the viewpoints,
and where two vertices are connected if it is possible for two robots to com-
municate when placed respectively at those vertices. Let τ be an open tour
of G visiting all the N locations, and let N̄ be te length of τ , i.e., the number
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of edges in τ . Clearly there exists a tour τ such that N−1 ≤ N̄ ≤ 2(N−1).2

We associate a chain graph Γ with a minimum length tour τ , such that Γ
has N̄ + 1 vertices and N̄ edge, and such that the length of the i-th edge of
Γ equals the length of the i-th edge of τ , as in Fig. 2.9. In order to patrol
the environment associated to G, we apply Algorithm 3 to Γ.

Theorem 2.5 (Performance ratio). Given a communication graph G, let δ
be ratio of the longest to the shortest length of its edges. Denote with RTopt

G

the optimal refresh time over G, and with RTheur
G the refresh time obtained by

applying Algorithm 3 to the chain graph associated to any open tour visiting
all the vertices of G. Then

RTheur
G

RTopt
G

≤ 4δ, (2.12)

Proof. Let M be the number of robots, N be the number of vertices of G,
and w be the shortest length of the edges of G. Let Γ be the chain graph
associated with any minimum length open tour visiting all the viewpoints.
Since the number of vertexes of Γ is less than 2(N − 1) (see footnote), the
length of Γ is upper bounded by 2Nδw. It follows that

RTheur
G ≤ (4Nδw)/M.

On the other hand, since M < N by assumption, some of the robots need
to move along G for all the viewpoints to be visited. Also, because each
robot can visit only a location at a time, at least

⌈
N
M − 1

⌉
steps are needed

to visit all the vertices of G, and therefore

RTopt
G ≥ 2

⌈
N

M
− 1
⌉
w ≥ N

M
w.

By taking the ratio of the two quantities we get

RTheur
G

RTopt
G

≤ 4δ.

Note that, when δ grows, the performance ratio in (2.12) becomes ar-
bitrarily large. For example, suppose that the locations graph is as in Fig.

2A simple way of computing τ is the following. Starting from any root of a spanning
tree of G, let τ be a minimum length path that visits all the vertices of the spanning tree.
Since any spanning tree has N − 1 edges, and since each edge needs to be travelled twice
to visit all the nodes, it follows that there exists a path τ of length 2(N − 1). Notice that,
since by assumption the communication graph G is connected, there always exists a path
between any two consecutive locations.
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Figure 2.10: A communication graph (left), and all possible associated chain
graphs (right). If the number of robots M is 4 then the performance ratio
grows with 1/ε.

2.10, and suppose that 4 robots are assigned to the patrolling task. An opti-
mal strategy, as long as ε < 1, assigns the viewpoints {v1, v2} to one robot,
and v3, v4, and v5 respectively to the second, third, and fourth robot, so
that the refresh time equals 2ε. On the other hand, by patrolling any chain
graph associated with a tour visiting the locations {v1, v2, v3, v4}, the refresh
time is independent of ε, and it equals 2, because the optimal M -partition
of any chain graph associated with a tour visiting all the viewpoints has
dimension 1. As confirmed by this example, the bound (2.12) is tight.

2.7 Simulations

Suppose that we want to optimally patrol a two floors building, whose com-
munication graph is in Fig. 2.11, with the aid of a team of 10 autonomous
vehicles. As in the previous sections, the robots are assumed to be able to
travel along the environment, and to communicate between any two adjacent
vertices of the communication graph. After partitioning the environment
using a distributed version of Algorithm 2, the robots synchronize their tra-
jectories using Algorithm 3, and their trajectories are in Fig. 2.12. It is
worth noting that only some edges are traveled but the robots, but yet all
the viewpoints are visited.

2.8 Open issues
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Figure 2.11: Communication graph for a two floors building. The crossing
of edges corresponds to different level corridors. The environment has been
divided into 10 partitions. The dashed edges are not traveled.
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Figure 2.12: Optimal team trajectory. The speed of the robot is upper
bounded by 3 m/s. The refresh time and latency of the proposed team tra-
jectory are respectively 40% and 70% smaller than the performance obtained
in the case of a 0 communication range.
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3. Pursuit-Evasion with Limited Visibility

Chapter 3

Distributed Pursuit-Evasion
with Limited-Visibility
Sensors

This chapter addresses a distributed, visibility-based pursuit-evasion problem in
which one or more searchers must coordinate to guarantee detection of any and
all evaders in an unknown planar environment while using only local information.
Our motivation is to develop algorithms to enable teams of robots to perform bomb
or intruder detection and other related security tasks. We present a distributed
clearing algorithm for a team of d−searchers with limited range sensors. Our algo-
rithm is built around guaranteeing complete coverage of the frontier between cleared
and contaminated areas while expanding the cleared area. A novel approach to stor-
ing and updating the global frontier enables our algorithm to be truly distributed.
We demonstrate the functionality of the algorithm through simulations.

3.1 Introduction

This chapter deals with a distributed pursuit-evasion problem for a team of
robotic searchers in an unknown environment. The distributed pursuit-
evasion problem, also known as the clearing problem, involves designing
control and communication protocols such that the team of searchers will
sweep an environment and detect any intruders which may be present. The
pursuit-evasion problem has received a lot of attention in recent years be-
cause of its applications to safety and security. In this chapter, we describe
a distributed environment clearing algorithm based on the concept of the
frontier or boundary between cleared and uncleared or contaminated ar-
eas. Our algorithm can guarantee the detection of any intruders or, if there
are insufficient searchers available, will clear as much area as it can while
ensuring no cleared areas are recontaminated.

The literature on pursuit-evasion problems is vast, with many differ-
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ent approaches studied. The most similar branch of prior work began with
[44] and focuses on guaranteeing detection of evaders in planar environ-
ments. Gerkey et al [45] studied the case of a single searcher with limited
field-of-view in a known, polygonal map. In [46], Sachs et al show that a
single searcher can clear a broader class of unknown environments without
localization or accurate distance measurements using an infinite range dis-
continuity sensor. There are also a number of works which study efficient
evader detection where one or more searchers are tasked with probabilisti-
cally locating targets which move randomly, including [47]. Pursuit-evasion
on graphs representing decompositions of environments is a closely related
topic which goes back to [48] and includes recent works such as [49] and [50].
In addition, our work draws inspiration from methods for exploration and
deployment of agents based on the frontier between explored and unexplored
areas, including [7], [51], [42] and [1].

We present a distributed clearing algorithm for d−searchers, a searcher
model with realistic limited range sensors. A well-known result from the
literature is that computing the minimum number of searchers required to
clear a general graph is NP-hard [48]. This result was extended in [52] to
searchers with infinite range visibility sensors in a polygonal environment,
and so solving for the minimum number of d−searchers to clear a non-
polygonal environment is also NP-hard. Instead, we present an efficient,
distributed algorithm which locally minimizes the number of searchers re-
quired, and demonstrate the algorithm’s utility through simulations using
the opensource Player/Stage robot software system [53].

There are three key contributions of this work. First, we adapt frontier-
based multi-agent exploration methods for pursuit-evasion. These meth-
ods enable our algorithm to guarantee detection of evaders in unknown,
multiply-connected planar environments which may be non-polygonal, a
more general setting than has been covered in the pursuit-evasion litera-
ture. Second, we develop a method for picking the next positions for the
searchers which locally optimizes the number of searchers required and the
expected increase in the area cleared. Finally, and perhaps most impor-
tantly, we detail a novel method for storing and updating the global frontier
between cleared and contaminated areas in a truly distributed manner.

This chapter is organized as follows. Section 3.2 provides definitions and
states the problem which we are addressing. In Section 3.3 we examine
a centralized version of our algorithm to clarify some of the details. The
decentralized algorithm is presented in Section 3.4 and then demonstrated
through simulations in 3.5. We conclude with a discussion of future work in
Section 3.6.
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Figure 3.1: On the left, four obstacles surround a d−searcher and lie within
the dashed circular region representing the area perceivable by the searcher’s
sensor without occlusions. The right image shows the boundary ∂S of the
sensor footprint for this position, with dashed oriented arcs for the free
boundary L and solid arcs for the local obstacle boundary.

3.2 Problem formulation

We are given a team of n robotic searchers with limited sensing and com-
munication capabilities and finite memory, all initially placed at the same
position in the free space of an unknown but limited planar environment.
Let Q be the free space of the environment, which must be connected but
can have holes and may be non-polygonal. The searchers are tasked with
detecting evaders which can be arbitrarily small (even a single point) and
can move arbitrarily fast, but continuously, through Q. The trajectories and
initial positions of the evaders are unknown. We require that the control
protocol uses a constant amount of memory per robot with respect to the
size of Q.

The robot model we use, the d−searcher, is a holonomic (i.e., omnidi-
rectional drive) mobile robot that can rotate and translate continuously at
bounded speed through Q. Our model gets its name from the attached dis-
tance sensor which has a maximum range of d > 0 and an angular aperture
of 2π. The sensor cannot penetrate obstacles but is capable of detecting any
evaders visible to it. When the sensor is used only to detect evaders, i.e.,
the distance measurements are ignored, we refer to it as an evader-detector.

Let S denote the footprint of the sensor when a robot is in a generic
configuration, as shown in Fig. 3.1. We say that a point is guarded by a
robot if it belongs to the footprint of the sensor of that robot. The ori-
ented boundary of the sensor footprint, ∂S of S, is a closed arc partitioned
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into two sets: (1) the local obstacle boundary (all the points where the sen-
sor has perceived an obstacle), and (2) the free boundary, denoted with L,
which consists of all the remaining points. Notice that while S is always
a (star-shaped) simply connected region, L is not, in general, a connected
set. We refer to the connected subsets of L as free arcs. The orientation
of ∂S is defined in a counter-clockwise manner, such that a point moving
along the boundary would have the internal part of S on the left. The free
arcs constituting L inherit the orientation of ∂S and are an open subset of
the topological manifold ∂S, with their endpoints on obstacles. The local
obstacle boundary arcs, on the other hand, are closed in ∂S.

The perception of the sensor at a given point is the tuple {S, ∂S,L},
i.e., a simply connected local obstacle-free region S called the footprint,
surrounded by a closed oriented curve ∂S called the boundary, and the set
of oriented free boundary arcs L of ∂S. We will also have use for the union of
a number of perceptions from different points in Q. Let I be the union of a
number of footprints from different points, which we refer to as the inspected
region. Since our algorithm does not allow recontamination, I also represents
the cleared area. Though I will be connected for our algorithm, it may not
be simply connected, meaning that ∂I is a set of a closed oriented curves. As
with ∂S, ∂I is partitioned into two sets: (1) the obstacle boundary, and (2)
the set of remaining oriented arcs, called the frontier boundary, and denoted
F .

Finally, we require that a pair of robots are guaranteed to be able to
communicate if their two sensor footprints intersect. In addition, we assume
that two communicating robots can compute their relative poses, as a result
of a mutual localization procedure [26]. The availability of any sort of global
localization is not assumed.

With these definitions we can now state the goal of our algorithm: control
the team of n searchers in order to maintain complete coverage of frontier
F while expanding as much as possible the area of the cleared region, I,
subject to limited communication and memory constraints.

3.3 The multi-robot clearing algorithm

For clarity, we have chosen to split the presentation of our clearing algorithm
into two stages. In this Section we pretend that a central controller is com-
manding the searchers in order to describe the fundamental algorithm steps
and the data structures involved. In Section 3.4 we detail the distributed
implementation of the algorithm.

The team of n searchers is divided into two classes, the frontier-guards
and the followers, and these roles are defined as follows.

• Frontier-guard : Each frontier-guard is assigned to a unique position
v ∈ Q called the guard’s viewpoint, which can move during the evolu-
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tion of the algorithm. The frontier-guard is required to quickly reach
its assigned viewpoint and immediately report a perception from the
viewpoint, i.e. the tuple {S, ∂S,L}. In order to detect evaders each
frontier-guard must also continuously monitor its sensor, using it as
evader-detector.

• Follower : Each follower is assigned to follow a frontier-guard, and this
assignment can change as the algorithm progresses. Each follower is
only required to passively follow its frontier-guard, and can in principle
use its sensor just for navigation.

As needed, the clearing algorithm will switch frontier-guards to followers,
and vice-versa.

At the beginning of the algorithm all n searchers are clustered around a
point in Q. One robot is selected as the initial frontier-guard and assigned its
initial position as a starting viewpoint. All other robots are set as followers
of this guard. The frontier-guard will then record the first perception, which
initializes the main data stored during the evolution of the algorithm.

Whenever a frontier-guard records its perception from an assigned view-
point, a new step k of the algorithm starts and the perception is classified
as {Sk, ∂Sk,Lk} and called the k-th perception. We denote the total in-
spected region at step k as Ik := ∪ki=1Si. The algorithm, however, does not
use or store Ik or the obstacle portion of ∂Ik. One important innovation of
this work is that it stores and updates only Fk, the oriented frontier arcs
of Ik. Since the obstacle boundary of the inspected region Ik is impossible
for either searchers or evaders to cross, there are only two ways an evader
can enter Ik: (1) by being inside of Sk\Ik−1 at the instant in which the k-th
perception is performed, or (2) by crossing Fk. In this first case detection of
the evader is immediate, the focus of our algorithm is thus on maintaining
complete coverage of Fk and updating it when a new perception is added.

On the first step, F1 is directly initialized with the free boundary of the
first perception L1; on each subsequent step k, Fk is computed from Fk−1

and {Sk, ∂Sk,Lk} using the method detailed in Sec. 3.3.1. For each new Fk
the following actions are performed:

1. Compute the next set of viewpoints Vk+1, which ensure that Fk re-
mains guarded and that Ik+1 will be a strict superset of Ik. As de-
tailed in Sec. 3.3.2, this is achieved by updating Vk and adding any
new viewpoints needed to cover the new portion of Fk.

2. Assign each v ∈ Vk+1 to a nearby searcher and set the searcher to be
a frontier-guard.

3. Assign all remaining searchers a nearby frontier-guard to follow.

4. Compute paths for all frontier-guards to reach their assigned view-
point.

67



3. Pursuit-Evasion with Limited Visibility

During the generation of paths the algorithm ensures that all the points
of Fk will remain guarded by the frontier-guards during the path following;
we will explain how this is achieved in Section 3.3.2. This fact guarantees
that at every instant each point of Fk is guarded by at least one frontier-
guard and thus Ik will remain clear. We refer to this feature as the frontier
guarding property.

Assuming that n ≥ max{|Vk| | for all k}, the algorithm will terminate at
the first step kf where Fkf

= ∅. At this point, ∂Ikf
will consist entirely of

obstacle arcs and Ikf
will completely cover Q. Therefore, for every evader e

in Q there exists at least one time step ke during which it (1) crosses Fke−1

for ke ∈ {2, . . . , kf}, or (2) belongs to Ske\Ike−1 for ke ∈ {1, . . . , kf}. We
can conclude, by means of the frontier guarding property, that every evader
is eventually detected before the algorithm terminates.

3.3.1 Updating the frontier without a global map

At each step k > 1, the algorithm needs to compute the new frontier Fk,
i.e., the non-obstacle boundary of the inspected region Ik = Ik−1 ∪ Sk. The
set Fk can be partitioned into two subsets, (1) the set FExt

k−1 of arcs from
the prior frontier Fk−1 which do not belong to the closure of perception Sk,
and (2) the set LExt

k of arcs from Lk which are not on the interior of the
inspected region Ik = ∪ki=1Si. While the computation of FExt

k−1 from Fk−1

and {Sk, ∂Sk,Lk} is immediate, in this section we describe a new method
to compute LExt

k by using only the oriented arcs of Fk−1 and {Sk, ∂Sk,Lk}.
In all previous work including [1], LExt

k has been computed using Sk
and Ik−1. The chief disadvantage of this prior procedure is that Ik−1 has
a non-constant size per robot with respect to the size of environment Q.
Furthermore, at step k it is not possible in general to compute LExt

k using
only the most recent perceptions from each frontier-guard.

Our new three-step method for computing LExt
k is based around the

intersections of the oriented arcs of Fk−1 and ∂Sk. Since it only requires
the storage of Fk−1, this method uses a constant amount of memory per
robot regardless of the size of Q. Let L?k denote the set of points belonging
to the intersection between the arcs of Lk and the arcs of Fk−1 and L̄?k
the remaining points of the arcs of Lk. The points of LExt

k can be either
boundary or exterior points of Ik−1, the boundary points will belong to L?k
while the exterior ones will belong to L̄?k. The following crucial result states
that an arc in Lk can only switch from being on the interior or exterior of
Ik−1 at an intersection point in L?k.

Lemma 3.1. Let l be an arc in Q which does not intersect Fk−1. If any
point of l belongs to the exterior of Ik−1, then all of l belongs to the exterior
of Ik−1. If any point of l belongs to the interior of Ik−1, then all of l belongs
to the interior of Ik−1.
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Figure 3.2: An example of the classification of the neighborhood J of a
point p ∈ L?k where arcs l ∈ Lk and f ∈ Fk−1 intersect. In the middle, the
partitions of J induced by l and f are represented separately. The white
regions on the right side of the oriented arcs indicate the exterior, and the
colored regions on the left side of the oriented arcs indicate the interior. On
the right, the single neighborhood shows the fusion of the two partitions of
J . The bold part of l, denoted with l′, indicates the points of l which are
classified as belonging frontier Fk because they lie between a white and a
colored region. Notice that in this case p ∈ l′.

Proof. Since l is in Q, it cannot cross the obstacle boundary of ∂Ik−1. There-
fore, if l does not intersect Fk−1, then it does not cross ∂Ik−1.

The first step of the method is to classify the neighborhood on ∂Sk of
each intersection point p ∈ L?k as either internal to Ik−1 or not. An example
of this neighborhood classification is shown in Fig. 3.2. The neighborhood
classifications for all possible intersection cases are depicted in Fig. 3.3.

The second step of the method is to classify the ends of each arc l ∈ Lk
in the neighborhood of the endpoints of the adjacent obstacle arcs. These
neighborhoods can be classified using the following Lemma:

Lemma 3.2. Let o denote a local obstacle arc of ∂Sk, let lL and lR ∈ L̄?k de-
note the ends of the free arc segments on the left and right of o, respectively,
in the neighborhood of the endpoints of o. Let Eo ⊂ o be the set of endpoints
of any frontier arcs of Fk−1 which either begin or end on o, and which are,
in the neighborhood of o, fully contained in the closure of Sk. Then:

• If Eo = ∅, either lL and lR are both internal to Ik−1 or neither are.

• If Eo 6= ∅, whether lL and lR are internal to Ik−1 or not depends
whether the closest1 e ∈ Eo represents the beginning or end of a frontier
arc. In particular, lL is internal if the closest e is a beginning, and not
otherwise. The opposite holds for lR.

1With respect to the distance on the arc o.
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Figure 3.3: The classifications of the points of an arc l ∈ Lk in the neighbor-
hood of all possible types of intersections with an arc f ∈ Fk−1. Oriented
arc l is drawn solid, while f is dashed and has a hollow arrow. Each row
shows a different intersection type, with columns for the various reciprocal
orientations of l and f . The first row shows isolated crossings, the second
shows isolated tangents, the third shows joinings, and the fourth row shows
segments where l and f overlap. The bold portions of l are the points clas-
sified as belonging to the new frontier LExt

k because they lie between a white
and a colored region.

Proof. If Eo = ∅, as shown in the first two cases of Fig. 3.4, then there
exists a free arc connecting lL with lR which is contained in the interior of
Sk and is close enough to o to not intersect Fk−1. Therefore, we can apply
Lemma 3.1.

If Eo 6= ∅, assume without loss of generality that Eo = {e}, i.e., it is a
singleton, as shown in the third and fourth cases of Fig. 3.4. Then there
exists a free arc connecting lL with the ‘nearest’ half of the neighborhood
of e which is in the interior of Sk and is close enough to o to not intersect
Fk−1, and similar claim holds for lR. Therefore, we can again apply Lemma
3.1.

The third and final step is to propagate the classification from the neigh-
borhoods to all points of the arcs of Lk. This propagation again exploits
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Figure 3.4: The obstacle arc o (dotted) has two adjacent free arcs (solid).
The four cases are depicted. In the first two cases no internal frontier arc
has an endpoint on o, so in the neighborhood of o the free arcs are classified
as both frontier (bold) or both internal (thin). In the second two cases
an internal frontier arc f (dashed) has an endpoint on o which induces a
different classification on the two free arcs.

Lemma 3.1. Notice that, so long as the selection of viewpoints guarantees
that either L?k 6= ∅ or at least one local obstacle arc o has a non-empty Eo,
this third step is well defined.

Combined, these three steps determine which segments of the k-th free
boundary Lk are not in the interior of Ik−1 and thus should be included in
frontier Fk.

3.3.2 Viewpoint planner

Our approach to viewpoint planning is similar to the exploration algorithm
described in [1]. The properties of our viewpoint planning method are laid
out in the following Proposition.

Proposition 3.1. Given the frontier Fk and the set of prior viewpoints Vk,
the viewpoint planner will select the smallest set of viewpoints Vk+1 ∈ Ik
which satisfy the following constraints:

1. Area(Ik+1) will be strictly greater than Area(Ik), and

2. Fk is contained in the closure of ∪v∈Vk+1
S(v).

Within these constraints, the viewpoint planner will maximize the expected
area exposed, Area(Ik+1)−Area(Ik).
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Remark The viewpoint planner we present here is for circular sensor foot-
prints of radius d. For more general footprints, such as a limited field-
of-view, our clearing algorithm could also be applied provided a viewpoint
selection method was developed which met the conditions of Proposition 3.1.

Let vk be the viewpoint of the k-th perception. As detailed in Sec-
tion 3.3.1, Fk can be partitioned into two sets: FExt

k−1 (a subset of the prior
frontier), and LExt

k (a subset of ∂Sk). Let F Int
k−1 be the portion of Fk−1 which

is inside the closure of Sk.
With the distributed application in mind, we simplify the planning of

Vk+1 by constructing it from Vk as follows:

1. Remove vk.

2. Remove any v ∈ Vk which was assigned to guard an obsolete portion
of the frontier in F Int

k−1.

3. Add a set of new viewpoints V ′ to cover and expand the new frontier
segments LExt

k .

We will now describe how to choose V ′ around viewpoint vk when LExt
k 6= ∅.

A free arc l ∈ Lk is considered relevant for viewpoint planning if it
contains one or more frontier arc fragments from LExt

k . A relevant free
arc may contain one or more frontier arc fragments, and each frontier arc
fragment will be entirely contained in one relevant free arc. Let LRel

k ⊆ Lk
denote the set of relevant free arcs around vk.

The goal of this local viewpoint planning can then be restated as parti-
tioning the frontier points of each lRel ∈ LRel

k among the fewest possible new
viewpoints V ′ while maximizing the expected exposed area beyond LExt

k .
The first step in our method for local viewpoint planning is to determine

how many new viewpoints will be needed to cover each lRel ∈ LRel
k . As

shown in Fig. 3.1, each lRel will be comprised of straight radial segments
and circular segments with radius d. The possible configurations are: single
radial; single curved; curved with radial on one side; or curved with radial
segments on both sides. The following Lemma simplifies the determination
of when a radial segment is covered by a viewpoint.

Lemma 3.3. Let v′ ∈ Sk be a potential new viewpoint, and r ∈ LRel
k be a

radial free arc segment. Let p be the far endpoint of r and v′p be the line
segment between v′ and p. If dist (v′, p) < d and v′p only intersects ∂S at p,
then open set r will be contained inside of S (v′).

Proof. Our proof centers around the triangle T formed by vk, v′, and p. As
r is a radial free arc segment, r is a connected subset of vkp. Then, since
Sk has maximum radius d, dist (v′, vk) < d. Combined with the fact that
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dist (v′, p) < d, we can conclude that all of r is within d of v′. All that
remains is to show that there are no obstructing obstacles inside of T .

We know that v′p is contained in the closure of Sk because it only in-
tersects ∂S at p. Since Sk is star-shaped, both vkp and vkv′ will also be
contained in the closure of Sk. Then, as Sk is simply connected, we can
conclude that the interior of T is in Q and, therefore, r will be contained
inside of S (v′).

There are two notable consequences of Lemma 3.3. First, for any lRel

comprised solely of a radial segment, only one viewpoint will be needed.
Second, for any lRel which contains both curved and radial segments, we
only need to partition the curved segment: the viewpoint which covers an
endpoint of the curved segment will also cover any attached radial segment.

To assist in selecting V ′ we introduce parameter dmin ∈ (0, d], the min-
imum distance between the vk and any v ∈ V ′. As will become clear,
dmin encodes a trade-off in the algorithm: smaller values of dmin reduce
|V ′| and thereby reduce the number of searchers required; larger values of
dmin increase the expected area exposed and thereby reduce the number of
iterations required to clear Q.

Let δ (lRel) be the angular width of lRel measured counter-clockwise from
the angle of the right-most frontier point on lRel to the angle of the left-most
frontier point on lRel.

A single new viewpoint at least dmin from vk can then cover an angular
width of at most α (dmin) given by

α (dmin) = 2 arccos (dmin/2d) ∈ [2π/3, π) .

The number of viewpoints η necessary to cover lRel is then determined by
the following Lemma:

Lemma 3.4. For any lRel ∈ LRel
k , η viewpoints will be required where 1 ≤

η ≤ 3. In particular:

• if δ (lRel) ≤ 2π
3 , η = 1,

• if 2π
3 < δ (lRel) < π, 1 ≤ η ≤ 2,

• if π ≤ δ (lRel) < 2π, 2 ≤ η ≤ 3, and

• if δ (lRel) = 2π, η = 3.

Proof. This result is a direct consequence of Lemma 3.3 and the fact that
α (dmin) ∈ [2π/3, π).

For η > 1, the angular width of lRel is then partitioned such that the
first viewpoint covers [0, δ (lRel) /η], and each subsequent viewpoint covers
the next equally sized slice.

73



3. Pursuit-Evasion with Limited Visibility

After this first step of the local viewpoint planning method, we know
how many new viewpoints v′ are needed to cover each lRel. For every v′

there are two points, p1 and p2 ∈ lRel which must be covered: for a single
radial frontier arc, p1 and p2 are the endpoints of the arc; for any other
shape, p1 and p2 are the endpoints of the partition of the curved segment
in lRel assigned to v′. Let Sk(p1) and Sk(p2) be the subsets of Sk which are
known to be visible from p1 and p2, respectively.

The final step of our local viewpoint planning method is to optimize
the placement of each v′ to maximize the expected area it will expose. To
achieve this, we choose v′ as a point in Sk(p1)∩Sk(p2) which minimizes the
sum of the distances to each frontier point in the partition of lRel assigned
to v′.

By construction, this method of selecting V ′ guarantees that LExt
k ∈

∪v′∈V ′S(v′). The following Lemma states that it also ensures that Area (Ik+1)−
Area (Ik) > 0:

Lemma 3.5. For each v′ ∈ V ′, S(v′) will cover some new area A ∈ Q where
Area (A) > 0 and Area (A ∩ Ik) = 0.

Proof. Let f ∈ lRel be a frontier segment assigned to v′. By definition, f is
inside of Q and is a subset of Fk. By Lemma 3.3, f will also be inside of
the open set S(v′), so there must be an open set A ⊂ Q which is inside of
S(v′) but outside of Ik.

3.4 The distributed clearing algorithm

For the distributed clearing algorithm the communication graph is in general
disconnected, necessitating several changes from the centralized description.
First, the global frontier must be stored and updated in a distributed man-
ner. Second, viewpoint planning must be performed locally by the frontier-
guards. Furthermore, the algorithm cannot rely on a global localization sys-
tem. Finally, note that while the centralized version is synchronous, in the
distributed setting it is possible for perceptions from disconnected searchers
to be recorded at the same time.

The global frontier can be distributed by having each frontier-guard store
its local frontier segments and update them through communication with
its neighboring frontier-guards. This distributed storage and updating can
always be achieved, since (1) by the frontier guarding property, each global
frontier point is guarded by a frontier-guard; (2) the classification of Lk
requires only those frontier segments which intersect it, and by assumption
two robots whose footprints intersect are in communication and are mutually
localized.

Once the local frontier for a frontier guard has been classified, viewpoint
planning relies only on the local information. In addition, the execution of
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Procedure Expand

Data: frontier,path
foreach follower in followers do1

Send(follower,“follow”,path);2

Move(path);3

{S, ∂S,L} ← Perceive();4

neighbFront ← UpdateNeighbFront();5

frontier ← Frontier({S, ∂S,L},frontier,neighbFront);6

DoBehavior(“Frontier-Guard”,S,frontier);7

the path between viewpoints can be done without global localization; since
both viewpoints lie inside the local perception, local odometry of reasonable
accuracy suffices. In fact, frontier updating is also based only on current
relative positions, not the absolute position. The distributed algorithm can,
therefore, continue to clear an environment even if the searchers cannot
determine where they started. The only requirement for success is that the
bias of each step of incremental localization is small enough that it does not
void the frontier guarding property or the increase in the cleared area, which
is simple to obtain in practice.

The two classes of searchers from the centralized algorithm are each
split in two, yielding four possible states: expand, frontier-guard, follow,
and wander. These roles are described as follows:

• Expand : When a searcher is assigned a new viewpoint to move to, it
enters the expand state until it reaches the viewpoint and records a
perception.

• Frontier-guard : Each frontier-guard i will remain stationary at its
viewpoint and has complete control over its local frontier segments,
Fk,i. It must communicate with its neighboring frontier-guards to
keep Fk,i updated, plan viewpoints to cover and expand Fk,i, and
then decide whether to expand itself or dispatch a follower.

• Follow : As in the centralized setting, a follower’s task is to passively
follow their frontier-guard but they will now be given commands by
the frontier-guard.

• Wander : Wanderers can be thought of as followers who have not yet
found a frontier guard to follow. In the distributed setting, when a
frontier-guard has no local frontier to guard, it and its former followers
must wander until they come within communication range of a frontier-
guard to follow.
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Procedure Frontier-Guard
Data: S,frontier
if frontier is empty then1

Send(followers,“wander”);2

DoBehavior(“Wander”);3

(bestVP,NumVPs) ← ViewPointPlan(S,frontier);4

path ← PathToViewPoint(S,bestVP);5

if NumVPs == 1 then6

DoBehavior(“Expand”,frontier,path);7

else8

if followers has at least one follower then9

follower ← PopFollower(followers);10

Send(follower,“expand”,path);11

WaitForFollower(follower);12

else13

while no new neighbor and no followers do14

Sleep();15

DoBehavior(“Frontier-Guard”,S,frontier);16

Procedure Follow

Receive(Leader,message,path);1

switch message do2

case “follow”3

Move(path);4

case “expand”5

DoBehavior(“Expand”,∅,path);6

case “wander”7

DoBehavior(“Wander”);8

Procedure Wander

SearchForLeader();1

if leader found then2

DoBehavior(“Follow”);3

if all searchers wandering then4

exit5

The four-state state machine for the distributed algorithm is explained
in in Fig. 3.5 and in the pseudocodes. The key subroutines consist of the
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Expand

Frontier-
Guard

Follow

Wander

Figure 3.5: State machine diagram for the distributed clearing algorithm.

following:

• UpdateNeighbFrontier/Frontier: These two functions perform a lo-
calized version of the frontier update method described in Section 3.3.1.
Searcher i first queries its neighbors for their current frontier segments,
classifies Lk,i using its neighbor’s segments, and then informs its neigh-
bors if any of their frontier segments lie within Sk,i.

• ViewPointPlan: This function follows the viewpoint planning method
laid out in Section 3.3.2. First, it determines how many viewpoints
are needed based on the number and angular width of the relevant free
arcs. Then, the single best new viewpoint is chosen from Sk,i.

• PathToViewPoint: This function determines the shortest path from
the old viewpoint to the new viewpoint inside Sk,i. If the sensor foot-
print is star-shaped, this path is a straight line.

• SearchForLeader: This function does a random walk of the environ-
ment with two additional behaviors. First, if a wanderer encounters
a frontier-guard or expander, then it switches to following this leader.
Second, when two wanderers come in contact they may join together
to form a wandering blob.

The behavior of the frontier-guards in this distributed clearing algorithm
guarantees the frontier guarding property first discussed in Section 3.3.
When expander i reaches its assigned viewpoint and makes a perception,
it then enters the stationary frontier-guard state. So long as i remains a
frontier-guard it will maintain complete coverage of the frontier segments
in Fk,i. Searcher i will only leave the frontier-guard state if either Fk,i is
erased by a neighbors frontier update, or if i determines that one viewpoint
is sufficient to expand while covering Fk,i and that the path to the viewpoint
maintains coverage of Fk,i.

77



3. Pursuit-Evasion with Limited Visibility

The combination of the frontier guarding property and Lemma 3.5 guar-
antees that, assuming there are sufficient searchers available, the distributed
algorithm will successfully clear all of Q. When the task is completed, all
searchers will be in the Wander state. If all-to-one communication is avail-
able (for example, if all robots can communicate back to a central security
center), then detecting task completion is trivial. In the most general case,
the searchers will have to determine the task is complete by locating and
querying the other searchers. In the absence of global localization or other
means of assuring rendezvous, our proposal is that robots in the Wander
state clump together when they find each other to form wandering blobs.
Eventually, through the random walks of these growing blobs, all searchers
will be joined into a single blob and task completion can be easily detected.

3.5 Simulations

To demonstrate the utility of the proposed pursuit-evasion algorithm, we
implemented it in the open-source Player/Stage robot software system [53]
using the Multirobot Integrated Platform [54]. Perceptions are implemented
as local occupancy grids, with oriented frontier arcs handled as ordered
sequences of cells. Each robot stores only its most recent perception and its
local frontier.

The first simulation features three searchers clearing an environment
with two large holes and three evaders. The progression in Fig. 3.6 begins
at the top-left, where the robots start expanding from a corner of the map.
The second screenshot shows the searcher clearing the lower hallway waiting
for help to cover its two frontier segments. Once the central vertical hallway
is cleared by another searcher, the trio continue on to complete their sweep.
Fig. 3.8 shows the total percentage of the free space cleared by the robots for
each iteration (where a new iteration begins with each recorded perception),
as well as the number of frontier cells stored per frontier-guard.

The second simulation has six searchers tracking down five evaders in
a larger multiply-connected environment. Two screenshots are shown in
Fig. 3.7, where the robots begin in a corner of the map before spreading out
to cover the free space. Notice that in the second image there are two groups
of searchers which are separated and cannot communicate with each other.
Fig. ?? shows the total area cleared and the frontier cells stored over the
iterations of the algorithm. As in the previous example, this plot also shows
that the number of frontier cells stored per frontier-guard is independent of
the area cleared.

The third and final simulation consists of twelve searchers expanding
in a vast empty environment. The final configuration where the agents
cannot expand any further is shown in Fig. 3.9. Through only the local
viewpoint optimizations discussed in Section 3.3.2, the final configuration
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Figure 3.6: Screenshots from a simulation of three circular robots sweeping
an environment with two holes to locate the triangular evaders. The images
are ordered left-to-right and then top-to-bottom. The discretized boundary
of each frontier-guard’s current footprint, ∂S, is shown using colored squares
where dark-red is used for local frontier segments, light-green for obstacle
segments, and light-blue for the remaining free arcs.

closely resembles the maximum possible cleared area where the searchers
are equally spaced along the circumference of a large circle with their sensor
footprints just touching.

3.6 Open issues

There are a number of interesting future directions for this work. First, the
specification of a general viewpoint planner which works for sensors with
a limited field-of-view would extend the algorithm to a much broader class
of searchers and sensor hardware. The development of an upper bound on
the number of d−searchers required to clear an environment based on d and
properties of the environment would also be a significant contribution. One
potential extension of the algorithm would be to guarantee a connected com-
munication graph for the team of searchers at all times, perhaps including a
connection back to the initial entry point of the team. Finally, the algorithm
could also be extended to three-dimensional environments.
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Figure 3.7: Two screenshots from a simulation of six circular robots clearing
an environment containing five triangular evaders.
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Figure 3.8: Plot showing statistics over the iterations of the simulation in
Fig. 3.7 (left) and Fig. 3.6 (right). The percentage of the total free space
exposed is plotted with blue squares against the left axis, while the frontier
cells stored per frontier-guard is plotted with green circles against the right
axis.
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Figure 3.9: Final configuration of 12 robots clearing as much area as the
can in an empty environment.

Figure 3.10:
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Part II

Cooperative Tasks with
Anonymous Measures
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This part presents two problems in the field of the anonymous-measure
scenario.

Problem (Mutual Localization w/o Perception Tagging) Given a team of
mobile robots with limited sensing and communication range, and untagged
perceptions

• estimate the change of coordinates between the local frames of the
robots

Typical applications are all the tasks needing data exchange (e.g., sensor
fusion, formation control).

Problem (Cooperative Target Encircling) Given a team of mobile robots
with limited sensing and communication range, and untagged perceptions

• detect a target and revolve around it, while being uniformly spaced
and proceeding at a given speed

Typical Applications are observing, i.e, retrieving data about an object from
different viewpoints escorting, i.e., protecting a member of the team from
exterior agents, entrapment, i.e., prevent the motion of an alien object.
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4. Relative Mutual Localization with Anonymity

Chapter 4

The Relative Mutual
Localization with
Anonymous Position
Measures

This chapter theoretically formulates and investigates a novel problem called Mutual
Localization with Anonymous Position Measures. This is an extension of Mutual
Localization with Position Measures, with the additional assumption that the iden-
tities of the measured robots are not known. We have presented preliminary results
regarding this topic in [55]. A necessary and sufficient condition for the unique-
ness of the solution is presented, which requires O(n2/ log n) to be verified and is
based on the notion of rotational symmetry in R2. We also derive the relationship
between the number of robots and the number of possible solutions, and we classify
the solutions in a number of equivalence classes which is linear with n. A control
law that effectively breaks symmetric formations so as to guarantee the unique solv-
ability of the problem is also proposed. Finally, we demonstrate the performance of
this control law through simulations.

4.1 Introduction

The Mutual Localization problem has received a lot of attention in recent
years [56, 57, 58], due to the fact that its solution is essential to perform
many multi-robot tasks, e.g., coverage and deployment [59], exploration and
map building [1], formation control [60], surveillance and monitoring [38], es-
corting and entrapment [61]. For a thorough classification see Appendix A.
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Great relevance has been given in the literature to the determination of
conditions for the uniqueness of the solution when the structure of available
measures, represented with a measuring graph, is subject to changes. In [56]
the range measurement case is addressed and the uniqueness of the solution
is connected to various concepts of rigidity, while in [62] observability prop-
erties are studied in a dynamic scenario. In [57] this analysis is extended
to the position measurement case, and in [58] the orientation of the sensor
is also estimated. It is known [58] that the uniqueness of the solution is
guaranteed if the measuring graph is complete.

We define an extension of the above problem, called Mutual Localization
with Anonymous Position Measures, by adding the assumption that the
set of relative position measurements of each robot is not ordered, in the
sense that each measurement comes without the ID of the measured robot.
This situation typically arises when the robot detection system is based on
a feature extraction module that looks for physical characteristics that are
common to all robots, e.g., size, color, or shape in a team of identical robots.
For example, in [26] we have made use of a robot detector based on a laser
range finder, that is unable to provide the identity of the measured robot.

In practical applications, adverse environmental conditions (unstable
light or darkness, rain, fog, etc.) may hide the distinguishing features which
are commonly used for identification. Hence, the possibility of relying on a
localization system which does not require the identities of the robot makes
the system more robust. On the other hand, the resemblance of the mem-
bers of the team can be essential in missions where the leader identity must
remain secret for security or disguising purposes, e.g., in escorting or in-
trusion. In the same spirit, other important fields of applicability are team
missions requiring mimicry or stealth capabilities of the members. In fact,
distinguishing features are invalidated or forbidden by such objectives.

In opposition to the standard Mutual Localization with Position Mea-
sures, the problem of Mutual Localization with Anonymous Position Mea-
sures may have more than one solution even if the measuring graph is com-
plete. For example, consider the case of 4 robots that are arranged over
the vertexes of a square, aiming their ‘noses’ cyclically at each other. Since
the 4 set of measures of each robot are identical, all the 24 vertex asso-
ciations corresponding to the permutations of the sequence {1, 2, 3, 4} are
feasible. Hence, in this situation, in spite of the complete availability of
the the measures, the problem is not uniquely solvable. Note that, up to
roto-translations, the number of possible vertex associations is (n − 1)! for
a regular n-gon.

If the problem is formulated in a stochastic setting to take into account
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measurement noise, the cases with multiple solutions correspond to large
uncertainties in the probability density of the solution. This happens already
when the configuration of the team is in the neighborhood of configurations
that give rise to multiple solutions in the deterministic case. This fact
emphasizes the general importance of this problem, which goes beyond the
deterministic case.

It is also worth noting that multiple solutions appear, in particular, when
the team is arranged along a regular pattern; this situation is not rare in
multi-robot systems, and in fact many collective motion controllers attempt
to achieve exactly this kind of formation, see for example [60].

A loosely related problem is the registration of multiple representations
of the same scene, which has been widely investigated in the literature, from
early works [63] to more recent ones [64].

The chapter is organized as follows. The problem under consideration is
formalized in Section 4.2. The main findings of the chapter are presented in
Sections 4.3 and 4.4. In particular, in Section 4.3 we characterize the situa-
tions in which the problem has multiple solutions, we establish the relation-
ship between the number of possible solutions and the number of robots, and
we propose an efficient representation of the solutions. A control law that
breaks symmetric formations so as to guarantee the unique solvability of the
problem is proposed in Section 4.4, and is validated through simulations in
Section 4.5. Finally, some future work is discussed in Section 4.7.

4.2 Problem formulation

Assume that we have a group of n single-body mobile robots in a certain
spatial arrangement on the plane. Each robot is equipped with a sensory
system that provides the positions (not the orientations) of the other robots
with respect to itself; these positions are anonymous, in the sense that they
are not labeled with the identity of the robots. We want to investigate the
conditions under which the spatial arrangement of the group can be uniquely
reconstructed up to roto-translations from the simultaneous knowledge of all
sensory data. Below, we give a formal statement of this problem.

The i-th robot Ri, i = 1, . . . , n, is a planar rigid body with an attached
frame Fi (see Fig. 4.1a). The pose xi = (pi, θi) ofRi is an element of R2×S1,
with pi representing the origin1 of Fi expressed in a reference frame F and
θi the orientation of Fi w.r.t. F . Since R2 × S1 is homeomorphic to SE(2),
any pose may also be interpreted as a roto-translation.

1For simplicity, we shall use the same symbol (e.g., p) to indicate a point and its
Cartesian coordinates; the actual meaning will be clear from the context.
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Figure 4.1: Mutual Localization with Anonymous Position Measures – Com-
plete measuring graph. (a) Each robot expresses its measures in an attached
frame Fi; the reference frame F is chosen w.l.o.g. to be F1 (b) P1 is the ob-
servation of R1 (c-e) P2, P3 and P4 are the observations of the remaining
robots R2, R3 and R4, respectively. Note that all observations are anony-
mous sets of points.

A formation is a set of n poses {x1, . . . , xn} in F , with xi assigned to
Ri. Since we are interested in computing the group formation up to roto-
translations, we can set w.l.o.g. F = F1, so that x1 = ((0 0)T , 0). This
means that all formations will be expressed in the frame attached to R1.
Clearly, all results can be expressed in another frame F ′ provided that the
pose of R1 w.r.t. F ′ is known.

Let R(φ) ∈ SO(2) denote the rotation matrix associated to an angle
φ. As in [63] and [65], we denote by xa ⊕ xb and xa 	 xb, respectively, the
composition and the inverse composition of two poses, as defined by the
following formulas:

xa ⊕ xb = (pa +R(θa)pb, θa + θb)
xa 	 xb = (R(−θb)(pa − pb), θa − θb),

and depicted in Fig. 4.2.
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F xa F xa

xa ! xbxbFb

Fa

Fb

Fa

xb

xa ⊕ xb

Figure 4.2: Pose compositions.

xb = xc ! xa

xb = (xc ⊕ xd)" xa

xa

xc

xd = (xa ⊕ xb)" xc

xa
⊕ xb

= xc
⊕ xd

xc = xa ⊕ xb
xa

0! xa

xa

Figure 4.3: Pose composition properties.

It is worth noticing that xa ⊕ xb represents the rototranslation of xb by
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means of xa. The operator ⊕ has the following properties

(xa ⊕ xb)⊕ xc = xa ⊕ (xb ⊕ xc), (⊕ is associative)
xb ⊕ xa 6= xa ⊕ xb, (⊕ is not commutative)
xa ⊕ 0 = 0⊕ xa = xa. (null element)

The operator 	 has the following properties

(xa 	 xb)	 xc 6= xa 	 (xb 	 xc), (	 is not associative)
xb 	 xa 6= xa 	 xb, (	 is not commutative)
xa 	 0 = xa 6= 0	 xa. (right null element)
xa 	 xa = 0, (self inversion)

The two operators have the following joint properties

xb ⊕ (xa 	 xb) = (xb ⊕ xa)	 xb = xa, (	 and ⊕ cancellation)
xa ⊕ xb = xa 	 (0	 xb), (⊕ exchange)
xa 	 xb = (0	 xb)⊕ xa, (	 exchange)

(xa ⊕ xb)	 xc 6= xa ⊕ (xb 	 xc), (⊕ is not associative with 	)

where 0 =
(
(0 0)T , 0

)
. Furthermore, the pose 0	 xa represents the pose of

F with respect to Fa, see Fig. 4.3.
The operators ⊕ and 	 are also used to compose two-dimensional posi-

tion vectors with three-dimensional poses. In particular, given the coordi-
nates p of a point expressed in Fi, whose pose w.r.t. F is xi, the operation
xi ⊕ p gives the coordinates of the same point expressed in F . Conversely,
given xi and the coordinates p of a point expressed in F , the operation p	xi
gives the coordinates of the same point expressed in Fi, whose pose w.r.t.
F is xi. These operators may also be used with a set P of points, by letting
xi ⊕ P := {xi ⊕ p | p ∈ P}, and P 	 xi := {p	 xi | p ∈ P}.

In case of complete measuring graph, an observation Pi is a set of n
distinct points in R2, one of which is always the origin. It represents the po-
sitions of the robots as measured by the i-th robot, i.e., relative to Fi. Apart
from the origin, which stands for Ri itself, Pi does not convey any informa-
tion about the identity of the robot located at a certain point (anonymity),
nor about its orientation.

In a more general case, the observation model changes depending on the
characteristics of the considered sensory system. Altogether, we consider
the following four observation models (in order of increasing generality):
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1. Complete measuring graph. Any observation is made by the exact n
measures of all the n robots of the team. Note that, in this case, all
the observations of a given group are the same up to roto-translations.
See Fig. 4.1b–e for examples of observations.

2. Generic measuring graph. Any observation is made by a subset of the
exact measures of all the robots of the team. The cardinality of these
subset is mi ≤ n. As a special case we consider the situation in which
if a robot measures another robot then the robot is also measured by
the other.

3. False positives. Any observation is made by a subset of the exact
measures of all the robots of the team plus a set of exogenous posi-
tions coming from stochastic detecting errors (false positives). The
observation does not convey any information to distinguish a correct
measurement from a false positive.

4. Noisy measurement. Any observation is a probability density function
on R2, which depends on (1) the pose of the measuring robot xi =
(pTi θi)

T , (2) the positions of the other robots p1, . . . , pi−1, pi+1, . . . , pn,
and (3) a stochastic set of exogenous positions Qi coming from detect-
ing errors (false positives):

fi(ip|xi, p1, . . . , pi−1, pi+1, . . . , pn, Qi)

This p.d.f. indicates the probability that there is a robot in a certain
position ip, expressed in the frame Fi.

Correspondently, there are four possible Mutual Localization with Anony-
mous Position Measures problems. With respect to the observation model 1
we have the following problem.

Problem 4.1 (Mutual Localization with Anonymous Position Measures –
Complete measuring graph). Given n observations P1, . . . , Pn, find all the
possible pairs of functions

p̂ : {2, . . . , n} → P1\(0 0)T

θ̂ : {2, . . . , n} → [0, 2π)

with p̂ bijective, such that

P1 	 x̂i = Pi i = 2, . . . , n (4.1)

where x̂i := (p̂(i), θ̂(i)).
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Function p̂ assigns each point of P1 (with the exception of the origin) to
one and only one robot in {R2, . . . ,Rn}, whose orientation is then defined by
θ̂ (see Fig. 4.1b). Note thatR1 is directly associated to the origin, with orien-
tation equal to zero, in all solutions to the problem. Stated differently, Prob-
lem 4.1 consists in finding all the formations {x̂1 = ((0 0)T , 0), x̂2 . . . , x̂n}
that are compatible with the given observations, i.e., satisfy (4.1). In gen-
eral, a solution to Problem 4.1 may exist or not. In the following, we assume
that each observation Pi, i = 1, . . . , n, has been gathered by robot Ri with
reference to the same spatial arrangement of the group. This is sufficient to
claim that Problem 4.1 admits at least one solution.

With respect to the observation model 2 we have the following problem.

Problem 4.2 (Mutual Localization with Anonymous Position Measures –
Generic measuring graph). Given n observations P1, . . . , Pn, with |Pi| =
mi ≤ n, find all the sets P̂1 ⊃ P1 such that |P̂1| = n and all the possible
pairs of functions

p̂ : {2, . . . , n} → P̂1\(0 0)T

θ̂ : {2, . . . , n} → [0, 2π)

with p̂ bijective, such that

P̂1 	 x̂i ⊃ Pi i = 2, . . . , n (4.2)

where x̂i := (p̂(i), θ̂(i)).

With respect to the observation model 3 we have the following problem.

Problem 4.3 (Mutual Localization with Anonymous Position Measures –
False positives). Given n observations P1, . . . , Pn, find all the sets P̂1 ⊃ P1

such that |P1| ≥ n all the possible pairs of functions

p̂ : {2, . . . , n} → P̂1\(0 0)T

θ̂ : {2, . . . , n} → [0, 2π)

with p̂ injective, such that

P̂1 	 x̂i ⊃ Pi i = 2, . . . , n (4.3)

where x̂i := (p̂(i), θ̂(i)).

With respect to the observation model 4 we have the following problem.

Problem 4.4 (Mutual Localization with Anonymous Position Measures –
Noysy measurement). The correct statement of this problem is still an open
issue.
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Figure 4.4: Three rotational symmetric sets of points. From left to right, the
associated proper symmetric groups are respectively C2, C3 and C4. Note
that only the second set contains its centroid. Solid line segments join points
that belonging to the same set of the rotational symmetric partition. Dotted
line segments show the presence of partial higher-degree symmetries which
are not relevant for the analysis: from left to right, they identify respectively
a square, an hexagon and an octagon. Dashed line segments meet at the
centroid of each set.

4.3 Unique solvability and structure of solutions
in case of complete measuring graph

In this Section we give a necessary and sufficient condition for the unique
solvability (i.e., the uniqueness of the solution) of Problem 4.1 (Proposi-
tion 4.1), an associated test (Proposition 4.2), and a quantitative and qual-
itative characterization of the solutions (Propositions 4.3 and 4.4). In par-
ticular, we show that the problem is uniquely solvable if and only if the set
of points represented by observation P1 does not have a rotational symme-
try (remember that all observations are the same up to roto-translations).
Furthermore, we show that in the case of non-unique solvability the number
of solutions has a factorial trend with respect to n, the number of robots.
To establish these results, we first recall a few basic concepts on rotational
symmetry.

4.3.1 A brush-up on rotational symmetry

Consider a set of n points P ⊂ R2. Let SP denote the proper symmetry
group of P , i.e., the subgroup of its orientation-preserving isometries (roto-
translations) under which it is invariant. It is known from symmetry group
theory [66] that, since P is a bounded set, SP can be represented as a
subgroup of SO(2) (the group of planar rotations), by choosing the origin
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to be its fixed point, i.e., the centroid2 of P . In particular, there exists
a positive integer l such that SP = Cl, where Cl is the cyclic group of
order l, whose generator is the rotation of 2π/l. P is said to be rotational
symmetric if SP 6= C1, where C1 is the trivial group containing only the
identity operation.

Assume that SP = Cl and let c be the centroid of P . Denote by qφ =
(c−R(φ)c, φ) the rotation by an angle φ around c, and in particular by

qk := (c−R(2kπ/l)c, 2kπ/l), (4.4)

the rotation by 2kπ/l, for k = 0, 1, . . . , l − 1. We have then

P = P 	 qk = qk ⊕ P,

for k = 0, 1, . . . , l − 1. Note that rotational symmetry is invariant under
isometries: if P is rotational symmetric, also P 	 x is rotational symmetric,
for any x ∈ SE(2). Some examples of rotational symmetric sets of points
are shown in Fig. 4.4.

The following Lemma establishes an important property which is valid
for any finite set of points and has an important role in the study of the
unique solvability of Problem 4.1.

Lemma 4.1 (Rotational Symmetric Partition). Given a set of n points P
such that SP = Cl, there exists a partition EP = {E1, . . . , Em} of P such
that Ej, with j = 1, . . . ,m, is invariant under any rotation in Cl around the
centroid c, i.e.,

Ej = Ej 	 qk , k = 0, 1 . . . , l − 1.

If c 6∈ P , then l divides n, m = n/l, and the cardinality of each subset of the
partition EP is l. If c ∈ P , then l divides n− 1, m = 1 + (n− 1)/l and the
cardinality of each subset in EP \{c} is l.

Proof. Suppose w.l.o.g. that c is the origin. Chosen a point p ∈ P\{c}, the
set E(p) of all points obtained applying an element of Cl to p is a subset of
P by definition. Clearly, E(p) has cardinality l and is invariant under Cl.
Now choose a point p′ in P\E(p), repeat the above construction to obtain
E(p′), and proceed as before. If c 6∈ P , the collection of all the distinct sets
E(p) for all p ∈ P gives the subsets E1, . . . , Em of the partition EP , with
m = n/l. On the other hand, if c ∈ P then set E(c) is a singleton and must
be added to the previous collection, which consists in this case of (n− 1)/l
subsets.

2In fact, since after any rotation in SP the set of points P remains the same, also the
centroid remains the same, hence the centroid is the fixed point.
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n possible values of l

1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 4 5
6 1 2 3 5 6
7 1 2 3 6 7
8 1 2 4 7 8
9 1 2 3 4 8 9

10 1 2 3 5 9 10
11 1 2 3 5 10 11
12 1 2 3 6 11 12
13 1 2 3 6 12 13
14 1 2 7 13 14
15 1 2 3 5 7 14 15
16 1 2 3 4 5 8 15 16
17 1 2 3 4 8 16 17
18 1 2 3 9 17 18
19 1 2 3 9 18 19

...
...

. . .

Figure 4.5: The possible values of the integer l for the cyclic groups Cl that
can be the proper symmetry groups of a set P of n points. Note that, since
P can always be non-rotational symmetric, l = 1 is always present. Also,
l = 2 is always possible since for any odd value of n one point can be always
placed in the centroid.

Figure 4.4 shows the partitions for three different rotational symmetric
set of points, while in Fig. 4.5 the possible values of l are tabulated for sets
of n = 1, . . . , 10 points. Limit cases are found when l = 1 (the set of points
is not rotational symmetric, and the partition consists of n singletons) and
when l = n (the set of points may be a regular n-gon, and the partition
consists if a single set containing all the points in P ).

4.3.2 Unique solvability of the problem 4.1

In the rest of this Section, it is assumed that SP1 = Cl and that c denotes
the centroid of P1. The role of rotational symmetry in the unique solvability
of Problem 4.1 is clarified by the following result.

Proposition 4.1 (Unique Solvability). Assume that Problem 4.1 admits a
solution. The solution is unique if and only if P1 is not rotational symmetric.
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Proof. Assume that Problem 4.1 admits at least two solutions. Then there
exists i and two poses x̂′i and x̂′′i 6= x̂′i such that P1	x̂′i = Pi and P1	x̂′′i = Pi.
Then P1 = x̂′′i ⊕ (P1 	 x̂′i) = [x′′i ⊕ (0 	 x̂′i)] ⊕ P1, i.e., there exists a non-
zero roto-translation which transforms P1 in itself; this means that P1 is
rotational symmetric. On the other hand, assume that P1 is rotational
symmetric. A solution {x1, . . . , xn} exists, i.e., P1 	 xi = Pi, i = 1, . . . , n,
and there exists a non-zero roto-translation x which transforms P1 in itself,
i.e., P1 = P1	x. This means that {x	x1, . . . , x	xn} is also a solution.

Remark Proposition 4.1 implies that the number of solutions to Prob-
lem 4.1 is invariant with respect to changes in the orientations of the robots
in the formation (in spite of the fact that the observations change).

Unique solvability may be tested with the aid of the following result.

Proposition 4.2 (Unique Solvability Test). Denote with P1(φ) the set of
points obtained by rotating the observation P1 by an angle φ around its
centroid c, i.e.:

P1(φ) := {R(φ)(p− c) + c | p ∈ P1}. (4.5)

If c 6∈ P , Problem 4.1 has a unique solution if and only if

P1 6= P1(2π/m), ∀m prime factor of n. (4.6)

If c ∈ P , in (4.6) n must be replaced by n− 1.

Proof. Since P1 has n points, its proper-symmetry group SP1 can only be
one of the cyclic groups C1, . . . , Cn. In addition, since Cl, with 2 ≤ l ≤ n,
also belongs to any Cm with m prime factor of l, and l can only be a divisor
of n (if c 6∈ P1) or n − 1 (if c ∈ P1), it is sufficient to check the rotations
that are generators of the cyclic groups Cm, with m prime factor of n or
n− 1.

Assume c 6∈ P1. Since (4.6) requires n checks for any value of m, the
complexity of the test is O(n ·π(n)), where the prime-counting function π(n)
can be approximated by n/ log(n). If c ∈ P1, the complexity is O((n − 1) ·
π(n− 1)).
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4.3.3 Structure and number of multiple solutions

We now turn our attention to the case when there are multiple solutions
to Problem 4.1.

Proposition 4.3 (Structure of the Solutions). Let i = 2, . . . , n. If x̂i is a
feasible pose for Ri, in the sense that x̂i = (p̂i, θ̂i) satisfies (4.1), then all
the non-zero poses obtained as qk⊕ x̂i, with k = 0, 1, . . . , l−1 and qk defined
by (4.4), are feasible for Ri, and vice versa.

Proof. Being P1 	 x̂i = Pi and P1 = P1 	 qk, we have (qk ⊕ P1) 	 x̂i = Pi.
Developing the pose compositions for an element p of P1 we have that

(qk ⊕ p)	 x̂i = (ck +R(φk)p)	 x̂i
= R(−θ̂i)(ck +R(φk)p− p̂i)
= R(−θ̂i)R(φk)(p−R(−φk)(p̂i − ck))
= p	 (x̂i 	 qk) (4.7)

Hence (qk ⊕ P1)	 x̂i = P1 	 (x̂i 	 qk) and x̂i 	 qk is a feasible solution, for
any k = 0, 1, . . . , l − 1, which is equivalent to say that qk ⊕ x̂i is a feasible
solution, for any k = 0, 1, . . . , l − 1. Similarly, it is simple to show that for
any other feasible pose x′ ⊕ x̂i, x′ must belong to {qk}k=0,1,...,l−1.

Proposition 4.3 essentially states that if the observations of Problem 4.1
are generated by a formation {x1, . . . , xn}, then Ri can be assigned to posi-
tion pi as well as to all the other positions of the subset of EP1 which contains
pi. This leads to the following results.

Proposition 4.4 (Number of Solutions). The number of solutions to Prob-
lem 4.1 is

(l − 1)! · (l!)n
l
−1 if c 6∈ P1 (4.8)

(l!)
n−1

l if c ∈ P1 (4.9)

Proof. First remember that in all solutions R1 is placed in (0 0)T . If c 6∈ P1

then EP1 has n/l sets each composed by l positions. Each set of EP1 has l
robots associated, and, in each solution, each of these robots (except for R1)
can be placed in any position of the set, provided that this position is not
occupied by another robot. Hence, (l−1)! possible permutations correspond
to the set of EP1 associated to R1, and l! possible permutations correspond
to the remaining n/l−1 sets of EP1 . Multiplying these possibilities we obtain
(4.8). If c ∈ P1, noticing that robot Ri associated to the set {c} of EP1 has
l possible poses if i 6= 1, a similar analysis leads to (4.9).
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Corollary 4.1. For a given n, the maximum number of possible solutions
to Problem 4.1 is (n − 1)! . This number is actually reached when P1 is a
regular n-gon if c 6∈ P1, and when P1\c is a regular (n− 1)-gon if c ∈ P1.

Proof. If c ∈ P1 and l = n− 1 then (l!)
n−1

l = (n− 1)! and P1\c is a regular
(n− 1)-gon. If l < n− 1, then l is a factor of n− 1 and m = (n− 1)/l ∈ N.
In the fraction

r =
(l!)m

(n− 1)!
=

(l!)m−1

(n− 1)(n− 2) . . . (l + 1)

both numerator and denominator are products of l(m − 1) factors and the
smallest factor of the denominator is larger than the largest factor of the
numerator. Then r < 1 holds, and we can write (l!)

n−1
l < (n − 1)!. For

c 6∈ P1, a similar demonstration leads to (l − 1!)(l!)
n
l
−1 < (n − 1)! if l < n,

while if l = n the number of solutions is (n− 1)! and P1 is a regular n-gon.

Summarizing, each point of the observation P1 can be assigned to one
and only one subset of partition EP1 . Assuming, for a moment, that c 6∈ P1,
in view of Lemma 4.1, each subset of EP1 has l positions and l robots assigned
to it. Conversely, each robot can assume l different poses which correspond
to all the l positions in its subset, with l different orientations. Notice that
the l orientations differ by a multiple of 2π/l. The robots associated to the
set to which is associated also the fixed robot R1, have only l − 1 possible
poses instead of l. Note that all the robots associated to the same set have
the observations equal up to a (pure) rotation. If c ∈ P1 then the robot Ri
associated to {c}, provided that i 6= 1, has l different possible poses with
the same position.

All the solutions can be generated by independently permuting the pos-
sible poses of each robot, with the constraint that two robots can not occupy
the same position. This means that the set of solutions of Problem 4.1 is
implicitly represented by the knowledge of: (1) the set P1, (2) the parti-
tion EP1 of P1, (3) the association between each robot Ri, i = 1, . . . , n, and
the corresponding set of EP1 . Using this representation of the solutions of
Problem 4.1, is useful to improve the complexity of MultiReg, an algorithm
described in [26], which explicitly computes all the solutions of Problem 4.1.
In fact, the partition and the association can be computed in a polynomial
time using P1 and the other observations.
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Figure 4.6: The symmetry metric function γ for the three set of points of
Fig. 4.4, in the same order from left to right.

4.4 An anti-symmetry control law

Assume that a team of robots must perform a collaborative task which
requires mutual localization, and that only anonymous position measures
are available. If the robots are initially arranged in a formation resulting in
observations that are rotational symmetric, mutual localization will be com-
putationally heavier and will not provide a single solution. In the stochastic
case, as mentioned in the introduction, problems will arise whenever the
observations are close to being rotational symmetric. For this reason, we
introduce in this Section a continuous function that measures the distance
of sets of points from rotational symmetry. This will be used to design a
control law aimed at keeping the solution to Problem 4.1 unique. We men-
tion that the symmetry distance function proposed in [67] is not practical
for our purposes because its computation cannot be executed in real time.

Given the set of points P1 and an angle φ ∈ [0, 2π), define the symmetry
metric function

γP (φ) := e(P1, P1(φ)).

where P1(φ) is defined in (4.5) and

e(P ′, P ′′) :=
∑
p′∈P ′

min
p′′∈P ′′

‖p′ − p′′‖2.

is the closest point metric between P ′ and P ′′.

Proposition 4.5 (Properties of γP ). The following statements are true:

1. γP1(0) = 0.
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2. γP1 is zero only at {2kπ/l, k = 0, . . . , l−1}, where l is the integer such
that SP = Cl.

3. P1 is rotational symmetric if and only if γP1 is zero for some φ other
than 0.

4. there exist φ1, φ2, with 0 < φ1 < φ2 < 2π, such that γP1 is strictly
increasing in [0, φ1) and strictly decreasing in (φ1, 2π).

Proof. 1) is true by definition. Moreover, γ(φ) = 0 if and only if for any
p′ ∈ P1 exists p′′ ∈ P1(φ) s.t. p′ = p′′. Hence, P1 = P1(φ), i.e., the rotation
R(φ) belongs to Cl. This implies 2). In addition, 2) implies 3). Finally,
consider the function γ̂P (φ) =

∑
p∈P1
‖(p− c)−R(φ)(p− c)‖2, which equal

to
∑

p∈P1
(2(p − c) sin(φ/2))2, that is monotonically increasing in [0, π] and

monotonically decreasing in [π, 2π]. For each p ∈ P1 there is a neighborhood
of φ = 0 in which minp′∈P1(φ) ‖p−p′‖2 = ‖(p−c)−R(φ)(p−c)‖2, i.e., in which
γP (φ) = γ̂P (φ). We let Φ ⊂ [0, 2π) denote the set in which γP (φ) = γ̂P (φ).
Then, 4) is proven taking φ1 = maxΦ∩[0,π] φ and φ2 = minΦ∩[π,2π] φ.

As stated in the proof we define φ1 = maxΦ∩[0,π] φ and φ2 = minΦ∩[π,2π] φ.
According to Prop. 4.5, the minimum value of function γP1 in the interval
[φ1, φ2] (also called internal minimum value in the following) is a continu-
ous measure of the distance of P1 from being rotational symmetric. If the
minimum is actually zero, P1 is actually symmetric. Therefore, a control
action aimed at keeping Problem 4.1 uniquely solvable can be based on the
strategy of increasing such minimum value.

In particular, assume for simplicity that the position of each robot obeys
an omnidirectional kinematic model:

ṗi = ui, i = 1, . . . , n,

where ui is the two-dimensional vector of velocity inputs for Ri. Consider
the following anti-symmetry control law

ui = α
p̄i − pi
‖p̄i − pi‖

i = 1, . . . , n, (4.10)

where α is a positive gain and

p̄i := argmin
p∈P1(φ̄)

‖pi − p‖

φ̄ := argmin
φ∈[φ1,φ2]

γP1(φ).
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The above control law has a simple interpretation. Once the rotation angle
φ̄ that minimizes γP1 in [φ1, φ2] has been identified (e.g., numerically), P1(φ̄)
is built by rotating P1 by φ̄. The closest point p̄i ∈ P1(φ̄) is found for any
pi ∈ P1, and the velocity input is chosen so as push Ri away from p̄i along
the segment pip̄i. This will clearly lead to an increase of γP1(φ̄).

Notice that (4.10) is undefined if P1 is rotational symmetric. In this
case a simple randomized control for the small time sufficient to break the
symmetry is used.

4.5 Simulations

We have validated the results of Sections 4.3 and 4.4 through extensive
simulations of the anti-symmetry control law.

The results of the first simulation are shown in Fig. 4.7, above. The
9-robot system starts in a lattice formation whose proper symmetry group
is C4, and moves under the action of the anti-symmetry control. Symmetry
is readily broken, as shown by change in symmetry metric function γP1 ,
which has 3 internal zeros at start. As the simulation proceeds, the internal
minimum values of γP1 increase.

Figure 4.7, above, also shows the consequence of measurement noise on
the accuracy of the estimated solution in the neighborhood of the initial
rotational symmetric formation. To compute the solutions of Problem 4.1,
we have used MultiReg, a probabilistic robust estimation algorithm that
performs a multiple registration among a set of noisy observations (see Sec-
tion 4.6). At each step, we have obtained multiple sets of noisy observations
by adding a gaussian noise to the observations of the current arrangement.
The figure shows all the possible poses of the circled robot as estimated by
MultiReg on the basis of these data.

It can be observed that at the start, when the formation is rotational
symmetric, the estimated solutions are evenly distributed in 4 clusters of
poses. The clusters are centered on all the feasible positions of a single
subset of the partition EP1 , as predicted by Proposition 4.3. The number
of solutions (576) found by MultiReg matches with the one theoretically
derived in Proposition 4.4. When the symmetry is completely broken, as for
t = 4.0 s , the estimates have a gaussian distribution centered on the real
pose and a covariance comparable to that of the additive noise.

In the intermediate frames, in which the formation is close to being
rotational symmetric, the solutions of MultiReg are distributed in more than
one cluster, but not evenly. The largest cluster is centered on the real pose of
the estimated robot. The other clusters, with less solutions, become feasible
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Figure 4.7: Above: the use of the anti-symmetry control law to break up a
9-robot lattice formation whose proper symmetry group is C4; 4 snapshots
of the formation (top), the estimated positions for the circled robot (center),
the symmetry metric function γP1 (bottom). Below: the same results with
a random control law.
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Figure 4.8: As in Fig. 4.7 for a formation with proper symmetry group C2.
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Figure 4.9: As in Fig. 4.7 for a formation with proper symmetry group C4.
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Figure 4.10: As in Fig. 4.7 for a formation with proper symmetry group C6.
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configurations only when the additive noise on the observations restores the
rotational symmetry.

For comparison, we have also simulated the same 9-robot system under
the action of a random control law (Figure 4.7, below). In fact, since the
subset of symmetric configurations has zero measure in the configuration
space, a random control law can also be expected to break the symmetry.
However, the results show that the anti-symmetry control is much more
effective in doing this than the random control. In fact, the increase of
the internal minima of γP1 with the random control is slower and non-
monotonous. Correspondingly, the multiple clusters of the estimation do
not disappear.

See also http://www.dis.uniroma1.it/labrob/research/mutLoc.html for other
simulations.

4.6 Multiple registration with MultiReg

In this Section we present an algorithm called MultiReg which solve the
Problem 4.2.

A multi-observation is the main data structure used by MultiReg, it
is denoted by O and is an extension of the observation concept defined in
Section 4.2. It consists in a set of distinct points F ∈ R2, one of which is
always the origin, and a functional relation3 A ⊂ F × {1, . . . , n} in which
at least the origin is associated to an index. The relation A represents a
partial labeling of the set of points. An observation is a special case of a
multi-observation in which A = {((0 0)T , i)}, where i is the index of the
measuring robot. The points of F are called features.

In particular, given f ∈ F , we denote with A(f) := {i ∈ {1, . . . , n} :
(f, i) ∈ A} the robot index (if any) associated to the feature f ; given i ∈
{1, . . . , n}, we denote with A(i) := {f ∈ F : (f, i) ∈ A} the feature (if
any) associated to the i-th robot (see Fig. 5.3a). Also, denote by A(F ) :=
∪f∈FA(f) the set of robot indexes appearing in O and by A({1, . . . , n}) :=
∪i∈{1,...,n}A(i) the set of features of O that are associated to some robot. A
feature f is called anonymous when A(f) = ∅, i.e., f 6∈ A({1, . . . , n}). Two
multi-observations O1 = (F1, A1) and O2 = (F2, A2) expressed in the same
robot frame are said to be irreconcilable if:

a) two different features are associated to the same robot, i.e., ∃f1 ∈
A1({1, . . . , n}),∃f2 ∈ A2({1, . . . , n}), with f1 6= f2, such that A1(f1) =
A2(f2) (see Fig. 5.3b), or if

3This means that |A(f)| ≤ 1, where | · | denotes the cardinality of a set.
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b) two different robots are associated to the same feature, i.e., ∃f ∈
A1({1, . . . , n})∩A2({1, . . . , n}) such thatA1(f) 6= A2(f) (see Fig. 5.3c).

4.6.1 Binary registration

MultiReg uses binary registration as the basic tool. Given two observations
O1 = (F1, A1) and O2 = (F2, A2) such that A1(F1) ∩ A2(F2) = ∅ (always
satisfied in MultiReg, see Sect. 4.6.2), consider a candidate change of coor-
dinates T between the two associated frames. Letting T (F ) = {q ∈ R2|∃f ∈
F : T (f) = q}, a binary relation B ⊂ F1 × F2 is associated to T as follows:
(f1, f2) ∈ B ⇔ ‖f1 − T (f2)‖ ≤ δ, where δ is a given fitting threshold. The
elements of B(F1) and B(F2) are the inliers of F2 and F1, respectively. The
cardinality of B, denoted by |B|, is the number of inliers.

Given δ > 0 and µ > 0, performing a binary registration of O1, O2

means finding a change of coordinates T such that the associated B is
left- and right-unique, and satisfies: i) |B| ≥ µ and ii) |A(f1) ∪ A2(f2)| ∈
{0, 1} ∀(f1, f2) ∈ B. The first condition is a constraint on the minimum
number of inliers (note that |B| = |B(F1)| = |B(F2)|). The second requires
that, for any pair of features (f1, f2) that are related by B, either f1 or
f2 (or both) must be anonymous. In fact, being A1(F1) ∩ A2(F2) = ∅, a
‘double’ assignment would certainly represent a conflict.

Once T has been determined, a new observation O12 = (F12, A12) is
generated, where F12 = F1 ∪ T (F2) and A12 ⊂ F12 × {1, . . . , n} is such that
for any f ∈ F12 it is

A12(f) =


A1(f) if f ∈ A1({1, . . . , n})
A2(f∗) if f ∈ T (A2({1, . . . , n}))
A2(B(f)) if f ∈ B(F2)\A1({1, . . . , n})
A1(B(f∗)) if f ∈ T (B(F1))\T (A2({1, . . . , n}))
∅ otherwise

where f∗ := T−1(f) (see Fig. 4.11). For our purposes, the output of the
binary registration (called solution in the following) is the triple r(O1, O2) =
(T,O12, |B|). Clearly, for a given pair of observations there may exist mul-
tiple changes of coordinates that satisfy the above conditions, and therefore
multiple solutions. We call two solutions irreconcilable if their corresponding
observations are irreconcilable. In the following, we assume that the binary
registration algorithm returns a finite set of irreconcilable solutions.

The combinatorial essence of the problem suggests the use of probabilis-
tic techniques, while the presence of outliers (i.e., features observed by only
one robot) calls for a robust estimation paradigm. We chose RANSAC [68]
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F1 F2

A1(N ) A2(N )

A1(F1) A2(F2)

N

B

T

A1 A2

T (F2)
B(F2) B(F1)

T (B(F1)) T (A2(N ))

Figure 4.11: Sets of indexes/features involved in a binary registration with
the associated relations.

Algorithm 8: RANSAC-based binary registration algorithm
input : O1 = (F1, A1), O2 = (F2, A2) (2 observations)
parameters: I (max. number of iterations), δ (fitting threshold), µ

(min. number of inliers)
variables : T (change of coordinates), O12 (observation), B

(relation of inliers), D (equidistant pairs of features),
(fa1 , f

b
1 , f

a
2 , f

b
2) (pairs of features)

output : r(O1, O2) = {. . . , (O12j , Tj , vj), . . .} (set of solutions)
r(O1, O2) = ∅;1

D = {(q, r, s, t) ∈ F1 × F1 × F2 × F2 : ‖q − s‖ − ‖r − t‖ ≤ 2δ};2

while h ≤ I and D 6= ∅ do3

extract randomly and without repetitions (fa1 , f
b
1 , f

a
2 , f

b
2) from D;4

compute the change of coordinates T that aligns the segment5

fa2 f
b
2 with the segment fa1 f

b
1 and overlaps their middle points;

compute relation B from T and δ;6

if |B| ≥ µ then7

compute observation O12 from B and T ;8

add (T,O12, |B|) to r(O1, O2);9

return r(O1, O2)10

for binary registration because it has both this properties. Our implemen-
tation follows from the algorithm presented in [69] for a binary lidar scan
registration and can be found in [70].
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Algorithm 9: MultiReg algorithm for the i-th robot
input : Ω = {. . . , Oj , . . .}, with Oj = (Fj , Aj) (|Ci|+ 1 raw

observations)
variables: it̄jl = (. . . , it̄jhl, . . .) (partial solution at the l-th iteration),

Õl (partial registered observation at the l-th iteration),
Ul ⊆ {1, . . . , n}Ω (indexes of the unregistered observations at
the l-th iteration)

output : X(Ω) = {. . . , it̄js, . . .} (set of solutions, in shared memory)
Õ1 = Oi, U1 = {1, . . . , n}i, X(Ω) = ∅;1

for l ∈ {1, . . . , |Ci|} do2

Γ = ∪O∈ΩUl
r(Õl, O);3

Γ∗ = {γ = (Tγ , Oγ , |Bγ |) ∈ Γ | |Bγ | = max|B| Γ} ⊆ Γ (this is the4

subset of Γ of elements that maximize the number of inliers);
Compute a maximal subset of irreconcilable solutions Γ̃ ⊆ Γ∗;5

Perform a least square estimation for every γ ∈ Γ̃, substituting Tγ6

with that minimizing the mean square error among the inliers and
recomputing Oγ accordingly;
for γ ∈ Γ̃ do7

Fork the algorithm with Õl+1 = Oγ ,8
it̄jh = (it̄2(l−1), . . . ,

it̄|Ci|(l−1)), it̄hl = tγ , Ul+1 = Ul\{s} (where
s is the index of the raw observation added in γ);

put the solution in the set of solutions X(Ω);9

return X(Ω)10

4.6.2 Multiple registration

At each step k, Ri executes MultiReg on the set Ω made by its own raw
observation Oi = {Fi, Ai} and the raw observations Oj = {Fj , Aj}, for
j ∈ Ci[k]. Let {1, . . . , n}Ω be the set of the indexes of the robots whose
observations are in Ω. Since MultiReg is a memoryless algorithm, we drop
k in the following. As stated before, it is |Aj(Fj)| = 1, ∀j ∈ {1, . . . , n}Ω,
and ∩j∈{1,...,n}ΩAj(Fj) = ∅. We set Ωj = Ω\Oj and, for any ¯{1, . . . , n} ⊆
{1, . . . , n}Ω, we set Ω ¯{1,...,n} = Ω\{Oj : j ∈ ¯{1, . . . , n}}. The output is
the set X(Ω) = {it̄j , }j∈{1,...,n}Ω where it̄j = {. . . , it̄jh, . . .}j∈{1,...,n}Ω , whose
generic element it̄jh is a estimate of itj .

A pseudocode description of MultiReg is given in Table 9. MultiReg
executes |Ci| iterations. Step 9 initializes the first iteration. At step 9, during
the l-th iteration, |Ci|−l binary registrations r(Õl, O) are performed between
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a)

iteration 1

iteration 2

b)

binary
registration

binary
registration

binary
registration

robot detection

selection of a maximal subset
of irreconcilable solutions

c)

d)

e1) e2)

fork

Figure 4.12: An example of MultiReg execution in a simple ambiguous sit-
uation: a) actual configuration b) raw observations of the robots c) results
of the binary registrations between Õ1 and O2, O3 d) selection of a maximal
subset of irreconcilable solutions of Γ∗ e1) result of the binary registration for
the first branch e2) result of the binary registration for the second branch.
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the observation so far obtained, Õl, and the raw observations O ∈ ΩUl
. Their

solutions γ are stored in Γ. At step 9, the solutions with the maximum
number of inliers are stored in Γ∗, and at step 9 Γ̃ is computed as a maximal
subset of irreconcilable solutions of Γ∗. At step 9, the estimated change of
coordinates Tγ in γ is tuned, for each γ ∈ Γ̃, by minimizing the mean square
error of the inliers pairs using the algorithm in [71]. At step 9, MultiReg forks
in |Γ̃| branches, one for each γ ∈ Γ̃. If γ = {Tγ , Oγ , |Bγ |} ∈ Γ̃ is a solution
given by the registration of Õl with Os, the new iteration of the branch
starting from γ is initialized with Õl+1 = Oγ as partial registered observation
and Ul+1 = Ul\{s} as set of indexes of unregistered observations. A branch
is terminated with no solution if the set Γ becomes empty. Otherwise, at the
|Ci|-th iteration the branch contains a solution that is irreconcilable with
the solutions of all the other branches. The algorithm returns as output the
set of all solutions found in all branches.

An example of MultiReg execution is shown in Fig. 4.12 for a simple
ambiguous configuration (Fig. 4.12a). The objective of the algorithm is
the multiple registration of the raw observations O1, O2, O3 (Fig. 4.12b).
The MultiReg instance on R1 performs |C1| = 2 iterations. At first iter-
ation, the raw observation O1 is chosen as partial registered observation
Õ1, and the indexes of the other observations are put in the set of the un-
registered observations U1. Then, two binary registrations are performed
between Õ1 and O2, O3 respectively (Fig. 4.12c). The results are put in
Γ = {γ1, γ2, γ3, γ4}, and Γ∗ = Γ is selected as the subset of elements of Γ that
maximize the number of inliers. Then, a maximal subset {γ1, γ3} = Γ̃ ⊆ Γ∗

of irreconcilable solutions in Γ∗ is computed (Fig. 4.12d). In the second
iteration, for each γi ∈ Γ̃ (i = 1, 3) the algorithm forks, initializing a new
branch with Õ2 = Oγi , and deleting the index of the registered robot from
U1: in particular in the first branch we set U2 = {3} and in the second
U2 = {2}. The first branch executes the binary registration between Õ2 and
O3 (Fig. 4.12e1), finding the solution γ5, and the second executes a binary
registration between Õ2 and O2 (Fig. 4.12e2), finding the solution γ6.

4.7 Open issues

In this chapter we have theoretically formulated and investigated a novel
problem called Mutual Localization with Anonymous Position Measures.
This is an extension of Mutual Localization with Position Measures, with
the additional assumption that the identities of the measured robots are
not known. Through the introduction of the concept of rotational sym-
metry in R2, we have demonstrated a necessary and sufficient condition
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for the uniqueness of the solution, providing also a unique solvability test.
Furthermore, we have studied the structure of multiple solutions, classify-
ing the solutions in a number of equivalence classes which is linear with n.
The identification of the relationship between the number of robots and the
number of possible solutions allows to upper bound the maximum number
of possible solutions to Problem 4.1 to (n− 1)!.

Through the introduction of a continuous function that measures the dis-
tance of sets of points from rotational symmetry, we have designed a control
law aimed at keeping the solution to Problem 4.1 unique. Its effectiveness
is demonstrated through extensive simulations, comparing its performances
with that a random control. The application of MultiReg corroborates the
theoretical results about number and structure of the solutions and suggests
some interesting probabilistic considerations.

Future works are the extension of a similar result to the whole problem
addressed in [26], i.e., a non complete measuring graph with the presence
of false positives and negatives, and a the design of a decentralized anti-
symmetry control.
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Chapter 5

A Method for the Absolute
Mutual Localization Problem
with Anonymous Relative
Position Measures

This chapter, which directly follows Chapter 4 describes a method, partially devel-
oped in [26], which addresses the absolute mutual localization problem for a multi-
robot system, under the assumption that each robot is equipped with a sensor that
provides a measure of the relative position of nearby robots without their identity.
Anonymity generates a combinatorial ambiguity in the inversion of the measure
equations, leading to a multiplicity of admissible relative pose hypotheses. To solve
the problem, we propose a two-stage localization system based on MultiReg, an the
algorithm described in Section 4.6, that computes on-line all the possible relative
pose hypotheses, whose output is processed by a data associator and a multiple
EKF to isolate and refine the best estimates. The performance of the mutual lo-
calization system is analyzed through experiments, proving the effectiveness of the
method and, in particular, its robustness with respect to false positives (objects that
look like robots) and false negatives (robots that are not detected) of the measure
process.

5.1 Introduction

This chapter deals with mutual localization (ML) in multi-robot systems.
ML problems are of great importance in performing decentralized tasks that
require data fusion, such as cooperative map-building and formation control.
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Clearly, the accuracy of the localization can significantly affect the quality
of the task execution.

In a multi-robot system, we refer to relative mutual localization (RML)
as the problem of estimating the relative poses (position and orientation)
among the moving frames attached to the robots. Assuming that each robot
also has its own fixed frame, one can in addition define absolute mutual
localization (AML) as the problem of estimating the relative poses among
the various fixed frames. If each robot is self-localized with respect to its
own fixed frame, the solution of RML can be obtained in principle from the
solution of AML (and vice versa) by simple changes of coordinates.

To the best of our knowledge, no researchers have so far investigated the
AML problem directly. Previous works have addressed either the RML prob-
lem or the problem of cooperative localization (CL) of a multi-robot system
in a common1 fixed frame. Roughly speaking, two different classes of ap-
proaches emerge: filter-based and geometry-based. The former use Extended
Kalman (EK) or particle filters to estimate relative poses from measures,
while the latter perform an instantaneous inversion of the mapping between
relative poses and measures.

In most of the early filter-based approaches, such as [72, 73, 74, 75], the
RML problem is solved by filtering out the noise from the output of a vision-
based sensor that directly measures the relative poses between robots; at the
same time, the filter provides a solution to the CL problem. In other works,
the filter was also used to reconstruct the non-measured part of the change
of coordinates; examples include [76], where relative range-only measures
obtained by a combined RF/ultrasonic sensor are used; [77], where an
extension of [72] is presented for different sensing equipments; and [78],
where a detailed analysis is performed for range-only measurement.

As for geometry-based approaches, the problem of estimating the relative
positions of robots in a formation by range-only measures or bearing-only
measures has been investigated in [79, 80]. In the case of position (bearing
plus range) relative measures, it is possible to obtain the relative pose of a
robot respect to another by simply processing two bearing and one range
measure [81].

A possible limitation of all the above methods is the assumption that the
relative measures also provide the identity of the robots. In fact, interesting
situations that may arise in practice are: i) the identities of the detected
robots is not known (anonymous measures), ii) false positives (false detected
robots) and iii) false negatives (undetected robots) occur in the relative

1The idea of a common fixed frame presumes a certain degree of centralization, because
it is necessary that robots share some information at the beginning of the task.
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position measurement process. The first and the second situation fit, for
example, robot measurement systems based on a feature extraction module
that looks for characteristics that are common to all robots and may also
be found in other objects: for example, this happens when the robots and
some obstacle in the environment have the same size, color, or shape, either
by chance or by hostile camouflage. The third situation accounts for the
fact that robots within the sensing range may not be detected, e.g., due to
occlusions.

A pioneering work that addresses the anonymous RML problem is [82],
in which an algorithm based on geometrical arguments is proposed to obtain
relative pose estimates from anonymous bearing measurements. However,
the method does not take into account false positives or false negatives,
preventing its application to the aforementioned situations.

In this chapter, we address RML and AML problems with anonymous
measures affected by false positives and negatives, as formalized in Sect. 5.2.
The proposed two-stage localization system is described in Sect. 5.3. The
first stage is a multiple registration algorithm that generates on-line all the
geometrically admissible RML solutions (Sect. ??). With the aid of self-
localization data, these are used to solve the AML problem via data as-
sociation and multiple EK filtering (Sect. 5.4). Experimental results are
presented in Sect. 5.5.

5.2 Problem formulation

We take the following assumptions (refer to Figs. 5.1 and 5.2).

1. The multi-robot system includes n robots R1, . . . ,Rn, where n ≥ 2 is
unknown. The robots move in R2. Let N = {1, . . . , n} be the robot
index set.

2. Each Ri (i ∈ N ) has two associated frames: a fixed frame F?i and
a moving frame Fi (see Fig. 5.1). The latter is rigidly attached to
a representative point of the robot. Given i, j ∈ N , denote by itj
and it

?
j the 3-vectors describing the position and orientation (pose)

respectively of Fj with respect to Fi, and of F?j with respect to F?i .
Given itj , it is immediate to build the change of coordinates iTj from
Fj to Fi. The configuration of robot Ri is the pose of Fi with respect
to F?i and is indicated by x?i = (p?i

T θ?i )
T (see Fig. 5.1).

3. Each Ri comes with an independent self-localization module that pro-
vides an estimate x̂?i of x?i , i.e., the pose of the robot Ri in the frame
F?i .
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Figure 5.1: Geometric setting for mutual localization problems. Triangles
are robots, solid arrows are position vectors and dashed arrows are pose
vectors.

4. Each Ri is equipped with a robot detector, a sensor device that mea-
sures the relative position ipj of other robots, provided that they fall
in a perception set Dp that is rigidly attached to Fi (see Fig. 5.2).
Note that no assumption is taken on the shape of Dp, in particular
the robot detector does not need to be omnidirectional.

5. Each Ri has a communication module that can send/receive data
to/from any other robot Rj contained in a communication set Dc (see
Fig. 5.2). We assume that Dp ⊆ Dc, so that if Ri can detect Rj it can
also communicate with it. Each message sent by Ri contains: (1) the
robot index i (2) the estimate x̂?i as provided by the self-localization
module (3) the measures coming from the robot detector.

The relative position measures provided by the robot detector are anony-
mous, in the sense that they do not include the index j of the detected robot.
This is true, for example, when the detection process relies on features that
are common to all the robots. A consequence of anonymity is the existence
of ambiguous situations (such as that in Fig. 4.12a), where the same set of
measures is obtained for different configurations of the multi-robot system.
As shown in Fig. 5.2, the robot detector is also prone to false positives (it
can be deceived by objects that look like robots) and false negatives (robots
belonging to Dp which are not detected, e.g., due to line-of-sight occlusions).
Hence, the measures coming from the robot detector will be generically re-
ferred to as features – they might or not represent actual robots. False
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false
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false
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Figure 5.2: Robot detection and communication. Triangles are robots, black
polygons are occluding objects, and the grey region is the perception set.
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Figure 5.3: The structure of an observation (triangles are robots, points
are features): a) An example observation Oa by R1; b) Ob is irreconcil-
able with Oa because robot R2 is associated to a different feature; c) Oc is
irreconcilable with Oa because feature f3 is associated to a different robot.

negatives (robot belonging to Dc that do not receive messages) may also
affect the communication, whereas false positives may be easily avoided by
appropriate message coding.

Our objective is to solve the absolute mutual localization problem for the
generic i-th robot, i.e., to estimate it?j , for j 6= i. As a byproduct, this will
also solve the relative mutual localization problem, i.e, provide an estimate
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Figure 5.4: A scheme of the mutual localization system that runs on Ri.

of itj , for j 6= i. Note that, if the anonymity assumption is removed, the
geometric computation of it?j from x?i , x

?
j (estimated by the self-localization

modules) and ipj , jpi (measured by the robot detectors) becomes a simple
exercise.

Each robot detector provides an observation in which all features are
anonymous, except for the feature at the origin which is associated to the
index of the measuring robot; this is called a raw observation.

5.3 The mutual localization system

The mutual localization system running on Ri is composed by a cascade of
two subsystems, as shown in Fig. 5.4. The first subsystem is a memoryless
registration algorithm called MultiReg. Denote by Ci[k] ⊂ N the set of
(indexes of) robots from whichRi receives data in the time interval [tk−1, tk).
At each step k, the inputs of MultiReg are a set of observations: one is
provided directly by the robot detector, while the others come from the
robots in Ci[k] through the communication module. The output of MultiReg
is a set it̄j of hypotheses on the relative poses itj , for each j ∈ Ci[k].

The second subsystem, called DAEKF, is a variable-size array of com-
ponents, DAEKFj , j ∈ ∪kh=1Ci[h], each consisting of a data associator and
a multi-EKF. The input of DAEKFj , at step k, is the set it̄j of current
hypotheses on itj . At the same time, each DAEKFj also receives the esti-
mates x̂?i and x̂?j , j ∈ Ci[k], respectively from the self-localization and the
communication module. The output of DAEKFj is a set it̂

?
j of estimates

of it?j , for each j ∈ ∪kh=1Ci[h]. In the following, we detail the structure of
MultiReg and DAEKF.

At each step k, the generic robot Ri executes the MultiReg algorithm to
perform a memoryless multiple registration among the observations coming
from Ri and all the Rj ’s, j ∈ Ci[k]; in our context, this means computing
all the possible relative poses itj of the frames attached to the Rj ’s using
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purely geometric arguments.

5.4 Data association and EK filtering

At the k-th step, the DAEKF subsystem running on robot Ri is composed
by an array of | ∪kh=1 Ci[h]| components (see Fig. 5.4). Each component is
associated to a robot Rj ∈ ∪kh=1Ci[h] and provides estimates of it?j . At step
k its inputs are:

1. The estimates provided by the self-localization modules

x̂?j [k] = x?j [k] + w?j [k]
x̂?i [k] = x?i [k] + w?i [k] ,

where w?j [k] and w?i [k] are gaussian noises with zero mean and co-
variances Q̂?j [k] and Q̂?i [k]. Note that x̂?j [k] is available provided that
Rj ∈ Ci[k];

2. The set of hypotheses about the relative pose itj [k]

it̄j [k] = {. . . , it̄jh[k], . . .} ,

provided by MultiReg. Here, it̄jh[k] is a gaussian random variable with
unknown mean and covariance iQ̄jh[k].

Each DAEKFj (see Fig. 5.5) is composed by a data associator (DAj)
and a variable-size multi-EKF (EKFj = {. . . ,EKFjl, . . .}). The data as-
sociator is a ‘nearest neighbor-like’ memoryless algorithm [83] in charge of
dispatching each relative pose hypothesis it̄jh[k] produced by MultiReg to
the appropriate EKFjl of the array. This EKFjl, taking x̂?j [k], x̂?i [k] and
it̄jh[k] as inputs, produces an estimate it̂

?
jl[k] of it?j , together with its covari-

ance matrix.
At step k, DAj converts each it̄jh[k] to one hypothesis on jt

?
i , using x̂?j [k],

x̂?i [k] and geometric computation. Then, the covariance-weighted distance
of each hypothesis from the estimate of each EKFjl is computed. Each hy-
pothesis is used as input for the filter with the closest estimate, provided
that the distance is smaller than a maximum distance dmax. For each hy-
pothesis it̄jm[k] which is not associated to any EKFjl, a new filter is added
to EKFj , initialized with the triple {it̄jm[k], x̂?i [k], x̂?j [k]}.

At each step, a mark is associated to each EKFjl, given by the number
of hits (steps in which a hypothesis is associated to that filter) in the last
L[k] steps, where L[k] is the backward horizon. The EKFjl with the highest
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Figure 5.5: A scheme of the DAEKFj which estimates it
?
j .

mark provides the best current estimate of it?j . An EKFjl whose mark goes
below a certain threshold µmin is removed from the EKFj array. The model
equation of the generic EKFjl, used to estimate the constant parameter it?j ,
is it

?
j [k] = it

?
j [k − 1]. The measurement equation, the Jacobian matrix and

the expression of the Kalman gain can be found in [70].

5.5 Experiments

The proposed ML method has been implemented and validated using the
MIP experimental software, described in [84] and available at http://www.

dis.uniroma1.it/labrob/software/MIP. In particular, we have simulated the
robots with Player/Stage in the testing phase, and used an actual team of
5 Khepera III robots in the experimental phase (see Fig. 5.6). Each robot
is equipped with a Hokuyo URG-04LX laser range finder, that has a 240◦

angular range and a linear range artificially limited to 2 m.
The robot detector is a simple feature extraction algorithm that inspects

the laser scan searching for the indentations made by the vertical cardboard
squares mounted atop each robot in the shadow zone of the range finder.
Since each square can give 1−12 cm wide indentations of the laser scan, de-
pending on the relative orientation between the measuring and the measured
robot, the detector cannot distinguish among robots and obstacles whose
size is in the same range. Moreover, the squares are identical, and therefore
the features are anonymous. Accurate measures of the it

?
j to be used as

ground truth are taken in advance by a human operator. Self-localization is
obtained by simple dead reckoning.

Fig. 5.7 refers to the early steps of a 5 min experiment involving five
robots (numbered 0–4) and four deceiving obstacles. The results shown are
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Figure 5.6: The 5 Khepera III used in our experiments. A cardboard square
is placed in the shadow zone of the URG-04LX to allow robot detection.

those produced by the mutual localization system running on robot R4 at
10Hz, which is the same frequency of the laser range finder. Note that the
initial configuration of the team is highly symmetrical, and therefore very
ambiguous for MultiReg; moreover, it contains several occlusions. At the
beginning the best available estimates for R1, R2, and R3 are wrong, due
to occlusions and symmetry; however, as the experiment proceeds, correct
estimates are quickly identified and prevail.

Fig. 5.8 summarizes the result of the experiment in terms of estimation
errors (cartesian and angular) and marks assigned by DAEKF1 to the avail-
able hypotheses on the relative pose of the R1 fixed frame with respect to
that of R4. The timescale is 150 sec. Note in particular how the best esti-
mate, easily identifiable by the three (darker) lines that achieve the smaller
errors and the higher mark, appears only 5 sec (approximately) after the
beginning of the experiment.

Figures 5.9 and 5.10 refer to another experiment, whose peculiarity is
that 2 robots act as deceiving movable obstacles, since they move but do
not broadcast their observations. As we expect, the estimation system works
well also in this case.
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Figure 5.7: Above: stroboscopic motion in the early steps of the experiment
(robots are numbered 0–4). Below: the best estimates for the same steps
(lighter impressions indicates older estimates) and the measured features
measured by the robot detectors (small dots).

Another experiment, in which two robots are used as deceiving mobile
obstacles (they do not communicate their measures), is shown in http://www.

dis.uniroma1.it/labrob/research/mutLoc.html.

5.5.1 MultiReg running time

The running time of MultiReg, which accounts for most of the cycle time
of our mutual localization system, depends on the number |Ω| of raw obser-
vations it receives in input, as well as on the ambiguity of the multi-robot
system configuration. Note that max |Ω| = n. In unambiguous situations,
|Ω|(|Ω| − 1)/2 binary registrations are needed to produce a solution; since
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Figure 5.8: Errors and mark for the best estimate on the pose of the fixed
frame of R1 with respect to that of R4. The light lines in the background
refer to all other hypotheses on the estimate. Each light line represents the
life of an estimate. Plotting is interrupted for estimates whose normalized
mark goes below 0.15.

each binary registration requires constant time in the worst case, the time
complexity of MultiReg in this case is o(n2). In ambiguous situations, as
many as (n− 1)! irreconcilable solutions may exist, leading to an o(n!) time
complexity.
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Figure 5.9: Above: stroboscopic motion of the early step of the second
experiment. Below: the best estimate for the same steps (lighter robots
indicates older estimates). Robots R2 and R3 acts as deceiving movable
obstacles.

Fig. 5.11 reports some statistics on the running time of MultiReg as a
function of |Ω| and of the number of solutions it finds. The first plot shows
that the upper bound increases exponentially, the lower bound is constant
and the mean value time has an approximately quadratic increasing rate.
These results are consistent with the above theoretical prediction. In the
second plot, the mean value increases linearly whereas upper bounds are
higher for small numbers of solutions. This is due to the fact that small
solution numbers were much more frequent (about 25000 samples against
a few dozens). All things considered, our experiments indicate that the
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Figure 5.10: Errors and marks of the estimates generated by the 2 multi-
EKFs in the second experiment. Time step is 100 ms.

proposed mutual localization system can easily run at 10 Hz for a team of
five robots.
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Figure 5.11: Max-min (horizontal ticks) and average (circles) values of the
running times (ms) of MultiReg with respect to the number of input ob-
servations and the number of solutions. Data based on 63898 executions of
MultiReg during 38 real robot experiments.

5.6 Open issues

In this chapter, we have presented a novel method for mutual localization
in multi-robot systems. In particular, our technique allows to estimate the
changes of coordinates among the various robot frames using relative po-
sition measures that are anonymous as well as affected by false positives
and negatives. The data available to each robot are processed by the Mul-
tiReg algorithm to obtain a set of hypotheses on the relative pose of the
other robots of the team. The anonymity hypothesis causes an ambiguity
in the inversion of the observations, that is solved using a multi-hypotheses
filter. Satisfactory performance has been obtained both in simulations and
in real robot experiments, showing that the proposed localization system is
applicable in practice.

One possible problem with the proposed approach is that the running
time of MultiReg may increase considerably if the number of its solutions
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grows. However, the case with factorial number of different solutions is ob-
tained only in particular configurations in which a subset of the observations
are roughly the same. We are currently developing a theoretical study of the
ambiguity introduced by the anonymity hypothesis, aimed at reducing the
number of MultiReg solutions by generating in linear time a single repre-
sentative for each class of equivalent solutions. Another possible technique
to reduce the complexity might be the use of some threshold on the number
of the registered observations. Another improvement would be obtained by
considering only solutions that are sufficiently close to the currently avail-
able estimates, so as to introduce a feedback mechanism from the DAEKF
subsystem to MultiReg. Moreover, the ‘nearest neighbor’ policy of the data
association can be avoided by resorting to a particle filter that samples also
on data association, such as that developed in [64]. Work in progress also
deals with the application of the developed system to decentralized tasks,
such as formation control and cooperative exploration.
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Chapter 6

Distributed Target
Localization and Encircling
with a Multi-robot System

This chapter presents an experimentally validated estimation/control system for
the detection and encircling of an object by means of a team of robots. In order
to accomplish their task, the robot must also equalize their radius of revolution,
inter-distances and speeds. All these goals are achieved in a distributed way, using
limited-range transceivers and relative-position sensors which are assumed noisy,
anisotropic, and anonymous. The latter characteristic, which is distinctive of this
setting, means that the sensors do not provide the identity of the measured object, as
in Chapters 4 and 5. An extensive experimentation supports the theoretical analysis.

6.1 Introduction

The detection and encircling of an object by means of a team of robots
is the main topic of this chapter. The great deal of applications related
to this subject explains its appealing to the literature during the recent
years. In fact, encircling may be used, among the others, to retrieve and
merge data about an object from different viewpoints (observing), protect a
member of the team from exterior agents (escorting), or prevent the motion
of an alien object (entrapment). In our setting, in order to accomplish their
task, the robot must also equalize their radius of revolution, inter-distances
and speeds. All these goals are supposed to be achieved in a distributed
way, using limited-range transceivers and relative-position sensors which are
assumed noisy, anisotropic, and anonymous. The latter characteristic, which
is distinctive of this setting, means that the sensors do not provide the
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identity of the measured object. We refer the reader to Chapters 4 and
5 for a thorough description of the anonymous-position sensor setting, to
which the commonly used estimation techniques do not apply. The main
advantages of this setting are: i) the applicability to adverse environmental
conditions (unstable light or darkness, rain, fog, etc.) which may hide the
distinguishing features used for identification, ii) the possibility of exploit
the complete resemblance of the members of the team to let the identity of
some of them to remain secret for security or disguising purposes, and iii)
the applicability in team missions requiring mimicry or stealth capabilities
of the members.

Several control techniques have been proposed in literature to achieve
the encircling or some related formation control objectives. The majority
assume the presence of an ideal measurement system. In case of unlimited
communication between holonomic agents, some of them are based on po-
tential fields. [85] analyze the performances of a swarm approaching a goal
and its cohesion in presence of attractive and repulsive profiles. [86] make
use of virtual points to deform the shape of the formation for some task
and take care of collision avoidance. In [60] a group of unicycles is steered
at constant linear speed around a common point. In [87] an extension with
communication limitations is considered. In both a Lyapunov control ap-
proach is used. The uniform spacing along the circle is achieved using the
so called (M,N) patterns, for which a controller based on phase potential
s is proposed. In this approach the controller is nested, i.e., whenever the
circle has to be divided in M sectors, the moments of order M−1 have to be
calculated. Another limitation is the constant linear speed. Strictly related
to this approach is the work presented in [88] in which a group of robot is
steered on a circle using a centralized vision system to obtain positions and
headings. [61] propose a centralized approach where a global vision system
provides the configuration of the system to a unique external controller, de-
rived from the null-space manipulator theory, that computes the trajectories
considering a set of required tasks. A good estimate of the pose of every
robot with respect to a fixed frame is required to compute the formation
Jacobian. In [89] a control for nonholonomic agents with directional sensors
is presented using a Lyapunov approach based on the cartesian displace-
ment between robots. The control law requires an a priori knowledge of
the number of agents, hence insertion and faults are not taken into account.
Some algorithms, as in [90], present control laws whose convergence is based
on the topology of the communication graph. [91] consider a fixed topol-
ogy algorithm based on the concept of α stability property. Some works,
as in [92], demonstrate that agents reach a common estimate (consensus) of
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global quantities under the assumption of strong connectivity of the com-
munication graph. Extensions thi this problem have been proposed in [93]
and [94]. All theses works ignore the actual presence of two graphs, the
communication and the perception one. Loosely related to this problem, is
the pursuit-evasion problem, addressed, among the others, in [95], where an
neural networks artificial intelligence approach to the pursuer-evader prob-
lem is used, and in [96], where a four-phase bio-inspired cooperative strategy
to confine an evader in a bounded region is demonstrated assuming unlim-
ited sensing capabilities and the instantaneous measurement of position and
velocity of the evader. In [97] a real experiment with an heterogeneous for-
mation is performed using both aerial and ground vehicles. Such algorithms
are based on a probabilistic grid map representation of the environment
that is built during the experiment. Some recent works introduce noisy
measurements for which distributed estimation algorithms are inserted. In
[98] a formation controller with estimation filters is simulated and demon-
strated using the passivity property of the system, while in [87] a formation
controller based on the quality of the estimate is analyzed.

In all the previous works a direct knowledge of the quantities involved in
the control laws assumed and labelled measures are assumed. When exper-
imental results are presented, these quantities are acquired by a centralized
system, typically a vision one, in which different robots are discriminated
by identification tags. This architecture is usually to test the robustnes to
robot faults and estimate error, and needs for a structured environment to
work. In a real context it is very important to design a decentralized estima-
tion system that uses the measures taken directly by the agents to estimate
the quantities involved in the control law. For the best of our knowledge,
our work is innovative because it takes into account a more realistic and
minimal model of the measured quantities, achieving the encircling task in
an more unstructured environment, and validating it by experiments.

6.2 Problem Formulation

Consider a group of identical mobile robots with unicycle kinematics and a
target, all moving on the plane. The target may be an inanimate object, a
robot, or even a living agent. The task assigned to the robots is to encircle
the target, i.e., move around it in a regular circular formation, also called
a splay state formation [87]. The target is assumed to be stationary for the
sake of analysis, but we will experimentally show in Sect. 6.6 that ‘slow’
movements may be accommodated. No a priori information is available
about the cardinality of the group, the initial configuration the robots, and
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the position of the target. In addition, the task must be realized on the
basis of local sensory information only.

Clearly, the encirclement task requires each robot of the group to be
able to localize the target as well as the other robots. We may distinguish
between two cases, depending on whether the appearance of the target is
identical to or different from that of the robots. In the first case, the robots
and the target may be detected by a single sensory device, whereas two
separate detectors (a robot detector and a target detector) must be used
in the second case. We shall consider in detail the first case; however, the
proposed technique can be trivially extended to the second.

A target that appears to be identical to the robots may be an unfriendly
agent in disguise that must be made inoffensive, or actually one of the robots
that must be guarded or escorted by the others. An unfriendly target does
not communicate with the other robots (non-cooperating target), while com-
munication with a friendly target is obviously possible (cooperating target).

We assume that each robot is equipped with:

1. A robot detector, a sensor device that measures the relative position
(not the orientation) of other robots and of the target w.r.t. the de-
tector, provided that they fall in a perception set Dp that is rigidly
attached to it. The shape of Dp is arbitrary, and in particular it
may contain blind zones. The relative position measures provided by
the robot detector are anonymous, i.e., they do not convey the spe-
cific identity of the detected robot (hence, the target is detected as a
robot).

2. A communication module that can send/receive data to/from any other
robot contained in a communication set Dc such that Dp ⊆ Dc.

Under the above assumptions, it may happen that one robot can detect
another, but not vice versa; in other words, the robot detection graph is
directed (and includes the target as a sink). However, if one robot can
detect another it can also communicate with it; the communication graph is
therefore undirected and contains the detection graph, with the exception of
the target and its in-arcs. In the following, two robots that can communicate
with each other are simply called neighbors.

6.3 System Architecture

The encirclement system installed on each robot, shown in Fig. 6.1, consists
of two main modules. The mutual localizer is in charge of computing the
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Figure 6.1: The structure of the encirclement system that runs on the i-th
robot.

configuration of the robot in a reference frame centered at the target. This
information is passed to the encirclement controller, that generates a refer-
ence trajectory for the robot and the feedback control inputs that guarantee
its tracking.

The mutual localization module implements the method proposed by [26],
to which the reader is referred for a detailed description. The inputs to this
component are (1) the anonymous relative position measures (which include
the target, if this is contained in Dp) coming from the robot detector (2) an
estimate of the configuration of the robot in its own frame, computed by any
self-localization (position tracking) algorithm (3) the same information (i.e.,
anonymous relative position measures and robot configuration in its own
fixed frame) obtained via communication from each neighbor. A multiple
registration algorithm followed by a multi-EKF are used to process these
data and compute an accurate estimate of the configuration of each robot in
a common fixed frame. While a cooperating target is directly identified and
localized with this procedure, it is interesting to note that a non-cooperating
target can still be singled out by the mutual localization module as the only
‘robot-like’ object that does not communicate its data. From the mutual
localization results, each robot can directly derive an estimate of its configu-
ration (position and orientation) with respect to a common target-centered
frame.

The encirclement control module generates the control inputs to the
robot using the target-centered configuration of the robot computed by the
mutual localizer as well as information coming from the neighbor robots.
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The structure of this module is discussed in detail in the following section.

6.4 Encirclement Controller

In view of the encirclement objective, it is convenient to express the con-
figuration of the generic i-th robot in polar coordinates with respect to a
reference frame centered at the target, as in Fig. 6.2. In particular, these
coordinates are the distance ρi of the unicycle wheel center from the origin,
the angle γi that the sagittal (forward) axis of the robot forms with the line
joining the unicycle wheel center to the origin, and the angle φi between
the same line and the x axis. In the following, φi is also called phase of the
robot). The kinematic model of the unicycle is then written as [99]

ρ̇i = −vi cos γi
γ̇i = (sin γi)/ρi − ωi
φ̇i = vi(sin γi)/ρi,

where vi and ωi are respectively the driving and steering velocity inputs.
It is assumed that the robot index i refers to the cyclic counterclockwise

ordering of the robots defined by their increasing phase angles (see Fig. 6.2).
For the i-th robot, denote by φ̄i the mean between the phases of the successor
(robot i+1) and the predecessor (robot i−1) of the robot. Correct execution
of the encirclement task requires that

lim
t→∞

ρi(t) = R lim
t→∞

φi(t) = φ̄i(t) lim
t→∞

φ̇i(t) = Ω ∀i, (6.1)

where R and Ω are respectively the encirclement radius and angular speed,
which must be the same for all robots.

The entrapment control module (see Fig. 6.1) works as follows. The ini-
tial configuration (ρ0

i , γ
0
i , φ

0
i ), provided by the mutual localization module1

is used to plan a reference trajectory for the robot. In particular, such tra-
jectory is specified by an exosystem that assigns reference evolutions ρri , φ

r
i

to the coordinates ρi, φi. In fact, it is easy to verify that these two are flat
outputs [100] for the unicycle in polar coordinates, i.e., once an evolution
is assigned to them it is possible to compute algebraically the correspond-
ing evolution γri of the remaining variable γi as well as the reference inputs
vri , ω

r
i . The reference outputs ρri , φ

r
i are fed to a feedback controller based

1This assumes that the configuration estimate is immediately reliable. In practice,
it may be necessary to perform a preliminary motion of the multi-robot system aimed
at improving the accuracy of the estimate. To this end, the anti-symmetry control law
proposed in [55] may be used.
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Figure 6.2: Polar coordinates for the i-th robot and the cyclic ordering
defined by phases.

on Dynamic Feedback Linearization (DFL), that generates the control in-
puts vi, ωi so as to guarantee global exponential tracking of the reference
trajectory [28]. It should be noted that ρri , φ

r
i are initialized at ρ0

i , γ
0
i , so

that the transient is extremely fast. During its operation, the DFL tracker
uses the current estimate of the target-frame robot configuration (ρi, γi, φi)
computed by the mutual localization module.

In the following, we consider three slightly different versions of the basic
encirclement task entailed by (6.1), and give the appropriate form of the
trajectory planner (exosystem). In all versions, the encirclement radius R is
assigned in advance. The reference radius ρri (t) is therefore always generated
by

ρ̇ri = Kρ(R− ρri ) ρri (0) = ρ0
i , (6.2)

where Kρ is a positive gain. As a consequence, ρri (t) exponentially converges
to R for any initial condition. Note that ρri (t) does not depend on the
reference radius of any other robot.

The three versions of the encirclement task differ on the procedure used
by the robots to agree on the common value of the angular speed Ω in (6.1).
They are analyzed in detail below.

Encirclement – Version 1.

In the first version, the angular speed Ω is also specified in advance. The
reference phase φri (t) for the i-th robot is generated by

φ̇ri = Ω +Kφ(φ̄ri − φri ) φri (0) = φ0
i , (6.3)
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where Kφ is a positive gain and φ̄ri is the mean between the reference phases
of the predecessor and the successor (in accordance with the counterclock-
wise cyclical ordering of the reference phases). We have the following result
(the proofs of all the propositions are in the Appendix).

Proposition 6.1. The flow of (6.2),(6.3) yields exponential convergence of
ρri to R, of φri to φ̄ri , and of φ̇ri to Ω, for any assigned R, Ω and any initial
ρ0
i , φ

0
i .

An example of reference robot trajectories corresponding to the flow of
(6.2),(6.3) is shown in Fig. 6.3. The robots approach the circle in such a
way that the ‘insertion points’ are almost uniformly spaced, and actually
achieve the required formation very quickly.

Encirclement – Version 2.

In the second version, the robots are assigned an escape window s, i.e., the
time interval in which a point on the circle remains unvisited at the steady
state corresponding to the asymptotic conditions (6.1). Being s = 2π/nΩ,
where n is the number of robots, the robots can in principle easily compute
the required value of Ω as Ω = 2π/ns; however, since n is not known a
priori, an estimate n̂ of this number is required.

Assume that each robot instantaneously computes its own estimate as
n̂i = 2π/∆r

i , where 2∆r
i is the reference phase difference between the suc-

cessor and the predecessor. The required angular speed for the robot is then
computed as Ωi = 2π/n̂is = ∆r

i /s. Using this expression for Ω in (6.3) we
obtain the following exosystem for the reference phase:

φ̇ri = ∆r
i /s+Kφ(φ̄ri − φri ) φri (0) = φ0

i . (6.4)

Proposition 6.2. The flow of (6.2),(6.4) yields exponential convergence of
ρri to R, of φri to φ̄ri , and of φ̇ri to 2π/ns, for any assigned R, s and any
initial ρ0

i , φ
0
i .

Encirclement – Version 3.

In the third version, only the radius R is assigned, and the robots must au-
tonomously agree on a common value of the angular speed Ω. The reference
phase exosystem for the i-th robot is

Ω̇r
i = KΩ(φ̄ri − φri ) Ωr

i (0) = 0 (6.5)

φ̇ri = Ωr
i +Kφ(φ̄ri − φri ) + ξi φri (0) = φ0

i (6.6)
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Figure 6.3: Reference trajectories corresponding to the flow of (6.2),(6.3)
for a generic initial configuration of a 6-robot system, with a target located
at the origin. The configuration of each reference robot along its trajectory
is explicitly shown at six equispaced time instants, identified by 1, . . . , 6.

where ξi is a costant forcing term. Denote by ξ̄ the average of the forcing
terms ξi over the multi-robot system.

Proposition 6.3. The flow of (6.2), (6.5–6.6) yields exponential conver-
gence of ρri to R, of φri to φ̄ri , and of φ̇ri to ξ̄, for any assigned R and any
initial ρ0

i , φ
0
i .

An interesting feature of this third scheme is that the common frequency
of the phase reference trajectories can be regulated by acting on a single
robot; to this end, it is sufficient to let ξi = 0 for all the robots but one.

To allow the implementation of (6.3), (6.4), or (6.5–6.6) all the robots
must broadcast their current reference phase through the communication
system. However, each robot computes its reference trajectory and control
inputs autonomously on the basis of local information, i.e., its own configu-
ration and data coming from the neighbors.

6.5 Conditions for Task Achievement

The proposed method will achieve the encirclement task provided that the
robots can localize the target and each other. In this section, we briefly
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discuss the conditions under which these two requirements are actually sat-
isfied. Recall that the mutual localization module used in our encirclement
scheme is effective within weakly connected components (simply called sub-
nets in the following) of the robot detection graph, provided that Dp ⊆ Dc

and multi-hop communication is used [26].
The first condition may be derived from the analysis of the desired steady

state of the system, in which the n robots are uniformly distributed along
a circle of radius R. In this formation, the whole detection graph must
be weakly connected, i.e., a single subnet must exist. In view of the circle
topology, this property is certainly guaranteed if each robot can detect the
target and the successor robot with respect to the cyclic phase ordering
(that is actually the predecessor if Ω is positive). For example, this is true
if Dp is a frontal circular sector with central angle at least π + ε wide, with
ε any positive number, and radius at least max{R, 2R sinπ/n}.

The second condition is instead obtained considering the beginning of
the encirclement task. To localize the target at t = 0, each subnet of the
detection graph must contain at least one robot that detects the target.
From that moment on, all the robots will get closer to the target in view of
the reference evolution (6.2) for ρ, and therefore target detection is guaran-
teed throughout the task (this is easy to show if Dp has the shape discussed
above). In particular, all the subnets will merge into a single connected
component that includes the whole graph.

Note that the first condition (onDp) concerns the robot detector, whereas
the second (on the detection graph at t = 0) restricts the admissible initial
arrangements of the robots with respect to the target. Taken together, they
are a sufficient condition for task achievement — less demanding require-
ments may be enforced (in particular, on the shape of Dp) but their efficacy
would be more difficult to prove.

6.6 Experiments

We have experimentally validated our encirclement scheme with a system
of five Khepera III robots. Each robot is equipped with a wi-fi card and a
Hukuyo URG-04LX laser sensor with an angular range of 240◦ and a linear
range artificially limited to 2 m. The robot detector is a simple feature
extraction algorithm that inspects the laser scan searching for the inden-
tations made by the vertical cardboard squares mounted atop each robot
(in the blind zone of the range finder). Since each square can give indenta-
tions of the laser scan that are 1 ÷ 12 cm wide, depending on the relative
orientation between the measuring and the measured robot, the detector
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cannot distinguish among robots, the target and obstacles whose size is in
the same range. Odometry is used as self-localization, in fact, an accu-
rate self-localization s not needed in our scheme. The encirclement scheme
has been implemented using the MIP architecture2 which provides a multi-
tasking estimation/control framework, a realistic simulation environment,
and allows direct porting for execution on real robots.

A typical experimental result is summarized in Fig. 6.4. Here we are
considering version 1 of the encirclement task, and hence (6.2–6.3) as a
trajectory planner, with R = 0.5 m and Ω = 0.06 rad/s. One of the robot
is used as a stationary (cooperating) target. At the start (snapshot 1), only
three robots are active. At t1 = 200 s, with the three robots rotating around
the target in a regular formation, another robot is added (snapshot 2); the
four robots then achieve a regular formation (snapshot 3). At t2 = 310 s one
of the robot is manually placed away (snapshot 4). The four robots achieve
again a regular formation, since the mutual localizer quickly recovers the
large odometry estimation error (not showed). At t3 = 490 s a robot is
switched off and removed. The three remaining robots rearrange themselves
in a regular formation (snapshot 5). Finally, at t4 = 600 s another robot
is removed and the formation becomes a 1 m wide dipole. The evolution
of the experiment is also illustrated by Fig. 6.5, that shows the plots of the
distances between consecutive robots, the distances between each robot and
the target, and the robot angular speeds. The fact that during each phase
the correct regular formation is promptly reached shows the reactivity of
the proposed encirclement scheme.

In fact, Kidnappings and deletions can be considered also as robots fail-
ures, showing the fault tolerant capabilities of the mutual localization. In
fact, at t2 the estimation of one robots has a momentary bad estimation
induced by the kidnapping of the other robot, which is suddenly recovered.
Note that the estimator of each robot provides also a steady relative measure
of robot temporarily or definitely hidden by means of occlusions as well as
the relative measure of a robot on the back which is invisible to the robot
detector due to the limited cone of the laser.

We have also run experiments with moving targets, obtaining satis-
factory results as long as the speed of the target remains at least one
order of magnitude smaller than that of the robots. One such experi-
ment is shown in Fig. 6.6. Video clips of the experiments are available
at http://www.dis.uniroma1.it/labrob/research/encirclement.html.

2http://www.dis.uniroma1.it/∼labrob/software/MIP/index.html
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Figure 6.4: Encirclement of a stationary target (solid red circle).

6.7 Proofs

We index the robots accordingly to the ordering of the initial reference
phases, and we use the following notations:

1 = (1 · · · 1)T , b = (−π 0 · · · 0 π)T , g = (π 0 · · · 0 π)T ,

φr = (φr1 · · · φrn)T , φ̄r = Cφr + b, ∆r = Dφr + g,

Ωr = (Ωr
1 · · · Ωr

n)T , ξ = (ξ1 · · · ξn)T ,

whereC andD are the circulant matrices with first rows (0 1/2 0 · · · 0 1/2),
and (0 − 1/2 0 · · · 0 1/2) respectively. The presence of b and g in the def-
inition of φ̄r and ∆r takes into account the fact that

φ̄r1 = (φr2 + φrn − 2π)/2, φ̄rn = (φr1 + 2π + φrn−1)/2,
∆r

1 = (φr2 − φrn + 2π)/2, ∆r
n = (φr1 + 2π − φrn−1)/2,

and allows to encode the topology of S1 in R. Also, denote by eφ = φ̄
r−φr =

(C − I)φr + b and eΩ = Ωr + ξ− ξ̄1 the phase and pulsation error vectors,
where I is the identity.

Proof of Proposition 6.1. Writing (6.3) for all the robots we obtain

φ̇
r

= Ω1 +Kφ(φ̄r − φr).
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Figure 6.6: Encirclement of a moving target (solid red circle).

In order to prove the statement, it is sufficient to show that eφ goes to zero.
Note that 1T (C − I) = (C − I)1 = 0, i.e., C is balanced; ker(C − I) =
span{1} and the algebraic multiplicity of 0 is 1; all the other eigenvalues are
negative, i.e., C − I is negative semidefinite3. Writing the error dynamics
we obtain

ėφ = Kφ(C − I)eφ + Ω(C − I)1 = Kφ(C − I)eφ.

Hence, the error converges to its initial average, which is zero for any initial
condition, since

1Teφ(0) = 1T (C − I)φr(0) + 1Tb = 0.

Proof of Proposition 6.2. Writing (6.4) for all the robots, and letting f =
1/s, we obtain

φ̇
r

= f∆r +Kφ(φ̄r − φr).

The error dynamics in this case is

ėφ = Kφ(C − I)eφ + f(C − I)(Dφr + g).

3It is the Laplacian of the undirected ring with weights 1/2.
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Since C − I and D commute, we have

ėφ = (Kφ(C − I) + fD)eφ + f((C − I)g −Db),

and being (C − I)g −Db = 0 we conclude that

ėφ = (Kφ(C − I) + fD)eφ.

The matrix Kφ(C − I) + fD has the same properties4 of Kφ(C − I) which
was used to show the convergence of eφ to 0 in the Proof of Proposition 6.1.
This implies also that φ̂ri converges to 2π/n and φ̇ri to 2π/ns.

For the proof of Proposition 6.3 we need a preliminary result.

Lemma 6.1. Consider a 2n× 2n matrix of the form

A =
(

0 k1I
B k2B

)
where 0 is the n×n null matrix, I is the n×n identity matrix, B is a n×n
matrix, and k1, k2 are non-zero real numbers. For any eigenvalue µ of B
associated to the eigenvector u, the two roots of λ2−k2µλ−k1µ, denoted with
λ1,2, are eigenvalues of A associated to the eigenvectors

(
k1u

T λ1,2u
T
)T .

Proof. A vector
(
v1

T ,v2
T
)T is an eigenvector of A associated to λ if

k1v2 = λv1 (6.7)
Bv1 + k2Bv2 = λv2. (6.8)

Hence, from (6.7), the eigenvectors have the structure (k1v λv). Letting
v = u in this structure, and substituting it into (6.8) we obtain k1µu +
k2λµu = λ2u, which establishes the Lemma.

Proof of Proposition 6.3. Writing (6.5),(6.6) for all the robots we obtain

Ω̇
r

= KΩ(φ̄r − φr), Ωd(0) = 0 (6.9)

φ̇
r

= Ωr +Kφ(φ̄r − φr) + ξ. (6.10)

Let us consider the dynamics of the error e = (eTφ e
T
Ω)T

ė =
(

KΩeφ
(C − I)(Ωr + u) +Kφ(C − I)eφ

)
=

=
(

0 KΩI
C − I Kφ(C − I)

)(
eΩ

eφ

)
= Ãe,

4It is the Laplacian of the undirected ring with different weights.
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where we have made use of the fact that ξ̄ = (1/n)(1T ξ) and (C − I)1 = 0.
Recalling that C− I is balanced, negative semi-definite, and noting that its
smallest eigenvalue is −2, and applying the Lemma to Ã we can conclude
that all the real parts of its eigenvalues have the same sign of the eigenvalues
of C−I (in fact, they are simply related by a 1/2 factor). Furthermore, the
algebraic multiplicity of the eigenvalue 0 of Ã is 2, and its generalized eigen-
space is generated by span{(1T 0T )T , (0T 1T )T }. Since, by construction,
1TeΩ(0) = 0 and 1Teφ(0) = 0, there is no evolution over this unstable
eigenspace, which implies that e goes exponentially to zero.

Note that Propositions 6.1, 6.2, and 6.3 imply that the reference phases
are asymptotically in the same order as the initial reference phases. It can
be proved that the same property actually holds along the whole duration of
the trajectories of (6.3) and (6.4); the proof is lengthy and therefore omitted.
Presently, this is only a (likely) conjecture for (6.5–6.6).

6.8 Conclusions

We have presented a distributed control method for encircling a target by
means of a multi-robot system. The proposed scheme integrates a mutual
localization module based on the developments in [26]. The theoretical proof
of its effectiveness is supported by extensive experimental results.

Future work will be aimed at:

• proving that the reference trajectories never meet, so as to provide
grounds for identifying a collision avoidance condition for robots of
finite size;

• performing a theoretical analysys of a trajectory generation scheme
based on continuous replanning, in which the actual robot coordinates
(estimated through the mutual localization module) are used in place
of their reference value (we already implemented such a variant with
encouraging results);

• integrating a consensus mechanism among the robots on the results of
the mutual localization, and especially the configuration of the target.
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[21] H. H. González-Baños and J. C. Latombe, “Navigation strategies for
exploring indoor environments,” International Journal of Robotics Re-
search, vol. 21, no. 10, pp. 829–848, 2002.

[22] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[23] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1983.

[24] R. Diestel, Graph Theory, 2nd ed., ser. Graduate Texts in Mathemat-
ics. Springer, 2005, vol. 173.

[25] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink, Mathemati-
cal Morphology and its Applications to Image and Signal Processing.
Kluwer Academic Publishers, 2000.

[26] A. Franchi, G. Oriolo, and P. Stegagno, “Mutual localization in a
multi-robot system with anonymous relative position measures,” in
2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St.
Louis, MO, Oct. 2009, pp. 3974–3980.

[27] T. Simeon, J. P. Laumond, and F. Lamiraux, “Move3d: A generic
platform for path planning,” in 4th Int. Symp. on Assembly and Task
Planning, Fukuoka, Japan, May 2001, pp. 25–30.

[28] G. Oriolo, A. De Luca, and M. Vendittelli, “WMR control via dynamic
feedback linearization: Design, implementation, and experimental val-
idation,” IEEE Trans. on Control Systems Technology, vol. 10, no. 6,
pp. 835–852, 2002.

[29] A. Censi, L. Marchionni, and G. Oriolo, “Simultaneous maximum-
likelihood calibration of robot and sensor parameters,” in 2008 IEEE
Int. Conf. on Robotics and Automation, Pasadena, CA, May 2008, pp.
2098–2103.

[30] A. Censi, “An ICP variant using a point-to-line metric,” in 2008 IEEE
Int. Conf. on Robotics and Automation, Pasadena, CA, May 2008, pp.
19–25.

147



BIBLIOGRAPHY

[31] L. Freda, G. Oriolo, and F. Vecchioli, “Sensor-based exploration for
general robotic systems,” in 2008 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Nice, France, Sep. 2008, pp. 2157–2164.

[32] J. Clark and R. Fierro, “Mobile robotic sensors for perimeter detection
and tracking,” ISA Transactions, vol. 46, no. 1, pp. 3–13, 2007.

[33] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. Mclain, S. M.
Li, and R. Mehra, “Cooperative forest fire surveillance using a team
of small unmanned air vehicles,” Int. Journal of Systems Sciences,
vol. 37, no. 6, pp. 351–360, 2006.

[34] S. Susca, S. Mart́ınez, and F. Bullo, “Monitoring environmental
boundaries with a robotic sensor network,” IEEE Trans. on Control
Systems Technology, vol. 16, no. 2, pp. 288–296, 2008.

[35] Y. Elmaliach, A. Shiloni, and G. A. Kaminka, “A realistic model
of frequency-based multi-robot polyline patrolling,” in International
Conference on Autonomous Agents, Estoril, Portugal, May 2008, pp.
63–70.

[36] G. J. Woeginger, “Exact algorithms for NP-hard problems: A survey,”
in Combinatorial Optimization – Eureka, You Shrink!, ser. Lecture
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Appendix A

A Classification of Ordinary
Mutual Localization
Problems

A.1 A classification of localization problems

In this section we define and classify the variety of localization problem for
planar multi-robot systems that are present in literature. All those problems
share a common goal: the estimation of one or more changes of coordinates
between pairs of frames, i.e., the reconstruction of a set of poses from a set
of measures. Sometimes the problem are focused on the estimation of a part
of the whole change of coordinates, like the translation of the origin. This
reduced versions are investigated, for example, in system of robots in which
the orientation is not of interest. This reduced problem is a localization
problem in which the relative orientation between the frames are known, as
if all robots have a compass that make possible to share a common ‘north’.
Also, there are problems which want to estimate the unknown quantities up
to planar transformations, like rotation, translation, dilation, et cetera.

A first classification emerge considering the behavior of the unknown
quantities with respect to time. In the static case the unknown changes of
coordinate are constant respect to the time. These are also called identi-
fication problems. In the dynamic case the unknown quantities are time
varying.

Another distinction arise considering the motion capabilities of the robots,
basically we divide the case the robot are still from the case the robot can
move.

Furthermore, the localization problems may be classified according to
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which are the known input quantities available to the estimation system.
This inputs can be divided in a priori knowledge and measures. An a priori
knowledge could be, for example, the position of an object, i.e, a rigid body,
with respect to a certain frame. Those kind of objects are commonly called
beacons.

The measures can be divided in two big classes. A first kind of measures
are given by exteroceptive sensors, they are angles or distances between
a pair of objects, one of which is the sensor. The second object could
be another robot or a beacon. Interesting aspect concerning exteroceptive
measures are (1) the kind of measurement provided by the sensors (distance,
bearing, heading, et cetera) and (2) the relation between the physical state of
the robotic system and the actual availability of the measures, represented
by a graph called the measuring graph. More than one graphs may be
used to describe case in which each robot carries more than one sensor.
Those graphs could be directed or undirected depending on the problem
assumptions.

Another kind of measures is provided by proprioceptive sensors, like the
odometry, which is in turn an estimator producing the change of coordinates
between any two mobile frames at different times of a moving robot. Usually
if the robots are still the measures refers to time constant quantities while
they refers to time varying quantities if the robot are moving.

The measures can be noiseless (they have the exact value of the measured
quantity) or noisy, like a random variable, with the possibility of having false
negatives and false positives (outliers).

Also, the measures can be ordered or anonymous. In the first case the
correspondence between the measured quantity and the measure is known,
while in the second case the measures comes without any given correspon-
dence and they are a simple collection of unordered values.

The localization problems can also be classified with respect to the local-
izability property, a feature which depends on both the unknown quantities
and measures. In particular there are problems requiring statical (istan-
taneous) localizability, i.e., problems in which the set of measures taken
in account is rich enough to allow the problem solution without the robot
motion. Also, there are problems requiring dynamical localizability, i.e.,
problems in which the set of measures taken in account is rich enough to
allow the problem solution with the aid of the robot motion and the pro-
prioceptive measures. Statical implies dynamical localizability but not vice
versa.

Since the each measure is normally directly available only to a single
robot, a further distinction can be made on the basis of the communication
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model. The main communication aspects are: (1) which is the relationship
between the communication topology, i.e, the communication graph, and
the physical state of the system; (2) which kind of data can be transmitted
among the robots (raw measures or local estimates); (3) the availability of
the identity of the transmitter; (4) the reliability of the channel.

Finally, the problem can be divided in those requiring a decentralized
versus a centralized solution. In the first case is in general assumed that
the communication graph is not complete and the transmitted data are the
local estimates.

A summary of the classification criteria follows, notice that many possi-
bilities can coexists, and that the criteria are not completely independent:

1. Unknown quantity to estimate w.r.t. time:

(a) static localization problems (identification),

(b) time varying localization problems.

2. Robot motion capabilities:

(a) still robots (canonic sensor network),

(b) moving robots.

3. Kind of available inputs:

(a) a priori knowledge (beacon positions),

(b) measures:

i. exteroceptive measures:
A. referred to beacon,
B. referred to robots.

ii. proprioceptive measures (only if moving robots).

4. Kind of measures:

(a) distances,

(b) bearings,

(c) orientations.

5. Measuring graphs:

(a) fixed,

(b) physically state dependent:
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i. isotropic (undirected graphs),
ii. anisotropic (directed graphs).

6. Measured quantities w.r.t. time:

(a) constant measured quantities,

(b) time varying measured quantities (moving robots).

7. Certainty on measures:

(a) noiseless measures,

(b) noisy measures

i. random variable
ii. false positives
iii. false negatives

8. Identity of measures:

(a) ordered measures,

(b) anonymous measures.

9. Requested localizability:

(a) statical (istantaneous) localizability,

(b) dynamical localizability.

10. Communication topology:

(a) physical state dependent topology

(b) fixed topology

11. Communication data used:

(a) raw measures,

(b) local estimate.

12. Communication identity:

(a) know sender,

(b) anonymous sender.

13. Communication reliability:

(a) reliable channel,
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(b) unreliable channel.

14. Requested solution:

(a) centralized,

(b) decentralized.

In the following we introduce some terminology to present the main
class of problems in a formal way. First of all we always assume that i, j ∈
{1, . . . , n}. We denote with Ai the i-th robot, with F the world frame, with
with Fi and Mi(t), respectively, the fixed frame of Ai and mobile attached
frame of Ai at time t. We indicate with FjTFi the change of coordinates from
Fi to Fj , with MjTMi(t) the change of coordinates from Mi(t) to Mj(t)
and finally with FjTMi(t) the change of coordinates from Mi(t) to Fj .

We generically use the letter q with some indexes and apexes to denote
the pose of a robot expressed in a certain frame, we use the words ‘pose’ and
‘configuration’ as synonyms. Using the same indexes and apexes, we split q
using the letters p for the position, and θ for the angle. Similarly we split
p using x and y to indicate the cartesian coordinates. Note that, instead
of the cartesian coordinates, the polar coordinates ρ =

√
x2 + y2, and φ =

atan2(y, x), may be also used. In particular, we denote with Fqi(t) the pose
of Ai at time t expressed in F . Also, we denote with Fjqi(t) the pose of Ai
at time t expressed in Fj , and with Mjqi(t) the configuration of Ai at time t
expressed inMj(t). We assume that Miqi(t) is known and equal to (0 0 0),
hence the information provided by Mjqi(t) is equivalent to MjTMi(t), also,
the information provided by Fjqi(t) is equivalent to FjTMi(t).

The estimation of Fjqi(t) is simply called localization. If the knowledge
of part of Mjqi(t) is used to improve the estimation, then is called cooper-
ative localization (CL). The estimation of FjTFi is called absolute mutual
localization (AML), since the quantity to estimate is constant with respect
the time, it is an identification problem. The estimation of MjTMi(t) is
called relative mutual localization (RML).

The exteroceptive measures considered in mutual localization problems
are always measures of quantities referred to the mobile attached frames.
With respect to a pair of robots Ai and Ai the most considered quantities
are: the distance dij(t) between the origin of Mj and the origin of Mi at
time t; the angle difference θij between of the x axis of Mj with respect to
the x axis ofMi at time t; the bearing angle φij(t) of the origin ofMj with
respect to the x axis of Mi, the bearing angle φji(t) of the origin of Mi

with respect to the x axis of Mj .
A typical choice is to consider Fi =Mi(t0).
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A.2 Localization problems requiring instantaneous
localizability

This kind of problems aim at reconstructing the unknown quantities at time
t using only a snapshot of the measures at time t. For this reason the time
evolution of the system is not important, and the problem can be solved
considering the robots still. On the other hand, the problems requiring dy-
namical localizability can be considered of this class if the time is discretized
and we consider simultaneously all measures taken by the same robot at dif-
ferent times. Depending on the measured quantities the unknown quantities
can be at most reconstructed up to certain transformations, like translations,
congruences, homotheties. Also, in this section the measures are considered
noiseless.

A.2.1 Position localization with distance information

This problem is commonly referred as “network localization problem with
distance information”, and it is stated in [56]. It deals with the reconstruc-
tion of the robot positions knowing some of the inter-distances between them
and the position of some robots acting as beacons. Since the frames to be
estimated are attached to the robots it is an RML, but since it applies to still
robots it could be also considered an AML problem. It is a static localization
problem, in which the orientation of the frames is not of interest. In fact,
only the positions of the robots are considered. This model matches both
with problems in which the robots are omnidirectional and with problems
in which the orientation is already known.

Since it is requested the statical (or instantaneous) localizability of the
system, the robot motion is not of interest, and the robots are w.l.o.g. con-
sidered still. The presence of beacons is admitted, the exteroceptive mea-
sures are only the distances between robots, and the odometry is not of
interest. The measuring graph is fixed and undirected, and the measured
quantities are constant w.r.t. time. The measures are noiseless and ordered.
The communication aspects are not addressed and the requested solution is
centralized.

First we describe the problem, second we give some definition that are
related to the problem and some results on the solvability.

Problem A.1. We are given m beacon positions p1, . . . , pm in Rd (d ∈
{2, 3}). We denote with pm+1, . . . , pn the unknown positions of n − m
robots. In addition we are given the distance ‖pi − pj‖ for every couple
(i, j) belonging to a certain link set L ⊂ {1, . . . , n} × {1, . . . , n}. Find the
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positions π1, . . . , πN satisfying ‖πj − πi‖ = ‖pj − pi‖, ∀(i, j) ∈ L, subject
to the constraint that πk = pk for k ∈ {1, . . . ,m}. (Notice that, by default,
{1, . . . ,m} × {1, . . . ,m} ⊂ L.)

Problem A.2. Consider the same setup of the Prob. A.1 without beacons,
i.e., with m = 0. Find the positions π1, . . . , πn, up to a congruence.1

The Prob. A.2 emerge from the observation that if we apply an con-
gruence to a vector of positions p, then all the distances remain the same.
Hence a complete knowledge of all the distances between the robot positions,
without any beacons, allows the reconstruction of the robot positions only
up to a congruence.

Remark It is clear that the the solvability of the Prob. A.1 and A.2 requires
an instantaneous localizability property of the system.

Definition A.1 (Global rigidity). A vector of n positions (p1 . . . pn) and
an undirected graph G = ({1, . . . , n}, L) are globally rigid if it is possible
to reconstruct, up to a congruence, the unknown robot positions p1, . . . , pn,
knowing every distance ‖pi − pj‖ for every couple (i, j) belonging to L.

The following proposition is straightforward:

Proposition A.1. The Prob. A.1 is solvable if and only if there are at
least d+ 1 beacons in general position,2 and the positions p1, . . . , pn with the
graph G = ({1, . . . , n}, L) are globally rigid. The Prob. A.2 is solvable if
and only if the positions p1, . . . , pn with the graph G = ({1, . . . , n}, L) are
globally rigid.

Hence, the solvability of the Prob. A.1 and A.2 depends on the global
rigidity of the pair positions-measuring graph. Instead of characterizing the
globally rigid pairs of vectors of positions and graphs, we want characterize
the measuring graphs that are rigid with (almost) all the vectors of positions.
This kind of properties are called ‘generic’, and can be usually checked with
a combinatorial test on the graph.

Definition A.2 (Generic global rigidity). An undirected graph G = ({1, . . . , n}, L)
is generically globally rigid if, for all p in (an open dense subset of) Rdn, p
and G are globally rigid.

To understand the necessary and sufficient condition for the generic
global rigidity (the Theorem A.3) we need to define the weaker concepts

1A distance preserving map.
2Not aligned if d = 2, or not on the same plane if d = 3
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Figure A.1: A vector of positions and links which are rigid but not globally
rigid. In fact, there are two isolated vectors of positions with the same links.
From [56].

of infinitesimal rigidity and generic infinitesimal rigidity. We define also the
rigidity concept to have a more complete view of the argument. We denote
with k the number of measured links, i.e., cardinality of L. Consider the
function δL : Rnd → Rk mapping the vector of n positions p, to the vector
of k measured distances, i.e., the function defined by:

δ2
ij(p) = (pi − pj)T (pi − pj) ∀(i, j) ∈ L, (A.1)

The set δ−1
L (δL(p)) is a smooth manifold, denoted with DL(p), and is formed

by all the vectors q ∈ Rdn satisfying the constraint equations:

(qi − qj)T (qi − qj) = (pi − pj)T (pi − pj) ∀(i, j) ∈ L. (A.2)

To check the global rigidity we want to know whether DL(p) contains only
points congruent with p. To factor out the these equivalent points, we
take the quotient of DL(p) by the group Γ of congruences. We present the
following two definitions only for completeness.

Definition A.3 (Rigidity). A vector of n positions p and an undirected
graph G = ({1, . . . , n}, L) are rigid if the vector p is isolated in the quotient
topology DL(p)/Γ.

Definition A.4 (Generic rigidity). An undirected graph G = ({1, . . . , n}, L)
is generically rigid if G with all p in (an open dense subset of) Rdn are rigid.

163



A. A Classification of Ordinary Mutual Localization

Rigidity is a difficult property to establish. For this reason the tangent
space of DL(p) is studied instead of DL(p)/Γ. Taking the derivative of the
Eq. (A.2) we have the corresponding linear equations in the tangent space:

(pi − pj)T (ṗi − ṗj) = 0 ∀(i, j) ∈ L (A.3)

The Eq. A.3 means that the difference between the velocity of two linked
positions must be ‘perpendicular’ to the link. The Equations A.3 can be
written in a matrix equation:

RL(p)ṗ = 0, (A.4)

where RL(p) is the k×nd Jacobian matrix of δL evaluated in p and is called
rigidity matrix. Since the tangent vectors to the congruences must satisfy
Eq. A.4, the rank of RL(p) must be less or equal 2n− 3, if d = 2, or 3n− 6,
if d = 3.

Definition A.5 (Infinitesimal rigidity). A vector of n positions p and an
undirected graph G = ({1, . . . , n}, L) are infinitesimally (or first-order) rigid
if the rank of the rigidity matrix RL(p) is 2n − 3, if d = 2, or 3n − 6, if
d = 3.

It is well known that infinitesimal rigidity implies rigidity, but not global
rigidity, as depicted in Fig. A.1. The following definition introduces the
generic property associated to infinitesimal rigidity.

Definition A.6 (Generic (infinitesimal) rigidity). An undirected graph G =
({1, . . . , n}, L) is generically (infinitesimally) rigid if the rank of the rigidity
matrix RL(p) is 2n − 3, if d = 2, or 3n − 6, if d = 3, for all p in (an open
dense subset of) Rdn.

Theorem A.1 (Tay, Whiteley [101]). Generic infinitesimal rigidity and
generic rigidity are equivalent.

The following theorem characterize the generically rigid graphs for d = 2,
no result is known for d ≥ 3.

Theorem A.2 (Maxwell, Laman [102, 103]). An undirected graph G =
({1, . . . , n}, L) is generically (infinitesimally) rigid in R2 if and only if L
contains a subset E consisting of 2n − 3 edges with the property that, for
any nonempty subset E′ ⊂ E, the number of edges in E′ cannot exceed
2n′−3, where n′ is the number of vertices of G which are endpoints of edges
in E′.
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Figure A.2: If the link (a, a′) is removed the graph loose the 3-connectedness
and the generic global rigidity. From [56].

To conclude this section we give a theorem that completely characterize
the generically globally rigid graphs for d = 2.

Theorem A.3 (Hendrickson, Jackson, Jordan, [104, 105]). A graph G with
more than 3 vertices is generically globally rigid in R2 if and only if it is
3-connected and the removal of any single edge results in a graph that is also
generically (infinitesimally) rigid in R2.

For d ≥ 3, Thm. A.3 extends only as a necessary but not sufficient
condition. Given d, we say that a graph G is redundantly rigid if the removal
of any single edge results in a graph that is also generically (infinitesimally)
rigid in Rd

Theorem A.4 (Hendrickson, Connelly [104, 106]). If a graph G with more
than d+ 1 vertices is generically globally rigid in d-space, then G is at least
d + 1 connected and redundantly rigid. In all dimensions d ≥ 3, there are
redundantly rigid and at least d+1 connected graphs that are not generically
globally rigid.

A.2.2 Network localization problem with bearing informa-
tion (and known heading)

This problem is defined in [107, 57, 108], and it refers to the planar case.
As in the distance case, first we describe the problem, second we give some
definition that are related to the problem and some results on the solvability.

Problem A.3. We are given m beacon positions p1, . . . , pm in R2 and a
unit vector ex representing a common heading of n − m robots. We de-
note with pm+1, . . . , pn the unknown positions of the robots. In addition
we are given the angles ∠(pj − pj , ex) for every couple (i, j) belonging to
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a certain link set B ⊂ {1, . . . , n} × {1, . . . , n} (notice that, by default,
{1, . . . ,m}×{1, . . . ,m} ⊂ B). We want to exactly reconstruct the unknown
robot positions pm+1, . . . , pn.

Notice that we can consider the set of links B symmetric, in fact, since
∠(pi − pj , ex) = π + ∠(pj − pi, ex), the knowledge of ∠(pj − pj , ei) implies
the knowledge of ∠(pi − pi, ex).

Problem A.4. Consider the same setup of the Prob. A.3 without beacons,
i.e., with m = 0. We want to reconstruct, up to a dilation,3 the unknown
robot positions p1, . . . , pn.

The Prob. A.2 emerge from the observation that if we apply an dilation
to a vector of positions p, then all the bearings remain the same. Hence a
complete knowledge of all the bearing between the robot positions, without
any beacons, allows the reconstruction of the robot positions only up to a
dilation.

Remark It is clear that the the solvability of the Prob. A.3 and A.4 requires
an instantaneous localizability property of the system.

Definition A.7 (Global parallel rigidity). A vector of n positions (p1 . . . pn)
and an undirected graph G = ({1, . . . , n}, B) are globally parallel rigid if
it is possible to reconstruct, up to a dilation, the unknown robot positions
p1, . . . , pn, knowing every bearing ∠(pj−pi, ex), respect to a common heading
ex, for every couple (i, j) belonging to B.

The Prob. A.3 is solvable if and only if there are at least 2 bea-
cons in general position,4 and the positions p1, . . . , pn with the graph G =
({1, . . . , n}, B) are globally parallel rigid. The Prob. A.4 is solvable if and
only if the positions p1, . . . , pn with the graph G = ({1, . . . , n}, B) are glob-
ally parallel rigid. Hence, the solvability of the Prob. A.3 and A.4 depends
on the global parallel rigidity of the pair positions-measuring graph. Instead
of characterizing the globally parallel rigid pairs of vectors of positions and
graphs, we want characterize the measuring graphs that are parallel rigid
with (almost) all the vectors of positions. This kind of properties are called
‘generic’, and can be usually checked with a combinatorial test on the graph.

Definition A.8 (Generic global parallel rigidity). An undirected graph G =
({1, . . . , n}, B) is generically globally parallel rigid if, for all p in (an open
dense subset of) Rdn, p and G are globally parallel rigid.

3A parallel line preserving map, i.e. a similarity, i.e., a translation plus an homothety.
4Not coincident.
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We denote with k the number of measured links, i.e., cardinality of B.
Consider the function φB : Rnd →]−π, π]k mapping the vector of n positions
p, to the vector of k measured bearings, i.e., the function defined by:

φij(p) = ∠(pj − pi, ex) ∀(i, j) ∈ B, (A.5)

The set φ−1
B (φB(p)) is a smooth manifold, denoted withAL(p), and is formed

by all the vectors q ∈ Rdn satisfying the constraint equations:

(pj − pj)⊥
T

(qi − qj) = 0 ∀(i, j) ∈ B. (A.6)

which force, for each couple (i, j) ∈ B, the vector qi − qj to have the same
direction of the vector pi − pj .

Taking the derivative of the Eq. (A.6) we have the corresponding linear
equations in the tangent space:

(pi − pj)⊥
T

(q̇j − q̇i) = 0 ∀(i, j) ∈ B (A.7)

The Eq. A.7 means that the difference between the velocity of two linked
positions must be ‘parallel’ to the link. The Equations A.7 can be written
in a matrix equation:

RB(p)q̇ = 0, (A.8)

where RB(p) is called parallel rigidity matrix. Note that the Eq. A.6 also
can be written with the same matrix equation:

RB(p)q = 0, (A.9)

Since the tangent vectors to the homotheties must satisfy Eq. A.8, the
rank of RB(p) must be less or equal 2n− 3.5

Definition A.9 ((Infinitesimal) parallel rigidity). A vector of n positions
p and an undirected graph G = ({1, . . . , n}, B) are (infinitesimally) parallel
rigid if the rank of the parallel rigidity matrix RB(p) is 2n− 3.

Definition A.10 (Generic (infinitesimal) parallel rigidity). An undirected
graph G = ({1, . . . , n}, B) is generically (infinitesimally) parallel rigid if the
rank of the parallel rigidity matrix RB(p) is 2n − 3 for all p in (an open
dense subset of) Rdn.

Since the this rank condition is equivalent to global parallel rigidity, in
opposition with the distance case, the global concept of rigidity coincides
with the infinitesimal one.

5A dilation, is like a congruence with an dilation instead of a rotation.
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Duality Any statement for the localization problem with distances can be
given for the same problem with bearing where distances are switched with
bearing. This process preserves the solution space (just turning the solution
by π/2).

Theorem A.5. An undirected graph G = ({1, . . . , n}, B) is generically (in-
finitesimally) rigid in R2 if and only if B contains a subset B consisting
of 2n − 3 edges with the property that, for any nonempty subset B′ ⊂ B,
the number of edges in E′ cannot exceed 2n′ − 3, where n′ is the number of
vertices of G which are endpoints of edges in E′.

A.2.3 Network localization problem with distance and bear-
ing information (and known heading)

This problem is defined in [107, 57, 108], and it refers to the planar case.

Problem A.5. We are given m beacon positions p1, . . . , pm in R2 and
a unit vector ex representing a common heading of n − m robots. We
denote with pm+1, . . . , pn the unknown positions of the robots. In addi-
tion we are given the distances |pj − pj | for every couple (i, j) belonging
to a certain distance-link set L ⊂ {1, . . . , n} × {1, . . . , n}, and the an-
gles ∠(pj − pj , ex) for every couple (i, j) belonging to a certain bearing-
link set B ⊂ {1, . . . , n} × {1, . . . , n} (notice that, by default, {1, . . . ,m} ×
{1, . . . ,m} ⊂ L and {1, . . . ,m} × {1, . . . ,m} ⊂ B). We want to exactly
reconstruct the unknown robot positions pm+1, . . . , pn.

Problem A.6. Consider the same setup of the Prob. A.3 without beacons,
i.e., with m = 0. We want to reconstruct, up to a translation, the unknown
robot positions p1, . . . , pn.

The Prob. A.6 emerge from the observation that if we apply an transla-
tion to a vector of positions p, then all the distances and the bearings remain
the same. Hence a complete knowledge of all the distances and the bearings
between the robot positions, without any beacons, allows the reconstruction
of the robot positions only up to a translation.

Similar definition for rigidity up to a translation.

Theorem A.6. A graph G = ({1, . . . , n}, L,B) is generically rigid up to a
translation in 2-space if and only if the following conditions hold:

1. |L ∪B| = 2n− 2

2. for all subsets V ′ of vertices: |L′ ∪B′| ≤ 2n′ − 2
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3. for all subsets V ′ of at least two vertices: |B′| ≤ 2n′ − 3

4. for all subsets V ′ of at least two vertices: |L′| ≤ 2n′ − 3

No results on global rigidity. The previous hold if there is only a distance
measure. And there is also a conjecture (Conjecture 3.1).

A.2.4 Network localization problem with bearing informa-
tion (unknown heading)

The problem is defined in [108] but setup is not clear.

Problem A.7. We are given m beacon positions p1, . . . , pm in R2. We
denote with pm+1, . . . , pn the unknown positions of the robots, and with
e1, . . . , en the unknown headings of the beacons and the robots. We are given
the bearings ∠(pj − pj , ei) for every couple (i, j) belonging to a certain link
set B ⊂ {1, . . . , n}×{1, . . . , n}. We want to exactly reconstruct the unknown
robot positions pm+1, . . . , pn.

Notice that in this case the set B does not implicitly contains the set
{1, . . . ,m}×{1, . . . ,m} because the headings of the beacons are not known.
Furthermore, notice that we can not consider the set of links B symmetric,
as for problems A.1, A.2, A.3, and A.4. In fact, since ∠(pi − pj , ej) =
∠(pj − pj , ei) − ∠(ej , ei) + π, but we do not know ∠(ej , ei), the knowledge
of ∠(pj − pj , ei) does not imply the knowledge of ∠(pi − pj , ej).
Problem A.8. Consider the same setup of the Prob. A.7 without beacons,
i.e., with m = 0. We want to reconstruct, up to a dilation and a rotation,6

the unknown robot positions p1, . . . , pn.

The Prob. A.2 emerge from the observation that if we apply an dilation
(translation plus homothety) to a vector of positions p or the same rotation
to all the headings e1, . . . , en, and all the positions p1, . . . , pn, then all the
bearings remain the same. Hence a complete knowledge of all the bearings
between the robot positions, without any beacons, allows the reconstruction
of the robot positions only up to a dilation and a rotation. Notice that the
reflections are excluded, since a reflection swap the signs of bearings.

Definition A.11 (Global parallel directed rigidity). A vector of n positions
(p1 . . . pn) and an directed graph G = ({1, . . . , n}, B) are globally parallel di-
rected rigid if it is possible to reconstruct, up to a dilation and a rotation,
the unknown robot positions p1, . . . , pn, knowing every bearing ∠(pj−pi, ei),
respect to a set of unknown headings e1, . . . , en, for every couple (i, j) be-
longing to B.

6A translation plus an homothety plus a rotation.
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Definition A.12 (Generic parallel directed rigidity). A directed graph G =
({1, . . . , n}, B) is generically parallel directed rigid in R2 if is parallel directed
rigid with all p in (an open dense subset of) R2n.

Theorem A.7. (Not sure) An directed graph G = ({1, . . . , n}, B) is Generic
parallel directed rigidity in R2 if and only if the following holds:

1. ∀i ∈ {1, . . . , n}, ∃j, k with j 6= k such that (k, i) ∈ B and (j, i) ∈ B

2. the underlying undirected link set of B contains a subset B′ consisting
of 2n−3 edges with the for any nonempty subset B′′ ⊂ B′, the number
of edges in E′′ cannot exceed 2n′′−3, where n′′ is the number of vertices
of G which are endpoints of edges in E′′.

A.2.5 Orientation and Frame network localization problems
with undirected bearing information

These problems are defined in [58].

Problem A.9 (Heading). We are given a beacon position p1 in R2 and its
heading e1. We denote with p2, . . . , pn the unknown positions of the robots,
and with e2, . . . , en the unknown headings. In addition we are given the bear-
ings ∠(pj − pj , ei) for every couple (i, j) belonging to a certain symmetric7

link set B ⊂ {1, . . . , n} × {1, . . . , n}. We want to exactly reconstruct the
unknown headings e2, . . . , en.

Problem A.10. Consider the same setup of the Prob. A.9 without beacon,
i.e., with unknown p1 and e1. We want to reconstruct, up to a rotation, the
unknown robot headings e1, . . . , en.

The Prob. A.10 emerge from the observation that if we apply rotation
to all the positions p1, . . . , pn and all the headings e1, . . . , en, then all the
bearings remain the same. Hence a complete knowledge of all the bearings
between the robot positions, without any beacons, allows the reconstruction
of the robot headings only up to a rotation.

The following result is straightforward [58]:

Proposition A.2. The Problems A.9 and A.10 are solvable if and only if
the graph G = ({1, . . . , n}, B) is connected.

Since the knowledge of all the headings is equivalent to the knowledge of
a common heading, problems A.5 and A.9 can be merged into the following.

7(i, j) ∈ B ⇔ (j, i) ∈ B.
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Problem A.11 (Frame). We are given a beacon position p1 in R2 and its
heading e1. We denote with p2, . . . , pn the unknown positions of the robots,
and with e2, . . . , en the unknown headings. In addition we are given the
distances |pi − pj | for every couple (i, j) belonging to a certain distance-link
set L ⊂ {1, . . . , n}×{1, . . . , n}, and the angles ∠(pj−pj , ex) for every couple
(i, j) belonging to a certain symmetric bearing-link set B ⊂ {1, . . . , n} ×
{1, . . . , n} We want to exactly reconstruct the unknown headings e2, . . . , en
and positions p2, . . . , pn.

Notice that [58] the Prob.A.11 is not solvable if B = ∅. In fact, no
heading information can be retrieved from the distance measurements. In
addition, the following result is also straightforward [58]:

Proposition A.3. If the graph G = ({1, . . . , n}, B) is generically rigid and
|L| ≥ 1 then the Prob. A.11 is solvable.
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Appendix B

Multi-robot Integrated
Platform

We have developed the Multi-robot Integrated Platform (MIP), a C++ soft-
ware aimed to develop control and estimation robotics algorithms. A good
level of modularity, the use of abstracted low-level robot interfaces and the
fact that a different instance of the same MIP executable controls each robot
guaranties software reusability and easiness of embedding .

MIP provides both an inter-robot and an intra-robot IP-based commu-
nication module. They are first mandatory for multi-robot applications and
for splitted istantiations of the robot control process.

MIP has the following Components :

Baselib basic library for general purpuse and robotics functionalities, e.g.,
pose, laser scan, IP communication, class serialization, multithreading,
file managment, user option managment, etc...

Algorithms class collection of robotics algorithms, e.g., geometric and sen-
sor data processing (Voronoi diagrams, feature extraction,...), estimate
(Kalman filetring, particle filtering,...), control (trajectory control, ob-
stacle avoidance,...).

Resources classes derived from the Resource class providing interface mod-
ules respect to the hardware or the MIP platform facilities (motors,
sensors, communication modules, keyboard, logging/tracing, 2D/3D
display,...).

Tasks classes derived from the Task class which actualy perform the robot
activities that must be execute in parallel, glueing algorithms and re-
sources. Example of activities are: tracking, deployment, target navi-
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Figure B.1: A block scheme of MIP.

gation, mutual localization, entrapment, exploration,... Each task is a
finite state machine that uses the algorithms and the resources to gain
its objective. A task can benefit of outputs or provide inputs from/to
other concurrent scheduled tasks. The inter-task data exchange pass
through the resources, for this reason the resources are also a shared
memory for tasks.

Main main of the program. Here is created and launched the Scheduler.
The scheduler executes ciclically a list of task, checking the timing
correctness and managing the frequency of execution, as requested
from every task. The Scheduler is not preemptive.

In general a MIP program acts, as depicted in Fig. B.1,in the following
way:

1. The scheduler instantiates resources needed by the tasks (specified in
a configuration file).

2. The scheduler executes cyclically the tasks.

3. Some task gets sensorial and communication data provided by the
resources, processes them by mean the algorithms.
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4. Some task uses the resources to interact with the uman operator ,
e.g.,a visual feedback or a keyboard input.

5. Some task executes the control law sending commands to the resources,
e.g, to the motor module.

It has been used, among the others, for the following works:

• Mapping

• ScanMatching

• Mutual Localization

• Joystick

• Deployment

• Line Following

• Entrapment

• SRG Demo

• Particle Filter Mutual Localization

• Tracciatore

• Quadrotor

• Goal-based navigation

For a complete documentation refer to [54].
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