
1

Decentralized Rigidity Maintenance Control with
Range Measurements for Multi-Robot Systems

Daniel Zelazo, Antonio Franchi, Heinrich H. Bülthoff, and Paolo Robuffo Giordano

Abstract—This work proposes a fully decentralized strategy
for maintaining the formation rigidity of a multi-robot system
using only range measurements, while still allowing the graph
topology to change freely over time. In this direction, a first
contribution of this work is an extension of rigidity theory to
weighted frameworks and the rigidity eigenvalue, which when
positive ensures the infinitesimal rigidity of the framework. We
then propose a distributed algorithm for estimating a common
relative position reference frame amongst a team of robots with
only range measurements in addition to one agent endowed with
the capability of measuring the bearing to two other agents. This
first estimation step is embedded into a subsequent distributed
algorithm for estimating the rigidity eigenvalue associated with
the weighted framework. The estimate of the rigidity eigenvalue is
finally used to generate a local control action for each agent that
both maintains the rigidity property and enforces additional con-
straints such as collision avoidance and sensing/communication
range limits and occlusions. As an additional feature of our
approach, the communication and sensing links among the
robots are also left free to change over time while preserving
rigidity of the whole framework. The proposed scheme is then
experimentally validated with a robotic testbed consisting of 6
quadrotor UAVs operating in a cluttered environment.

Index Terms—graph rigidity, decentralized control, multi-
robot, distributed algorithms, distributed estimation.

I. INTRODUCTION

The coordinated and decentralized control of multi-robot
systems is an enabling technology for a variety of applications.
Multi-robot systems benefit from an increased robustness
against system failures due to their ability to adapt to dy-
namic and uncertain environments. There are also numerous
economic benefits by considering the price of small and cost-
effective autonomous systems as opposed to their more expen-
sive monolithic counterparts. Currently, there is a great interest
in implementing these systems from deep space interferometry
missions and distributed sensing and data collection, to civilian
search and rescue operations, among others (Akyildiz et al.,
2002; Anderson et al., 2008a; Bristow et al., 2000; Lindsey
et al., 2011; Mesbahi and Egerstedt, 2010; Michael et al.,
2009; Murray, 2006).

D. Zelazo is with the Faculty of Aerospace Engineering, Technion - Israel
Institute of Technology, Haifa 32000, Israel dzelazo@technion.ac.il

A Franchi is with the Centre National de la Recherche Scien-
tifique (CNRS), Laboratoire d’Analyse et d’Architecture des Systèmes
(LAAS), 7 Avenue du Colonel Roche, 31077 Toulouse CEDEX 4, France.
antonio.franchi@laas.fr

H. H. Bülthoff is with the Max Planck Institute for Biological Cybernetics,
Spemannstraße 38, 72076 Tübingen, Germany hhb@tuebingen.mpg.de.
H. H. Bülthoff is additionally with the Department of Brain and Cognitive
Engineering, Korea University, Seoul, 136-713 Korea.

P. Robuffo Giordano is with the CNRS at Irisa and Inria Rennes
Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France
prg@irisa.fr.

The challenges associated with the design and implemen-
tation of multi-agent systems range from hardware and soft-
ware considerations to the development of a solid theoretical
foundation for their operation. In particular, the sensing and
communication capabilities of each agent will dictate the
distributed protocols used to achieve team objectives. For
example, if each agent in a multi-robot system is equipped
with a GPS-like sensor, then tasks such as formation keeping
or localization can be trivially accomplished by communica-
tion between robots of their state information in a common
world-frame. However, in applications operating in harsher
environments, i.e., indoors, underwater, or in deep-space, GPS
is not a viable sensing option (Scaramuzza et al., 2014).
Indeed, in these situations, agents must rely on sensing without
knowledge of a common inertial reference frame (Franchi
et al., 2012a). In these scenarios, relative sensing can provide
accurate measurements of, for example, range or bearing, but
without any common reference frame.

A further challenge related to the sensing capabilities of
multi-robot systems is the availability of these measurements.
Sensing constraints such as line-of-sight requirements, range,
and power limitations introduce an important system-level
requirement, and also lead to an inherently time-varying
description of the sensing network. Successful decentralized
coordination protocols, therefore, must also be able to manage
these constraints.

These issues lead to important architectural requirements for
the sensing and communication topology in order to achieve
the desired higher level tasks (i.e., formation keeping or local-
ization). The connectivity of the sensing and communication
topology is one such property that has received considerable
attention in the multi-robot communities (Robuffo Giordano
et al., 2011, 2013; Ji and Egerstedt, 2007). However, con-
nectivity alone is not sufficient to perform certain tasks when
only relative sensing is used. For these systems, the concept
of rigidity provides the correct framework for defining an
appropriate sensing and communication topology architecture.
Rigidity is a combinatorial theory for characterizing the “stiff-
ness” or “flexibility” of structures formed by rigid bodies
connected by flexible linkages or hinges.

The study of rigidity has a rich history with contributions
from mathematics and engineering disciplines (Connelly and
Whiteley, 2009; Jacobs, 1997; Krick et al., 2009; Laman,
1970; Shames et al., 2009; Tay and Whiteley, 1985; Eren
et al., 2004). Recently, rigidity theory has taken an outstanding
role in the motion control of mobile robots. The rigidity
framework allows for applications, such as formation control,
to employ control algorithms relying on only relative distance
measurements, as opposed to relative position measurements

ar
X

iv
:1

30
9.

05
35

v3
 [

cs
.S

Y
]

 4
 S

ep
 2

01
4

mailto:antonio.franchi@laas.fr
mailto:hhb@tuebingen.mpg.de

2

from a global or relative internal frame (Anderson et al.,
2008a,b; Baillieul and McCoy, 2007; Krick et al., 2009; Olfati-
Saber and Murray, 2002; Smith et al., 2007). For example, in
(Krick et al., 2009) it was shown that formation stabilization
using only distance measurements can be achieved only if
rigidity of the formation is maintained. Moreover, rigidity
represents also a necessary condition for estimating relative
positions using only relative distance measurements (Aspnes
et al., 2006; Calafiore et al., 2010a).

In a broader context, rigidity turns out to be an important
architectural property of many multi-agent systems when a
common inertial reference frame is unavailable. Applications
that rely on sensor fusion for localization, exploration, map-
ping and cooperative tracking of a target, all can benefit
from notions in rigidity theory (Shames et al., 2009; Aspnes
et al., 2006; Calafiore et al., 2010b; Williams et al., 2014; Wu
et al., 2010). The concept of rigidity, therefore, provides the
theoretical foundation for approaching decentralized solutions
to the aforementioned problems using distance measurement
sensors, and thus establishing an appropriate framework for
relating system level architectural requirements to the sensing
and communication capabilities of the system.

A. Main Contributions

In general, rigidity as a property of a given formation
(i.e., of the robot spatial arrangement) has been studied from
either a purely combinatorial perspective (Laman, 1970), or by
providing an algebraic characterization via the state-dependent
rigidity matrix (Tay and Whiteley, 1985). In our previous work
(Zelazo et al., 2012), we introduced a related matrix termed
the symmetric rigidity matrix. A main result of (Zelazo et al.,
2012) was to provide a necessary and sufficient conditions for
rigidity in the plane in terms of the positivity of a particular
eigenvalue of the symmetric rigidity matrix; this eigenvalue
we term the rigidity eigenvalue. This result is in the same
spirit as the celebrated Fiedler eigenvalue1 and its relation to
the connectivity of a graph (Godsil and Royle, 2001). A first
contribution of this work is the extension of the results on
the rigidity eigenvalue provided in (Zelazo et al., 2012) to
3-dimensional frameworks, as well as the introduction of the
concept of weighted rigidity and the corresponding weighted
rigidity matrix. This notion allows for the concept of rigidity
to include state-dependent weight functions on the edges of
the graph, weights which can then be exploited to take into
account inter-agent sensing and communication constraints
and/or requirements.

A gradient-based rigidity maintenance action aimed at
‘maximizing’ the rigidity eigenvalue was also proposed in (Ze-
lazo et al., 2012). However, while this gradient control law was
decentralized in structure, there was still a dependence on the
availability of several global quantities, namely, of the robot
relative positions in some common reference frame, of the
value of the rigidity eigenvalue, and of the rigidity eigenvector
associated with the rigidity eigenvalue. A main contribution of
this work is then the development of the machinery needed to
distributedly estimate all these global quantities by resorting

1The second smallest eigenvalue of the graph Laplacian matrix.

to only relative distance measurements among neighbors, so
as to ultimately allow for a fully distributed and range-based
implementation of the rigidity maintenance controller. To this
end, we first show that if the formation is infinitesimally rigid,
it is possible to distributedly estimate the relative positions of
neighboring robots in a common reference frame from only
range-based measurements. Our approach relies explicitly on
the form of the symmetric rigidity matrix developed here,
in contrast to other approaches focusing on distributed im-
plementations of centralized estimation schemes, such as a
Gauss-Newton approach used in Calafiore et al. (2010b).This
first step is then instrumental for the subsequent development
of the distributed estimation of the rigidity eigenvalue and
eigenvector needed by the rigidity gradient controller. This
is obtained by exploiting an appropriate modification of the
power iteration method for eigenvalue estimation following
from the works (Robuffo Giordano et al., 2011; Yang et al.,
2010) for the distributed estimation of the connectivity eigen-
value of the graph Laplacian and now applied to rigidity.
Finally, we show how to exploit the weights on the graph edges
to embed constraints and requirements such as inter-robot
and obstacle avoidance, limited communication and sensing
ranges, and line-of-sight occlusions, into a unified gradient-
based rigidity maintenance control law.

Our approach, therefore, can be considered as a contribution
to the general problem of distributed strategies for maintaining
certain architectural features of a multi-robot system (i.e. con-
nectivity or rigidity) with minimal sensing requirements (only
relative distance measurements). Additionally, we also provide
a thorough experimental validation of the entire framework by
employing a group of 6 quadrotor UAVs as robotic platforms
to demonstrate the feasibility of our approach in real-world
conditions.

The organization of this paper is as follows. Section I-B
provides a brief overview of some notation and fundamental
theoretical properties of graphs. In Section II, the theory
of rigidity is introduced, and our extension of the rigidity
eigenvalue to 3-dimensional weighted frameworks is given.
We then proceed to present a general strategy for a distributed
rigidity maintenance controller in Section III. This section
will provide details on certain operational constraints of the
multi-robot team and how these constraints can be embedded
in the control law. This section also highlights the need
to develop distributed algorithms for estimating a common
reference frame for the team, outlined in Section IV, and
estimation of the rigidity eigenvalue and eigenvector, detailed
in Section V. The results of the previous sections are then
summarized in Section VI where the full distributed rigidity
maintenance controller is given. The applicability of these
results are then experimentally demonstrated on a robotic
testbed consisting of 6 quadrotor UAVs operating in a obstacle
populated environment. Details of the experimental setup and
results are given in Section VII. Finally, some concluding
remarks are offered in Section VIII.

B. Preliminaries and Notations
The notation employed is standard. Matrices are denoted

by capital letters (e.g., A), and vectors by lower case letters

3

(e.g., x). The ij-th entry of a matrix A is denoted [A]ij . The
rank of a matrix A is denoted rk[A]. Diagonal matrices will
be written as D = diag{d1, . . . , dn}; this notation will also
be employed for block-diagonal matrices. A matrix and/or a
vector that consists of all zero entries will be denoted by 0;
whereas, ‘0’ will simply denote the scalar zero. Similarly, the
vector 1n denotes the n× 1 vector of all ones. The n × n
identity matrix is denoted as In. The set of real numbers will
be denoted as R, and ‖ · ‖ denotes the standard Euclidean
2-norm for vectors. The Kronecker product of two matrices A
and B is written as A⊗B (Horn and Johnson, 1991).

Graphs and the matrices associated with them will be widely
used in this work; see, e.g., (Godsil and Royle, 2001). An
undirected (simple) weighted graph G is specified by a vertex
set V , an edge set E whose elements characterize the incidence
relation between distinct pairs of V , and diagonal |E| × |E|
weight-matrix W , with [W]kk ≥ 0 the weight on edge ek ∈ E .
In this work we consider only finite graphs and denote the
cardinality of the node and edge sets as |V| = n and |E| = m.
Two vertices i and j are called adjacent (or neighbors) when
{i, j} ∈ E .The neighborhood of the vertex i is the set Ni =
{j ∈ V | {i, j} ∈ E}. An orientation of an undirected graph G
is the assignment of directions to its edges, i.e., an edge ek is
an ordered pair (i, j) such that i and j are, respectively, the
initial and the terminal nodes of ek.

The incidence matrix E(G) ∈ Rn×m is a {0,±1}-matrix
with rows and columns indexed by the vertices and edges
of G such that [E(G)]ik has the value ‘+1’ if node i is the
initial node of edge ek, ‘−1’ if it is the terminal node, and
‘0’ otherwise. The degree of vertex i, di, is the cardinality of
the set of vertices adjacent to it. The degree matrix, ∆(G),
and the adjacency matrix, A(G), are defined in the usual
way (Godsil and Royle, 2001). The (graph) Laplacian of
G, L(G) = E(G)E(G)T = ∆(G) − A(G), is a positive-
semidefinite matrix. One of the most important results from
algebraic graph theory in the context of collective motion
control states that a graph is connected if and only if the
second smallest eigenvalue of the Laplacian is positive (Godsil
and Royle, 2001).

Table I provides a summary of the notations used throughout
the document.

II. RIGIDITY AND THE RIGIDITY EIGENVALUE

In this section we review the fundamental concepts of graph
rigidity (Graver et al., 1993; Jackson, 2007). A contribution
of this work is an extension of our previous results on
the concepts of the symmetric rigidity matrix and rigidity
eigenvalue for 3-dimensional ambient spaces (Zelazo et al.,
2012), and the notion of weighted frameworks.

A. Graph Rigidity and the Rigidity Matrix

We consider graph rigidity from what is known as a d-
dimensional bar-and-joint framework. A framework is the pair
(G, p), where G = (V, E) is a graph, and p : V → Rd
maps each vertex to a point in Rd. In this work we consider
frameworks in a three-dimensional ambient space, i.e., d = 3.
Therefore, for node u ∈ V , p(u) =

[
pxu pyu pzu

]T
is

the position vector in R3 for the mapped node. We refer to
the matrix p(V) =

[
p(v1) · · · p(vn)

]T ∈ Rn×3 as the
position matrix. We now provide some basic definitions.

Definition II.1. Frameworks (G, p0) and (G, p1) are equiva-
lent if ‖p0(u)− p0(v)‖ = ‖p1(u)− p1(v)‖ for all {u, v} ∈ E ,
and are congruent if ‖p0(u)− p0(v)‖ = ‖p1(u)− p1(v)‖ for
all {u, v} ∈ V .

Definition II.2. A framework (G, p0) is globally rigid if every
framework which is equivalent to (G, p0) is congruent to
(G, p0).

Definition II.3. A framework (G, p0) is rigid if there exists an
ε > 0 such that every framework (G, p1) which is equivalent
to (G, p0) and satisfies ‖p0(v)− p1(v)‖ < ε for all v ∈ V , is
congruent to (G, p0).

Definition II.4. A minimally rigid graph is a rigid graph such
that the removal of any edge results in a non-rigid graph.

Figure 1 shows three frameworks illustrating the above
definitions. The frameworks in Figure 1(a) are both minimally
rigid and are equivalent to each other, but are not congruent,
and therefore not globally rigid. By adding an additional edge,
as in Figure 1(b) (the edge {v4, v5}), the framework becomes
globally rigid. The key feature of global rigidity, therefore, is
that the distances between all node pairs are maintained for
different framework realizations, and not just those defined by
the edge set.

By parameterizing the position map by a positive scalar
representing time, we can also consider trajectories of a frame-
work. That is, the position map now becomes p : V×R→ R3

and is assumed to be continuously differentiable with respect
to time. We then explicitly write (G, p, t) so as to represent
a time-varying framework. In this direction, we can define a

TABLE I
NOTATIONS

G = (V, E) a graph defined by its vertex and edge sets
Ni(t) time-varying neighborhood of node vi ∈ V
p(i) position vector in R3 of the mapped node vi ∈ V;
psi s ∈ {x, y, z} coordinate of position vector for node i
p(V) stacked position matrix of all nodes (Rn×3)
ξ(i) velocity vector in R3 of the node vi ∈ V

(G, p,W) a weighted framework
R(p,W) rigidity matrix of a weighted framework
R symmetric rigidity matrix of a weighted framework

λ7, v7 (v) rigidity eigenvalue and eigenvector
`ij distance between nodes vi, vj ∈ V , i.e., ‖p(vi)− p(vj)‖
λ̂i7 agent i’s estimate of the rigidity eigenvalue
v̂si s-coordinate of the agent i estimation

of the rigidity eigenvector
p̂i,c agent i estimate of relative position vector pi − pc
p̂ stacked vector of the relative

position vector estimate pi − pc, i = 1 . . . n

avg(x) the average of a vector x ∈ Rn, avg(x) = 1
n

∑n
i=1 xi

vxi agent i estimate of avg(v̂x)
v2x
i agent i estimate of avg(v̂x ◦ v̂x)
zxyi agent i estimate of avg(p̂y,c ◦ v̂x − p̂x,c ◦ v̂y)
zxzi agent i estimate of avg(p̂z,c ◦ v̂x − p̂x,c ◦ v̂z)
zyzi agent i estimate of avg(p̂y,c ◦ v̂z − p̂z,c ◦ v̂y)

4

v4

v1
v2

v5

v3

v3

v1 v2

v4

v1
v2

v5

v3

v3

v1 v2

(a) Two equivalent minimally rigid frameworks in R3. The framework on the
right side is obtained by the reflection of the position of v5 with respect to
the plane characterized by the positions of v1, v2, and v3 (as illustrated in
grey).

v4

v1
v2

v5

v3

v3

v1 v2

(b) An infinitesimally and globally
rigid framework in R3.

v1
v2

v3
{v1, v2} {v2, v3}

{v1, v3}

(c) A non-infinitesimally rigid frame-
work (note that vertexes v1 and v3 are
connected).

Fig. 1. Examples of rigid and infinitesimally rigid frameworks in R3. Notice
that in Figs. (a) and (b) the 3D points associated to each vertex do not lie on
the same plane, while in Fig. (c) the 3D points are aligned.

set of trajectories that are edge-length preserving, in the sense
that for each time t ≥ t0, the framework (G, p, t) is equivalent
to the framework (G, p, t0). More formally, an edge-length
preserving framework must satisfy the constraint

‖p(v, t)− p(u, t)‖ = ‖p(v, t0)− p(u, t0)‖ = `vu, ∀t ≥ t0 (1)

and for all {v, u} ∈ E .
One can similarly assign velocity vectors ξ(u, t) ∈ R3 to

each vertex u ∈ V for each point in the configuration space
such that

(ξ(u, t)− ξ(v, t))T (p(u, t)− p(v, t)) = 0, ∀ {u, v} ∈ E . (2)

Note that this relation can be obtained by time-differentiation
of the length constraint described in (1). These motions are
referred to as infinitesimal motions of the mapped vertices
p(u, t), and one has

ṗ(u, t) = ξ(u, t). (3)

For the remainder of this paper, we drop the explicit inclusion
of time for frameworks and simply write (G, p) and p(u)
and ξ(u) for the time-varying positions and velocities. The
velocity vector ξ(u) will be treated as the agent velocity input
throughout the rest of the paper (see Section III).

Infinitesimal motions of a framework can be used to define
a stronger notion of rigidity.

Definition II.5. A framework is called infinitesimally rigid if
every possible motion that satisfies (2) is trivial (i.e., consists
of only global rotations and translations of the whole set of
points in the framework).

An example of an infinitesimally rigid graph in R3 is shown
in Figure 1(b). Furthermore, note that infinitesimal rigidity
implies rigidity, but the converse is not true (Tay and Whiteley,
1985), see Figure 1(c) for a rigid graph in R3 that is not
infinitesimally rigid.

The infinitesimal motions in (2) define a system of m
linear equations in the vector of unknown velocities ξ =
[ξT (v1) . . . ξT (vn)]T ∈ R3n. This system can be equivalently
written as the linear matrix equation

R(p)ξ = 0,

where R(p) ∈ Rm×3n is called rigidity matrix (Tay and
Whiteley, 1985). Each row of R(p) corresponds to an edge
e = {u, v} and the quantity (p(u) − p(v)) represents the
nonzero coefficients for that row. For example, the row corre-
sponding to edge e has the form
[−0− (p(u)− p(v))T︸ ︷︷ ︸

vertex u

−0− (p(v)− p(u))T︸ ︷︷ ︸
vertex v

−0−]
.

The definition of infinitesimal rigidity can then be restated in
the following form:

Lemma II.6 (Tay and Whiteley (1985)). A framework (G, p)
in R3 is infinitesimally rigid if and only if rk[R(p)] = 3n−6.

Note that, as expected from Definition II.5, the six-
dimensional kernel of R(p) for an infinitesimally rigid graph
only allows for six independent feasible framework motions,
that is, the above-mentioned collective roto-translations in R3

space. Note also that, despite its name, the rigidity matrix is
actually characterizing infinitesimal rigidity rather than rigidity
of a framework.

B. Rigidity of Weighted Frameworks

We now introduce an important generalization to the con-
cept of rigidity and the rigidity matrix by introducing weights
to the framework. Indeed, as discussed in the introduction,
our aim is to propose a control law able to not only maintain
infinitesimal rigidity of the formation as per Definition II.5, but
to also concurrently manage additional constraints typical of
multi-robot applications such as collision avoidance and lim-
ited sensing and communication.This latter objective will be
accomplished via the introduction of suitable state-dependent
weights, thus requiring an extension of the traditional results
on rigidity to a weighted case.

Definition II.7. A d-dimensional weighted framework is the
triple (G, p,W), where G = (V, E) is a graph, p : V → Rd
is a function mapping each vertex to a point in Rd, and W :
(G, p) → Rm is a function of the framework that assigns a
scalar value to each edge in the graph.

Using this definition, we can also define the corresponding
weighted rigidity matrix, R(p,W) as

R(p,W) = W (G, p)R(p), (4)

where W (G, p) ∈ Rm×m is a diagonal matrix containing the
elements of the vector W(G, p) on the diagonal. Often we

5

will simply refer to the weight matrix W (G, p) as W when
the underlying graph and map p is understood.

Remark II.8. Note that the rigidity matrix R(p) can also be
considered as a weighted rigidity matrix with W (G, p) = I .
Another useful observation is that the unweighted framework
(G, p) can also be cast as a weighted framework (Kn, p,W),
where Kn is the complete graph on n nodes and [W (G, p)]ii is
1 whenever ei ∈ E(Kn) is also an edge in G, and 0 otherwise.

Weighted rigidity can lead to a slightly different interpre-
tation of infinitesimal rigidity, where the introduced weights
might cause the rigidity matrix to lose rank. That is, an
unweighted framework might be infinitesimally rigid, whereas
a weighted version might not. This observation is trivially
observed by considering a minimally infinitesimally rigid
framework (G, p) and introducing a weight with a 0 entry on
any edge. We formalize this with the following definitions.

Definition II.9. The unweigted counterpart of a weighted
framework (G, p,W) is the framework (Ĝ, p) where the graph
Ĝ = (V, Ê) is such that Ê ⊂ E and the edge ei ∈ E is also an
edge in Ĝ if and only if the corresponding weight is non-zero
(i.e. [W (G, p)]ii 6= 0).

Definition II.10. A weighted framework is called infinites-
imally rigid if its unweighted counterpart is infinitesimally
rigid.

We now present a corollary to Lemma II.6 for weighted
frameworks.

Corollary II.11. A weighted framework (G, p,W) in R3 is
infinitesimally rigid if and only if rk[R(p,W)] = 3n− 6.

Proof: The statement follows from the fact that
rk[R(p,W)] = rk[R̂(p)], where R̂(p) is the rigidity matrix
for the unweighted counterpart of (G, p,W).

C. The Rigidity Eigenvalue

In our previous work (Zelazo et al., 2012), we introduced
an alternative representation of the rigidity matrix that trans-
parently separates the underlying graph from the positions of
each vertex. Here we recall the presentation and extend it to
the case of 3-dimensional frameworks.

Definition II.12 (Zelazo et al. (2012)). Consider a graph
G = (V, E) and its associated incidence matrix with arbitrary
orientation E(G). The directed local graph at node vj is the
sub-graph Gj = (V, Ej) induced by node vj such that

Ej = {(vj , vi) | ek = {vi, vj} ∈ E}.
The local incidence matrix at node vj is the matrix

El(Gj) = E(G)diag{s1, . . . , sm} ∈ Rn×m

where sk = 1 if ek ∈ Ej and sk = 0 otherwise.

Note, therefore, that the local incidence matrix will contain
columns of all zeros in correspondence to those edges not
adjacent to vj . This also implicitly assumes a predetermined
labeling of the edges.

Proposition II.13 (Zelazo et al. (2012)). Let p(V) ∈ Rn×3
be the position matrix for the framework (G, p). The rigidity
matrix R(p) can be defined as

R(p) =
[
El(G1)T · · · El(Gn)T

]
(In ⊗ p(V)) , (5)

where El(Gi) is the local incidence matrix for node vi.

A more detailed discussion and example of these definitions
are provided in Appendix B.

Lemma II.6 and Corollary II.11 relate the property of
infinitesimal rigidity for a given (weighted) framework to the
rank of a corresponding matrix. A contribution of this work
is the translation of the rank condition to that of a condition
on the spectrum of a corresponding matrix that we term the
symmetric rigidity matrix. For the remainder of this work,
we will only consider weighted frameworks, since from the
discussion in Remark II.8, any framework can be considered
as a weighted framework with appropriately defined weights.

The symmetric rigidity matrix for a weighted framework
(G, p,W) is a symmetric and positive-semidefinite matrix
defined as

R := R(p,W)TR(p,W) ∈ R3n×3n. (6)

An immediate consequence of the construction of the sym-
metric rigidity matrix is that rk[R] = rk[R(p,W)] (Horn and
Johnson, 1985), leading to the following corollary.

Corollary II.14. A weighted framework (G, p,W) is infinites-
imally rigid if and only if rk[R] = 3n− 6.

The rank condition of Corollary II.14 can be equivalently
stated in terms of the eigenvalues of R. Denoting the eigen-
values of R as λ1 ≤ λ2 ≤ . . . ≤ λ3n, note that infinitesimal
rigidity is equivalent to λi = 0 for i = 1, . . . , 6 and λ7 > 0.
Consequently, we term λ7 the Rigidity Eigenvalue. We will
now show that, in fact, for any connected graph,2 the first six
eigenvalues are always 0.

The first result in this direction shows that the symmetric
rigidity matrix is similar to a weighted Laplacian matrix.

Proposition II.15. The symmetric rigidity matrix is similar to
the weighted Laplacian matrix via a permutation of the rows
and columns as

PRPT = (I3 ⊗ E(G)W)Q(p(V))
(
I3 ⊗WE(G)T

)
, (7)

with

Q(p(V)) =

Q2
x QxQy QxQz

QyQx Q2
y QyQz

QzQx QzQy Q2
z

∈ R3m×3m, (8)

where Qx, Qy , and Qz are m×m diagonal weighting matrices
for each edge in G such that for the edge ek = (vi, vj),

[Qs]kk = (psi − psj), s ∈ {x, y, z}
and pxi (pyi , pzi) represents the x-coordinate (y-coordinate, z-
coordinate) of the position of agent i.

2If the graph is not connected, there will be additional eigenvalues at the
origin corresponding to the number of connected components of the graph,
see (Godsil and Royle, 2001).

6

Proof: The proof is by direct construction using Propo-
sition II.13 and (6). Consider the permutation matrix P as

P =

In ⊗

[
1 0 0

]

In ⊗
[

0 1 0
]

In ⊗
[

0 0 1
]

 . (9)

and let Ê =
[
El(G1)T · · · El(Gn)T

]
. It is straightfor-

ward to verify that

(In ⊗ (px)T)ÊTW = E(G)W

. . .
(pxi − pxj)

. . .

︸ ︷︷ ︸
diagonal matrix of size m×m

,

where px represents the first column of the position vector.
The structure of the matrix in (7) then follows directly.3

The representation of the symmetric rigidity matrix as a
weighted Laplacian allows for a more transparent understand-
ing of certain eigenvalues related to this matrix. The next result
shows that the first six eigenvalues of R must equal zero for
any connected graph G.

Theorem II.16. Assume that a weighted framework (G, p,W)
has weights such that the weight matrix W (G, p) is invertible
and the underlying graph G is connected. Then the symmetric
rigidity matrix has at least six eigenvalues at the origin; that
is, λi = 0 for i ∈ {1, . . . , 6}. Furthermore, a possible set
of linearly independent eigenvectors associated with each 0
eigenvalue is,

P

T

1n

0
0

 , PT

0
1n

0

 , PT

0
0
1n

 ,

PT

(py)
−(px)
0

 , PT

(pz)
0
−(px)

 , PT

0
(pz)
−(py)

 ,

where P is defined in (9).

Proof: Recall that for any connected graph, one has
E(G)T1n = 0 (Godsil and Royle, 2001). Therefore, PRPT
must have three eigenvalues at the origin, with eigenvectors
u1 =

[
1
T
n 0T 0T

]T
, u2 =

[
0T 1

T
n 0T

]T
, and

u3 =
[
0T 0T 1

T
n

]T
. We now demonstrate that the

remaining three eigenvectors proposed in the theorem are
indeed in the null-space of the symmetric rigidity matrix.

Let u4 =
[

(py)T −(px)T 0T
]T

. Observe that (I3 ⊗
WE(G)T)u4 =

[
bT1 bT2 0T

]T
is such that b1 is

±[W]kk(pyi − pyj) only for edges ek = {vi, vj} ∈ E , and
0 otherwise. Similarly, b2 is ±[W]kk(pxj − pxi) only for edges
ek = {vi, vj} ∈ E . The invertibility assumption of the weight
matrix also guarantees that [W]kk 6= 0. It can now be verified
that from this construction one has

Q2
x QxQy QxQz

QyQx Q2
y QyQz

QzQx QzQy Q2
z

 (I3 ⊗WE(G)T)u4 = 0.

3A more detailed proof for the two-dimensional case is provided in (Zelazo
et al., 2012).

The remaining two eigenvectors follow the same argument as
above. It is also straightforward to verify that u4, u5, and u6
are linearly independent of the first 3 eigenvectors.

Theorem II.16 provides a precise characterization of the
eigenvectors associated with the null-space of the symmetric
rigidity matrix for an infinitesimally rigid framework.

Remark II.17. It is important to note that the chosen eigen-
vectors associated with the null-space of the symmetric rigidity
matrix are expressed in terms of the absolute positions of the
nodes in the framework. We note that these eigenvectors can
also be expressed in terms of the relative position of each node
to any arbitrary reference point pc =

[
pxc pyc pzc

]T ∈ R3.
For example, vector u4 could be replaced by

upc4 = PT

py − pyc1n
pxc1n − px

0

 ,

that is a linear combination of the null-space eigenvectors
u1, u2 and u4. The use of eigenvectors defined on relative
positions, in fact, will be necessary for the implementation
of a distributed estimator for the rigidity eigenvector and
eigenvalue based on only relative measurements available from
onboard sensing.

Theorem II.16 can be used to arrive at the main result
relating infinitesimal rigidity to the rigidity eigenvalue.

Theorem II.18. A weighted framework (G, p,W) is infinites-
imally rigid if and only if the rigidity eigenvalue is strictly
positive, i.e., λ7 > 0.

Proof: The proof is a direct consequence of Corollary
II.14 and Theorem II.16.

Another useful observation relates infinitesimal rigidity of
a framework to connectedness of the underlying graph.

Corollary II.19. Rigidity of the weighted framework (G, p,W)
implies connectedness of the graph G.

The connection between infinitesimal rigidity of a frame-
work and the spectral properties of the symmetric rigidity
matrix inherits many similarities between the well studied re-
lationship between graph connectivity and the graph Laplacian
matrix (Mesbahi and Egerstedt, 2010).

In the next section, we exploit this similarity and propose
a rigidity maintenance control law that aims to ensure the
rigidity eigenvalue is always positive. Such a control action
will be shown to depend on the rigidity eigenvalue, on its
eigenvector, and on relative positions among neighboring pairs
expressed in a common frame. The issue of how every agent
in the group can distributedly estimate these quantities will be
addressed in Sections IV and V.

III. A DECENTRALIZED CONTROL STRATEGY
FOR RIGIDITY MAINTENANCE

The results of Section II highlight the role of the rigidity
eigenvalue λ7 as a measure of the “degree of infinitesimal
rigidity” of a weighted framework (G, p,W). It provides a
linear algebraic condition to test the infinitesimal rigidity of a
framework and, especially in the case of weighted frameworks,

7

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

λ7

V
λ
(λ

7
)

Fig. 2. A possible shape for the rigidity potential function Vλ(λ7) with
λmin
7 = 5.

provides a means of quantifying “how rigid” a weighted
framework is. Moreover, the symmetric rigidity matrix was
shown to have a structure reminiscent of a weighted graph
Laplacian matrix, and thus can be considered as a naturally
distributed operator.

The basic approach we consider for the maintenance of
rigidity is to define a scalar potential function of the rigidity
eigenvalue, Vλ(λ7) > 0, with the properties of growing
unbounded as λ7 → λmin

7 > 0 and vanishing (with vanishing
derivative) as λ7 → ∞ (see Fig. 2 for one possible shape
or Vλ with λmin

7 = 5). Here, λmin
7 represents some predeter-

mined minimum allowable value for the rigidity eigenvalue
determined by the needs of the application. In addition to
maintaining rigidity, the potential function should also capture
additional constraints in the system, such as collision avoid-
ance or formation maintenance. Each agent should then follow
the anti-gradient of this potential function, that is

ξ(u) = ṗu(t) = − ∂Vλ
∂pu(t)

= −∂Vλ
∂λ7

∂λ7
∂pu(t)

, (10)

where ξ(u) is the velocity input of agent u, as defined
in (3), and pu =

[
pxu pyu pzu

]T
is the position vector of

the u-th agent. This strategy will ensure that the formation
maintains a “minimum” level of rigidity (i.e., λmin

7) at all
times. Of course, this strategy is an inherently centralized
one, as the computation of the rigidity eigenvalue and of
its gradient require full knowledge of the symmetric rigidity
matrix. Nevertheless, we will proceed with this strategy and
demonstrate that it can be implemented in a fully decentralized
manner.

In the sequel, we examine in more detail the structure of
the control scheme (10). First, we show how the formalization
of weighted frameworks allows to embed additional weights
within the rigidity property that enforce explicit inter-agent
sensing and communication constraints and group require-
ments such as collision avoidance and formation control. For
instance, the weighting machinery will be exploited so as to
induce the agents to keep a desired inter-agent distance `0 and
to ensure a minimum safety distance `min from neighboring
agents and obstacles. With these constraints, the controller
will simultaneously maintain a minimum level of rigidity
while also respecting the additional inter-agent constraints.
We then provide an explicit characterization of the gradient
of the rigidity eigenvalue with respect to the agent positions,
and highlight its distributed structure. Finally, we present the

0 1 2 3 4 5 6 7
0

0.5

1

1.5

ℓuv

γ
a u
v
(ℓ

u
v
)

(a)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

ℓuvo

γ
b u
v
(d

u
v
o
)

(b)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

ℓuv

β
u
v
(ℓ

u
v
)

(c)

Fig. 3. The shape of γauv(`uv) for D = 6 (a), γbuv(`uvo) for `min = 1
(b), and βuv(`uv) for `0 = 4 (c).

general control architecture for implementing (10) in a fully
decentralized way.

A. Embedding Constraints in a Weighted Framework

In real-world applications a team of mobile robots may not
be able to maintain the same interaction graph throughout the
duration of a mission because of various sensing and commu-
nication constraints preventing mutual information exchange
and relative sensing. Furthermore, additional requirements
such as collision avoidance with obstacles and among robots,
as well as some degree of formation control, must be typically
satisfied during the mission execution. Building on the design
guidelines proposed in (Robuffo Giordano et al., 2013) for
dealing with connectivity maintenance, we briefly discuss here
a possible design of weights W aimed at taking into account
the above-mentioned sensing and communication constraints
and group requirements within the rigidity maintenance action.

To this end, we start with the following definition of
neighboring agents:

Definition III.1. Two agents u and v are considered neighbors
if and only if (i) their relative distance `uv = ‖p(u)− p(v)‖
is smaller than D ∈ R+ (the sensing range), (ii) the distance
`uvo between the segment joining u and v and the closest
obstacle point o is larger than `min (the minimum line-of-sight
visibility), and (iii) neither u nor v are closer than `min to
any other agent or obstacle.

Conditions (i) and (ii) are meant to take into account
two typical sensing constraints in multi-robot applications:
maximum communication and sensing ranges and line-of-sight
occlusions. The purpose of condition (iii), which will be better
detailed later on, is to force disconnection from the group if
an agent is colliding with any other agent or obstacle in the
environment. In the following we will denote with Su the set
of neighbors of agent u induced by Definition III.1.

This neighboring definition can be conveniently taken into
account by designing the inter-agent weights Wuv as state-
dependent functions smoothly vanishing as any of the above
constraints and requirements are not met by the pair (u, v)
with the desired accuracy. Indeed, the use of state-dependent
weights allows us to consider the ensemble of robots in the
context of weighted frameworks, as introduced in Definition
II.7. In particular, we take the underlying graph to be the
complete graph Kn and the map p corresponds to the physical
position state of each agent in a common global frame. The

8

weights are the mapsWuv , and the weighted framework is the
triple (Kn, p,W) with, therefore, Nu = {v ∈ V| Wuv 6= 0}.

Following what was proposed in (Robuffo Giordano et al.,
2013), and recalling that `uvo represents the distance between
the segment joining agents u and v and the closest obstacle
point o, we then take

Wuv = αuvβuvγ
a
uvγ

b
uv, (11)

with αuv = αuv(`uk|k∈Su , `vk|k∈Sv), βuv = βuv(`uv), γauv =
γauv(`uv), γbuv = γbuv(`uvo) and such that
• – lim`uk→`min

αuv = 0, ∀k ∈ Su,
– lim`vk→`min αuv = 0, ∀k ∈ Sv , and
– αuv ≡ 0 if `uk ≤ `min or `vk ≤ `min, for any
k ∈ Su, k ∈ Sv;

• lim|`uv−`0|→∞ βuv = 0 with β(`uv) < β(`0)∀ `uv 6= `0;
• lim`uv→D γ

a
uv = 0 with γauv ≡ 0 ∀ `uv ≥ D;

• lim`uvo→`min
γbuv = 0 with γbuv ≡ 0 ∀ `uvo ≤ `min.

As explained, `min is a predetermined minimum safety dis-
tance for avoiding collisions and line-of-sight occlusions.
Figures 3(a)–(c) show an illustrative shape of weights γauv ,
γbuv and βuv . The shape of the weights αuv is conceptually
equivalent to that of weights γbuv in Fig. 3(b).

This weight design results in the following properties: for
a given pair of agents (u, v), the weight Wuv will vanish
(because of the term γauvγ

b
uv) whenever the sensing and

communication constraints of Definition III.1 are violated
(maximum range, obstacle occlusion), thus resulting in a
decreased degree of connectivity of the graph G (edge {u, v}
is lost). The same will happen as the inter-distance `uv deviates
too much from the desired `0 because of the term βuv . Finally,
the term αuv will force complete disconnection of vertexes u
and v from the other vertexes and therefore a complete loss of
connectivity for the graph G whenever a collision with another
agent is approached.4

We now recall from Corollary II.19 that infinitesimal rigid-
ity implies graph connectivity. Therefore, any decrease in the
degree of graph connectivity due to the weightsWuv vanishing
will also result in a decrease of rigidity of the weighted frame-
work (Kn, p,W) (in particular, rigidity is obviously lost for
a disconnected graph). By maintaining λ7 > 0 (in the context
of weighted frameworks) over time, it is then possible to
preserve formation rigidity while, at the same time, explicitly
considering and managing the above-mentioned sensing and
communication constraints and requirements.

Remark III.2. We note that the purpose of the weight βuv
in (11) is to embed a basic level of formation control into the
rigidity maintenance action: indeed, every neighboring pair
will try to keep the desired distance `0 thanks to the shape of
the weights βuv . More complex formation control behaviors
could be obtained by different choices of functions βuv (e.g.,
for maintaining given relative positions). Furthermore, forma-
tion shapes can be uniquely specified owing to the infinitesimal
rigidity property of the configuration.

4As for collision with obstacles, an equivalent behavior is automatically
obtained from weights γbuv , see again (Robuffo Giordano et al., 2013) for a
full explanation. Also note that, because of the definition of weights Wuv ,
one has Nu ⊆ Su but Su 6⊂ Nu.

Remark III.3. We further highlight the following properties
whose explicit proof can be found in (Robuffo Giordano et al.,
2013): the chosen weights Wuv are functions of only relative
distances to other agents and obstacles, while their gradients
with respect to the agent position pu (resp. pv) are functions
of relative positions expressed in a common reference frame.
Furthermore, Wuv =Wvu and ∂Wuv

∂pu
= 0, ∀v /∈ Nu. Finally,

the evaluation of weights Wuv and of their gradients can be
performed in a decentralized way by agent u (reps. v) by only
resorting to local information and 1-hop communication.

As shown the next developments, these properties will
be instrumental for expressing the gradient of the rigidity
eigenvalue as a function of purely relative quantities with
respect to only 1-hop neighbors.

B. The Gradient of the Rigidity Eigenvalue

We now present an explicit characterization of the gradient
of the rigidity eigenvalue with respect to the agent positions,
as used in the control (10). We first recall that the rigidity
eigenvalue can be expressed as

λ7 = vT7Rv7,

where v7 is the normalized rigidity eigenvector associated
with λ7. For notational convenience, we consider the permuted
rigidity eigenvector Pv7 =

[
(vx)T (vy)T (vz)T

]T
,

where P is defined in Theorem II.16. For the remainder of
the work, we drop the subscript and reserve the bold font
v for the rigidity eigenvector. Note that in fact, the rigidity
eigenvalue and eigenvector are state-dependent, and therefore
also time-varying when the formation is induced by the spatial
orientation of a mobile team of robots, or due to the action
of state-dependent weights on the sensing and communication
links.

We can now exploit the structure of the symmetric rigid-
ity matrix for weighted frameworks. Using the form of the
symmetric rigidity matrix given in (7), we define Q̃(p(V)) =
(I3 ⊗W)Q(p(V))(I3 ⊗W) as a generalized weight matrix,
and observe that

PRPT = (I3 ⊗ E(G)) Q̃(p(V))
(
I3 ⊗ E(G)T

)
.

The elements of Q̃(p(V)) are entirely in terms of the relative
positions of each agent and the weighting functions defined
on the edges as in (11).

The rigidity eigenvalue can now be expressed explicitly as

λ7 =
∑

(i, j)∈E

Wij

(
(p

x
i − p

x
j)

2
(v

x
i − v

x
j)

2
+ (p

y
i − p

y
j)

2
(v

y
i − v

y
j)

2
+

(p
z
i − p

z
j)

2
(v

z
i − v

z
j)

2
+ 2(p

x
i − p

x
j)(p

y
i − p

y
j)(v

x
i − v

x
j)(v

y
i − v

y
j)+

2(p
x
i − p

x
j)(p

z
i − p

z
j)(v

x
i − v

x
j)(v

z
i − v

z
j)+

2 (p
y
i − p

y
j)(p

z
i − p

z
j)(v

y
i − v

y
j)(v

z
i − v

z
j)
)

=
∑

(i, j)∈E

WijSij .

(12)
From (12), one can then derive a closed-form expression for

∂λ7

∂psi
, s ∈ {x, y, z}, i.e., the gradient of λ7 with respect to each

agent’s position. In particular, by exploiting the structure of
the terms Sij and the properties of the employed weights Wij

9

Control

Robot i Position
EstimatorEnvironment

...

Rigidity
Estimator

...

...

λ̂7

v̂k, k 2 Ni(t)

v̂i

pk, k 2 Ni(t)

kpk � pik
k 2 Ni(t) p̂c

i

p̂c
k, k 2 Ni(t)

Fig. 4. Control architecture for distributed rigidity maintenance.

(see, in particular, the previous Remark III.3), it is possible to
reduce ∂λ7

∂pxi
to the following sum over the neighbors,

∂λ7

∂pxi
=
∑

j∈Ni

Wij

(
2(p

y
i − p

y
j)(v

x
i − v

x
j)(v

y
i − v

y
j)+

2(p
x
i − p

x
j)(v

x
i − v

x
j)

2
+ 2(p

z
i − p

z
j)(v

x
i − v

x
j)(v

z
i − v

z
j)
)
+
∂Wij

∂pxi
Sij ,

(13)
and similarly for the y and z components.

The gradient (13) possesses the following key feature: it is
a function of relative quantities, in particular of (i) relative
components of the eigenvector v, (ii) relative distances, and
(iii) relative positions with respect to neighboring agents (see,
again, Remark III.3 for what concerns weights Wij), thus
allowing for a distributed computation of its value once these
quantities are locally available. The next sections IV and V
will detail two estimation schemes able to recover all these
relative quantities by resorting to only measured distances with
respect to 1-hop neighbors owing to the infinitesimal rigidity
of the group formation.

C. The Control Architecture

The explicit description of the gradient of the rigidity eigen-
value in (13) motivates the general control architecture for
the implementation of the rigidity maintenance action in (10).
We observe that each agent requires knowledge of the rigidity
eigenvalue, appropriate components of the rigidity eigenvector,
and relative positions with respect to neighboring agents in
a common reference frame. As already mentioned, all these
quantities are inherently global quantities, and thus a fully
distributed implementation of (10) must include appropriate
estimators for recovering these parameters in a distributed
manner.

As a preview of the next sections in this work, Figure 4
depicts the general architecture needed by each agent to
implement the rigidity maintenance control action (10):

1) exploiting measured distances with respect to its 1-hop
neighbors, and owing to the formation rigidity, each
agent distributely estimates relative positions in a com-
mon reference frame, labeled as the position estimator
in the figure. This block is fully explained in section IV;

2) the output of the position estimator is then used by each
agent to perform a distributed estimation of the rigidity

eigenvalue (λ̂7) and of the relative components of the
eigenvector (v̂), labeled as the rigidity estimator in the
figure. This procedure is explained in section V;

3) thanks to these estimated quantities (relative positions,
λ̂7 and v̂), each agent can finally implement the control
action (10) in a distributed way for maintaining infinites-
imal rigidity of the formation during the group motion
(while also coping with the various constraints and
requirements embedded into weights W). Maintaining
infinitesimal rigidity guarantees in turn convergence of
the position estimator from measured distances of step
1), and thus closes the ‘estimation-control loop.’

We finally note that the proposed control architecture also
implicitly assumes the initial spatial configuration of the
agents (i.e., their positions p(V) at time 0) to be infinitesimally
rigid (with, in particular, a λ7 > λmin

7). This assumption on
the group initial condition is formally stated below.

Assumption III.4. The initial spatial configuration of the
agents, p(V) at time t = 0, is infinitesimally rigid with
λ7 > λmin

7 .

The purpose of requiring a minimum level of rigidity (λmin
7)

is discussed in greater detail in Section VII.

IV. DECENTRALIZED ESTIMATION OF
POSITIONS IN A COMMON FRAME

As explained, evaluation of the gradient control (13) re-
quires that each agent has access to the relative positions of
its neighboring agents. A main focus of this work, however,
is to achieve rigidity maintenance using only relative distance
measurements. In this section, we leverage the infinitesimal
rigidity of the formation to estimate the relative position with
respect to a common reference point, pc, shared by all agents.
In particular, each agent i, with i = 1 . . . n, will be able to
compute an estimate p̂i,c of its relative position pi,c = pi− pc
to this common point. By exchanging their estimates over 1-
hop communication channels, two neighboring agents i and j
can then build an estimate p̂j,c − p̂i,c of their actual relative
position pj − pj in a common reference frame. Notice that
both the graph (i.e., neighbor sets, edges, etc.) and the robot
positions are time-varying quantities. However, in this section
we omit dependency on time for the sake of conciseness.

We also note that this common reference point does not need
to be stationary, i.e., it can move over time. In the following,
we choose the point pc to be attached to a special agent in the
group, determined a priori. This agent will be denoted with
the index ic and, in the remainder of this section, we set pc =
pic . We now proceed to describe a distributed scheme able to
recover an estimation of the relative position pi,c = pi − pic
for any agent in the group by exploiting the measured relative
distances and the rigidity property of the formation.

To achieve this estimation, we first introduce additional
assumptions on the capabilities of the special agent ic. While
all agents other than ic are able to measure only the relative
distance to their neighbors, the special agent ic is required to
be endowed with an additional sensor able to also measure,
at any time t, the relative position (i.e., distance and bearing

10

angles) of at least 2 non-collinear neighbors;5 these two sensed
neighbors will be denoted with the indexes (ι(t), κ(t)) ∈
Nic(t).

Remark IV.1. We stress that the agent indexes ι(t) and κ(t)
are time-varying; indeed, contrarily to the special agent ic,
ι(t) and κ(t) are not preassigned to any particular agent in
the multi-robot team. Therefore the special agent ic only needs
to measure its relative positions pι(t)−pic and pκ(t)−pic with
respect to any two agents within its neighborhood (ι and κ are
effectively arbitrary), with the points pic , pι(t) and pκ(t) being
non-collinear ∀t ≥ t0. We believe this assumption is not too
restrictive in practice, as it only require the presence of at least
one robot equipped with a range plus bearing sensor while all
the remaining ones can be equipped with simple range-only
sensors.

In the following we omit for brevity the dependency upon
the time t of the quantities ι and κ.

In order to perform the distributed estimation of pi,c =
pi − pc, ∀i ∈ {1, . . . , n} we follow the approach presented
in (Calafiore et al., 2010a), with some slight modifications
dictated by the nature of our problem. Consistently with our
notation, we define p̂ =

[
p̂T1,c . . . p̂Tn,c

]T ∈ R3n. For
compactness, we also denote by `ij the measured distance
‖pj − pi‖, as introduced in Definition III.1. We then consider
the following least squares estimation error:

e(p̂) =
1

4

∑

{i,j}∈E

(
‖p̂j,c − p̂i,c‖2 − `2ij

)2
+

1

2
‖p̂ic,c‖2+

+
1

2
‖p̂ι,c − (pι − pic)‖2 +

1

2
‖p̂κ,c − (pκ − pic)‖2.

(14)

Notice that the quantities `ij , pι − pic , and pκ − pic are mea-
sured while all the other quantities represent local estimates
of the robots.

The nonnegative error function e(p̂) is zero if and only if:
• ‖p̂j,c− p̂i,c‖ is equal to the measured distance `ij for all

the pairs {i, j} ∈ E ;
• ‖p̂ic,c‖ = 0;
• p̂ι,c and p̂κ,c are equal to the measured relative positions
pι − pic and pκ − pic , respectively.

Note that the estimates p̂ic,c, p̂ι,c and p̂κ,c could be directly
set to 0, (pι− pic), and (pι− pic), respectively, since the first
quantity is known and the last two are measured. Nevertheless,
we prefer to let the estimator obtaining these values via a
‘filtering action’ for the following reasons: first, the estimator
provides a relatively simple way to filter out noise that might
affect the relative position measurements; secondly, implemen-
tation of the rigidity maintenance controller only requires that
(p̂j,c− p̂i,c)→ (pj−pi), which is achieved if p̂j,c → pj− p̂ic,c
and p̂i,c → pi−p̂ic,c for any common value of p̂ic,c. Therefore
any additional hard constraint on p̂ic,c (e.g., p̂ic,c ≡ 0) might
unnecessarily over-constrain the estimator.

Applying a first-order gradient descent method to e(p̂), we
finally obtain the following decentralized update rule for the

5Formation rigidity implies presence of at least 2 non-collinear neighbors
for each agent (Laman, 1970).

i-th agent (i 6= ic):

˙̂pi,c = −
∂e

∂p̂i,c
=

∑
j∈Ni

(‖p̂j,c − p̂i,c‖2 − `2ij)(p̂j,c − p̂i,c)−

δiic p̂i,c − δiι (p̂ι,c − (pι − pic))− δiκ (p̂κ,c − (pκ − pic)) ,
(15)

where δij is the well known Kronecker’s delta.6 The estima-
tor (15) is clearly decentralized since:
• `ij is locally measured by agent i;
• p̂i,c is locally available to agent i;
• p̂j,c can be transmitted using one-hop communication

from agent j to agent i, for every j ∈ Ni;
• (pι−pic) and (pκ−pic) are measured by agent ic and can

be transmitted using one-hop communication to agents ι
and κ respectively.

In order to show the relation between the proposed decentral-
ized position estimator scheme and the infinitesimal rigidity
property, one can restate (15) in matrix form as

˙̂p = −R(p̂)p̂+R(p̂)`+ ∆c (16)

where R(p̂) and R(p̂) are the symmetric rigidity matrix and
the rigidity matrix computed with the estimated positions,
` ∈ R|E| is a vector whose entries are `2ij , ∀{i, j} ∈ E , and
∆c ∈ R|E| contains the remaining terms of the right-hand-side
of (15).

Proposition IV.2. If the framework is (infinitesimally)
rigid then the vector of true values p − (1n ⊗ pc) =[

(p1 − pc)T · · · (pn − pc)T
]T

is an isolated local min-
imizer of e(p̂). Therefore, there exists an ε > 0 such that, for
all initial conditions satisfying ‖p̂(0) − p − (1n ⊗ pc)‖ < ε,
the estimation p̂ converges to p− (1n ⊗ pc).

We point out that the estimator in the form (16) is identical
to the formation controller proposed in (Krick et al., 2009).
Consequently, we refer the reader to this work for a discussion
on the stability and convergence properties of this model. A
similar estimation scheme is also proposed in (Calafiore et al.,
2010a). We briefly emphasize that the property of having the
true value of relative positions p − (1n ⊗ pc) as an isolated
local minimizer of (14) is a consequence of the definition of
infinitesimal rigidity and of the non-collinearity assumption of
the agents ic, ι, and κ.

We finally note that, in general, the rate of convergence of
a gradient descent method is known to be slower than other
estimation methods. However, we opted for this method since
is its directly amenable to a distributed implementation and
requires only first-order derivative information.

V. DISTRIBUTED ESTIMATION OF THE
RIGIDITY EIGENVALUE AND EIGENVECTOR

As seen in section IV, when the multi-robot team possesses
the infinitesimal rigidity property, it is possible to distributedly
estimate the relative positions in a common reference frame
for each agent. However, the proposed distributed rigidity
maintenance control action (10) requires knowledge of some

6δij = 0 if i 6= j and δij = 1 otherwise.

11

additional global quantities that are explicitly expressed in
the expressions (13) and (10). In particular, each agent must
know also the current value of the rigidity eigenvalue and
certain components of the rigidity eigenvector. In this sec-
tion we propose a distributed estimation scheme inspired by
the distributed connectivity maintenance solution proposed in
(Yang et al., 2010) for obtaining the rigidity eigenvalue and
eigenvector.

For the reader’s convenience, we first provide a brief
summary of the power iteration method for estimating the
eigenvalues and eigenvectors of a matrix. We then proceed
to show how this estimation process can be distributed by
employing PI consensus filters and by suitably exploiting the
structure of the symmetric rigidity matrix.

A. Power Iteration Method

The power iteration method is one of a suite of iterative
algorithms for estimating the dominant eigenvalue and eigen-
vector of a matrix. Following the same procedure as in (Yang
et al., 2010), we employ a continuous-time variation of the
algorithm that will compute the smallest non-zero eigenvalue
and eigenvector of the symmetric rigidity matrix.

The discrete-time power iteration algorithm is based on the
following iteration,

x(k+1) =
Ax(k)

‖Ax(k)‖ =
Akx(0)

‖Akx(0)‖ .

Under certain assumptions for the matrix A (i.e., no repeated
eigenvalues), the iteration converges to the eigenvector asso-
ciated to the largest eigenvalue of the matrix.

To adapt the power iteration to compute the rigidity eigen-
vector and eigenvalue, we leverage the results of Theorem
II.16 and consider the iteration on a deflated version of the
symmetric rigidity matrix, i.e. R̃ = I − TTT − αR for some
small enough α > 0. The power iteration method estimates the
largest eigenvalue of a matrix. As all the eigenvalues of the
symmetric rigidity matrix are non-negative, the largest eigen-
value of the deflated version R̃ will correspond to 1 − αλ7,
and thus can be used to estimate λ7. The constant α ensures
the matrix R̃ is positive semi-definite.The columns of the
matrix T ∈ R3n×6 contain the eigenvectors corresponding to
the zero eigenvalues of R, for example, as characterized in
Theorem II.16. Note that the power iteration applied to the
matrix R̃ will compute the eigenvector associated with the
rigidity eigenvalue.7

The continuous-time counterpart of the power iteration
algorithm now takes the form (Yang et al., 2010)

˙̂v(t) =−
(
k1TT

T+k2R+k3

(
v̂(t)T v̂(t)

3n −1
)
I
)
v̂(t), (17)

where v̂ is the estimate of the rigidity eigenvector, and the
constants k1, k2, k3 > 0 are chosen to ensure the trajectories
converge to the rigidity eigenvector.8 We present here the main

7Assuming the rigidity eigenvalue is unique and the framework is infinites-
imally rigid (i.e., the rigidity eigenvalue is positive). We will discuss the
implications of this assumption later.

8Note that the constant α used to describe the deflated symmetric rigidity
matrix is effectively replaced by k2 in this formulation.

result and refer the reader to Yang et al. (2010) for details of
the proof, noting that the proof methodologies are the same
for the system (17) as that proposed in Yang et al. (2010).

Theorem V.1. Assume that the weighted framework (G, p,W)
with symmetric rigidity matrix R is infinitesimally rigid and
has distinct non-zero eigenvalues, and let v denote the rigidity
eigenvector. Then for any initial condition v̂(t0) ∈ R3n

such that vT v̂(t0) 6= 0, the trajectories of (17) converge
to the subspace spanned by the rigidity eigenvector, i.e.,
limt→∞ v̂(t) = γv for γ ∈ R, if and only if the gains k1, k2
and k3 satisfy the following conditions:

1) k1, k2, k3 > 0,
2) k1 > k2λ7,
3) k3 > k2λ7.

Furthermore, for any choice of constants k1, k2, k3 > 0, the
trajectories of (17) remain bounded and satisfy

‖v̂(t)‖ ≤ max
{
‖v̂(t0)‖,

√
3n
}
, ∀ t ≥ t0.

In particular, the trajectory converges to the rigidity eigenvec-
tor with

lim
t→∞

‖v̂(t)‖ =

√
3n

(
1− k2

k3

)
λ7.

Remark V.2. The power iteration proposed in (17) assumes
that the symmetric rigidity matrix is static. However, in a
dynamic setting the parameters of the rigidity matrix are a
function of the state of the robots in a multi-robot system, and
both the symmetric rigidity matrix and the expression of its null
space are inherently time-varying. While the proof provided in
(Yang et al., 2010) does not explicitly address the time-varying
case, our experience suggests that the dynamics of (17) is able
to track even a time-varying rigidity eigenvector, so long as
the dynamics of the robots are slower than the estimator. The
speed of convergence of (17), of course, is also tunable by the
constants ki.

Remark V.3. Another important subtlety of the dynamics (17)
is the requirement that the rigidity eigenvalue is unique.
When the rigidity eigenvalue is not unique, the associated
eigenvector can belong to (at least) a two-dimensional sub-
space L, so that (17) can not be expected to converge to
a unique eigenvector but rather to an equilibrium point in
L (see, e.g., (Yang et al., 2010)). This can pose difficulties
in real-world conditions since non-idealities such as noise in
measuring the agent states (used in evaluating the symmet-
ric rigidity matrix R), and discretization when numerically
integrating (17), can make the equilibrium point for (17) in
L to abruptly vary over time, thus preventing a successful
convergence of the estimation of v.

B. A Distributed Implementation

The results of section V-A provide a continuous-time esti-
mator for estimating the rigidity eigenvalue and eigenvector
of the symmetric rigidity matrix. The estimator given in
(17), however, is a centralized implementation. Moreover,
certain parameters used in (17) are expressed using a common
reference frame (i.e., the quantity TTT , see Theorem II.16

12

and Remark II.17) or require each robot to know the entire
estimator state (i.e., the quantity v̂(t)T v̂(t) in (17)). We
propose in this sub-section a distributed implementation for
the rigidity estimator that overcomes these difficulties, in
particular by leveraging the results of Section IV. In the same
spirit as the solution proposed in (Yang et al., 2010), we make
use of the PI average consensus filter (Freeman et al., 2006)
to distributedly compute the necessary quantities of interest,
and strongly exploit the particular structure of the symmetric
rigidity matrix.

Our approach to the distribution of (17) is to exploit both the
built-in distributed structure (i.e., the symmetric rigidity matrix
R) and the reduction of the other parameters to values that all
agents can obtain via a distributed algorithm. In this direction,
we now proceed to analyze each term in (17) and discuss
the appropriate strategies for implementing the estimator in a
distributed fashion.

Concerning the first term TTT v̂, Theorem II.16 provides an
analytic characterization of the eigenvectors associated with
the zero eigenvalues of the symmetric rigidity matrix (assum-
ing the graph is infinitesimally rigid). To begin the analysis,
we explicitly write out the matrix T and examine the elements
of the matrix TTT . Following the comments of Remark
II.17, we express the null-space vectors in terms of relative
positions to an arbitrary point pc=

[
pxc pyc pzc

]
∈ R3; in

particular, the point pc will be the special agent ic described
in Section IV.

T =

1n 0 0 py − pyc1n pz − pzc1n 0
0 1n 0 pxc1n − px 0 pz − pzc1n
0 0 1n 0 pxc1n − px pyc1n − py

For the remainder of this discussion, we assume that all agents
have access to their state in an estimated coordinate frame
relative to the point pic , the details of which were described
in Section IV.

To simplify notations, we write as in Section IV, for exam-
ple, py,c = py−pyc1n, and pi,c = pi−pc. Following our earlier
notation, we also partition the vector v̂ into each coordinate,
v̂x, v̂y , and v̂z . Let avg(r) denote the average value of the
elements in the vector r ∈ Rn, i.e. avg(r) = 1

n1
T
n r. Then it

is straightforward to verify that

1n1
T
n v̂

k(t) = navg(v̂k(t))1n, k ∈ {x, y, z} (19)

pi,c(pj,c)
T v̂k(t) = navg(pj,c ◦ v̂k)pi,c, i, j, k ∈ {x, y, z},

(20)

where ‘◦’ denotes the element-wise multiplication of two
vectors.

This characterization highlights that, in order to evaluate the
term TTT v̂, each agent must compute the average amongst all
agents of a certain value that is a function of the current state of
the estimator and of the positions in some common reference
frame whose origin is the point pc. It is well known that the
consensus protocol can be used to distributedly compute the
average of a set of numbers (Mesbahi and Egerstedt, 2010).
The speed at which the consensus protocol can compute this
value is a function of the connectivity of the underlying graph
and the weights used in the protocol. In this framework,

PI
Consensus

Filter

PI
Consensus

Filter

PI
Consensus

Filter

G(t)

�px(t)

�py(t)

�pz(t)

vz(t)

vx(t)

vy(t)

X

X

X

⇥
I 0 0

⇤
TTT

2
4

vx(t)
vy(t)
vz(t)

3
5

n

n

n

Fig. 5. Block diagram showing PI consensus filters in calculation of
TTT v̂(t).

however, a direct application of the consensus protocol will
not be sufficient. Indeed, it is expected that each agent will be
physically moving, leading to a time-varying description of the
matrix TTT (see Remark V.2). Additionally, the underlying
network is also dynamic as sensing links between agents are
inherently state dependent.

The use of a dynamic consensus protocol introduces ad-
ditional tuning parameters that can be used to ensure that
the distributed average calculation converges faster than the
underlying dynamics of each agent in the system, as well as
the ability to track the average of a time-varying signal. We
employ the following PI average consensus filter proposed in
(Freeman et al., 2006),

[
ż(t)
ẇ(t)

]
=

[
−γIn −KPL(G(t)) KIL(G(t))
−KIL(G(t)) 0

] [
z(t)
w(t)

]

+

[
γIn
0

]
u(t) (21)

y(t) =
[
In 0

] [z(t)
w(t)

]
. (22)

The parameters KP ,KI ∈ R and γ ∈ R are used to ensure
stability and tune the speed of the filter. An analysis of the
stability and performance of this scheme with time-varying
graphs is given in (Freeman et al., 2006). Figure 5 provides a
block diagram representation of how the PI consensus filters
are embedded into the calculation of TTT v̂(t) (in only the
x-coordinate).

As for the second term in (17), as shown in §II-C the sym-
metric rigidity matrix is by construction a distributed operator.
The term Rv̂(t) can be computed using only information
exchanged between neighboring agents, as determined by the
sensing graph.

The final term in (17) is a normalization used to drive the
eigenvector estimate to the surface of a sphere of radius

√
3n.

Using the same analysis as above, it can be verified that
(
v̂(t)T v̂(t)

3n
− 1

)
v̂(t) = (avg(v̂(t) ◦ v̂(t))− 1) v̂(t). (23)

This quantity can therefore be distributedly computed using
an additional PI consensus filter.

13

TTT =

1n1

T
n + py,c(py,c)T + pz,c(pz,c)T −py,c(px,c)T −pz,c(px,c)T

−px,c(py,c)T 1n1
T
n + px,c(px,c)T + pz,c(pz,c)T −pz,c(py,c)T

−px,c(pz,c)T −py,c(pz,c)T 1n1
T
n + px,c(px,c)T + py,c(py,c)T

 (18)

Using the result of Theorem V.1 and the PI consensus filters,
each agent is also able to estimate the rigidity eigenvalue.

Corollary V.4. Let v2
i (t) denote the output of the PI consensus

filter for estimating the quantity avg(v̂(t) ◦ v̂(t)) for agent i.
Then agent i’s estimate of the rigidity eigenvalue, λ̂i7, can be
obtained as

λ̂i7 =
k3
k2

(
1− v2

i (t)
)
.

In summary, each agent implements the following filters:
• Estimation of a common reference frame using (15).
• Estimation of the rigidity eigenvector using (17).
• A PI-Consensus filter for tracking the average of the

estimate of the rigidity eigenvector, (19).
• A PI-Consensus filter for tracking the quantity described

in (20).
• A PI-Consensus filter for tracking the average of the

square of the rigidity eigenvector estimate, (23).
For completeness, we now present the full set of filters that
each robot executes in (24)-(33). These equations are written
only for the x-coordinate associated with all the quantities.
Observe, however, that the filters needed for the y− and
z−coordinates do not require additional integrators, as similar
filters can be vectorized (for example, the PI filters can be
combined as in (21)). For the readers convenience, a summary
of the notations and variable definitions used in (24)-(33) is
provided in Table I.

Remark V.5. Equations (24)-(33) show that each agent re-
quires a 10-th order dynamic estimator for estimating the
rigidity eigenvector and eigenvalue. This filter is comprised of
three PI-Consensus filters, an relative position estimation filter,
and the power iteration filter. An important point to emphasize
is the order of the overall filter is independent of the number
of agents in the ensemble, and thus is a scalable solution.

VI. THE RIGIDITY MAINTENANCE CONTROLLER

The primary focus of this work until now was a detailed
description of how the rigidity of a multi-robot formation can
be maintained in a distributed fashion. The basic idea was
to follow the gradient of an appropriately defined potential
function of the rigidity eigenvalue; this control strategy was
presented in (13). The fundamental challenge for the imple-
mentation of this control strategy was twofold: on the one
hand, rigidity of a formation is an inherently global property of
the network, and on the other hand, the control law depended
on relative position measurements in a common reference
fame.

A truly distributed solution based on this control strategy
requires each agent to estimate a common inertial reference
frame and also estimate the rigidity eigenvalue and eigenvector
of the formation. The solution to these estimation problems

was presented in Sections IV and V, with the complete set
of filter equations summarized in (24)–(33). Note that both
estimation strategies implicitly require that the underlying
formation is infinitesimally rigid (see also Assumption III.4).
The final step for implementation of the rigidity maintenance
controller is then to replace all the state-variables given in (13)
with the appropriate estimated states computed by the relative
position estimators and rigidity eigenvalue estimators. The
local controller for each agent is thus given as,9

ξ
x
i = −

∂V (λ̂i
7)

∂λ7

∑
j∈Ni

Wij

(
2(p̂

x
i,c − p̂

x
j,c)(v̂

x
i − v̂

x
j)

2
+

2(p̂
y
i,c − p̂

y
j,c)(v̂

x
i − v̂

x
j)(v̂

y
i − v̂

y
j) + 2(p̂

z
i,c − p̂

z
j,c)(v̂

x
i − v̂

x
j)(v̂

z
i − v̂

z
j)
)
+

∂Wij

∂pxi
Ŝij ,

(34)
in conjunction with all the estimation filters of (24)-(33).

Remark VI.1. The interconnection of the relative position
estimator, rigidity eigenvalue estimator, and gradient con-
troller leads to a highly non-linear dynamics for which a
formal proof analysis is not straightfoward. While we are
currently working towards a deeper analysis in this sense, the
approach taken in this work is to exploit the typical (although
informal) time-scale separation argument commonly found in
many robotics applications relying on feedback control from
an estimated state (as, e.g., when using an extended Kalman
filter). Basically, the estimator dynamics is assumed “fast
enough” such that its transient behavior can be considered as
a second-order perturbation with respect to the robot motion
(see also (Yang et al., 2010)) for an equivalent assumption in
the context of decentralized connectivity maintenance control.

VII. EXPERIMENTAL RESULTS

In this section we report some experimental results aimed
at illustrating the machinery proposed so far for distributed
rigidity maintenance. The experiments involved a total of
N = 6 quadorotor UAVs (5 real and 1 simulated) flying the
environment shown in Fig. 6. A video illustrating the various
phases of the experiment (Multimedia Extension 1) is attached
to the paper.

All the quadrotor UAVs were implementing the rigidity
maintenance action (34) in addition to the estimation filters
presented in (24)-(33). Additionally, for two of the quadrotor
UAVs (namely, quadrotors 1 and 2) an exogenous bounded
velocity term ξ∗i ∈ R3 was also added to (34); this allows for
two human operators to independently control the motion of
quadrotors 1 and 2 during the experiment, so as to steer the
whole formation and trigger the various behaviors embedded

9The control is shown in the x-coordinate; a similar expression can be
obtained for the y- and z- coordinates.

14

˙̂vxi = −k1n
(
vxi + zxyi (t)p̂yi,c + zxzi p̂zi,c(t)

)
− k2

∑

j∈Ni(t)

Wij

(
v̂xi (t)− v̂xj

)
− k3 (vxi − 1) v̂xi (24)

˙̂pi,c =
∑

j∈Ni(t)

(‖p̂j,c − p̂i,c‖2 − `2ij)(p̂j,c − p̂i,c)− δiic p̂i,c − δiι (p̂ι,c − (pι − pic))− δiκ (p̂κ,c − (pκ − pic)) (25)

v̇
x

i = γ (v̂xi − vxi)−KP

∑

j∈Ni

(
vxi − vxj (t)

)
+KI

∑

j∈Ni(t)

(
wxi − wxj

)
(26)

ẇ
x
i = −KI

∑

j∈Ni(t)

(
vxi − vxj

)
(27)

v̇
2x

i = γ
(
(v̂xi)2 − v2x

i

)
−KP

∑

j∈Ni(t)

(
v2x
i − v2x

j

)
+KI

∑

j∈Ni(t)

(
w2x
i − w2x

j

)
(28)

ẇ
2x
i = −KI

∑

j∈Ni(t)

(
v2x
i − v2x

j

)
(29)

żxyi = γ ((p̂y ◦ v̂x − p̂x ◦ v̂y)− zxyi)−KP

∑

j∈Ni(t)

(
zxyi − zxyj

)
+KI

∑

j∈Ni(t)

(
wxyi (t)− wxyj

)
(30)

ẇxyi = −KI

∑

j∈Ni(t)

(
zxyi − zxyj

)
(31)

żxzi = γ ((p̂z ◦ v̂x − p̂x ◦ v̂z)− zxzi)−KP

∑

j∈Ni(t)

(
zxyi − zxyj

)
+KI

∑

j∈Ni(t)

(
wxyi − wxyj

)
(32)

ẇxzi = −KI

∑

j∈Ni(t)

(
zxzi − zxzj

)
(33)

in the weights Wuv (formation control, obstacle avoidance,
sensing limitations).10

Our experimental quadrotor platform is a customized ver-
sion of the MK-Quadro11 implementing the TeleKyb ROS
framework12 for flight control, experimental workflow man-
agement and human inputing. Attitude is stabilized with a
fast inner loop that takes advantage of high-rate/onboard
accelerometer and gyroscope measurements while the velocity
stabilization is achieved by a slower control loop that measures
the current velocity thanks to an external motion capture
system. The motion capture system is also used to obtain
relative distance measurements among the robots and the two
bearing measurements needed by the special robot ic. The
reader is referred to (Franchi et al., 2012b) for a detailed
description of the quadrotor-based experimental setup.

We start illustrating the behavior of the relative position
estimator described in Sect. IV and upon which all the subse-
quent steps are based (estimation of λ7 and v and evaluation
of the control action (10)). As explained in Sect. IV, owing
to the formation infinitesimal rigidity, the scheme (15) allows
each agent i to build an estimation p̂i,c of its relative position
pi − pc with respect to the agent ic, with ic = 1 in this
experiment. Figures 7(a–e) report the behavior of the norm of
the estimation errors ‖pi − pc − p̂i,c‖ for i = 2 . . . 6 together
with their mean values (dashed horizontal black line). It is
then possible to verify how the relative position estimation

10We note that, being ξ∗i bounded, its effect does not threaten rigidity
maintenance since the control action ξi in (10) always results dominant as
Vλ(λ7)→∞ if λ7(t)→ λmin

7 .
11mikrokopter.de
12ros.org/wiki/telekyb

Fig. 6. Two snapshots of the reported experiment. Left: simulated 3D
views showing, in particular, the inter-agent links (red – almost disconnected
link, green – optimally connected link). Right: corresponding pictures of
the experimental setup. The two highlighted quadrotor UAVs are partially
controlled by two human operators

errors keep low values over time, thus effectively allowing
every agent to recover its correct relative position with respect
to pc from the measured relative distances.

As for the rigidity eigenvalue estimation of Sect. V, Fig. 8(a)
reports the behavior of λ7(t) (solid blue line), of the 6
estimations λ̂i7(t) (solid colored lines almost superimposed to
λ7(t)), and of the minimum threshold λmin

7 = 7.5 (horizontal
dashed line). From the plot one can verify: (i) the accuracy

mikrokopter.de

15

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

time [s]

‖
p
2
−

p
c
−

p̂
2
,
c
‖
[m

]

(a)

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time [s]

‖
p
3
−

p
c
−

p̂
3
,
c
‖
[m

]

(b)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

time [s]

‖
p
4
−

p
c
−

p̂
4
,
c
‖
[m

]

(c)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

‖
p
5
−

p
c
−

p̂
5
,
c
‖
[m

]

(d)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

‖
p
6
−

p
c
−

p̂
6
,
c
‖
[m

]

(e)

Fig. 7. Behavior of ‖pi−pc− p̂i,c‖, i = 2 . . . 6, the norm of the estimation
error for the relative positions of agents 2 . . . 6 w.r.t. agent ic = 1. The
horizontal dashed black line represents the mean value of each error norm over
time. Note how the estimation errors keep a low value during the group motion
and thus indicate the ability of each robot to recover its relative position with
respect to the robot ic = 1 by only exploiting measured distances with respect
to its neighbors and the infinitesimal rigidity of the formation

in recovering the value of λ7(t) (note how the 6 estimations
are almost superimposed on the real value) and (ii) that
λ7(t) > λmin

7 at all times apart from few isolated spikes,
implying that formation rigidity was maintained during the
task execution. As an additional indication of the eigenvalue
estimation performance, Fig. 8(b) shows the total estimation
error for the rigidity eigenvalue

eλ(t) =

∑N
i=1 |λ7(t)− λ̂i7(t)|

N
(35)

which again confirms the accuracy of the estimation strategy.
Figures 9(a–o) report the behavior of the 15 weights Wuv

defined in (11) and associated to the all the possible edges of
graph G in order to show their time-varying nature because of
the constraints and requirements listed in Sect. III-A. Note how
the value of some weight drops to zero over time (e.g., W45(t)
at about t = 25 [s] or W24(t) at about t = 210 [s]), thus
indicating loss of the corresponding edge. In the same spirit,

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

12

13

14

time [s]

λ
7
,
λ̂
i 7,

λ
8

(a)

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time [s]

e
λ
7

(b)

Fig. 8. Left: behavior of λ7(t) (blue line) and the 6 estimations λ̂i7(t)
(dashed colored lines) which result almost coincident. Right: behavior of the
overall rigidity eigenvalue estimation error eλ(t) as defined in (35)

Fig. 10 shows the total number of edges |Ê | of the unweighted
graph Ĝ (i.e., of non-zero weights Wuv , see Definition II.9)
during the group motion. These results highlight the time-
varying nature of graph G which, as explained in the previous
sections, is not constrained to keep a given fixed topology but
is free to lose or gain edges as long as infinitesimal rigidity
of the formation is preserved.

Finally, Figs. 11(a–f) report the behavior over time of pi(t)
(the i-th agent position, solid lines) and of pi,real(t) (the i-th
quadrotor position, dashed lines) while tracking the motion of
pi(t). The two position vectors result almost perfectly coinci-
dent, thus indicating a successful tracking performance of the
quadrotors (and the soundness of our modeling assumptions).
As a further confirmation of this fact, the norm of the overall
tracking error defined as

etrack(t) =

∑N
i=1 ‖pi(t)− pi,real(t)‖

N
(36)

is also reported in Fig. 12.

VIII. CONCLUDING REMARKS

This work presented a fully distributed solution for the
rigidity maintenance control of a multi-robot system. As dis-
cussed in the introduction, rigidity is an important architectural
feature for multi-robot systems that enables, for example,
formation keeping and localization using only range-based
measurements. The main theme of this work, therefore, was
the distributed implementation of a number of algorithms
for estimation and control in a multi-robot system related to
rigidity maintenance. In particular, we demonstrated how the
rigidity eigenvalue and eigenvector, used to decide if a for-
mation is infinitesimally rigid, can be distributedly estimated
using a suite of estimators based on dynamic consensus filters
and the power iteration method for eigenvalue estimation. The
rigidity property also allowed for estimation of a common
inertial reference frame using only range based measurements,
along with one single endowed agent that is able to sense both
range and bearing. The estimation of these quantities were
then embedded in a gradient-based distributed control action
ensuring each agent moves in a way that guarantees rigidity
of the formation is maintained. This control scheme also
explicitly handles a variety of practical multi-robot constraints,

16

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
1
2

(a)

0 50 100 150 200 250 300
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time [s]

W
1
3

(b)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
1
4

(c)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
1
5

(d)

0 50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
1
6

(e)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
2
3

(f)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
2
4

(g)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
2
5

(h)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
2
6

(i)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
3
4

(j)

0 50 100 150 200 250 300
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time [s]

W
3
5

(k)

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
3
6

(l)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
4
5

(m)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
4
6

(n)

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
5
6

(o)

Fig. 9. Behavior of the 15 weights Wuv(t) for all the possible edges of
graph G. Note how the values of weights Wuv(t) vary over time because
of the sensing/communication constraints and requirements embedded within
their definition (see sec. III-A). Some weights (e.g., W24 and W45) also
temporarily vanish indicating loss of the corresponding edge (and, thus, the
time-varying nature of graph G)

0 50 100 150 200 250 300
14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

time [s]

|E
|

Fig. 10. Total number of edges in the graph G during the group motion

including sensing and communication ranges, collision and ob-
stacle avoidance, and line-of-sight requirements. The validity
of the proposed algorithms was demonstrated by a team of 6

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

time [s]

p
1
,
p
1
,
re
a
l[
m
]

(a)

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

time [s]

p
2
,
p
2
,
re
a
l[
m
]

(b)

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

4

5

time [s]

p
3
,
p
3
,
re
a
l[
m
]

(c)

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

5

time [s]

p
4
,
p
4
,
re
a
l[
m
]

(d)

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

5

time [s]

p
5
,
p
5
,
re
a
l[
m
]

(e)

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

4

time [s]

p
6
,
p
6
,
re
a
l[
m
]

(f)

Fig. 11. Figs. (a–f): behavior of pi(t) (solid) and pi,real (dashed): these are
basically superimposed, showing the accuracy of the quadrotors in tracking
the reference trajectory pi(t). In the plots the following color code is used:
blue/red/green solid/dashed lines correspond to the x/y/z components of pi(t)
and pi,real

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time [s]

e
tr
a
ck
[m

]

Fig. 12. Behavior of the tracking error etrack(t) defined in (36) showing
again the good tracking performance of the 6 quadrotors

quadrotor UAVs flying in a cluttered environment.
This work also highlighted a number of directions for future

research. In particular, the estimation of the rigidity eigen-
value assumed that there is a separation between the rigidity
eigenvalue and the next largest eigenvalue, i.e. |λ7 − λ8| > 0.
While the reported experimental results showed a large degree
of robustness w.r.t. this effect, there remain both theoretical
and practical questions related to this problem. For instance,
it would be interesting to complement the rigidity mainte-
nance controller with an additional term meant to maintain a

17

minimum separation among λ8 and λ7. Another extension is
to relax the requirement for having a special agent endowed
with additional sensing capabilities (i.e. range and bearing).
This would lead to a distributed solution involving only range
measurements for all robots in the ensemble.

Despite these remaining challenges, this work has suc-
cessfully demonstrated the power of distributed strategies for
multi-robot systems. Indeed, it is remarkable to observe the be-
havior of the multi-robot team running many distributed filters
to achieve a common global objective. The refinement of these
strategies will no doubt become an important requirement as
autonomous multi-robot systems are integrated more into a
variety of application domains.

APPENDIX A: INDEX TO MULTIMEDIA EXTENSIONS

The multimedia extensions to this article are at: http://www.
ijrr.org.

Extension Type Description
1 Video Experiments of rigidity mainte-

nance with a group of UAVs

APPENDIX B: RIGIDITY MATRIX EXAMPLE

The development of the alternative representation of the
Rigidity Matrix given in Proposition II.13 of the document
is aided by a simple example. To begin, we make some
qualitative observations of the rigidity matrix. For this example
we consider a framework in R2 with the complete graph on
3 nodes (denoted K3). The rigidity matrix can be written by
inspection as

R(p) =

px1 − px2 py1 − py2 px2 − px1 py2 − py1 0 0
px1 − px3 py1 − py3 0 0 px3 − px1 py3 − py1

0 0 px2 − px3 py2 − py3 px3 − px2 py3 − py2

 .

For the complete graph and an arbitrary orientation assigned
to each edge, the incidence matrix E(G) can be written as

E(G) =

1 1 0
−1 0 1
0 −1 −1

 .

The transpose of the incidence matrix functions as a “dif-
ference” operator. If the position of each agent is formed into
a vector, we have

E(G)T

px1 py1
px2 py2
px3 py3

 =

px1 − px2 py1 − py2
px1 − px3 py1 − py3
px2 − px3 py2 − py3

 .

The point to illustrate here is that this difference operation
between positions is redundantly embedded inside the rigidity
matrix. This fact can be made more precise by defining
a directed local graph at node vi from the graph G as
in Definition II.12 in the main text. Intuitively, the idea is
that each node only has some local information about the
connectivity of the entire graph; indeed, it only knows of the
existence of other nodes that it can sense. In this way, we
can define a sub-graph induced by each node in the graph as
follows.

(a) A graph. (b) Local directed graph at a node.

Fig. 13. Example of a directed local graph.

Let Gj = (V, Ej) be a sub-graph induced by node vj such
that

Ej = {(vj , vi) | {vi, vj} ∈ E}.

Here we emphasize that the original graph G is undirected,
while in the new induced graph Gi we assign a direction to
the edge such that node vj is always the tail. Furthermore,
observe that ∪jGj = G.13 This is illustrated in Figure 13.

To continue with the K3 example, we can write the local
incidence matrix for node v1 as

El(G1) =

1 1 0
−1 0 0
0 −1 0

 .

Note that this matrix is not truly an incidence matrix for the
graph G1; “placeholders” for the other edges in the graph G
are kept. As a result, the local incidence matrix is defined as
El(Gj) ∈ R|V|×|E| to have zero-columns corresponding to the
edges not in Ej .14

Now, consider the local incidence matrix as the difference
operator,

El(G1)T

px1 py1
px2 py2
px3 py3

 =

px1 − px2 py1 − py2
px1 − px3 py1 − py3

0 0

 .

Note that this is identical to the the first 2 columns of the
rigidity matrix R(p). In fact, this shows that the rigidity matrix
can be written entirely in terms of local incidence matrices,
as formally stated in Proposition II.13 of the main document.

ACKNOWLEDGMENTS

Part of Heinrich Bülthoff’s research was supported by the
Brain Korea 21 PLUS Program through the National Research
Foundation of Korea funded by the Ministry of Education.
Correspondence should be directed to Heinrich H. Bülthoff.

13Here, we assume that the directed edges (vi, vj) and (vj , vi) are
equivalent to the undirected edge {vi, vj}.

14This representation also assumes that all the edges have been assigned a
label, and this labeling is maintained even for the local graphs (local graphs
do not relabel their edges; for example if edge 2 is not in local graph Gj ,
then the second column of E(Gj) will be zero).

http://www.ijrr.org.
http://www.ijrr.org.

18

REFERENCES

I. F. Akyildiz, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. IEEE Communications Magazine, 40(8):102–
114, 2002.

B. D. O. Anderson, B. Fidan, C. Yu, and D. van der Walle. UAV
formation control: Theory and application. In V. D. Blondel, S. P.
Boyd, and H. Kimura, editors, Recent Advances in Learning and
Control, volume 371 of Lecture Notes in Control and Information
Sciences, pages 15–34. Springer, 2008a.

B. D. O. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx. Rigid graph
control architectures for autonomous formations. IEEE Control
Systems Magazine, 28(6):48–63, 2008b.

J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley,
Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur. A theory of
network localization. IEEE Trans. on Mobile Computing, 5(12):
1663–1678, 2006.

J. Baillieul and L. McCoy. The combinatorial graph theory of
structured formations. In 2007 46th IEEE Conference on Decision
and Control, pages 3609–3615, December 2007.

J. Bristow, D. Folta, and K. Hartman. A Formation Flying Tech-
nology Vision. In AIAA Space 2000 Conference and Exposition,
volume 21, Long Beach, CA, April 2000.

G. C. Calafiore, L. Carlone, and M. Wei. A distributed gradient
method for localization of formations using relative range mea-
surements. In 2010 IEEE Int. Symp. on Computer-Aided Control
System Design, pages 1146–1151, Yokohama, Japan, Sep. 2010a.

G. C. Calafiore, L. Carlone, and Mingzhu Wei. A distributed Gauss-
Newton approach for range-based localization of multi agent
formations. In Computer-Aided Control System Design (CACSD),
2010 IEEE International Symposium on, pages 1152–1157, 2010b.

R. Connelly and W. J. Whiteley. Global Rigidity: The Effect of
Coning. Discrete Computational Geometry, 43(4):717–735, 2009.

T. Eren, O. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse,
B. D. O. Anderson, and P. N. Belhumeur. Rigidity, computation,
and randomization in network localization. In IEEE INFOCOM
2004, volume 4, pages 2673–2684. IEEE, 2004.

A. Franchi, C. Masone, V. Grabe, M. Ryll, H. H. Bülthoff, and
P. Robuffo Giordano. Modeling and control of UAV bearing-
formations with bilateral high-level steering. The International
Journal of Robotics Research, Special Issue on 3D Exploration,
Mapping, and Surveillance, 31(12):1504–1525, 2012a.

A. Franchi, C. Secchi, M. Ryll, H. H. Bülthoff, and P. Robuffo Gior-
dano. Shared control: Balancing autonomy and human assistance
with a group of quadrotor UAVs. IEEE Robotics & Automation
Magazine, Special Issue on Aerial Robotics and the Quadrotor
Platform, 19(3):57–68, 2012b.

Randy A. Freeman, Peng Yang, and Kevin M. Lynch. Stability and
Convergence Properties of Dynamic Average Consensus Estima-
tors. In 45th IEEE Conf. on Decision and Control, pages 338–343,
San Diego, CA, 2006.

C. D. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.
ISBN 978-0-387-95241-3.

J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity.
Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 1993. ISBN 0821838016.

R. Horn and C. Johnson. Matrix Analysis. Cambridge University
Press, New York, 1985.

R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, New York, NY, 1991.

B. Jackson. Notes on the Rigidity of Graphs. In Levico Conference
Notes, 2007.

D. Jacobs. An Algorithm for Two-Dimensional Rigidity Percolation:
The Pebble Game. Journal of Computational Physics, 137(2):
346–365, November 1997.

M. Ji and M. Egerstedt. Distributed Coordination Control of Multi-
agent Systems While Preserving Connectedness. IEEE Trans. on
Robotics, 23(4):693–703, August 2007.

L. Krick, M. E. Broucke, and B. A. Francis. Stabilisation of infinites-
imally rigid formations of multi-robot networks. International
Journal of Control, 82(3):423–439, 2009.

G. Laman. On graphs and rigidity of plane skeletal structures. Journal
of Engineering Mathematics, 4(4):331–340, 1970.

Q. Lindsey, D. Mellinger, and V. Kumar. Construction of cubic
structures with quadrotor teams. In 2011 Robotics: Science and
Systems, Los Angeles, CA, Jun. 2011.

M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Mul-
tiagent Networks. Princeton Series in Applied Mathematics.
Princeton University Press, 1 edition, 2010. ISBN 9780691140612.

N. Michael, J. Fink, and V. Kumar. Cooperative manipulation and
transportation with aerial robots. In 2009 Robotics: Science and
Systems, Seattle, WA, Jun. 2009.

R. M. Murray. Recent research in cooperative control of multi-vehicle
systems. ASME Journal on Dynamic Systems, Measurement, and
Control, 129(5):571–583, 2006.

R. Olfati-Saber and R. M. Murray. The combinatorial graph theory
of structured formations. In 41th IEEE Conf. on Decision and
Control, pages 3609–3615, Las Vegas, NV, Dec. 2002.

P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff.
Bilateral teleoperation of groups of UAVs with decentralized
connectivity maintenance. In 2011 Robotics: Science and Systems,
Los Angeles, CA, Jun. 2011.

P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff. A
passivity-based decentralized strategy for generalized connectivity
maintenance. The International Journal of Robotics Research, 32
(3):299–323, 2013.

D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Fraundorfer, E. B.
Kosmatopoulos, A. Martinelli, M. W. Achtelik, M. Chli, S. A.
Chatzichristofis, L. Kneip, D. Gurdan, L. Heng, G. H. Lee, S. Ly-
nen, L. Meier, M. Pollefeys, A. Renzaglia, Roland Siegwart, J. C.
Stumpf, P. Tanskanen, C. Troiani, and S. Weiss. Vision-controlled
micro flying robots: from system design to autonomous navigation
and mapping in GPS-denied environments. IEEE Robotics &
Automation Magazine, 2014.

I. Shames, B. Fidan, and B. D. O. Anderson. Minimization of
the effect of noisy measurements on localization of multi-agent
autonomous formations. Automatica, 45(4):1058–1065, 2009.

B. Smith, M. Egerstedt, and A. Howard. Automatic generation
of persistent formations for multi-agent networks under range
constraints. In 1st Int. Conf. on Robot communication and
coordination, pages 1–8, 2007.

T. Tay and W. Whiteley. Generating isostatic frameworks. Structural
Topology, 11(1):21–69, 1985.

R. K. Williams, A. Gasparri, A. Priolo, and G. S. Sukhatme.
Evaluating Network Rigidity in Realistic Systems: Decentraliza-
tion, Asynchronicity, and Parallelization. IEEE Transactions on
Robotics, 2014.

C. Wu, Y. Zhang, W. Sheng, and S. Kanchi. Rigidity guided
localisation for mobile robotic sensor networks. International
Journal of Ad Hoc and Ubiquitous Computing, 6(2):114, 2010.

P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa,
and R. Sukthankar. Decentralized estimation and control of graph
connectivity for mobile sensor networks. Automatica, 46(2):390–
396, 2010.

D. Zelazo, A. Franchi, F. Allgöwer, H. H. Bülthoff, and P. Robuffo
Giordano. Rigidity maintenance control for multi-robot systems.
In 2012 Robotics: Science and Systems, Sydney, Australia, Jul.
2012.

