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Abstract We present a control framework for achiev-

ing encirclement of a target moving in 3D using a

multi-robot system. Three variations of a basic control

strategy are proposed for different versions of the en-

circlement problem, and their effectiveness is formally

established. An extension ensuring maintenance of a

safe inter-robot distance is also discussed. The proposed

framework is fully decentralized and only requires lo-

cal communication among robots; in particular, each

robot locally estimates all the relevant global quanti-

ties. We validate the proposed strategy through simu-

lations on kinematic point robots and quadrotor UAVs,

as well as experiments on differential-drive wheeled mo-

bile robots.

Keywords Distributed Robot Systems, Motion Con-

trol, Multi-robot Decentralized Control, Encirclement,

Escorting, Entrapment.

1 Introduction

The general problem of steering a group of mobile ag-

ents/robots in a regular and cohesive formation is an
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important topic in robotics because of the large num-

ber of potential applications. As such, it has been often

considered in the research literature.

Early works on this topic focus on basic tasks such

as aggregation and obstacle avoidance. Leonard and

Fiorelli (2001) use virtual points to change the forma-

tion shape and to address collision avoidance. The per-

formance of a swarm that approaches a goal maintain-

ing cohesion is analyzed by Gazi and Passino (2002) de-

pending on the attractive and repulsive control profiles.

A study of the convergence depending on the topology

of the communication graph is considered by Moreau

(2005), while Lin et al. (2005) place the α−stability con-

cept at the basis of a fixed-topology algorithm, and Ren

(2007a) applies consensus results to formation control.

Gonçalves et al. (2011), Sabattini et al. (2010, 2013)

and Hsieh et al. (2008) present methods based on ar-

tificial potentials or fields to make a group of robots

circulate along a static curve defined by two implicit

functions. Turpin et al. (2012) show that it is possible to

solve an optimization problem online (i.e., at each con-

trol step) in order to drive a multi-UAV system along

a pre-planned reference trajectory.

Many authors have investigated formation con-

trollers for specific tasks. An important example in this

category is the encirclement of a point or target. De-

spite its relative simplicity, this task represents several

interesting missions, such as coverage (retrieve and fuse

data about an environmental point-of-interest from dif-

ferent viewpoints), patrolling (guard the perimeter of a

given area centered at the encircled point), escorting

(protect an important member of the group from un-

friendly agents) and entrapment (contain the motion of

a hostile object).

The problem of moving a group of unicycles in a

regular formation around a common point is consid-
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ered by Sepulchre et al. (2007). A related approach is

presented by Moshtagh et al. (2009) where a central-

ized vision system is used for the experimentation. En-

circlement with relative bearing sensors is investigated

by Ceccarelli et al. (2008). The convergence of a decen-

tralized controller is proven using Lyapunov arguments

in Sadowska et al. (2012), while other authors develop

controllers based on cyclic pursuit-evasion schemes

(Pavone and Frazzoli, 2007; Hara et al., 2008) and con-

sensus techniques (Jönsson and Kao, 2010). Lan and

Lin (2010) propose a decentralized hybrid controller for

encircling and tracking a moving target using multiple

unicycles, under the assumption that the velocity of the

target is known.

Some works rely on a centralized approach to the

problem. For example, in Antonelli et al. (2008) a global

vision system provides the configuration of each robot

to a centralized controller based on input-output lin-

earization. Similarly, Mas et al. (2009) propose a cen-

tralized system in which measurements are expressed

in a world frame and cluster space control is used. An

additive robot-level obstacle avoidance term introduces

some decentralization in the system.

In other works, additional challenges (e.g., higher di-

mensional problem, disturbances) have been introduced

w.r.t. the basic encirclement problem. Kawakami and

Namerikawa (2009) prove the stability of a decentral-

ized controller for a multi-robot system moving in a 3D

space. A different problem is considered by Mellish and

Paley (2010), who design a backstepping controller for

stabilizing a circular formation in a uniform flow field.

Shames et al. (2010) present a control law that steers

two-dimensional agents on a fixed regular-polygon for-

mation.

In this paper, we introduce a new type of decentral-

ized encirclement controller. In particular, three varia-

tions of a basic control strategy are proposed for differ-

ent versions of the encirclement problem, and their ef-

fectiveness is formally established. The most significant

contributions of the proposed approach with respect to

the literature are the following:

– the applicability to both 3D (spatial) and 2D (pla-

nar) encirclement without modifications;

– an integrated scheme for estimating in a decentral-

ized way all the global quantities needed by the con-

trol law;

– a provably effective strategy for inter-robot collision

avoidance;

– an extensive numerical validation showing applica-

bility of the method to both holonomic point robots

and underactuated UAVs;

– an experimental implementation on nonholonomic

ground vehicles using only onboard sensors (i.e.,

without any external localization system).

In particular, the last point shows that our approach

is viable and robust in a realistic setting, in which each

robot must estimate all quantities needed by the encir-

clement controller using only information gathered by

its own sensory system. In particular, there is no need

for an external tracking system, such as a GPS or a

motion capture system.

While some of these properties were individually

achieved in previous works with different controllers, we

present here a self-contained and comprehensive work

that covers all the aspects of the encirclement problem:

theoretical analysis, control design, discussion, simula-

tions, and experimental validation with onboard-only

sensors. We believe that this feature represents a con-

tribution, per se, in addition to each single contribution.

The main novelties of this paper with respect to our

previous related work (Franchi et al., 2010b) are the fol-

lowing: (i) extension of the controller to the 3D case (ii)

integration of a decentralized mechanism for maintain-

ing a safe inter-robot distance (iii) decentralized esti-

mation of the global quantities (iv) new simulation and

experiments, including the case of 3D aerial vehicles.

The paper is organized as follows. Section 2 dis-

cusses the encirclement problem and formulates its

three versions considered in the paper. Section 3 in-

troduces the encirclement controllers, while Section 4

describes an extension that guarantees maintenance of

a safe inter-robot distance. Section 5 presents simula-

tion results with 3D point robots and quadrotor UAVs,

as well as experimental results with differential-drive

ground robots. Section 6 concludes the manuscript and

hints at some future work.

2 Problem Formulation

For the convenience of the reader, we have collected in

Table 1 the main symbols to be used in the paper.

Consider a system of mobile robots and a target

moving in a 3D space. The target can be an inanimate

object, another robot, or even a living agent. The task

assigned to the multi-robot system is to encircle the tar-

get, i.e., move around it in a regular circular formation,

often referred to as splay state formation (Sepulchre

et al., 2008). The problem can be reformulated in 2D,

if needed, by assuming that robots and target always

move on the same plane and discarding the orthogonal

coordinate to that plane.

The robots are modeled as n kinematic 3D points

R1, . . . , Rn. Denoting the position of Ri in the inertial
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n number of robots

Ri i-th point robot

W inertial frame

pi ∈ R3 cartesian position of Ri in W
ui ∈ R3 cartesian velocity input for Ri

T representative point of the target

Ni the neighbor set of robot i

T target frame

pT ∈ R3 cartesian position of T in W
RT ∈ SO(3) rotation matrix from W to T

qi = (ρi φi zi)T position of Ri in T in cylindrical
coordinates

ρi ∈ R+
0 radius of Ri in T

φi∈[0, 2π) phase of Ri in T
zi ∈ R height of Ri in T
vi = q̇i cylindrical velocity input for Ri

φ̄i average between the phases

of the successor and the predeces-
sor of Ri

∆i half-difference between the phases

of the successor and the predeces-
sor of Ri

δi difference between the phases of Ri

and its predecessor

ρ∗ desired encirclement radius

ω encirclement angular speed

ω∗ desired encirclement angular speed

s escape window

C∈Rn×n circulant matrix with first row(
0 1

2
0 · · · 0 1

2

)
D∈Rn×n circulant matrix with first row(

0 − 1
2

0 · · · 0 1
2

)
H∈Rn×n circulant matrix with first row

(0 0 0 · · · 0 − 1)

1 ∈ Rn (1 · · · 1)T

0 ∈ Rn (0 · · · 0)T

b ∈ Rn (−π 0 · · · 0 π)T

g ∈ Rn (π 0 · · · 0 π)T

h ∈ Rn (2π 0 · · · 0 0)T

φ ∈ Rn vector of robot phases

φ̄ ∈ Rn vector of phase averages

∆ ∈ Rn vector of phase half-differences

δ ∈ Rn vector of consecutive phase
differences

eφ ∈ Rn phase error vector

ξi constant forcing term for Ri

ξ̄ average of the forcing terms

η̂i estimate of a generic global quantity
η

computed by Ri

δmin(t) mini δi(t)

r safety radius of the robots

Dij inter-distance between Ri and Rj

Table 1: Main symbols used in the paper

world frame W by pi ∈ R3, each robot is modeled as a

first-order dynamical system of the form

ṗi = ui, i = 1, . . . , n, (1)

where ui is the velocity control input. Note that the

number n is not known to the robots, and will not be

directly used in any of the control laws to be designed,

Using a fully actuated kinematic model for the

robots allows to focus on the design of decentralized

control laws for achieving the encirclement task rather

than on the specific dynamics of the robot. On the other

hand, our control method will still be applicable to a

large class of robots. In fact, the cartesian trajectories

generated by the ideal model (1) can be effectively used

as reference for any mobile robot provided that at least

one point Pi of the robot can asymptotically track any

(smooth) trajectory. A sufficient condition for this is

that the position of Pi is (part of) a set of linearizing

outputs for the robot; in this case, in fact, there ex-

ists a feedback transformation such that the position

of Pi is produced by a chain of input-output integra-

tors (Isidori, 1995). Relevant examples include:

– the majority of wheeled mobile robots, and in par-

ticular differential-drive and car-like vehicles, in

which feedback linearization of the position of suit-

able 2D points of the robot body can be obtained

via static or dynamic feedback (Oriolo et al., 2002);

– helicopter and quadrotor UAVs, where dynamic

feedback linearization of the 3D center of mass can

be achieved (Nieuwstadt and Murray, 1998; Mistler

et al., 2001);

– more in general, all differentially flat systems (Fliess

et al., 1995) in which the flat outputs include the

cartesian position of a point.

The effectiveness of this approach will be illustrated

in Sect. 5, where we will report simulations on quadro-

tor UAVs and experiments on differential-drive mobile

robots.

In the following, we also assume that each robot i

can communicate with a subset of robots, denoted

by Ni (the neighbor set), which implicitly defines the

communication graph. The communication graph can

change arbitrarily over time with the only constraint

that connectivity is preserved. Since the communica-

tion graph is connected, each robot can in principle

exchange information with any other robot, e.g., using

a suitable routing strategy (Gui et al., 2009). Neverthe-

less, for the sake of scalability and decentralization, all-

to-all information exchange should be avoided as much

as possible in multi-robot algorithms. In particular, all

the controllers to be presented in the paper can be im-

plemented provided that each robot can communicate
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Fig. 1: Geometrical setting for the encirclement problem: perspective view (left) and side view (right). The target to be encircled
is represented as a balloon whereas the robots are helicopters. Note the cylindrical coordinates and the robot ordering defined
by the phase angles.

with two other members of the group, regardless of its

size. We will come back on this important aspect in

Section III-E.

Consider a representative point T of the target. The

encirclement task requires that R1, . . . , Rn to converge

to a regular circular formation centered at T and ly-

ing on a plane passing through T , called encirclement

plane, whose orientation is assigned. We consider then

a target frame T centered at T and such that the plane

XT -YT coincides with the encirclement plane. Since the

target may move, and a time-varying orientation may

be assigned to the encirclement plane, T is in general

a moving frame.

A natural formulation of the encirclement problem

is obtained by using cylindrical (rather than cartesian)

coordinates centered at T as robot configuration vari-

ables. In particular, with reference to Fig. 1, let

qi = (ρi φi zi)
T ,

where ρi is the distance between T and the orthogo-

nal projection of Ri on the encirclement plane XT -YT ,

φi is the angle between XT and the line joining that

projection with T , and zi is the distance between Ri
and XT -YT . We will call the coordinates ρi, φi, and

zi respectively the radius, phase, and height of the i-th

robot.

The cylindrical coordinates qi can be easily com-

puted from the cartesian coordinates pi. To this end,

define the following scalar functions of a generic posi-

tion vector p = (px py pz)
T

ρ : R3 → R+
0 , ρ(p) =

√
p2x + p2y (2)

φ : R3 → [0, 2π), φ(p) = atan2(py, px) (3)

z : R3 → R, z(p) = pz (4)

and the vector function

q : R3 → R3, q(p) = (ρ(p) φ(p) z(p))T . (5)

We can then write

ρi = ρ
(
RT
T (pi − pT )

)
(6)

φi = φ
(
RT
T (pi − pT )

)
(7)

zi = z
(
RT
T (pi − pT )

)
, (8)

where RT is the rotation matrix from W to T and pT
is the position of T in W. In a compact form, we have

qi = q
(
RT
T (pi − pT )

)
. (9)

In the following, it is assumed that the robot in-
dex i refers to the cyclic counterclockwise ordering of

the robots defined by their increasing phase angles at

the initial time instant t0 (see Fig. 1). Note that the

labeling defined by the phase ordering at time t0 is

never changed: that is, from the viewpoint of the generic

robot i, the identity of robot i − 1 (i + 1) is the same

throughout the motion, even if at time t > t0 the actual

predecessor (successor) in the phase ordering may be a

different robot.

Define the average between the phases of the suc-

cessor and the predecessor of the i-th robot as

φ̄1 =
φ2 + φn − 2π

2
(10)

φ̄i =
φi+1 + φi−1

2
i = 2, . . . , n− 1 (11)

φ̄n =
φ1 + 2π + φn−1

2
. (12)

We have now all the elements to state our basic

problem.
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Problem 1 (Encirclement). The encirclement task is

encoded by the following asymptotic conditions

lim
t→∞

ρi(t) = ρ∗ (13)

lim
t→∞

φi(t) = φ̄i(t) (14)

lim
t→∞

φ̇i(t) = ω, (15)

lim
t→∞

zi(t) = 0 (16)

for all i = 1 . . . n. Here, ρ∗ and ω are respectively the

encirclement radius and encirclement angular speed,

identical for all robots.

We will consider three different versions of the ba-

sic encirclement problem entailed by (13–16). In all of

them, the encirclement radius ρ∗ is assigned in advance.

The three versions differ in the way the encirclement

angular speed ω in (15) is generated.

Encirclement Problem, Version 1: A desired angular

speed ω = ω∗ is specified in advance.

In this version, the value of ω∗ typically corresponds

to a preferred cruise speed derived, e.g., from energy-

related considerations.

Encirclement Problem, Version 2: An escape window s

is assigned, defined as the time interval between two

consecutive passings of robots through a generic point

of the circle at steady state.

The practical motivation behind Version 2 of the en-

circlement problem could be to guarantee the effective-

ness of the entrapment/escorting task by limiting the

possibility that the entrapped target escapes or that

the escort is penetrated by a hostile agent. In fact, s

may be interpreted as the time in which the circular
formation may be violated.

Encirclement Problem, Version 3: The robots must au-

tonomously agree on a certain value of the encirclement

angular speed ω.

Version 3 is interesting from both the theoretical

and practical viewpoint since it gives the opportunity

to the multi-robot system to autonomously regulate its

cruise speed without the need for an external command.

3 Encirclement Control

We first establish some notation which will be useful

for analyzing the proposed control laws.

Throughout the paper, we denote with I the

n × n identity matrix, and with C,D,H the n × n

circulant matrices (Gray, 2006) with first rows

(0 1/2 0 · · · 0 1/2), (0 − 1/2 0 · · · 0 1/2), and

(0 0 0 · · · 0 − 1), respectively. Moreover, 1, 0, b, g,

and h are constant vectors whose definition is given

in Table 1. Finally, we aggregate the robot phases in

φ = (φ1 · · · φn)
T

.

We can now define in a compact way three useful

vectors: φ̄, ∆, and δ. The first collects the phase aver-

ages φ̄i, i = 1, . . . , n, already defined in (10–12):

φ̄ =
(
φ̄1 · · · φ̄n

)T
= Cφ+ b.

The i-th component of the second vector ∆ is the half-

difference between the phases of the successor and the

predecessor of robot i (compare with (10–12)):

∆1 =
φ2 − φn + 2π

2
(17)

∆i =
φi+1 − φi−1

2
i = 2, . . . , n− 1 (18)

∆n =
φ1 + 2π − φn−1

2
. (19)

and the vector itself can be written as

∆ = (∆1 · · · ∆n)
T

= Dφ+ g.

Finally, define the consecutive phase differences

δ1 = φ1 − φn + 2π (20)

δi = φi − φi−1 i = 2, . . . , n (21)

and the third vector is defined as

δ = (δ1 · · · δn)
T

= (H + I)φ+ h.

We are now ready to address the design of encir-

clement control laws. The dynamics of the generic robot

in cylindrical coordinates is obtained from (9) and (1)

as:

q̇i = J i

(
Ṙ
T

T (pi − pT ) +RT
T (ui − ṗT )

)
,

where J i = ∂q/∂p|p=pi is the Jacobian of the map

defined by (5), computed at pi. Therefore, by letting1

ui = ṗT +RT

(
J−1i vi − Ṙ

T

T (pi − pT )
)

(22)

the dynamics of the robot in cylindrical coordinates be-

come linear and decoupled

q̇i = vi. (23)

in the new control input vi = (ρ̇i φ̇i żi)
T .

We have the following straightforward result.

1 Note that matrix Ji is invertible whenever φi is defined,
i.e., unless the i-th robot is exactly above the target. This
zero-measure case represents a purely theoretical problem,
especially considering the presence of noise in the measure-
ments.
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Lemma 1 Letting

ρ̇i = kρ(ρ
∗ − ρi), (24)

żi = −kzzi, (25)

with kρ, kz positive gains, ρi and zi exponentially con-

verge to ρ∗ and 0, respectively, for any initial condition.

In other words, all robots will converge to the de-

sired circular trajectory centered at the target and lying

on the encirclement plane. Note that the evolution of

coordinates ρi and zi is not influenced by the motion of

the other robots. In Section 4, we shall modify eq. (24)

to guarantee that a safe inter-robot distance is main-

tained.

The choice of the second component of the control

input vi (i.e., φ̇i) depends on which version of the encir-

clement problem is considered. The three versions are

analyzed in detail in the rest of this section.

3.1 Encirclement Control, Version 1

In Version 1 of the encirclement problem, a desired en-

circlement angular speed ω∗ is assigned. Let the second

component of the control input vi be defined as

φ̇i = ω∗ + kφ(φ̄i − φi), (26)

where kφ is a positive gain. We have the following result.

Proposition 1 (Controller 1, Desired Angular Speed).

The control law expressed by (22) and (24), (25), (26)

guarantees global exponential convergence of ρi to ρ∗,

φi to φ̄i, φ̇i to ω∗, and zi to 0, for any choice of ρ∗ and

ω∗.

Proof. In Lemma 1 we have already established that ρi
and zi exponentially converge to ρ∗ and 0, respectively.

In order to prove the rest of the thesis, it is sufficient

to show that the phase error vector

eφ = φ̄− φ = (C − I)φ+ b (27)

converges to 0. Rewrite (26) for the multi-robot system

as

φ̇ = ω∗1 + kφ eφ, (28)

so that the error dynamics is obtained as

ėφ = (C − I)φ̇ = ω∗(C − I)1 + kφ(C − I)eφ.

Since −(C − I) can be interpreted as the Laplacian

matrix of the undirected ring with weights 1/2, we

conclude the proof by following closely the theory of

consensus protocol (see, e.g. Olfati-Saber and Murray

(2004)). In particular, note the following facts:

– 1T (C − I) = (C − I)1 = 0;

– ker(C − I) = span{1};
– C − I has a single zero eigenvalue and n− 1 nega-

tive real eigenvalues (hence, it is is negative semidef-

inite).

The error dynamics becomes then

ėφ = kφ(C − I)eφ.

Writing the free evolution of this linear system in spec-

tral form and using the aforementioned properties of

C − I it is easy to conclude that

lim
t→∞

eφ = (1Teφ(0))1 =
(
1T (C − I)φ(0) + 1T b

)
1 = 0,

and that convergence is exponential. In view of (26),

this also implies that φ̇i tends exponentially to ω∗, and

the proof is complete.

Note that, independently on the value of n, robot i

only needs to communicate with robot i − 1 and i + 1

(whose identity has been defined at t0) to implement

Controller 1.

3.2 Encirclement Control, Version 2

In Version 2 of the encirclement problem the robots are

assigned a steady-state escape window s, which would

require an asymptotic angular speed ω = 2π/n s. How-

ever, since n is unknown, the robots must compute a

decentralized estimate of this number, denoted by n̂.

In particular, each robot computes its own current

estimate as n̂i = 2π/∆i, and correspondingly a desired

angular speed ωi = 2π/n̂i s = ∆i/s, with ∆i given

by (17–19). This is used as a feedforward term in (26)

in place of ω∗, leading to the following control law for

the robot phase:

φ̇i = ∆i/s+ kφ(φ̄i − φi). (29)

Proposition 2 (Controller 2, Desired Escape Win-

dow). The control law expressed by (22) and (24), (25),

(29) guarantees global exponential convergence of ρi to

ρ∗, φi to φ̄i, φ̇i to 2π/n s, and zi to 0, for any choice

of ρ∗ and s.

Proof. Let f = 1/s and write (29) for the multi-robot

system as

φ̇ = f∆+ kφ(φ̄− φ).

The error dynamics is

ėφ = (C − I)φ̇ = f(C − I)(Dφ+ g) + kφ(C − I)eφ.
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Using the fact that C − I and D commute, and rear-

ranging terms, we get

ėφ = (kφ(C − I) + fD)eφ + f((C − I)g −Db),

and since (C − I)g −Db = 0 we conclude that

ėφ = (kφ(C − I) + fD)eφ.

It is easy to verify that matrix kφ(C − I) + fD has

exactly the same properties2 ofC−I which were used in

the proof of Proposition 1. Therefore, we can once again

conclude that eφ converges to 0, and this automatically

implies that φ̂i converges to 2π/n and φ̇i to 2π/ns. Note

that all variables converge exponentially.

The communication requirements of Controller 1 are

the same as Controller 2.

3.3 Encirclement Control, Version 3

In Version 3 of the encirclement problem the robots

must autonomously agree on a common value of the

angular speed ω. To this end, we propose the following

dynamic control law for controlling the phase of the i-th

robot:

ω̇i = kω(φ̄i − φi), ωi(t0) = 0 (30)

φ̇i = ωi + kφ(φ̄i − φi) + ξi, (31)

where kω, kφ are positive gains and ξi is a nonnegative

constant forcing term. Denote by ξ̄ =
∑n
i=1 ξ/n the av-

erage of the forcing terms over the multi-robot system.

To prove that (30)–(31) achieve the desired control
objective we need a preliminary result.

Lemma 2 Consider a 2n× 2n matrix of the form

A =

(
0 k1I

B k2B

)
where 0 is the n×n null matrix, I is the n×n identity

matrix, B is a n×n matrix, and k1, k2 are nonzero real

numbers. For any eigenvalue µ of B with eigenvector

u, the roots λ1,2 of λ2− k2µλ− k1µ, are eigenvalues of

A with eigenvectors
(
k1u

T λ1,2u
T
)T

.

Proof. In view of the structure of A, vector
(
v1

Tv2
T
)T

is an eigenvector of A associated to λ if

k1v2 = λv1 (32)

Bv1 + k2Bv2 = λv2. (33)

2 It is a differently weighted Laplacian of the undirected
ring.

Eq. (32) means that eigenvectors associated to λ must

have the structure
(
k1v

T λvT
)T

. Setting v = u in this

structure, and substituting into (33) we obtain k1µu+

k2µλu = λ2u. The thesis follows.

The convergence result can now be established.

Proposition 3 (Controller 3, Angular Speed Consen-

sus). The control law expressed by (22) and (24), (25),

(30–31) guarantees global exponential convergence of ρi
to ρ∗, φi to φ̄i, φ̇i to ξ̄, and zi to 0, for any choice of

ρ∗.

Proof. Let ω = (ω1 · · · ωn)
T

, ξ = (ξ1 · · · ξn)
T

and

define the angular frequency error (the reason for the

name will be clear at the end of the proof) as

eω = ω + ξ − ξ̄1.

Writing (30), (31) for the multi-robot system we ob-

tain

ω̇ = kω(φ̄− φ), ω(t0) = 0

φ̇ = ω + kφ(φ̄− φ) + ξ.

Now compute the dynamics of the error e = (eTφ e
T
ω )T

ė =

(
kωeφ

(C − I)(ω + u) + kφ(C − I)eφ

)
=

=

(
0 kωI

C − I kφ(C − I)

)(
eω
eφ

)
= Ãe,

where we have used ξ̄ = 1T ξ/n and (C − I)1 = 0. In

view of Lemma 2, the eigenvalues of Ã are computed

by solving λ2 − kφµλ − kωµ = 0, with µ eigenvalue of

C − I. We obtain thus

λ1,2(µ) =
1

2

(
kφµ±

√
k2φµ

2 + 4kωµ
)
.

We recall (see the proof of Proposition 1) that C − I
has a single zero eigenvalue and n − 1 negative real

eigenvalues. In correspondence to µ = 0 we immediately

get λ1,2(0) = 0, whereas a simple reasoning shows that

for any other eigenvalue µ < 0 we get λ1,2(µ) < 0.

To conclude the proof, we show that the error e is

always orthogonal to the eigenspace of Ã associated to

the double eigenvalue in 0. This is a consequence of

three facts. First, it may be readily verified that such

eigenspace is A0 = span{(1T 0T )T , (0T 1T )T }. Second,

the orthogonal complement A⊥0 of A0 is an invariant set

for the error dynamics, because for any w⊥ ∈ A⊥0 we

have(
1T 0T

0T 1T

)
Ãw⊥ =

(
0T kω1

T

0T 0T

)
w⊥ =

(
0

0

)
,
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where we exploited twice the fact that 1T (C − I) = 0.

Finally, e(t0) belongs to A⊥0 by construction, being both

1Teω(t0) = 0 and 1Teφ(t0) = 0.

Wrapping up, the error e = (eTφ e
T
ω )T converges to

zero. The convergence of eφ to zero implies the con-

vergence of φ to φ̄, whereas the convergence of eω to

zero implies that ω+ξ converges to ξ̄1, i.e., that φ̇i con-

verges to ξ̄ (see (31)). Once again, all variables converge

exponentially.

As the previous control laws, also Controller 3 can

be implemented on robot i provided that the phases of

robot i− 1 and i+ 1 are available via communication.

An interesting scenario for Controller 3 is considered

in the following

Corollary 1 Assume that all forcing terms ξi in (31)

are zero, with a single exception ξk 6= 0. Then, the k-th

robot acts as a leader by imposing ξk/n as encirclement

angular speed to the whole multi-robot system.

3.4 Decentralized Estimation of the Global Quantities

All the three proposed controllers hinge upon the feed-

back transformation (22) to linearize and decouple the

robot dynamics in cylindrical coordinates. To compute

such transformation, each robot should know the quan-

tities (pT , ṗT ) and (RT , ṘT ). While the first two (re-

spectively, position and velocity of the target point) can

in principle be measured or reconstructed by on-board

sensors, the last two are related to the desired orienta-

tion of the encirclement plane and, as such, are specified

by the task. Note that the robots are not required to

express the estimated global quantities in an absolute

frame of reference, being sufficient the agreement of all

robots on those quantities in a relative frame. Once

again, absolute measurements are not required, as also

proven in the experimental section.

We consider here the most challenging case, in which

only one of the robots is informed (i.e., knows the above

quantities), either by direct measurement or as part of

the task description. In order to propagate the neces-

sary information to the remaining n − 1 robots of the

group, we adopt a decentralized estimator based on the

consensus tracking algorithm proposed in Ren (2007b).

Denote with l the index of the informed robot that

knows pT , ṗT , RT , ṘT , and with η the generic scalar

component of these vector/matrix quantities. The i-th

robot computes an estimate η̂i of η by using the follow-

ing algorithm:

˙̂ηi =

{
η̇ + kη (η − η̂i) i = l

avej∈Ni(
˙̂ηj) + kηavej∈Ni(η̂j), i 6= l

(34)

where kη is a positive constant, and avej∈Ni(·) returns

the average of the estimates of the neighbors of robot i.

The following result holds.

Proposition 4. If the communication graph remains

connected, the multi-robot system can achieve decentral-

ized estimation of any time-varying quantity η known

by one robot using the algorithm (34); i.e., η̂i globally

converges to η, for i = 1 . . . n.

Proof. The adjacency graph underlying the problem

topology contains always a directed spanning tree with

robot 1 as unique root. Then, the convergence directly

follows from the proof of the consensus tracking algo-

rithm presented in Ren (2007b).

To apply (34), each robot should in principle know

the time derivatives of the estimates of its neighbors.

These quantities are needed to compute the feedfor-

ward term for tracking the time-varying signal η. In

a practical (necessarily discrete-time) implementation,

the derivatives can be numerically computed using the

previous values of the estimates.

We emphasize that, as for any decentralized control

strategy that relies on recursive estimation of global

quantities, successful performance relies on the exis-

tence of a sufficient time-scale separation between the

dynamics of the consensus (i.e., of the estimation error)

and that of the controller. This assumption is generally

satisfied for ground vehicles, but may be more critical

for other kinds of robots (e.g., UAVs) that need fast

control response.

3.5 Communication and Scalability

It has been shown above that the proposed estimation-

control scheme works provided that the communication

graph remains connected over time. Indeed, the commu-

nication graph may even reduce to a tree, i.e., it may

contain as little as n− 1 edges.

In particular, the three proposed encirclement con-

trollers require that the i-th robot knows the phases of

the (i+1)-th and (i−1)-th robots. Since the communi-

cation graph is connected, this can always be guaran-

teed using multi-hop communication (Gui et al., 2009).

Therefore:

– the number of messages sent/received by each robot

per unit of time is constant, regardless of the number

n of robots;

– the total number of messages exchanged by the

whole multi-robot system per unit of time is linear

in the number n of robots.
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As for the estimation part, the number of robots

that need to know the global quantities (pT , ṗT ) and

(RT , ṘT ), either by direct measurement or as part of

the task description, is also O(1). In particular, in the

proposed approach it is sufficient that a single robot is

informed.

Altogether, the above remarks indicate that the pro-

posed approach for encirclement scales well with the

cardinality n of the multi-robot system, which — we

emphasize — is unknown to the robots.

4 Maintaining a Safe Distance

The objective of this section is to show how the pre-

viously described control approach can be extended to

guarantee that the moving robots never get closer to

each other than a specified distance. This can be used

for avoiding collisions among robots during the encir-

clement task.

In particular, we shall refer in the following to Con-

troller 1. We preliminary prove a phase preservation

property which will be instrumental in deriving the

main result.

4.1 Phase Preservation Property

Proposition 1 implies that under Controller 1 the robot

phases at steady state are in the same order as the ini-

tial phases (actually, the same is true under Controllers

2 and 3, as implied by Propositions 2 and 3, respec-

tively). The next result states that along the trajecto-
ries of (26) the initial ordering is actually maintained

at all instants of time.

Proposition 5. Consider the phase dynamics (26) and

initial conditions δi(t0) > 0, i = 1, . . . , n. Then:

1. δi(t) > 0, i = 1, . . . , n, for all t ≥ t0;

2. the lower-bounding signal

δmin(t) = min
i
δi(t) (35)

has the following properties:

(a) δmin(t) ≤ 2π/n, for all t ≥ t0;

(b) δmin(t) is non-decreasing;

(c) δmin(t)→ 2π/n as t→∞.

Proof. Using (27) in (28), the phase dynamics for the

multi-robot system becomes

φ̇ = kφ(C − I)φ+ ω1 + kφb. (36)

In terms of consecutive phase differences, we have

δ̇ = (H + I)φ̇

= kφ(H + I)(C − I)φ+ ω(H + I)1 + kφ(H + I)b

= kφ(C−I)((H+I)φ+h))+kφ((H+I)b−(C−I)h)) =

= kφ(C − I)δ, (37)

where we exploited the fact that H + I and C − I
commute, that (H+I)1 = 0, and that (H+I)b−(C−
I)h = 0. Since kφ(C − I) is a Metzler matrix (i.e., all

its off-diagonal terms are positive), eq. (37) represents a

positive system, and therefore the elements of δ remain

positive during its evolution (see, e.g., Gurvits et al.

(2007)).

Concerning the properties of δmin, note first that

a) is a consequence of
∑n
i=1 δi(t) = 2π (by defini-

tion) together with δi(t) > 0, i = 1, . . . , n. Now de-

fine κ(t) = arg mini δi(t), i.e., the index such that

δκ(t)(t) = δmin(t). By definition δκ(t)±1(t) ≥ δκ(t)(t)

and thus (37) implies

δ̇min = kφ

(
1

2
(δκ(t)−1 + δκ(t)+1)− δκ(t)

)
≥ 0,

which proves property b). Finally, the convergence to

2π/n, property c), descends directly from Proposi-

tion 1.

4.2 Sufficient Conditions for Safety

Denote by r > 0 the safety radius of the robots, which

represents the minimum acceptable clearance around

the robot representative point R. The safety radius may

be the actual radius of the robot (defined as the max-

imum distance between R and any other point of the

robot) or, typically, it may be further increased to pro-

vide a margin, e.g., for accepting trajectory tracking

errors (either during the transient or at steady-state

due to bounded disturbances). For simplicity, in the

following we call collision the situation in which the

inter-distance between the representative points of two

robots is less or equal to 2 r.

Below, we give conditions for statical safety, i.e.,

avoidance of collisions between stationary robots. These

will be used for designing a dynamically safe encir-

clement controller in Set. 4.3. Throughout the rest of

this section, refer to Fig. 2 for illustration.

The necessary and sufficient condition for avoiding

a collision (including simple contact) between robots

i and j is that their inter-distance is larger than the

above threshold, i.e.,

Dij = ‖pi − pj‖ > 2r,
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Fig. 2: Illustration of the geometry for collision avoidance. Left: definition of relevant distances. Right: radial separation (Ri
and Rj) vs. phase separation (Ri and Rk).

which may be rewritten in cylindrical coordinates as

follows:

Dij =
√
ρi2 + ρj2 − 2ρiρj cos(φj − φi) + (zj − zi)2 ≥ 2r.

(38)

Now denote by p̃i and p̃j the projections of pi and pj ,

respectively, on the encirclement plane and let

dij = ‖p̃i − p̃j‖ =
√
ρi2 + ρj2 − 2ρiρj cos(φj − φi).

We have

Dij ≥ dij ≥
√
ρi2 + ρj2 − 2ρiρj = |ρi − ρj |. (39)

On the other hand, letting ρmij = min(ρi, ρj) we may

also write

Dij ≥ dij ≥
√

(ρmij )
2 + (ρmij )

2 − 2ρmijρ
m
ij cos(φj − φi) =

= ρmij

√
2(1− cos(φj − φi)) =

= 2ρmij

∣∣∣sin(φj−φi2

)∣∣∣ = d̃ij . (40)

We shall say that robots i and j are (see Fig. 2):

– radially separated if |ρi − ρj | > 2r;

– phase separated if d̃ij > 2r, or equivalently

ρmij >
r

| sin ((φj − φi)/2) |
.

Proposition 6. If two robots are either radially or

phase separated, they are not in collision.

Proof. It is a direct consequence of using the two sepa-

ration definitions in (39) and (40), respectively.

Note that radial or phase separation are only suf-

ficient conditions for avoiding collision between two

robots; i.e., two robots that are neither radially nor

phase separated are not necessarily in collision. The

following proposition provides a sufficient condition for

safety of robot i, i.e., avoidance of collision with any

other robot.

Proposition 7. Define σ(t) = r/| sin(δmin(t)/2)|, with

δmin given by (35). If the following condition holds

ρi(t) ≥ σ(t) + 2r (41)

at a time instant t, then robot i is not in collision with

any other robot at t.

Proof. Assume that (41) holds (drop time dependence

for compactness), and consider any other robot j, j 6= i.

If ρj > ρi−2r then ρj > σ, which implies ρmij > σ. Since

σ =
r

| sin(δmin/2)|
≥ r

| sin((φj − φi)/2)|
we may conclude that ρmij > r/| sin((φj − φi)/2)|; i.e.,

robot i and robot j are phase separated. On the other

hand, if ρj ≤ ρi− 2r then ρi−ρj ≥ 2r; i.e., robot i and

robot j are radially separated.

4.3 Safe Encirclement Control

Define the function λ(ρi, σ) : R2 → R as follows:

λ(ρi, σ) =


0 if ρi < σ + 2r

1 if ρi > σ + 2r + εr
(ρi − σ − 2r)/εr otherwise,

(42)

where εr is any (small) positive constant. The profile

of λ is shown in Fig. 2, right. The following proposi-

tion presents a collision-free extension of the controller

presented in Sect. 3.1.
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Proposition 8 (Controller 1∗, Desired Angular Speed

with Collision Avoidance). Replace (24) in Controller 1

with

ρ̇i = λ(ρi, σ) kρ(ρ
∗ − ρi), (43)

with σ defined in Proposition 7 and λ in (42). Then,

the control law expressed by (22) and (43), (25), (26):

1. ensures that no collision occurs among robots;

2. guarantees global exponential convergence of φi to

φ̄i, φ̇i to ω∗, and zi to 0, for any choice of ω∗; and

exponential convergence of ρi to ρ∗, provided that

a) ρ∗ > r
| sin(π/n)| + 2r;

b) ρi(t0) > r
| sin(π/n)| + 2r;

c) |ρi(t0)− ρj(t0)| ≥ 2r, ∀j = 1, . . . , n, j 6= i.

Proof. We shall prove the thesis in two parts.

Collision Avoidance: We first prove that the generic

i-th robot cannot collide with the j-th robot, ∀j 6=
i. From Proposition 5 we know that δmin is a non-

decreasing signal that converges to 2π/n, which im-

plies that σ + 2r is a non-increasing signal that con-

verges to r/| sin(π/n)|+ 2r from above. Since ρi(t0) >

r/| sin(π/n)| + 2r by hypothesis, and being ρ̇i = 0 as

long as ρi < σ + 2r, the first time instant ti such that

ρi(ti) = σ(ti) + 2r, is certainly finite, ∀i = 1, . . . , n. At

ti, ρi is ‘reached’ from above by the signal σ + 2r, and

for any t > ti it will be ρi(t) ≥ σ(t) + 2r. For t ≥ ti,

therefore, condition (41) of Proposition 7 holds, and the

i-th robot cannot collide with any other robot.

Now consider a generic t < ti, and note that we have

ρi(t) = ρi(t0). Partition the other robot indices in two

sets A(t) = {j | t ≥ tj} and B(t) = {j | t < tj}. For j ∈
A(t) it is t ≥ tj and thus condition (41) of Proposition 7

holds with j in place of i; hence, the j-th robot cannot

collide with any other robot (in particular, with the i-th

robot). For j ∈ B(t) it is t < tj and then ρj(t) = ρj(t0);

therefore, the j-th robot and the i-th robot are radially

separated by hypothesis and collisions are prevented

also in this case.

Convergence: We now prove that the regulation er-

rors converge to zero. Convergence of φi, φ̇i and zi is

shown exactly as in Proposition 1. To prove convergence

of ρi to ρ∗, we essentially exploit the fact that signal

ρ̃(t) + 2r (which determines the time-varying gain λ

in (42)) converges to r/| sin(π/n)|+2r, and thus ρi cer-

tainly converges to ρ∗, since both ρ∗ and ρi(t0) are, by

hypothesis, larger than r/| sin(π/n)|+ 2r.

More in detail, the assumption ρ∗ > r/| sin(π/n)|+
2r implies that ρ∗ = r/| sin(π/n)|+2r+ε∗ for a certain

ε∗ > 0. Now define the following quantity

ρm,i = min{ρ∗ − ε∗

2 , ρi(t0)},

which is larger than r/| sin(π/n)| + 2r by defini-

tion. Since ρ̃(t) + 2r converges monotonically to

r/| sin(π/n)| + 2r from above, there certainly exists a

time instant t∗i > t0 such that

ρ̃(t∗i ) + 2r = ρm,i and ˙̃ρ(t∗i ) < 0

so that ρ̃(t) + 2r < ρm,i ∀t > t∗i .

For any t ≥ t∗i it is clearly ρi(t) ≥ ρ̃(t)+2r; i.e., ρi(t)

lies in the right half-line with origin at ρ̃(t) + 2r, which

contains also ρ∗ by construction. The only two possible

equilibria of ρi after t∗i (obtained imposing ρ̇i = 0) are

therefore (1) ρi = ρ̃(t) + 2r (which implies λ = 0) and

(2) ρi = ρ∗. The first equilibrium is unstable, since for

any ρi ∈ (ρ̃(t) + 2r, ρ∗] it is d
dt (ρ− ρ̃+ 2r) = ρ̇− ˙̃ρ > 0.

On the other hand, ρ∗ is asymptotically stable and its

region of attraction is the whole open interval (ρ̃(t) +

2r,+∞).

To conclude the proof, let us look at the value of ρi
at t∗i . If ρ(t∗i ) > ρ̃(t∗i ) + 2r, then ρi is already in the

region of attraction of ρ∗ and will then converge to it.

If instead ρ(t∗i ) = ρ̃(t∗i ) + 2r, then d
dt

∣∣
t∗i

(ρ− ρ̃+ 2r) =

0 − ˙̃ρ(t∗i ) > 0, which implies that ρ̃ after t∗i will leave

the unstable equilibrium ρ− ρ̃+ 2r to enter the region

of attraction of ρ∗.

A comparison of Proposition 8 with Proposition 1

shows that the price to pay for adding guaranteed col-

lision avoidance to Controller 1 is threefold. First, the

encirclement radius ρ∗ cannot be too small (condition

a): its minimum admissible value depends on the num-

ber of robots and their radius r, and in particular the

higher n (or r), the higher ρ∗. Second, the initial dis-

tance of each robot from the target cannot be too small

(condition b, and note that the threshold is the same of

condition a). Finally, all robots must be radially sepa-

rated at the start (condition c). Taken together, these

three requirements represent only a sufficient condition;

collision-free encirclement may be obtained even if one

(or more) of them is violated.

Note also that function (42) is only the simplest

choice for producing a gain λ that varies continuously

between 0 and 1. Different choices (see Section 5.1)

can be considered if a smoother control law is desired;

Proposition 8 will still hold.

4.4 Decentralized Estimation of σ(t)

The safe encirclement control law (43) requires the

knowledge of the globally defined quantity σ(t). In or-

der to preserve decentralization and scalability of the

proposed approach, we show below how the generic i-

th robot can compute a decentralized estimate σ̂i that
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can be used in place of σ in the control law (43) while

preserving the validity of Proposition 8.

From the proof of Proposition 8, it is clear that if

lim
t→∞

σ̂i(t) = σ(t) ∀i, (44)

then the associated convergence properties still hold.

The proof additionally shows that if the estimates sat-

isfy

λ(ρ, σ̂i(t)) ≤ λ(ρ, σ(t)) ∀i,∀t > t0, (45)

then the collision avoidance property is also preserved.

In view of the definition of λ in (42), condition (45) can

be rewritten as

σ̂i ≥ σ. (46)

Therefore, we shall synthesize σ̂i so as to satisfy

both (44) and (46).

The proposed decentralized estimator for σ has a

discrete-time structure. In particular, denoting by Tc
the control sampling time, consider the following basic

iteration:

γi[0]=ρi(0)

γi[k + 1]=

{
ρi(kTc) if k is a multiple of m

maxj∈Ni {γi[k], γj [k]} otherwise,

where k is incremented every Tc seconds and m is any

integer larger than n − 1 (an upper bound on n for

the considered scenario is needed here). This scheme

achieves a finite-time agreement everymTc seconds, i.e.,

γi[m(k ÷m)] = max
j=1...n

ρj((k −m)Tc),

where k÷m is the quotient of the division of k and m.

Each robot then updates its estimate σ̂i of σ as follows:

σ̂i(kTc) =

{
∞ if k < m

γi[m(k ÷m)] otherwise.
(47)

Note that in this case the estimation algorithm is

proposed in discrete time to account for multiple com-

munications steps during a single control step. As be-

fore, this decentralized estimation method can be im-

plemented under any connected communication topol-

ogy.

We have the following result.

Proposition 9. Assume that the estimates σ̂i produced

by algorithm (47) are used in place of σ to implement a

decentralized version of control law (43). Then the the-

sis of Proposition 8 is still valid; in particular, collision-

free encirclement with a desired speed is achieved.

Proof. We know from Proposition 5 that δmin is

non-decreasing and converges to 2π/n. Thus, σ is

non increasing and converges to the constant value

r/| sin(π/n)|. Exploiting this fact, it is straightforward

to prove that the estimates produced by the proposed

protocol satisfy both (44) (i.e., decentralized estimation

of σ) and (46) .

5 Simulations and Experiments

This section describes the simulations and experiments

that have been performed in order to validate the pro-

posed encirclement controllers. See the multimedia ma-

terial attached to the paper for illustrative video clips.

5.1 Simulations with Kinematic 3D Point Robots

The first set of simulations involves systems of point

robots moving in 3D space. The objective is to test

the proposed encirclement controllers for different mo-

tions of the target and of the encirclement plane. The

global quantities (pT , ṗT ) and (RT , ṘT ) are always es-

timated via the algorithm (34), assuming that only one

robot in the whole group is informed about the global

quantities and that Ni = {i + 1, i − 1}. This is clearly

the worst-case scenario, since the presence of additional

communication links in the robot network would have

the effect of accelerating the convergence of the esti-

mates to the correct values, and hence of the multi-

robot system to the encirclement steady state. f Fig-

ure 3 shows the result of a simulation where Controller 1

(Desired Angular Speed) is used with 10 point robots.

The desired encirclement values are set to ρ∗ = 2 m and

ω∗ = 0.8 rad/s. The target moves at constant velocity

ṗT = (0, 0.2, 0.2) m/s. The encirclement plane XT -YT
is oriented orthogonally to ṗT ; it translates because the

target moves but it does not rotate. The control gains

are kρ = 1, kz = 1.5 and kφ = 2. As expected, the four

variables that encode the encirclement task according

to (13–16) converge exponentially to their desired value.

Figure 4 considers the same system of robots under

the action of Controller 2 (Desired Escape Window).

The desired encirclement values are set to ρ∗ = 2 m

and s∗ = 0.78 s. The target is fixed but the encirclement

plane, which is initially horizontal, now rotates with an-

gular velocity ωT = (0, 0.15, 0) rad/s. The control gains

are the same of the first simulation. Again, the encir-

clement task is achieved with exponential speed; note

in particular the convergence of the escape window s to

its desired value. At steady state, the robots move in a

regular formation along a great circle of the sphere of

radius ρ∗ centered in the target; this great circle rotates
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Fig. 3: 3D point robots, first simulation: Controller 1 (Desired Angular Speed) with 10 robots. (a),(b),(c),(d): Encirclement
error signals. (e),(f),(g): Projection of the robot trajectories on the coordinate planes (dashed: for t ∈ [0, 10] s; solid: for
t ∈ [10, 20] s). Robot positions at t = 0 s, t = 10 s, and t = 20 s are shown as red squares, green circles, and blue diamonds,
respectively.
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Fig. 4: 3D point robots, second simulation: Controller 2 (Desired Escape Window) with 10 robots. (a),(b),(c),(d): Encirclement
error signals. (e),(f),(g): Projection of the robot trajectories on the coordinate planes (dashed: for t ∈ [0, 10] s; solid: for
t ∈ [10, 20] s). Robot positions at t = 0 s, t = 10 s, and t = 20 s are shown as red squares, green circles, and blue diamonds,
respectively.

on the sphere over time due to the rotational motion of

the encirclement plane.

The third simulation (Fig. 5) refers to the same

robot system now subject to Controller 3 (Angular

Speed Consensus). The value of the encirclement radius

is again ρ∗ = 2 m, while vector ξ of the forcing terms

is chosen randomly, resulting in ξ̄ = 0.8 rad/s. The

target moves at constant velocity ṗT = (0.5, 0, 0) m/s;

at the same time, the encirclement plane, which is ini-

tially horizontal, rotates with angular velocity ωT =

(0, 0.3, 0) rad/s. The control gains kρ, kz, kφ are the

same as before, whereas kω = 3. As before, the en-

circlement signal errors decay exponentially to zero; in

particular, the encirclement angular speed converges to

ξ̄. Since the motion of the encirclement plane is now

a full roto-translation, the robot trajectories tend to

become composite helical-spherical curves.

The final simulation is aimed at validating Con-

troller 1∗ (Desired Angular Speed with Collision Avoid-

ance). To this end, we have considered a system of 5

circular robots of radius r = 0.25 m. Both the target

and the encirclement plane are now fixed. For simplic-

ity, it is assumed that all the robots start already on

the encirclement plane (zi = 0, ∀i), so that their motion

is actually planar. As shown in Fig. 6, when the basic

Controller 1 is applied (in particular, when ρ is con-

trolled using (24)), two pairwise collisions occur during

the robots’ approach to the steady-state circular trajec-
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Fig. 5: 3D point robots, second simulation: Controller 3 (Angular Speed Consensus) with 10 robots. (a),(b),(c),(d): Encirclement
error signals. (e),(f),(g): Projection of the robot trajectories on the coordinate planes (dashed: for t ∈ [0, 10] s; solid: for
t ∈ [10, 20] s). Robot positions at t = 0 s, t = 10 s, and t = 20 s are shown as red squares, green circles, and blue diamonds,
respectively.
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Fig. 6: 3D point robots, fourth simulation: Encirclement control with 5 robots, with and without collision avoidance. (a),(c):
Robot trajectories and inter-robot distances with Controller 1; note the double collision. (b),(d): Robot trajectories and inter-
robot distances with Controller 1∗ (Desired Angular Speed with Collision Avoidance).

tory: this is confirmed by the plot of the inter-distances

Dij , two of which go below the required threshold

of 2 r = 0.5 m. The application of Controller 1∗, in

which (43) is used in place of (24), is instead successful;

in particular, the figure clearly shows how the controller

prevents radial motion towards the target until a suffi-

cient phase separation is achieved. The global quantity

σ is estimated as explained in Section 4.4.

To obtain a smoother behavior, a sinusoidal transi-

tion from 0 to 1 was used for λ in place of the linear

transition entailed by (42).

5.2 Simulations with Quadrotor UAVs

To further validate our approach in a more realistic

scenario, a second simulation study was performed on

quadrotor UAVs. In particular, quadrotors are simu-
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Fig. 7: Quadrotor UAVs, first simulation: Some representative snapshots. a) The starting formation with the six quadrotors
hovering above the ground. b-d) Five quadrotors encircle the stationary quadrotor, which acts as target. e–h) The encirclement
continues with the target now moving on a line left to right. i–l) Final encirclement with the target stationary again but the
encirclement plane rotating. The arrows represent the reference velocity vector pi. The target plane is shown in red.

lated as rigid bodies with a mass of approximately

0.75 kg subject to four generalized forces (one thrust

and three torques) which are related to the rota-

tional speeds of the four rotors. To this end, Swarm-

SimX (Lächele et al., 2012) was used together with the

TeleKyb (Grabe et al., 2013) framework.

Clearly, a quadrotor cannot be modeled as a simple

integrator. However, its center of mass can track any

smooth trajectory because its position is (part of) a dif-

ferentially flat output. Therefore, we use the proposed
encirclement schemes to produce a reference trajectory

pi(t) for the center of mass of the i-th quadrotor, and

rely on the built-in tracking controller for generating

actual motion commands. In particular, each quadrotor

has a built-in trajectory tracking controller with a stan-

dard two-stage structure (see, e.g., Lee et al. (2013) for

details). The first stage (Cartesian controller) takes as

reference the trajectory pi(t) with its time derivatives3

ṗi(t) and p̈i(t), and generates the desired acceleration

of the center of mass via a simple PD + feedforward

controller:

acom,i = p̈i + kp(pi − pcom,i) + kd(ṗi − ṗcom,i), (48)

where pcom,i is the position of the center of mass of the

i-th quadrotor. In the second stage, acom,i is first con-

verted via the quadrotor model to the desired values of

3 Note that the first-order derivative ṗi = ui is directly
given by the general expression (22), whereas the second-
order derivative p̈i(t) is numerically computed.

roll, pitch and thrust that would generate such acceler-

ation given the current yaw; then, the desired values for

the roll and pitch angles are used as reference signals for

a PID attitude controller, which generates the torque

to be applied to the quadrotor through the propeller

rotational speeds. This simple cascaded approach for

trajectory tracking relies on the fact that the attitude

controller is much faster than the Cartesian controller.

However, since the former relies on approximate lin-

earization around zero roll and pitch angles, it is only

accurate for near-hovering trajectories. In such condi-

tions, this approach has been successfully employed in

practice (see, e.g., Franchi et al. (2012)).

In the simulations, five quadrotors are in charge of

the encirclement task while a sixth quadrotor (actually,

its center of mass) acts as target. Figure 7 summarizes

the results of a typical simulation, in which both the

target and the encirclement plane are first stationary;

then, the target moves at constant velocity; and finally

the encirclement plane rotates. Controller 1 (Desired

Angular Speed) is used for controlling the phase of the

quadrotors, with kρ = 0.5, kz = 0.5 and kφ = 0.5. The

desired encirclement values are set to ρ∗ = 2 m and

ω∗ = 0.8 rad/s. Finally, the control gains in (48) are

set to kp = 9 and kd = 7.5. The quadrotors are able to

track the reference trajectory very closely, and therefore

the encirclement task is successfully executed.

To further show the robustness of the proposed

encirclement controllers to unmodeled dynamics, we
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Fig. 8: Quadrotor UAVs, second set of simulations under unmodeled perturbations. Each column (left, center, right) refers to
a different simulation. For each simulation, the two top plots above show the velocity of the target and the angular velocity of
the encirclement plane, whereas the four bottom plots show the evolution of the encirclement errors.

present a set of simulations in which the proportional

term of the quadrotor Cartesian controller is suppressed

by setting kp = 0 in (48). In addition, the encirclement

control law ui is computed at the actual position pcom,i
of the quadrotor rather than at the nominal position

pi. These modifications, aimed at emphasizing the non-

ideal behavior of the quadrotor with respect to the in-

tegrator dynamics, lead to the following Cartesian con-

troller:

acom,i = u̇i + kd(ui − ṗcom,i),

with u̇ computed numerically from ui. The values of

all the other controller gains are the same as in the

previous case, as well as the values of ρ∗ and ω∗.

The results shown in Fig. 8 refer to three specific

cases:

1. pT and ωT are both identically zero (first column);

2. pT is a rectangular impulse along the XW direction

and ωT is identically zero (second column);

3. pT is identically zero and ωT is a rectangular im-

pulse around the YW axis (third column).

In particular, note that the rotation of the encirclement

plane violates the near-hovering assumption implicit

in the design of the built-in trajectory controller. Al-

together, the plots of the encirclement errors confirm

that the proposed scheme is rather robust in practice,

as transient converge quickly and steady-state errors,

when present, are very small.
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5.3 Experiments with Differential-Drive Robots

The proposed control framework for encirclement in 3D

space can be directly applied to the 2D case by as-

suming that the encirclement plane coincides with the

motion plane (this simply leads to zeroing the z coor-

dinate in all formulas). Accordingly, an experimental

validation of the proposed approach has been carried

out using a team of Khepera III wheeled mobile robots

Each of these small-size differential-drive vehicles has

been equipped with a Hukuyo URG-04LX laser range

finder, that has an angular field-of-view of 240◦ and

thus leaves a blind zone of 120◦ behind the robot. Si-

multaneous calibration of odometric and sensor param-

eters was performed using the algorithm in Censi et al.

(2013). The built-in wi-fi card allows each robot to com-

municate with the others.

Experiments involve a total of five robots, one of

which acts as target (either stationary or moving) while

the others must achieve encirclement. Each robot in-

spects its own laser scan with a feature extraction algo-

rithm that looks for the typical indentations caused by

robots located inside the field of view, whose relative

positions with respect to the sensor is returned. These

instantaneous, anonymous measurements (the identity

of the detected robots is unknown) are then broadcast

to the other robots together with odometric data. Using

this information, each robot performs mutual localiza-

tion using the method of Franchi et al. (2010a, 2013),

thus obtaining an estimate of the relative position of

all the robots whose data it has received, now labeled

with their identity. This localization step is essential

for enabling each robot to localize other agents moving

in its blind zone, a situation which occurs invariably

during encirclement (e.g., at steady-state). Moreover,

thanks to the reconstruction of the robot identities, the

target can be readily identified. Altogether, our relative

localization module provides all the information needed

for implementing the encirclement controllers without

requiring an external tracking system.

Coming to the implementation of the controller, we

exploit the fact that — like quadrotors — differential-

drive robots are differentially flat systems, the flat out-

put being the midpoint between the two wheels. This

point can therefore track any smooth trajectory. As

before, we use the proposed encirclement schemes to

produce a reference trajectory pi(t) for the midpoint

of the i-th robot, and then use the trajectory track-

ing controller of Oriolo et al. (2002) to track it. The

whole framework has been implemented in MIP, a in-

house developed software platform specifically aimed at

multi-robot systems.

Fig. 9: Differential-drive robots, first experiment: Some rep-
resentative snapshots. The target robot (shown enclosed in
a red circle) is stationary. a) The initial configuration of the
multi-robot system. b) When the three robots have achieved
the encirclement task, a fourth robot (4) is released. c) The
robots rearrange themselves in a rotating square formation.
d-e) Robot 4 is kidnapped and released at a different location.
f) The rotating square formation is recovered. g) Robot 4 is
removed. h) A triangular encirclement formation is achieved
again. i) Robot 2 is also removed. j) The two remaining robots
assume a dipolar encirclement formation.

In the first experiment, the target is stationary. Con-

troller 1∗ (Desired Angular Speed with Collision Avoid-

ance) is used for achieving collision-free encirclement.

The desired values for the encirclement radius and an-

gular speed are ρ∗ = 0.5 m and ω∗ = 0.06 rad/s, re-

spectively, while the control gains are kρ = 0.1 and
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Fig. 10: Differential-drive robots, first experiment: Encir-
clement accuracy in the various stages of the experiment, with
the desired rotating formation in each stage shown above the
plots. Top: for each robot, difference between the current ra-
dius and the desired encirclement radius. Center: for each
robot, difference between the current phase and the phase
of robot 1. Bottom: for each robot, difference between the
current angular speed and the desired encirclement speed.

kφ = 0.06. At the beginning of the experiment, sum-

marized in Fig. 9, the multi-robot system consists of

three robots that quickly achieve encirclement in a reg-

ular triangular formation. Another robot is then made

available, and the group automatically arranges itself

in a rotating square formation, which is momentarily

lost but promptly recovered when one of the robots is

kidnapped and released at a different location. Two of

the robots are then removed in sequence, causing the

encirclement formation to become first a triangle and

then a dipole.

A more quantitative evaluation of the first experi-

ment is given in Fig. 10. In particular, the performance

of the encirclement scheme is evaluated through the be-

havior of the radius, angular speed and phase of each

robot during the various stages of the experiment. Prac-

tical convergence of the first two quantities to the de-

sired values is confirmed, while the phase plots show

that the appropriate splay state formation is achieved

in each stage of the experiment. Note the quickly de-

caying transients at the start of the experiment and

whenever there is a discontinuity in the localization es-

timates: i.e., at the birth of a new estimate associated to

a robot being added to the group (time t1), at a jump

in the estimate of a robot kidnapped and released in

Fig. 11: Differential-drive robots, second experiment: Some
representative snapshots. The target robot (shown enclosed
in a red circle) moves along a rectilinear path. Nevertheless,
encirclement is effectively achieved.

a different location (time t2) or at the death of an es-

timate associated to a robot being removed from the

group (times t3 and t4).

This experiment proves the robustness of the pro-

posed encirclement controller, and in particular shows

the seamless operation of the overall framework in the

presence of a variable number of robots.

In the second experiment, the target robot moves

along a straight line with a constant velocity, with three

robots in charge of the encirclement task. As before,

this is achieved in a collision-free fashion by using Con-

troller 1∗, with the same reference values and gains

of the previous experiment. The snapshots shown in

Fig. 11 confirm that the robots are effectively able to

encircle the moving target while arranging themselves

in a rotating regular formation. As a result, each robot

moves along a generalized trochoid.

As for the previous simulations, video clips of these

two experiments are contained in the multimedia ma-

terial attached to the paper.

6 Conclusions

In this paper, we have formulated and solved the prob-

lem of encircling a target moving in 3D space using a

multi-robot system. In particular, three decentralized

controllers have been proposed for different versions of

the problem, and their effectiveness has been formally

proven. An extension ensuring collision-free motion in

the case of finite-size robots has also been proposed.

Decentralized schemes for the estimation of the relevant

global quantities have also been designed to guarantee
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that each robot can implement its controller using local

information. The proposed strategy has been success-

fully validated through simulations on kinematic point

robots and quadrotor UAVs, as well as experiments on

differential-drive wheeled mobile robots.

Future work will include:

– for the application to robots with complex dynam-

ics, the analysis of a reference trajectory generation

scheme based on continuous replanning;

– the formulation and solution of a 3D encirclement

problem on multiple planes, in which the robots

should tend to arrange themselves along the vertices

of a polyhedron;

– experimental validation on a team of quadrotors.
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M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness
and defect of nonlinear systems: Introductory theory and
examples. International Journal of Control, 61(6):1327–
1361, 1995.

A. Franchi, G. Oriolo, and P. Stegagno. Probabilistic mu-
tual localization in multi-agent systems from anonymous
position measures. In 49th IEEE Conf. on Decision and
Control, pages 6534–6540, Atlanta, GA, Dec. 2010a.

A. Franchi, P. Stegagno, M. Di Rocco, and G. Oriolo. Dis-
tributed target localization and encirclement with a multi-
robot system. In 7th IFAC Symp. on Intelligent Au-
tonomous Vehicles, Lecce, Italy, Sep. 2010b.

A. Franchi, C. Secchi, M. Ryll, H. H. Bülthoff, and P. Robuffo
Giordano. Shared control: Balancing autonomy and human
assistance with a group of quadrotor UAVs. IEEE Robotics
& Automation Magazine, Special Issue on Aerial Robotics
and the Quadrotor Platform, 19(3):57–68, 2012.

A. Franchi, G. Oriolo, and P. Stegagno. Mutual localization
in multi-robot systems using anonymous relative measure-
ments. The International Journal of Robotics Research,
32(11):1302–1322, 2013.

V. Gazi and K. M. Passino. Stability analysis of social forag-
ing swarms: combined effects of attractant/repellent pro-
files. In 41th IEEE Conf. on Decision and Control, pages
2848–2853, Las Vegas, NV, Dec. 2002.
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