@conference {2011k-RobFraSecBue, title = {Experiments of Passivity-Based Bilateral Aerial Teleoperation of a Group of UAVs with Decentralized Velocity Synchronization}, booktitle = {2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems}, year = {2011}, month = {09/2011}, pages = {163-170}, address = {San Francisco, CA}, abstract = {In this paper, we present an experimental validation of a novel decentralized passivity-based control strategy for teleoperating a group of Unmanned Aerial Vehicles (UAVs): the slave side, consisting of the UAVs, is endowed with large group autonomy by allowing time-varying topology and interrobot/obstacle collision avoidance. The master side, represented by a human operator, controls the group motion and receives suitable force feedback cues informing her/him about the remote slave motion status. Passivity theory is exploited for guaranteeing stability of the slave side and of the overall teleoperation channel. Results of experiments involving the use of 4 quadcopters are reported and discussed, confirming the soundness of the paper theoretical claims.}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Distributed algorithms, Force feedback, Haptics, Motion control of multiple robots, Multi-robot systems, Teleoperation}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011k-RobFraSecBue-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011k-RobFraSecBue.mp4}, author = {Paolo Robuffo Giordano and Antonio Franchi and Cristian Secchi and Heinrich H. B{\"u}lthoff} }