@conference {2017f-MicRylFra, title = {Control of Statically Hoverable Multi-Rotor Aerial Vehicles and Application to Rotor-Failure Robustness for Hexarotors}, booktitle = {2017 IEEE Int. Conf. on Robotics and Automation}, year = {2017}, month = {05/2017}, address = {Singapore}, abstract = {Standard hexarotors are often mistakenly considered {\textquoteleft}by definition{\textquoteright} fail-safe multi-rotor platforms because of the two additional propellers when compared to quadrotors. However this is not true, in fact, a standard hexarotor cannot statically hover with {\textquoteleft}only{\textquoteright} five propellers. In this paper we provide a set of new general algebraic conditions to ensure static hover for any multi-rotor platform with any number of generically oriented rotors. These are elegantly formulated as the full-rankness of the control moment input matrix, and the non-orthogonality between its null-space and the row space of the control force input matrix. Input saturations and safety margins are also taken into account with an additional condition on the null-space of control moment input matrix. A deep analysis on the hoverability properties is then carried out focusing on the propeller loss in a hexarotor platform. Leveraging our general results we explain why a standard hexarotor is not robust and how it can be made robust thanks to a particular tilt of the rotors. We finally propose a novel cascaded controller based on a preferential direction in the null-space of the control moment input matrix for the large class of statically hoverable multi-rotors, which goes far beyond standard platforms, and we apply this controller to the case of failed tilted hexarotor.}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2017f-MicRylFra-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2017f-MicRylFra.mp4}, author = {Giulia Michieletto and Markus Ryll and Antonio Franchi} }