@article {2013b-LeeFraSonBueRob, title = {Semi-Autonomous Haptic Teleoperation Control Architecture of Multiple Unmanned Aerial Vehicles}, journal = {IEEE/ASME Transaction on Mechatronics, Focused Section on Aerospace Mechatronics}, volume = {18}, year = {2013}, month = {08/2013}, pages = {1334-1345}, abstract = {We propose a novel semi-autonomous haptic teleoperation control architecture for multiple unmanned aerial vehicles (UAVs), consisting of three control layers: 1) UAV control layer, where each UAV is abstracted by, and is controlled to follow the trajectory of, its own kinematic Cartesian virtual point (VP); 2) VP control layer, which modulates each VP{\textquoteright}s motion according to the teleoperation commands and local artificial potentials (for VP-VP/VP-obstacle collision avoidance and VP-VP connectivity preservation); and 3) teleoperation layer, through which a single remote human user can command all (or some) of the VPs{\textquoteright} velocity while haptically perceiving the state of all (or some) of the UAVs and obstacles. Master-passivity/slave-stability and some asymptotic performance measures are proved. Experimental results using four custom-built quadrotor-type UAVs are also presented to illustrate the theory.}, keywords = {Bilateral Shared Control of Mobile Robots, Motion control of multiple robots, UAV hardware platforms}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2013b-LeeFraSonBueRob.pdf}, author = {Dongjun Lee and Antonio Franchi and Hyoung Il Son and Heinrich H. B{\"u}lthoff and Paolo Robuffo Giordano} } @conference {2011b-LeeFraRobSonBue, title = {Haptic Teleoperation of Multiple Unmanned Aerial Vehicles over the Internet}, booktitle = { 2011 IEEE Int. Conf. on Robotics and Automation}, year = {2011}, month = {05/2011}, pages = {1341-1347}, address = {Shanghai, China}, abstract = {We propose a novel haptic teleoperation control framework for multiple unmanned aerial vehicles (UAVs) over the Internet, consisting of the three control layers: 1) UAV control layer, where each UAV is abstracted by, and is controlled to follow the trajectory of, its own kinematic virtual point (VP); 2) VP control layer, which modulates each VP{\textquoteright}s motion according to the teleoperation commands and local artificial potentials (for inter-VP/VP-obstacle collision avoidance and inter-VP connectivity preservation); and 3) teleoperation layer, through which a remote human user can command all (or some) of the VPs{\textquoteright} velocity while haptically perceiving the state of all (or some) of the UAVs over the Internet. Master-passivity/slave-stability and some asymptotic performance measures are proved. Semi-experiment results are presented to validate the theory.}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Force feedback, Formation control, Haptics, Multi-robot systems, Teleoperation}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011b-LeeFraRobSonBue-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011b-LeeFraRobSonBue-low_qlty.mp4}, author = {Dongjun Lee and Antonio Franchi and Paolo Robuffo Giordano and Hyoung Il Son and Heinrich H. B{\"u}lthoff} } @booklet {2010d-RobFraSonSecLeeBue, title = {Towards Bilateral Teleoperation of Multi-Robot Systems}, howpublished = {3rd Int. Work. on Human-Friendly Robotics}, year = {2010}, month = {10/2010}, address = {Tuebingen, Germany}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Distributed algorithms, Force feedback, Haptics, Multi-robot systems, Teleoperation}, author = {Paolo Robuffo Giordano and Antonio Franchi and Hyoung Il Son and Cristian Secchi and Dongjun Lee and Heinrich H. B{\"u}lthoff} }