@article {2019b-YueSecBueFra, title = {Aerial Physical Interaction via IDA-PBC}, journal = {The International Journal of Robotics Research}, volume = {38}, year = {2019}, pages = {403{\textendash}421}, abstract = {This paper proposes the use of a novel control method based on IDA-PBC in order to address the Aerial Physical Interaction (APhI) problem for a quadrotor UAV. The apparent physical properties of the quadrotor are reshaped in order to achieve better APhI performances, while ensuring the stability of the interaction through passivity preservation. The robustness of the IDA-PBC method with respect to sensor noise is also analyzed. The direct measurement of the external wrench {\textendash} needed to implement the control method {\textendash} is compared to the use of a nonlinear Lyapunov-based wrench observer and advantages/disadvantages of both methods are discussed. The validity and practicability of the proposed APhI method is evaluated through experiments, where for the first time in the literature, a light-weight all- in-one low-cost F/T sensor is used onboard of a quadrotor. Two main scenarios are shown: a quadrotor responding external disturbances while hovering (physical human-quadrotor interaction), and the same quadrotor sliding with a rigid tool along an uneven ceiling surface (inspection/painting-like task).}, doi = {10.1177/0278364919835605}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2019b-YueSecBueFra-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2019b-YueSecBueFra.mp4}, author = {Burak Y{\"u}ksel and Cristian Secchi and Heinrich H. B{\"u}lthoff and Antonio Franchi} } @conference {2015f-YueMahSecBueFra, title = {Design, Identification and Experimental Testing of a Light-Weight Flexible-joint Arm for Aerial Physical Interaction}, booktitle = {2015 IEEE Int. Conf. on Robotics and Automation}, year = {2015}, month = {05/2015}, pages = {870-876}, address = {Seattle, WA}, abstract = {In this paper we introduce the design of a light- weight novel flexible-joint arm for light-weight unmanned aerial vehicles (UAVs), which can be used both for safe physical interaction with the environment and it represents also a preliminary step in the direction of performing quick motions for tasks such as hammering or throwing. The actuator consists of an active pulley driven by a rotational servo motor, a passive pulley which is attached to a rigid link, and the elastic connections (springs) between these two pulleys. We identify the physical parameters of the system, and use an optimal control strategy to maximize its velocity by taking advantage of elastic components. The prototype can be extended to a light-weight variable stiffness actuator. The flexible-joint arm is applied on a quadrotor, to be used in aerial physical interaction tasks, which implies that the elastic components can also be used for stable interaction absorbing the interactive disturbances which might damage the flying system and its hardware. The design is validated through several experiments, and future developments are discussed in the paper.}, keywords = {Aerial Physical Interaction, Aerial Robotics}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2015f-YueMahSecBueFra-preprint_0.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2015f-YueMahSecBueFra.mp4}, author = {Burak Y{\"u}ksel and Saber Mahboubi and Cristian Secchi and Heinrich H. B{\"u}lthoff and Antonio Franchi} } @conference {184, title = {A Nonlinear Force Observer for Quadrotors and Application to Physical Interactive Tasks}, booktitle = {IEEE/ASME International Conference on Advanced Intelligent Mechatronics}, year = {2014}, month = {07/2014}, pages = {433-440}, address = {Besan{\c c}on, France}, abstract = {In order to properly control the physical interactive behavior of a flying vehicle, the information about the forces acting on the robot is very useful. Force/torque sensors can be exploited for measuring such information but their use increases the cost of the equipment, the weight to be carried by the robot and, consequently, it reduces the flying autonomy. Furthermore, a sensor can measure only the force/torque applied to the point it is mounted in. In order to overcome these limitations, in this paper we introduce a Lyapunov based nonlinear observer for estimating the external forces applied to a quadrotor. Furthermore, we show how to exploit the estimated force for shaping the interactive behavior of the quadrotor using Interconnection and Damping Assignment Passivity Based Controller (IDA-PBC). The results of the paper are validated by means of simulations.}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2014h-YueSecBueFra-preprint.pdf}, author = {Burak Y{\"u}ksel and Cristian Secchi and Heinrich H. B{\"u}lthoff and Antonio Franchi} } @conference {2014d-YueSecBueFra, title = {Reshaping the Physical Properties of a Quadrotor through IDA-PBC and its Application to Aerial Physical Interaction}, booktitle = {2014 IEEE Int. Conf. on Robotics and Automation}, year = {2014}, month = {05/2014}, pages = {6258-6265}, address = {Hong Kong, China}, abstract = {In this paper we propose a controller, based on an extension of Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) framework, for shaping the whole physical characteristics of a quadrotor and for obtaining a desired interactive behavior between the robot and the environment. In the control design, we shape the total energy (kinetic and potential) of the undamped original system by first excluding external effects. In this way we can assign a new dynamics to the system. Then we apply damping injection to the new system for achieving a desired damped behavior. Then we show how to connect a high-level control input to such system by taking advantage of the new desired physics. We support the theory with extensive simulations by changing the overall behavior of the UAV for different desired dynamics, and show the advantage of this method for sliding on a surface tasks, such as ceiling painting, cleaning or surface inspection.}, keywords = {Aerial Physical Interaction, Aerial Robotics}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2014d-YueSecBueFra-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2014d-YueSecBueFra.mp4}, author = {Burak Y{\"u}ksel and Cristian Secchi and Heinrich H. B{\"u}lthoff and Antonio Franchi} } @conference {2013d-SecFraBueRob, title = {Bilateral Control of the Degree of Connectivity in Multiple Mobile-robot Teleoperation}, booktitle = {2013 IEEE Int. Conf. on Robotics and Automation}, year = {2013}, month = {05/2013}, address = {Karlsruhe, Germany}, abstract = {This paper presents a novel bilateral controller that allows to stably teleoperate the degree of connectivity in the mutual interaction between a remote group of mobile robots considered as the slave-side. A distributed leader-follower scheme allows the human operator to command the overall group motion. The group autonomously maintains the connectivity of the interaction graph by using a decentralized gradient descent approach applied to the Fiedler eigenvalue of a properly weighted Laplacian matrix. The degree of connectivity, and then the flexibility, of the interaction graph can be finely tuned by the human operator through an additional bilateral teleoperation channel. Passivity of the overall system is theoretically proven and extensive human/hardware in-the-loop simulations are presented to empirically validate the theoretical analysis.}, keywords = {Bilateral Shared Control of Mobile Robots, Connectivity maintenance}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2013d-SecFraBueRob.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2013d-SecFraBueRob.mp4}, author = {Cristian Secchi and Antonio Franchi and Heinrich H. B{\"u}lthoff and Paolo Robuffo Giordano} } @article {2013l-RobFraSecBue, title = {A Passivity-Based Decentralized Strategy for Generalized Connectivity Maintenance}, journal = {The International Journal of Robotics Research}, volume = {32}, year = {2013}, month = {03/2013}, pages = { 299-323}, abstract = {The design of decentralized controllers coping with the typical constraints on the inter-robot sensing/communication capabilities represents a promising direction in multi-robot research thanks to the inherent scalability and fault tolerance of these approaches. In these cases, connectivity of the underlying interaction graph plays a fundamental role: it represents a necessary condition for allowing a group or robots achieving a common task by resorting to only local information. Goal of this paper is to present a novel decentralized strategy able to enforce connectivity maintenance for a group of robots in a flexible way, that is, by granting large freedom to the group internal configuration so as to allow establishment/deletion of interaction links at anytime as long as global connectivity is preserved. A peculiar feature of our approach is that we are able to embed into a unique connectivity preserving action a large number of constraints and requirements for the group: (i) presence of specific inter-robot sensing/communication models, (ii) group requirements such as formation control, and (iii) individual requirements such as collision avoidance. This is achieved by defining a suitable global potential function of the second smallest eigenvalue λ2 of the graph Laplacian, and by computing, in a decentralized way, a gradient-like controller built on top of this potential. Simulation results obtained with a group of quadorotor UAVs and UGVs, and experimental results obtained with four quadrotor UAVs, are finally presented to thoroughly illustrate the features of our approach on a concrete case study.}, keywords = {Bilateral Shared Control of Mobile Robots, Connectivity maintenance, Motion control of multiple robots}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2013l-RobFraSecBue-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/IJRRConn_MM_1_LQ.mp4}, author = {Paolo Robuffo Giordano and Antonio Franchi and Cristian Secchi and Heinrich H. B{\"u}lthoff} } @conference {2012b-SecFraBueRob, title = {Bilateral Teleoperation of a Group of UAVs with Communication Delays and Switching Topology}, booktitle = {2012 IEEE Int. Conf. on Robotics and Automation}, year = {2012}, month = {05/2012}, address = {St. Paul, MN}, abstract = {In this paper, we present a passivity-based decentralized approach for bilaterally teleoperating a group of UAVs composing the slave side of the teleoperation system. In particular, we explicitly consider the presence of time delays, both among the master and slave, and within UAVs composing the group. Our focus is on analyzing suitable (passive) strategies that allow a stable teloperation of the group despite presence of delays, while still ensuring high flexibility to the group topology (e.g., possibility to autonomously split or join during the motion). The performance and soundness of the approach is validated by means of human/hardware-in-the-loop simulations (HHIL).}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Distributed algorithms, Force feedback, Motion control of multiple robots, Multi-robot systems, Teleoperation}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2012d-SecFraBueRob.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2012d-SecFraBueRob.mp4}, author = {Cristian Secchi and Antonio Franchi and Heinrich H. B{\"u}lthoff and Paolo Robuffo Giordano} } @article {2012e-FraSecSonBueRob, title = {Bilateral Teleoperation of Groups of Mobile Robots with Time-Varying Topology}, journal = {IEEE Transaction on Robotics}, volume = {28}, year = {2012}, month = {10/2012}, pages = {1019 -1033}, abstract = {In this paper, a novel decentralized control strategy for bilaterally teleoperating heterogeneous groups of mobile robots from different domains (aerial, ground, marine and under- water) is proposed. By using a decentralized control architecture, the group of robots, treated as the slave-side, is made able to navigate in a cluttered environment while avoiding obstacles, inter-robot collisions and following the human motion commands. Simultaneously, the human operator acting on the master side is provided with a suitable force feedback informative of the group response and of the interaction with the surrounding environment. Using passivity based techniques, we allow the behavior of the group to be as flexible as possible with arbitrary split and join events (e.g., due to inter-robot visibility/packet losses or specific task requirements) while guaranteeing the stability of the system. We provide a rigorous analysis of the system stability and steady-state characteristics, and validate performance through human/hardware-in-the-tloop simulations by considering a heterogeneous fleet of UAVs and UGVs as case study. Finally, we also provide an experimental validation with 4 quadrotor UAV}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Distributed algorithms, Force feedback, Haptics, Motion control of multiple robots, Multi-robot systems, Teleoperation}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2012e-FraSecSonBueRob.pdf}, author = {Antonio Franchi and Cristian Secchi and Hyoung Il Son and Heinrich H. B{\"u}lthoff and Paolo Robuffo Giordano} } @article {2012f-FraSecRylBueRob, title = {Shared Control: Balancing Autonomy and Human Assistance with a Group of Quadrotor UAVs.}, journal = {IEEE Robotics and Automation Magazine, Special Issue on Aerial Robotics and the Quadrotor Platform}, volume = {19}, year = {2012}, month = {09/2012}, pages = {57-68}, abstract = {In this paper, we present a complete control framework and associated experimental testbed for the bilateral shared control of a group of quadrotor UAVs. This control architecture is applicable to any task and allows to integrate: i) a decentralized topological motion control (responsible for the mutual interactions in the UAV formation), ii) a human assistance module (allowing human intervention, whenever needed, on some aspects of the UAV group behavior), and iii) a force-feedback possibility (increasing the telepresence of the human assistants by providing suitable haptic cues informative of the UAV behavior). We will show, as worked-out case studies, how to specialize the topological motion controller to the relevant cases of constant, unconstrained and connected group topologies, and how to let a human operator intervening at the level of single UAVs or of the whole group dynamics. A detailed description of the experimental testbed is also provided with emphasis on the quadrotor UAV hardware and software architectures. Finally, the versatility of the proposed framework is demonstrated by means of experiments with real UAVs. Although quadrotors are used as actual robotic platforms, the proposed framework can be straightforwardly extended to many different kinds of UAVs with similar motion characteristics.}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Force feedback, Formation control, Haptics, Middleware for robotics, Motion control of multiple robots, Multi-robot systems, UAV hardware platforms}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2012f-FraSecRylBueRob-preprint.pdf}, author = {Antonio Franchi and Cristian Secchi and Markus Ryll and Heinrich H. B{\"u}lthoff and Paolo Robuffo Giordano} } @conference {2011e-RobFraSecBue, title = {Bilateral Teleoperation of Groups of UAVs with Decentralized Connectivity Maintenance}, booktitle = {2011 Robotics: Science and Systems Conference}, year = {2011}, month = {06/2011}, address = {Los Angeles, CA}, abstract = {In this paper, we present a decentralized passivity-based control strategy for the bilateral teleoperation of a fleet of Unmanned Aerial Vehicles (UAVs). The human operator at the master side can command the fleet motion and receive suitable force cues informative about the remote environment. By properly controlling the energy exchanged within the slave side (the UAV fleet), we guarantee that the connectivity of the fleet is preserved and we prevent inter-agent and obstacle collisions. At the same time, we allow the behavior of the UAVs to be as flexible as possible with arbitrary split and join maneuvers. The results of the paper are validated through semi-experiments.}, keywords = {Bilateral Shared Control of Mobile Robots, Connectivity maintenance, Decentralized control, Distributed algorithms, Estimation, Force feedback, Haptics, Multi-robot systems, Teleoperation}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011e-RobFraSecBue-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011e-RobFraSecBue-almost_preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011e-RobFraSecBue.mp4}, author = {Paolo Robuffo Giordano and Antonio Franchi and Cristian Secchi and Heinrich H. B{\"u}lthoff} } @conference {2011k-RobFraSecBue, title = {Experiments of Passivity-Based Bilateral Aerial Teleoperation of a Group of UAVs with Decentralized Velocity Synchronization}, booktitle = {2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems}, year = {2011}, month = {09/2011}, pages = {163-170}, address = {San Francisco, CA}, abstract = {In this paper, we present an experimental validation of a novel decentralized passivity-based control strategy for teleoperating a group of Unmanned Aerial Vehicles (UAVs): the slave side, consisting of the UAVs, is endowed with large group autonomy by allowing time-varying topology and interrobot/obstacle collision avoidance. The master side, represented by a human operator, controls the group motion and receives suitable force feedback cues informing her/him about the remote slave motion status. Passivity theory is exploited for guaranteeing stability of the slave side and of the overall teleoperation channel. Results of experiments involving the use of 4 quadcopters are reported and discussed, confirming the soundness of the paper theoretical claims.}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Distributed algorithms, Force feedback, Haptics, Motion control of multiple robots, Multi-robot systems, Teleoperation}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011k-RobFraSecBue-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011k-RobFraSecBue.mp4}, author = {Paolo Robuffo Giordano and Antonio Franchi and Cristian Secchi and Heinrich H. B{\"u}lthoff} } @conference {2011a-FraRobSecSonBue, title = {A Passivity-Based Decentralized Approach for the Bilateral Teleoperation of a Group of UAVs with Switching Topology}, booktitle = {2011 IEEE Int. Conf. on Robotics and Automation}, year = {2011}, month = {05/2011}, pages = {898-905}, address = {Shanghai, China}, abstract = {In this paper, a novel distributed control strategy for teleoperating a fleet of Unmanned Aerial Vehicles (UAVs) is proposed. Using passivity based techniques, we allow the behavior of the UAVs to be as flexible as possible with arbitrary split and join decisions while guaranteeing stability of the system. Furthermore, the overall teleoperation system is also made passive and, therefore, characterized by a stable behavior both in free motion and when interacting with unknown {passive} obstacles. The performance of the system is validated through semi-experiments.}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Distributed algorithms, Force feedback, Haptics, Motion control of multiple robots, Multi-robot systems, Teleoperation}, attachments = {https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011a-FraRobSecSonBue-preprint.pdf , https://homepages.laas.fr/afranchi/robotics/sites/default/files/2011a-FraRobSecSonBue-low_qlty.mp4}, author = {Antonio Franchi and Paolo Robuffo Giordano and Cristian Secchi and Hyoung Il Son and Heinrich H. B{\"u}lthoff} } @booklet {2010d-RobFraSonSecLeeBue, title = {Towards Bilateral Teleoperation of Multi-Robot Systems}, howpublished = {3rd Int. Work. on Human-Friendly Robotics}, year = {2010}, month = {10/2010}, address = {Tuebingen, Germany}, keywords = {Bilateral Shared Control of Mobile Robots, Decentralized control, Distributed algorithms, Force feedback, Haptics, Multi-robot systems, Teleoperation}, author = {Paolo Robuffo Giordano and Antonio Franchi and Hyoung Il Son and Cristian Secchi and Dongjun Lee and Heinrich H. B{\"u}lthoff} }