
Linux shell

Bash Shell

Connecting to a Unix/Linux system

•Open up a terminal:

Bash Shell

Connecting to a Unix/Linux system

•Open up a terminal:

The “prompt”

The current directory (“path”)

The host

Bash Shell

What exactly is a “shell”?

•After logging in, Linux/Unix starts another

program called the shell

•The shell interprets commands the user types and

manages their execution
•The shell communicates with the internal part of the operating

system called the kernel

•The most popular shells are: tcsh, csh, korn, and bash

•The differences are most times subtle

•For this tutorial, we are using bash

•Shell commands are CASE SENSITIVE!

Bash Shell

Help!

• Whenever you need help with a command type “man” and the command name

Bash Shell

Help!

Bash Shell

Help!

Bash Shell

Help!

Bash Shell

Unix/Linux File System

/home/john/portfolio/

/home/mary/

The Path

NOTE: Unix file names

are CASE SENSITIVE!

Bash Shell

Command: pwd

• To find your current path use “pwd”

Bash Shell

Command: cd

• To change to a specific directory use “cd”

Bash Shell

Command: cd

• “~” is the location of your home directory

Bash Shell

Command: cd
• “..” is the location of the directory below current one

Bash Shell

Command: ls

•To list the files in the current directory use “ls”

Bash Shell

Command: ls

• ls has many options
– -l long list (displays lots of info)

– -t sort by modification time

– -S sort by size

– -h list file sizes in human readable format

– -r reverse the order

• “man ls” for more options

• Options can be combined: “ls -ltr”

Bash Shell

Command: ls -ltr

•List files by time in reverse order with long listing

Bash Shell

General Syntax: *

• “*” can be used as a wildcard in unix/linux

Bash Shell

Command: mkdir

• To create a new directory use “mkdir”

Bash Shell

Command: rmdir

• To remove and empty directory use “rmdir”

Bash Shell

Displaying a file

• Various ways to display a file in Unix
– cat

– less

– head

– tail

Bash Shell

Command: cat

• Dumps an entire file to standard output

• Good for displaying short, simple files

Bash Shell

Command: less

• “less” displays a file, allowing forward/backward movement within it
– return scrolls forward one line, space one page

– y scrolls back one line, b one page

• use “/” to search for a string

• Press q to quit

Bash Shell

Command: head

• “head” displays the top part of a file

• By default it shows the first 10 lines

• -n option allows you to change that

• “head -n50 file.txt” displays the first 50 lines of file.txt

Bash Shell

Command: head

• Here’s an example of using “head”:

Bash Shell

Command: tail

• Same as head, but shows the last lines

Bash Shell

File Commands

• Copying a file: cp

• Move or rename a file: mv

• Remove a file: rm

Bash Shell

Command: cp

• To copy a file use “cp”

Bash Shell

Command: mv

•To move a file to a different location use “mv”

Bash Shell

Command: mv

• mv can also be used to rename a file

Bash Shell

Command: rm

• To remove a file use “rm”

Bash Shell

Command: rm

• To remove a file “recursively”: rm –r

• Used to remove all files and directories

• Be very careful, deletions are permanent in Unix/Linux

Bash Shell

File permissions

• Each file in Unix/Linux has an associated permission level

• This allows the user to prevent others from reading/writing/executing their files or

directories

• Use “ls -l filename” to find the permission level of that file

Bash Shell

Permission levels

• “r” means “read only” permission

• “w” means “write” permission

• “x” means “execute” permission
– In case of directory, “x” grants permission to list directory contents

Bash Shell

File Permissions

User (you)

Bash Shell

File Permissions

Group

Bash Shell

File Permissions

“The World”

Bash Shell

Command: chmod

•If you own the file, you can change it’s permissions with

“chmod”

–Syntax: chmod [user/group/others/all]+[permission] [file(s)]

–Below we grant execute permission to all:

Bash Shell

Command: ps

• To view the processes that you’re running:

Bash Shell

Command: top

• To view the CPU usage of all processes:

Bash Shell

Command: kill

• To terminate a process use “kill”

Bash Shell

Input/Output Redirection (“piping”)

•Programs can output to other programs

•Called “piping”

•“program_a | program_b”
– program_a’s output becomes program_b’s input

•“program_a > file.txt”
– program_a’s output is written to a file called “file.txt”

• “program_a < input.txt”
– program_a gets its input from a file called “input.txt”

Bash Shell

A few examples of piping

Bash Shell

A few examples of piping

Bash Shell

Command: wc

• To count the characters, words, and lines in a file use “wc”

• The first column in the output is lines, the second is words, and the last is

characters

Bash Shell

A few examples of piping

Bash Shell

Command: grep

• To search files in a directory for a specific string use “grep”

Bash Shell

Command: diff

• To compare to files for differences use “diff”
– Try: diff /dev/null hello.txt

– /dev/null is a special address -- it is always empty, and anything moved there is deleted

Bash Shell

gdb tutorial - link

• https://homepages.laas.fr/adoncesc

Bash Shell

Repeated Squaring Technique

• Step 1. Let y=1.

• Step 2. Is N odd? If so, let y=y*x.

• Step 3. Set N to the floor of N/2.

• Step 4. Is N=0? If so, stop; answer = y.

• Step 5. Set x=x^2 and go to Step 2.

Bash Shell

Bash Shell

The shell of Linux

•Linux has a variety of different shells:
–Bourne shell (sh), C shell (csh), Korn shell (ksh), TC shell (tcsh), Bour

ne Again shell (bash).

•Certainly the most popular shell is “bash”. Bash is an sh-

compatible shell that incorporates useful features from the

Korn shell (ksh) and C shell (csh).

•It is intended to conform to the IEEE POSIX P1003.2/ISO

9945.2 Shell and Tools standard.

•It offers functional improvements over sh for both

programming and interactive use.

Bash Shell

Programming or Scripting ?

• bash is not only an excellent command line shell, but a scripting language in

itself. Shell scripting allows us to use the shell's abilities and to automate a lot of

tasks that would otherwise require a lot of commands.

• Difference between programming and scripting languages:

– Programming languages are generally a lot more powerful and a lot faster than scriptin

g languages. Programming languages generally start from source code and are compil

ed into an executable. This executable is not easily ported into different operating syste

ms.

– A scripting language also starts from source code, but is not compiled into an executabl

e. Rather, an interpreter reads the instructions in the source file and executes each inst

ruction. Interpreted programs are generally slower than compiled programs. The main a

dvantage is that you can easily port the source file to any operating system. bash is a s

cripting language. Other examples of scripting languages are Perl, Lisp, and Tcl.

Bash Shell

The first bash program

• There are two major text editors in Linux:
– vi, emacs (or xemacs).

• So fire up a text editor; for example:

$ vi &

and type the following inside it:

#!/bin/bash

echo “Hello World”

• The first line tells Linux to use the bash interpreter to run this script. We call it

hello.sh. Then, make the script executable:

$ chmod 700 hello.sh

$./hello.sh

Hello World

Bash Shell

The second bash program

• We write a program that copies all files into a directory, and then deletes the

directory along with its contents. This can be done with the following commands:

$ mkdir trash

$ cp * trash

$ rm -rf trash

$ mkdir trash

• Instead of having to type all that interactively on the shell, write a shell program

instead:

$ cat trash.sh

#!/bin/bash

this script deletes some files

cp * trash

rm -rf trash

mkdir trash

echo “Deleted all files!”

Bash Shell

Variables

• We can use variables as in any programming languages. Their values are

always stored as strings, but there are mathematical operators in the shell

language that will convert variables to numbers for calculations.

• We have no need to declare a variable, just assigning a value to its reference

will create it.

• Example

#!/bin/bash
STR=“Hello World!”
echo $STR

• Line 2 creates a variable called STR and assigns the string "Hello World!" to it.

Then the value of this variable is retrieved by putting the '$' in at the beginning.

Bash Shell

Warning !

• The shell programming language does not type-cast its variables. This means

that a variable can hold number data or character data.

count=0

count=Sunday

• Switching the TYPE of a variable can lead to confusion for the writer of the script

or someone trying to modify it, so it is recommended to use a variable for only a

single TYPE of data in a script.

• \ is the bash escape character and it preserves the literal value of the next

character that follows.

$ ls *

ls: *: No such file or directory

Bash Shell

Single and Double Quote

• When assigning character data containing spaces or special characters, the
data must be enclosed in either single or double quotes.

• Using double quotes to show a string of characters will allow any variables in the
quotes to be resolved

$ var=“test string”
$ newvar=“Value of var is $var”
$ echo $newvar
Value of var is test string

• Using single quotes to show a string of characters will not allow variable
resolution

$ var=’test string’
$ newvar=’Value of var is $var’
$ echo $newvar
Value of var is $var

Bash Shell

The export command

• The export command puts a variable into the environment so it will be accessible

to child processes. For instance:

$ x=hello

$ bash # Run a child shell.

$ echo $x # Nothing in x.

$ exit # Return to parent.

$ export x

$ bash

$ echo $x

hello # It's there.

• If the child modifies x, it will not modify the parent’s original value. Verify this by

changing x in the following way:

$ x=ciao

$ exit

$ echo $x

hello

Bash Shell

Environmental Variables

• There are two types of variables:

• Local variables

• Environmental variables

• Environmental variables are set by the system and can usually be found by using the env

command. Environmental variables hold special values. For instance:

$ echo $SHELL

/bin/bash

$ echo $PATH

/usr/X11R6/bin:/usr/local/bin:/bin:/usr/bin

• Environmental variables are defined in /etc/profile, /etc/profile.d/ and ~/.bash_profile.

These files are the initialization files and they are read when bash shell is invoked.

• When a login shell exits, bash reads ~/.bash_logout

• The startup is more complex; for example, if bash is used interactively, then /etc/bashrc or

~/.bashrc are read. See the man page for more details.

Bash Shell

Environmental Variables

• HOME: The default argument (home directory) for cd.
• PATH: The search path for commands. It is a colon-separated list of directories that are

searched when you type a command.

• Usually, we type in the commands in the following way:

$./command

• By setting PATH=$PATH:. our working directory is included in the search path for
commands, and we simply type:

$ command

• If we type in

$ mkdir ~/bin

• and we include the following lines in the ~/.bash_profile:

PATH=$PATH:$HOME/bin
export PATH

• we obtain that the directory /home/userid/bin is included in the search path for commands.

Bash Shell

Environemnt Variables

• LOGNAME: contains the user name
• HOSTNAME: contains the computer name.

• PS1: sequence of characters shown before the prompt

\t hour
\d date
\w current directory
\W last part of the current directory
\u user name
\$ prompt character

Example:

[userid@homelinux userid]$ PS1=‘hi \u *’
hi userid* _

Exercise ==> Design your own new prompt. Show me when you are happy with it.

• RANDOM: random number generator
• SECONDS: seconds from the beginning of the execution

Bash Shell

Read command

• The read command allows you to prompt for input and store it in a variable.

• Example:

#!/bin/bash

echo -n “Enter name of file to delete: ”

read file

echo “Type 'y' to remove it, 'n' to change your mind ... ”

rm -i $file

echo "That was YOUR decision!”

• Line 2 prompts for a string that is read in line 3. Line 4 uses the interactive

remove (rm -i) to ask the user for confirmation.

Bash Shell

Command Substitution

• The backquote “`” is different from the single quote “´”. It is used for command substitution:
`command`

$ LIST=`ls`
$ echo $LIST
hello.sh read.sh

$ PS1=“`pwd`>”
/home/userid/work> _

• We can perform the command substitution by means of $(command)

$ LIST=$(ls)
$ echo $LIST
hello.sh read.sh

$ rm $(find / -name “*.tmp”)

$ cat > backup.sh
#!/bin/bash
BCKUP=/home/userid/backup-$(date +%d-%m-%y).tar.gz
tar -czf $BCKUP $HOME

Bash Shell

Arithmetic Evaluation

• The let statement can be used to do mathematical functions:

$ let X=10+2*7

$ echo $X

24

$ let Y=X+2*4

$ echo $Y

32

• An arithmetic expression can be evaluated by $[expression] or $((expression))

$ echo “$((123+20))”

143

$ VALORE=$[123+20]

$ echo “$[123*$VALORE]”

17589

Bash Shell

Arithmetic Evaluation

• Available operators: +, -, /, *, %

• Example

$ cat arithmetic.sh
#!/bin/bash
echo -n “Enter the first number: ”; read x
echo -n “Enter the second number: ”; read y
add=$(($x + $y))
sub=$(($x - $y))
mul=$(($x * $y))
div=$(($x / $y))
mod=$(($x % $y))
print out the answers:
echo “Sum: $add”
echo “Difference: $sub”
echo “Product: $mul”
echo “Quotient: $div”
echo “Remainder: $mod”

Bash Shell

Conditional Statements

• Conditionals let us decide whether to perform an action or not, this decision is

taken by evaluating an expression. The most basic form is:

if [expression];

then

statements

elif [expression];

then

statements

else

statements

fi

• the elif (else if) and else sections are optional

• Put spaces after [and before], and around the operators and operands.

Bash Shell

Expressions

• An expression can be: String comparison, Numeric comparison, File operators

and Logical operators and it is represented by [expression]:

• String Comparisons:

= compare if two strings are equal

!= compare if two strings are not equal

-n evaluate if string length is greater than zero

-z evaluate if string length is equal to zero

• Examples:

[s1 = s2] (true if s1 same as s2, else false)

[s1 != s2] (true if s1 not same as s2, else false)

[s1] (true if s1 is not empty, else false)

[-n s1] (true if s1 has a length greater then 0, else false)

[-z s2] (true if s2 has a length of 0, otherwise false)

Bash Shell

Expressions

• Number Comparisons:

-eq compare if two numbers are equal

-ge compare if one number is greater than or equal to a number

-le compare if one number is less than or equal to a number

-ne compare if two numbers are not equal

-gt compare if one number is greater than another number

-lt compare if one number is less than another number

• Examples:

[n1 -eq n2] (true if n1 same as n2, else false)

[n1 -ge n2] (true if n1greater then or equal to n2, else false)

[n1 -le n2] (true if n1 less then or equal to n2, else false)

[n1 -ne n2] (true if n1 is not same as n2, else false)

[n1 -gt n2] (true if n1 greater then n2, else false)

[n1 -lt n2] (true if n1 less then n2, else false)

Bash Shell

Examples
$ cat user.sh
#!/bin/bash
echo -n “Enter your login name: "
read name
if [“$name” = “$USER”];
then

echo “Hello, $name. How are you today ?”
else

echo “You are not $USER, so who are you ?”
fi

$ cat number.sh
#!/bin/bash

echo -n “Enter a number 1 < x < 10: "
read num
if [“$num” -lt 10]; then

if [“$num” -gt 1]; then
echo “$num*$num=$(($num*$num))”

else
echo “Wrong insertion !”

fi
else

echo “Wrong insertion !”
fi

Bash Shell

Expressions

• Files operators:

-d check if path given is a directory
-f check if path given is a file
-e check if file name exists
-r check if read permission is set for file or directory
-s check if a file has a length greater than 0
-w check if write permission is set for a file or directory
-x check if execute permission is set for a file or directory

• Examples:

[-d fname] (true if fname is a directory, otherwise false)
[-f fname] (true if fname is a file, otherwise false)
[-e fname] (true if fname exists, otherwise false)
[-s fname] (true if fname length is greater then 0, else false)
[-r fname] (true if fname has the read permission, else false)
[-w fname] (true if fname has the write permission, else false)
[-x fname] (true if fname has the execute permission, else false)

Bash Shell

Example

#!/bin/bash

if [-f /etc/fstab];

then

cp /etc/fstab .

echo “Done.”

else

echo “This file does not exist.”

exit 1

fi

Exercise.

• Write a shell script which:
– accepts a file name

– checks if file exists

– if file exists, copy the file to the same name + .bak + the current date (if the backup file

already exists ask if you want to replace it).

• When done you should have the original file and one with a .bak at the end.

Bash Shell

Expressions

• Logical operators:

! negate (NOT) a logical expression

-a logically AND two logical expressions

-o logically OR two logical expressions

Example:

#!/bin/bash

echo -n “Enter a number 1 < x < 10:”

read num

if [“$num” -gt 1 –a “$num” -lt 10];

then

echo “$num*$num=$(($num*$num))”

else

echo “Wrong insertion !”

fi

Bash Shell

Expressions

• Logical operators:

&& logically AND two logical expressions

|| logically OR two logical expressions

Example:

#!/bin/bash

echo -n "Enter a number 1 < x < 10: "

read num

if [“$number” -gt 1] && [“$number” -lt 10];

then

echo “$num*$num=$(($num*$num))”

else

echo “Wrong insertion !”

fi

Bash Shell

Example

$ cat iftrue.sh

#!/bin/bash

echo “Enter a path: ”; read x

if cd $x; then

echo “I am in $x and it contains”; ls

else

echo “The directory $x does not exist”;

exit 1

fi

$ iftrue.sh

Enter a path: /home

userid anotherid …

$ iftrue.sh

Enter a path: blah

The directory blah does not exist

Bash Shell

Shell Parameters

• Positional parameters are assigned from the shell’s argument when it is invoked.
Positional parameter “N” may be referenced as “${N}”, or as “$N” when “N”
consists of a single digit.

• Special parameters

$# is the number of parameters passed
$0 returns the name of the shell script running as well as its

location in the file system
$* gives a single word containing all the parameters passed

to the script
$@ gives an array of words containing all the parameters

passed to the script

$ cat sparameters.sh
#!/bin/bash
echo “$#; $0; $1; $2; $*; $@”
$ sparameters.sh arg1 arg2
2; ./sparameters.sh; arg1; arg2; arg1 arg2; arg1 arg2

Bash Shell

Trash

$ cat trash.sh

#!/bin/bash

if [$# -eq 1];

then

if [! –d “$HOME/trash”];

then

mkdir “$HOME/trash”

fi

mv $1 “$HOME/trash”

else

echo “Use: $0 filename”

exit 1

fi

Bash Shell

Case Statement

• Used to execute statements based on specific values. Often used in place of an

if statement if there are a large number of conditions.

• Value used can be an expression

• each set of statements must be ended by a pair of semicolons;

• a *) is used to accept any value not matched with list of values

case $var in

val1)

statements;;

val2)

statements;;

*)

statements;;

esac

Bash Shell

Example (case.sh)

$ cat case.sh

#!/bin/bash

echo -n “Enter a number 1 < x < 10: ”

read x

case $x in

1) echo “Value of x is 1.”;;

2) echo “Value of x is 2.”;;

3) echo “Value of x is 3.”;;

4) echo “Value of x is 4.”;;

5) echo “Value of x is 5.”;;

6) echo “Value of x is 6.”;;

7) echo “Value of x is 7.”;;

8) echo “Value of x is 8.”;;

9) echo “Value of x is 9.”;;

0 | 10) echo “wrong number.”;;

*) echo “Unrecognized value.”;;

esac

Bash Shell

Iteration Statements

• The for structure is used when you are looping through a range of variables.

for var in list

do

statements

done

• statements are executed with var set to each value in the list.

• Example

#!/bin/bash

let sum=0

for num in 1 2 3 4 5

do

let “sum = $sum + $num”

done

echo $sum

Bash Shell

Iteration Statements

#!/bin/bash
for x in paper pencil pen
do
echo “The value of variable x is: $x”
sleep 1

done

• if the list part is left off, var is set to each parameter passed to the script ($1, $2,
$3,…)

$ cat for1.sh
#!/bin/bash
for x
do
echo “The value of variable x is: $x”
sleep 1

done
$ for1.sh arg1 arg2
The value of variable x is: arg1
The value of variable x is: arg2

Bash Shell

Example (old.sh)

$ cat old.sh
#!/bin/bash
Move the command line arg files to old directory.
if [$# -eq 0] #check for command line arguments
then
echo “Usage: $0 file …”
exit 1

fi
if [! –d “$HOME/old”]
then
mkdir “$HOME/old”

fi
echo The following files will be saved in the old directory:
echo $*
for file in $* #loop through all command line arguments
do
mv $file “$HOME/old/”
chmod 400 “$HOME/old/$file”

done
ls -l “$HOME/old”

Bash Shell

Example (args.sh)

$ cat args.sh
#!/bin/bash
Invoke this script with several arguments: “one two three“
if [! -n “$1”]; then

echo “Usage: $0 arg1 arg2 ..." ; exit 1
fi
echo ; index=1 ;
echo “Listing args with \”\$*\”:”
for arg in “$*” ;
do

echo “Arg $index = $arg”
let “index+=1” # increase variable index by one

done
echo “Entire arg list seen as single word.”
echo ; index=1 ;
echo “Listing args with \”\$@\”:”
for arg in “$@” ; do

echo “Arg $index = $arg”
let “index+=1”

done
echo “Arg list seen as separate words.” ; exit 0

Bash Shell

Using Arrays with Loops

• In the bash shell, we may use arrays. The simplest way to create one is using one of the
two subscripts:

pet[0]=dog
pet[1]=cat
pet[2]=fish
pet=(dog cat fish)

• We may have up to 1024 elements. To extract a value, type ${arrayname[i]}

$ echo ${pet[0]}
dog

• To extract all the elements, use an asterisk as:

echo ${arrayname[*]}

• We can combine arrays with loops using a for loop:

for x in ${arrayname[*]}
do

...
done

Bash Shell

A C-like for loop

• An alternative form of the for structure is

for ((EXPR1 ; EXPR2 ; EXPR3))
do

statements
done

• First, the arithmetic expression EXPR1 is evaluated. EXPR2 is then evaluated
repeatedly until it evaluates to 0. Each time EXPR2 is evaluates to a non-zero
value, statements are executed and EXPR3 is evaluated.

$ cat for2.sh
#!/bin/bash
echo –n “Enter a number: ”; read x
let sum=0
for ((i=1 ; $i<$x ; i=$i+1)) ; do
let “sum = $sum + $i”

done
echo “the sum of the first $x numbers is: $sum”

Bash Shell

Debugging

• Bash provides two options which will give useful information for debugging

-x : displays each line of the script with variable substitution and before execution

-v : displays each line of the script as typed before execution

• Usage:

#!/bin/bash –v or #!/bin/bash –x or #!/bin/bash –xv

$ cat for3.sh
#!/bin/bash –x

echo –n “Enter a number: ”; read x

let sum=0

for ((i=1 ; $i<$x ; i=$i+1)) ; do

let “sum = $sum + $i”

done

echo “the sum of the first $x numbers is: $sum”

Bash Shell

Debugging

$ for3.sh
+ echo –n ‘Enter a number: ’
Enter a number: + read x
3
+ let sum=0
+ ((i=0))
+ ((0<=3))
+ let ‘sum = 0 + 0’
+ ((i=0+1))
+ ((1<=3))
+ let ‘sum = 0 + 1’
+ ((i=1+1))
+ ((2<=3))
+ let ‘sum = 1 + 2’
+ ((i=2+1))
+ ((3<=3))
+ let ‘sum = 3 + 3’
+ ((i=3+1))
+ ((4<=3))
+ echo ‘the sum of the first 3 numbers is: 6’
the sum of the first 3 numbers is: 6

Bash Shell

While Statements

• The while structure is a looping structure. Used to execute a set of commands

while a specified condition is true. The loop terminates as soon as the condition

becomes false. If condition never becomes false, loop will never exit.

while expression

do

statements

done

$ cat while.sh

#!/bin/bash

echo –n “Enter a number: ”; read x

let sum=0; let i=1

while [$i –le $x]; do

let “sum = $sum + $i”

i=$i+1

done

echo “the sum of the first $x numbers is: $sum”

Bash Shell

Menu

$ cat menu.sh
#!/bin/bash

clear ; loop=y
while [“$loop” = y] ;
do

echo “Menu”; echo “====”
echo “D: print the date”

echo “W: print the users who are currently log on.”
echo “P: print the working directory”
echo “Q: quit.”
echo
read –s choice # silent mode: no echo to terminal
case $choice in

D | d) date ;;
W | w) who ;;
P | p) pwd ;;
Q | q) loop=n ;;
*) echo “Illegal choice.” ;;

esac
echo

done

Bash Shell

Find a Pattern and Edit

$ cat grepedit.sh
#!/bin/bash
Edit argument files $2 ..., that contain pattern $1
if [$# -le 1]
then
echo “Usage: $0 pattern file …” ; exit 1

else
pattern=$1 # Save original $1
shift # shift the positional parameter to the left by 1
while [$# -gt 0] # New $1 is first filename
do

grep “$pattern” $1 > /dev/null
if [$? -eq 0] ; then # If grep found pattern
vi $1 # then vi the file

fi
shift

done
fi
$ grepedit.sh while ~

Bash Shell

Continue Statements

• The continue command causes a jump to the next iteration of the loop, skipping

all the remaining commands in that particular loop cycle.

$ cat continue.sh

#!/bin/bash

LIMIT=19

echo

echo “Printing Numbers 1 through 20 (but not 3 and 11)”

a=0

while [$a -le “$LIMIT”]; do

a=$(($a+1))

if [“$a” -eq 3] || [“$a” -eq 11]

then

continue

fi

echo -n “$a ”

done

Bash Shell

Break Statements

• The break command terminates the loop (breaks out of it).

$ cat break.sh
#!/bin/bash
LIMIT=19
echo
echo “Printing Numbers 1 through 20, but something happens after 2 … ”
a=0
while [$a -le “$LIMIT”]
do
a=$(($a+1))
if [“$a” -gt 2]
then

break
fi
echo -n “$a ”

done
echo; echo; echo
exit 0

Bash Shell

Until Statements

• The until structure is very similar to the while structure. The until structure loops

until the condition is true. So basically it is “until this condition is true, do this”.

until [expression]

do

statements

done

$ cat countdown.sh

#!/bin/bash

echo “Enter a number: ”; read x

echo ; echo Count Down

until [“$x” -le 0]; do

echo $x

x=$(($x –1))

sleep 1

done

echo ; echo GO !

Bash Shell

Manipulating Strings

• Bash supports a number of string manipulation operations.

${#string} gives the string length

${string:position} extracts sub-string from $string at $position

${string:position:length} extracts $length characters of sub-string from $string at

$position

• Example

$ st=0123456789

$ echo ${#st}

10

$ echo ${st:6}

6789

$ echo ${st:6:2}

67

Bash Shell

Parameter Substitution

• Manipulating and/or expanding variables

${parameter-default}, if parameter not set, use default.

$ echo ${username-`whoami`}
alice

$ username=bob
$ echo ${username-`whoami`}

bob

${parameter=default}, if parameter not set, set it to default.

$ unset username
$ echo ${username=`whoami`}
$ echo $username

alice

${parameter+value}, if parameter set, use value, else use null string.

$ echo ${username+bob}
bob

Bash Shell

Parameter Substitution

${parameter?msg}, if parameter set, use it, else print msg

$ value=${total?’total is not set’}
total: total is not set

$ total=10
$ value=${total?’total is not set’}
$ echo $value
10

Example

#!/bin/bash
OUTFILE=symlinks.list # save file
directory=${1-`pwd`}
for file in “$(find $directory -type l)”

-type l == symbolic links
do
echo “$file”

done | sort >> “$HOME/$OUTFILE”

exit 0

Bash Shell

Functions

• Functions make scripts easier to maintain. Basically it breaks up the program

into smaller pieces. A function performs an action defined by you, and it can

return a value if you wish.

#!/bin/bash

hello()

{

echo “You are in function hello()”

}

echo “Calling function hello()…”

hello

echo “You are now out of function hello()”

• In the above, we called the hello() function by name by using the line: hello .

When this line is executed, bash searches the script for the line hello(). It finds it

right at the top, and executes its contents.

Bash Shell

Functions

$ cat function.sh

#!/bin/bash

function check() {

if [-e "/home/$1"]

then

return 0

else

return 1

fi

}

echo “Enter the name of the file: ” ; read x

if check $x

then

echo “$x exists !”

else

echo “$x does not exists !”

fi.

Bash Shell

Example: Picking a random card from a deck

#!/bin/bash

Count how many elements.

Suites=“Clubs Diamonds Hearts Spades”

Denominations=“2 3 4 5 6 7 8 9 10 Jack Queen King Ace”

Read into array variable.

suite=($Suites)

denomination=($Denominations)

Count how many elements.

num_suites=${#suite[*]}

num_denominations=${#denomination[*]}

echo -n "${denomination[$((RANDOM%num_denominations))]} of "

echo ${suite[$((RANDOM%num_suites))]}

exit 0

Bash Shell

Example: Changes all filenames to lowercase

#!/bin/bash

for filename in *

Traverse all files in directory.

do

Get the file name without the path.

fname=`basename $filename`

Change name to lowercase.

n=`echo $fname | tr A-Z a-z`

if [“$fname” != “$n”]

Rename only files not already lowercase.

then

mv $fname $n

fi

done

exit 0

Bash Shell

Example: Compare two files with a script

#!/bin/bash

ARGS=2 # Two args to script expected.

if [$# -ne “$ARGS”]; then

echo “Usage: `basename $0` file1 file2” ; exit 1

fi

if [[! -r "$1" || ! -r "$2"]] ; then

echo “Both files must exist and be readable.” ; exit 2

fi

/dev/null buries the output of the “cmp” command.

cmp $1 $2 &> /dev/null

Also works with 'diff', i.e., diff $1 $2 &> /dev/null

if [$? -eq 0] # Test exit status of “cmp” command.

then

echo “File \“$1\” is identical to file \“$2\”.”

else

echo “File \“$1\“ differs from file \“$2\”.”

fi

exit 0

Bash Shell

Example: Suite drawing statistics
$ cat cardstats.sh
#!/bin/sh # -xv
N=100000
hits=(0 0 0 0)# initialize hit counters
if [$# -gt 0]; then # check whether there is an argument

N=$1
else # ask for the number if no argument

echo "Enter the number of trials: "
TMOUT=5 # 5 seconds to give the input
read N

fi
i=$N
echo "Generating $N random numbers... please wait."
SECONDS=0 # here is where we really start
while [$i -gt 0]; do # run until the counter gets to zero

case $((RANDOM%4)) in # randmize from 0 to 3
0) let "hits[0]+=1";; # count the hits
1) let "hits[1]=${hits[1]}+1";;
2) let hits[2]=$((${hits[2]}+1));;
3) let hits[3]=$((${hits[3]}+1));;

esac
let "i-=1”# count down

done
echo "Probabilities of drawing a specific color:"

use bc - bash does not support fractions
echo "Clubs: " `echo ${hits[0]}*100/$N | bc -l`
echo "Diamonds: " `echo ${hits[1]}*100/$N | bc -l`
echo "Hearts: " `echo ${hits[2]}*100/$N | bc -l`
echo "Spades: " `echo ${hits[3]}*100/$N | bc -l`
echo "=="
echo "Execution time: $SECONDS"

Bash Shell

Challenge/Project: collect

• Write a utility to collect “well-known” files into convenient directory holders.

collect <directory>*

• The utility should collect all executables, libraries, sources and includes from each

directory given on the command line or entered by the user (if no arguments were passed)

into separate directories. By default, the allocation is as follows:
– executables go to ~/bin

– libraries (lib*.*) go to ~/lib

– sources (*.c, *.cc, *.cpp, *.cxx) go to ~/src

– includes (*.h, *.hxx) go to ~/inc

• The utility should ask whether another directory should be used in place of these default

directories.

• Each move should be recorded in a log file that may be used to reverse the moves (extra

points for writing a reverse utility!). The user should have an option to use a log file other

than the default (~/organize.log).

• At the end, the utility should print statistics on file allocation: how many directories were

processed, how many files in each category were moved and how long the reorganization

was (the processing time in seconds).

• The utility should wait only limited time for user input; if no input, then use defaults.

