
Networks and

Client/Server

Applications

Basics of Client/Server

 One host computer can have several servers

 Several clients can connect to a server

Client 1 Client 2 Client 3 Client 4

Network

Mail server Web server

Host computer

Network Addresses

 Every computer on a network has an address

 Every Internet address has two components:

 an IP name (such as "lambert")

 an IP address (such as "129.21.38.145")

 IP stands for Internet Protocol

Ports

 A port is a software abstraction of a physical space

through which a client and a server can send

messages

 Operating systems have several dedicated system

ports and several free ports

Ports

 Ports are known by numbers

 For example, port 13 usually returns the day and time

on the host computer

 Several processes can use the same port at the same

time

Sockets

 A socket is a software abstraction that provides a

communication link between a single server process

and a single client process

 Several sockets can be created on the same port

Sockets

 Two things are required to create a socket:

 a valid IP address

 a port number

 Client and server then use input and output

operations to send messages through the socket

The Basic Setup

Server

Host

Port

Client 1 Client 2

A server can be any application. A client can be any application.

A Real World Example to Protocol

Architecture philosopher-translator-

secretary architecture

Issues:

 peer-to-peer
protocols are
independent of
each other

for example,
secretaries may
change the
comm. medium
to email

or the
translators may
agree on using
another
common
language

Each layer
adds a header

General protocol architecture

principles that we have seen so far

 Layered structure

 Protocol stack

 Each layer provides services to upper layer; expect services from
lower one

 Layer interfaces should be well-defined

 Peer entities communicate using their own protocol

 peer-to-peer protocols

 independent of protocols at other layers

 if one protocol changes, other protocols should not get affected

A General Three Layer

Model
 Generalize the previous example for a generic

application

 we can have different applications (e-mail, file transfer, …)

 Network Access Layer

 Transport Layer

 Application Layer

Network Access Layer

 Exchange of data between the computer and the
network

 Sending computer provides address of destination

 so that network can route

 Different switching and networking techniques

 Circuit switching

 Packet switching

 LANs

 etc.

 This layer may need specific drivers and interface
equipment depending on type of network used.

 But upper layers do not see these details

 independence property

Transport Layer

 Reliable data exchange

 to make sure that all the data packets arrived in the same

order in which they are sent out

 Packets nor received or received in error are retransmitted

 Independent of network being used

 Independent of application

Application Layer

 Support for different user applications

 e.g. e-mail, file transfer

Addressing Requirements

 Two levels of addressing required

 Each computer needs unique network address

 Each application on a (multi-tasking) computer needs

a unique address within the computer

 The service access point or SAP

 The port number in TCP/IP protocol stack

Protocol Architectures and

Networks
or ports

Protocol Data Units (PDU)

 User data is passed from layer to layer

 Control information is added/removed to/from user

data at each layer

 Header (and sometimes trailer)

 each layer has a different header/trailer

 Data + header + trailer = PDU (Protocol Data Unit)

 This is basically what we call packet

 each layer has a different PDU

Transport PDU

 Transport layer may fragment user data

 Each fragment has a transport header added

 Destination port

 Sequence number

 since the transport layer may split application data into
smaller packets

 Error detection code (generally at trailer)

Network PDU

 Adds network header

 network address for destination computer

 optional facilities from network (e.g. priority level)

Operation of a Protocol

Architecture

Transport

Header

Network

Header
Network

Header

Transport

Header

(Network PDU)

Standard Protocol

Architectures

 Common set of conventions

 Nonstandard vs. standard protocols

 Nonstandard: K sources and L receivers lead to K*L different protocols

 If common protocol used, we design only once

 Products from different vendors interoperate

 If a common standard is not implemented in a product, then that

product’s market is limited; customers like standard products

 Customers do not stick to a specific vendor

Standard Protocol

Architectures

 Two approaches (standard)

 OSI Reference model

 never used widely

 but well known

 TCP/IP protocol suite

 Most widely used

 Another approach (proprietary)

 IBM’s Systems Network Architecture (SNA)

OSI Reference Model

 Open Systems Interconnection

 Reference model

 provides a general framework for standardization

 defines a set of layers and services provided by each
layer

 one or more protocols can be developed for each layer

 Developed by the International Organization for
Standardization (ISO)

 also published by ITU-T (International Telecommunications
Union)

24 OSI Reference Model

 A layered model

 Seven layers – seven has been presented as the optimal

number of layer

 Delivered too late (published in 1984)!

 by that time TCP/IP started to become the de facto

standard

 Although no OSI-based protocol survived, the model is

still valid (in the textbooks)

OSI - The Layer Model

 Each layer performs a subset of the required

communication functions

 Each layer relies on the next lower layer to perform

more primitive functions

 Each layer provides services to the next higher layer

 Changes in one layer should not require changes in

other layers

OSI as Framework for

Standardization

layer functionalities are

described by ISO; different

standards can be

developed based on these

functionalities

Layer Specific Standards

Elements of Standardization

 Protocol specification

 Operates between the same layer on two systems

 May involve different platforms

 Protocol specification must be precise

 Format of data units

 Semantics of all fields

 Service definition

 Functional description of what is provided to the next
upper layer

 Addressing

 Referenced by SAPs

The OSI Environment

OSI Layers (1)

 Physical

 Physical interface between devices

 Characteristics

 Mechanical - interface specs

 Electrical - voltage levels for bits, transmission rate, coding, etc.

 Data Link

 Basic services: error detection and control, flow control at the link level
(point to point)

 Higher layers may assume error free transmission

 Later a sublayer is added to Data Link Layer

 MAC (Medium Access Control) sublayer

 to deal with broadcast networks

OSI Layers (2)
 Network

 Transfer of information through communication network

 network related issues

 Network nodes (relays/routers) should perform switching and routing functions

 QoS (Quality of Service) and congestion control are also addressed in this

layer

 Several other internetworking issues

 e.g. differences in addressing, max. data length, etc.

 Higher layers do not need to know about underlying networking technology

 Not needed on direct links

Use of a Relay/Router

OSI Layers (3)
 Transport

 End to end exchange of data

 In sequence, no losses, no duplicates

 If needed, upper layer data are split into smaller units

 Session

 Control of dialogues

 whose turn to talk?

 Dialogue discipline (full-duplex, half-duplex)

 Checkpointing and recovery

OSI Layers (4)

 Presentation

 Data formats

 Data compression

 Encryption

 Application

 Support for various applications

TCP/IP Protocol

 Most widely used interoperable network protocol

architecture

 Specified and extensively used before OSI

 OSI was slow to take place in the market

 Funded by the US Defense Advanced Research

Project Agency (DARPA) for its packet switched

network (ARPANET)

 DoD automatically created an enormous market for

TCP/IP

 Used by the Internet and WWW

Common Protocols in TCP/IP

Protocol Stack

 ARP: Address Resolution Protocol

 IP: Internet Protocol (RFC 791)

 UDP: User Datagram Protocol (RFC 768)

 TCP: Transmission Control Protocol (RFC 793)

TCP/IP Protocol Suite
 TCP/IP does not have an official layer structure

 But protocols imply one

 Application layer

 Transport (host to host) layer

 Internet layer

 Network access layer

 Physical layer

 Actually TCP/IP reference model has been built on its
protocols

 That is why that reference model is only for TCP/IP protocol
suite

 and this is why it is not so important to assign roles to each layer
in TCP/IP; understanding TCP, IP and the application protocols
would be enough

TCP/IP
Protocol

Suite

38

TCP/IP protocol

OSI vs. TCP/IP

TCP, UDP

IP

HTTP,

SMTP, …

Network Access and

Physical Layers

 TCP/IP reference model does not discuss these layers

too much

 the node should connect to the network with a protocol

such that it can send IP packets

 this protocol is not defined by TCP/IP

 mostly in hardware

 a well known example is Ethernet

IP (Internet Protocol)

 The core of the TCP/IP protocol suite

 Two versions co-exist

 v4 – the widely used IP protocol

 v6 – has been standardized in 1996, but still not widely
deployed

 IP (v4) header minimum 20 octets (160 bits)

IPv6

 IPv6

 Enhancements over IPv4 for modern high speed networks

 Support for multimedia data streams

 But the driving force behind v6 was to increase
address space

 128-bit as compared to 32-bit of v4

 Not backward compatible

 all equipment and software must change

TCP

 Transmission Control Protocol

 end to end protocol

 Reliable connection = provides flow and error control

 In TCP terms, a connection is a

temporary association between entities in different systems

 TCP PDU

 Called “TCP segment”

 Includes source and destination port

 Identify respective users (applications)

 pair of ports (together with the IP addresses) uniquely identify a
connection; such an identification is necessary in order TCP to track
segments between entities.

TCP Header

UDP
 User Datagram Protocol

 Alternative to TCP

 end-to-end protocol

 Not guaranteed delivery

 No preservation of sequence

 No protection against duplication

 Minimum overhead

PDUs in TCP/IP

Dest. Port

Sequence number

Checksum

….

Dest. Address

Source address

….

Dest. Network Address

Priority info

Operation of TCP and IP

Some Protocols in TCP/IP

Suite

Internetworking

 Interconnected set of networks

 May be seemed as a large network

 Each constituent network is a subnetwork

 Entire configuration referred to as an internet

 not the Internet

 conceptually the same, but by “internet” we do not mean a
specific network

 the Internet is the most important example of an internet

Internetworking Devices

 Each subnetwork supports communication among the
devices attached to that subnetwork

 End systems (ESs)

 Subnetworks connected by intermediate systems (ISs)

 In practice, ISs are routers that are used to relay and
route packets between different subnetworks

 If subnetworks use different Network Access Protocols,
router should support all of the protocols

 In OSI terminology, a router works at layer 3 (network
layer)

Routers

 Interconnect dissimilar subnetworks without any
modifications on architecture of subnetworks

 Must accommodate differences among networks,
such as

 Addressing schemes

 network addresses may need to be translated

 Maximum packet sizes

 if two subnetworks have different limits for max. packet sizes,
then router may need fragment/reassemble the packets

 We have seen that subnetworks may have different
network access and physical layers, but they have
to speak the same (inter)network protocol
implemented in all end systems and routers

 The most important internetwork protocol is the IP
protocol

Configuration for TCP/IP

Example

WAN

Action of

Sender

Action of Router

Action of

Receiver

Standards

 Required to allow for interoperability among

equipments

 Advantages

 Ensures a large market for equipment and software

 Allows products from different vendors to communicate

 Disadvantage

 Freeze technology (???)

Standards Organizations in

Networking

 Internet Society

 ISO (International Organization for Standardization)

 more formal

 NGO, but most members are from governments

 ITU-T (formerly CCITT)

 International Telecommunications Union

 UN agency

 governmental

Internet Society (ISOC)

 Internet development and standardization

 3 suborganizations

 IAB (Internet Architecture Board)

 overall Internet architecture

 IETF (Internet Engineering Task Force)

 protocol engineering and development

 IESG (Internet Engineering Steering Group)

 monitors IETF standardization efforts

IETF Organization
 Grouped in areas

 e.g. applications, security, routing, etc.

 each area has an Area Director, who is also member of IESG

 Each area has several working groups

 working groups actually contribute to standards/protocols, etc.

 Voluntary participation in IETF working groups

 For detail see

 www.ietf.org or

 RFC 3160 - The Tao of IETF - A Novice's Guide to the Internet Engineering
Task Force

http://www.ietf.org/

Internet Drafts and RFCs

 Internet Draft

 Draft and temporary documents

 expires in 6 months, if IESG does not approve it as an RFC

 can be resubmitted

 published online

 comments are welcome

 RFC (Request for Comments)

 final version

 can obsolete previous RFCs about the same topic

 actually an RFC can be of any type of document

not necessarily a standard

Best Current Practice, Experimental, Informational RFCs

April 1st RFCs (http://en.wikipedia.org/wiki/April_1_RFC)

 My favorite is IP over Avian Carriers (RFC 1149)

http://en.wikipedia.org/wiki/April_1_RFC

Internet Standards Track
 Steps involve increasing amount of scrutiny and testing

 Step 1: Internet Draft

 Step 2: Proposed standard

 Internet Draft approved as an RFC by IESG

 must remain at least six months to advance

 Step 3: Draft standard

 at least two independent and interoperable implementations

 must remain at least 4 months

 Step 4: Internet standard

 Significant operational experience

 key difference between ISOC and other standardization
organizations

 Consensus needed

Internet Assigned Numbers

Authority (IANA)

 An ISOC entity responsible for all “unique numbers” on the Internet

 including IP addresses

 Almost all protocols work with numeric parameters

 e.g. port numbers, error codes, status codes, message types, options,

etc.

 the meanings of all numeric codes are mostly specified in RFCs, but

number assignment is formalized by IANA

Networking

 Layering

 ISO OSI 7-layer model

 Physical, data link, network, transport, session, presentation,
application

 TCP/IP model

 Link, network, transport, application

Encapsulation

Protocol Headers

 Ethernet header

 MAC (Ethernet) addresses

 IP header

 IP addresses, protocol

 TCP/UDP header

 Port numbers

ARP

X

A B

Ethernet

(CSMA/CD)

Where is X?

X is here.

IP address

Ethernet address

Ethernet Header

Payload

The minimum payload is 42 octets when an 802.1Q tag is present

and 46 octets when absent. The maximum payload is 1500 octets.

Frame check sequence

The frame check sequence (FCS) is a four-octet cyclic redundancy

check (CRC) that allows detection of corrupted data within the

entire frame as received on the receiver side.

https://en.wikipedia.org/wiki/Frame_check_sequence
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

IP Header

UDP Header

TCP Header

Demultiplexing

IP Addresses

 IPv4 address

 Dotted decimal: 140.112.8.130

 Unicast, broadcast, and multicast

 Private address space

 10.0.0.0 - 10.255.255.255 (10/8 prefix)

 172.16.0.0 - 172.31.255.255 (172.16/12 prefix)

 192.168.0.0 - 192.168.255.255 (192.168/16
prefix)

Class A, B, C, D, E

IP Addresses (cont.)

Port Numbers

 Well-known ports: 1-1023

 HTTP: 80

 SMTP: 25

 Telnet: 23

 FTP: 21 (control), 20 (data)

 Others

 Gnutella: 6346, 6347

 Client vs. server ports

Useful Tools

 Packet sniffer or analyzer

 Tcpdump

 Ethereal

 NetXRay

 Packet generator

 Socket programming

 Packet capture libraries

 Libpcap & WinPcap

Example Scenario: Web

Browsing

Client Server

http://www.fils.edu/

80

61.2.3.4

(140.112.8.130, 80)

www.fils.edu

23

25

Example Scenario: Web

Browsing

Client Server

www.fils.edu?

80

61.2.3.4

(140.112.8.130, 80)

www.fils.edu

23

25

DNS

Server

140.112.8.130

Example Scenario: Web

Browsing

Client

connect(140.112.8.130, 80)

Server

http://www.fils.edu/

807890

61.2.3.4

(140.112.8.130, 80)

www.fils.edu

23

25

DNS Name Resolution

X

A DNS

Ethernet

(CSMA/CD)

Where is www.fils.edu?

X is 140.112.8.130.

hostname

IP address

ARP (Revisited)

X

A B

Ethernet

(CSMA/CD)

Where is 140.112.8.130?

140.112.8.130 is

00:C0:EB:00:8B:68

IP address

Ethernet address

140.112.8.130

00:C0:EB:00:8B:68

Sockets

 ARP: Ethernet (hardware, MAC) address

 IP: IP address

 TCP/UDP: port number

 Port vs. service

 Sockets: {IPsrc, portsrc, IPdest, portdest}

Socket Connection

Client

connect(140.112.8.130, 80)

Server

(61.2.3.4, 7890)

807890

61.2.3.4

(140.112.8.130, 80)

www.fils.edu

23

25

Socket Programming

 UNIX: BSD Socket API (in C)

 socket(), bind(), listen(), accept(), connect(), send(),

recv(), sendto(), recvfrom(), select(), …

 Java Socket API

 java.net.Socket

 Perl, Python, …

Remote Procedure Call

 RFC 1831 – RPC v2

 RFC 1832 -- XDR: External Data Representation

Standard

 A machine-independent representation of data

 Local vs. remote procedure calls

RPC

 UDP/TCP transport

 RPC/UDP: connectionless, fast

 RPC/TCP: connection-oriented, slower

 Portmap service (or portmapper)

 Port 111

 RFC 1833

RPC

RPC Portmapping

Client

connect(140.112.8.130, 111)

Server

1117890

61.2.3.4 140.112.8.130

P

25

Port P

connect(140.112.8.130, P)

RPC Programming

 rpcgen

 Applications: NFS (Network File System), …

Internet Layer

 Connectionless, point to point internetworking protocol (uses the
datagram approach)

 takes care of routing across multiple networks

 each packet travels in the network independently of each other

 they may not arrive (if there is a problem in the network)

 they may arrive out of order

 a design decision enforced by DoD to make the system more flexible and
responsive to loss of some subnet devices

 Implemented in end systems and routers as the Internet Protocol (IP)

Transport Layer

 End-to-end data transfer

 Transmission Control Protocol (TCP)

 connection oriented

 reliable delivery of data

 ordering of delivery

 User Datagram Protocol (UDP)

 connectionless service

 delivery is not guaranteed

 Can you give example applications that use TCP and

UDP?

Application Layer

 Support for user applications

 A separate module for each different application

 e.g. HTTP, SMTP, telnet

Python Tools: Sockets

 The socketmodule includes functions classes for

implementing network connections via sockets

 The client and sever each create their own sockets

and run methods to talk to each other

Getting the Host Name and

IP

>>> import socket

>>> socket.gethostname()

'smalltalk'

>>> socket.gethostbyname(socket.gethostname())

'134.432.111.34'

Python Tools: Codecs

 Strings are transmitted as bytes, so they must be

encoded before and decoded after transmission

 Strings are encoded and decoded using a codec, as

defined in the codecsmodule

Encoding and Decoding

Strings

>>> from codecs import decode

>>> data = bytes('Good luck on the final exam', 'ascii')

>>> print(decode(data, 'ascii')

Good luck on the exam!

bytes(string, codec) -> an array of bytes

codecs.decode(byteArray, codec) -> a string

Consult the codecs doc for info on the possible codecs

The Role of the Server

 The server creates a socket and
listens for requests from clients

When a client request comes in, the
server sends the appropriate
response via the socket

When the client disconnects, the
server continues to listen for more
requests

The Structure of a Server

Import resources

Set up and connect the server to the net

While True:

Accept a connection from a client

Process the request for service

A server runs forever, unless an exception is raised

Example: A Date/Time

Server

When a client connects, the server sends

the current date and time

When the client receives this information,

it is displayed in the terminal

server client
Date and time

request

Example: A Day/Time Server

from socket import *

from time import ctime

The socket module includes resources for sockets

The ctime function returns the date and time

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

A socket is associated with the host computer’s IP

address and a port number

These data are organized in a tuple

localhost supports a server and a client running on

the same computer

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

socket returns a socket object of the type specified

by its arguments

bind and listen establish the socket’s connection

to the net and listen for client requests

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

accept pauses until a client connects

accept returns the client’s socket and address information

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))

client.close()

send sends an encoded string to the client and close ends the

connection

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))

client.close()

server.close() # Never reached here, but useful if exception

handling is added

Example: A Day/Time Client

from socket import *

HOST = 'localhost'

PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

Setup code for a client socket is very similar to the code for a

server socket

BUFSIZE (1 kilobyte here) indicates the number of bytes allowed

for each input operation

Example: A Day/Time Client

from socket import *

HOST = 'localhost'

PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.connect(ADDRESS)

connect connects this socket to the server at the specified

address

Example: A Day/Time Client

from socket import *

from codecs import decode

HOST = 'localhost'

PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.connect(ADDRESS)

dayAndTime = decode(server.recv(BUFSIZE), 'ascii')

print(dayAndTime)

server.close()

recv inputs an encoded string from the server (the date and time)

A One-on-One Chat Server

 When a client connects, send a greeting and wait for
a reply

 When the reply is received, send another message

 An empty string/reply should disconnect the client

A One-on-One Chat Server

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes('Welcome to my chat room!', 'ascii'))

while True:

message = decode(client.recv(BUFSIZE), 'ascii')

if not message:

print('Client disconnected')

client.close()

break

else:

print(message)

client.send(bytes(input('> '), 'ascii'))

Service includes a nested loop for carrying on the conversation

A One-on-One Chat Client

server = socket(AF_INET, SOCK_STREAM)

server.connect(ADDRESS)

print(decode(server.recv(BUFSIZE), 'ascii')) # Displays server’s
greeting

while True:

message = input('> ')

if not message:

break

server.send(bytes(message, 'ascii'))

reply = decode(server.recv(BUFSIZE), 'ascii')

if not reply:

break

print(reply)

server.close()

Client now has a loop to carry on the conversation

Loop ends when the client sends or receives ''

Putting the Doctor Online

 Very similar to a one-on-one chat, but the server
responds by using a Doctor object’s reply instead of a
human being’s input

 Minor changes to the chat server, but no changes at
all to the chat client!

A One-on-One Chat Server

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes('Welcome to my chat room!', 'ascii'))

while True:

message = decode(client.recv(BUFSIZE), 'ascii')

if not message:

print('Client disconnected')

client.close()

break

else:

print(message)

client.send(bytes(input('> '), 'ascii'))

Service includes a nested loop for carrying on the conversation

A One-on-One Therapy

Server
while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

dr = Doctor()

client.send(bytes(dr.greeting()), 'ascii'))

while True:

message = decode(client.recv(BUFSIZE), 'ascii')

if not message:

print('Client disconnected')

client.close()

break

else:

client.send(bytes(dr.reply(message)), 'ascii'))

Create the appropriate “bot” for carrying out the server’s

side of the conversation

Going “Live”: the Server

from socket import *

from time import ctime

HOST = gethostbyname(gethostname())

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))

client.close()

Can deploy this server on any machine with an IP address

Going “Live”: the Client

from socket import *

from codecs import decode

HOST = input('Enter the server name: ')

PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.connect(ADDRESS)

dayAndTime = decode(server.recv(BUFSIZE), 'ascii')

print(dayAndTime)

server.close()

The HOST must be the name or IP of the server

