
Networks and

Client/Server

Applications

Basics of Client/Server

 One host computer can have several servers

 Several clients can connect to a server

Client 1 Client 2 Client 3 Client 4

Network

Mail server Web server

Host computer

Network Addresses

 Every computer on a network has an address

 Every Internet address has two components:

 an IP name (such as "lambert")

 an IP address (such as "129.21.38.145")

 IP stands for Internet Protocol

Ports

 A port is a software abstraction of a physical space

through which a client and a server can send

messages

 Operating systems have several dedicated system

ports and several free ports

Ports

 Ports are known by numbers

 For example, port 13 usually returns the day and time

on the host computer

 Several processes can use the same port at the same

time

Sockets

 A socket is a software abstraction that provides a

communication link between a single server process

and a single client process

 Several sockets can be created on the same port

Sockets

 Two things are required to create a socket:

 a valid IP address

 a port number

 Client and server then use input and output

operations to send messages through the socket

The Basic Setup

Server

Host

Port

Client 1 Client 2

A server can be any application. A client can be any application.

A Real World Example to Protocol

Architecture philosopher-translator-

secretary architecture

Issues:

 peer-to-peer
protocols are
independent of
each other

for example,
secretaries may
change the
comm. medium
to email

or the
translators may
agree on using
another
common
language

Each layer
adds a header

General protocol architecture

principles that we have seen so far

 Layered structure

 Protocol stack

 Each layer provides services to upper layer; expect services from
lower one

 Layer interfaces should be well-defined

 Peer entities communicate using their own protocol

 peer-to-peer protocols

 independent of protocols at other layers

 if one protocol changes, other protocols should not get affected

A General Three Layer

Model
 Generalize the previous example for a generic

application

 we can have different applications (e-mail, file transfer, …)

 Network Access Layer

 Transport Layer

 Application Layer

Network Access Layer

 Exchange of data between the computer and the
network

 Sending computer provides address of destination

 so that network can route

 Different switching and networking techniques

 Circuit switching

 Packet switching

 LANs

 etc.

 This layer may need specific drivers and interface
equipment depending on type of network used.

 But upper layers do not see these details

 independence property

Transport Layer

 Reliable data exchange

 to make sure that all the data packets arrived in the same

order in which they are sent out

 Packets nor received or received in error are retransmitted

 Independent of network being used

 Independent of application

Application Layer

 Support for different user applications

 e.g. e-mail, file transfer

Addressing Requirements

 Two levels of addressing required

 Each computer needs unique network address

 Each application on a (multi-tasking) computer needs

a unique address within the computer

 The service access point or SAP

 The port number in TCP/IP protocol stack

Protocol Architectures and

Networks
or ports

Protocol Data Units (PDU)

 User data is passed from layer to layer

 Control information is added/removed to/from user

data at each layer

 Header (and sometimes trailer)

 each layer has a different header/trailer

 Data + header + trailer = PDU (Protocol Data Unit)

 This is basically what we call packet

 each layer has a different PDU

Transport PDU

 Transport layer may fragment user data

 Each fragment has a transport header added

 Destination port

 Sequence number

 since the transport layer may split application data into
smaller packets

 Error detection code (generally at trailer)

Network PDU

 Adds network header

 network address for destination computer

 optional facilities from network (e.g. priority level)

Operation of a Protocol

Architecture

Transport

Header

Network

Header
Network

Header

Transport

Header

(Network PDU)

Standard Protocol

Architectures

 Common set of conventions

 Nonstandard vs. standard protocols

 Nonstandard: K sources and L receivers lead to K*L different protocols

 If common protocol used, we design only once

 Products from different vendors interoperate

 If a common standard is not implemented in a product, then that

product’s market is limited; customers like standard products

 Customers do not stick to a specific vendor

Standard Protocol

Architectures

 Two approaches (standard)

 OSI Reference model

 never used widely

 but well known

 TCP/IP protocol suite

 Most widely used

 Another approach (proprietary)

 IBM’s Systems Network Architecture (SNA)

OSI Reference Model

 Open Systems Interconnection

 Reference model

 provides a general framework for standardization

 defines a set of layers and services provided by each
layer

 one or more protocols can be developed for each layer

 Developed by the International Organization for
Standardization (ISO)

 also published by ITU-T (International Telecommunications
Union)

24 OSI Reference Model

 A layered model

 Seven layers – seven has been presented as the optimal

number of layer

 Delivered too late (published in 1984)!

 by that time TCP/IP started to become the de facto

standard

 Although no OSI-based protocol survived, the model is

still valid (in the textbooks)

OSI - The Layer Model

 Each layer performs a subset of the required

communication functions

 Each layer relies on the next lower layer to perform

more primitive functions

 Each layer provides services to the next higher layer

 Changes in one layer should not require changes in

other layers

OSI as Framework for

Standardization

layer functionalities are

described by ISO; different

standards can be

developed based on these

functionalities

Layer Specific Standards

Elements of Standardization

 Protocol specification

 Operates between the same layer on two systems

 May involve different platforms

 Protocol specification must be precise

 Format of data units

 Semantics of all fields

 Service definition

 Functional description of what is provided to the next
upper layer

 Addressing

 Referenced by SAPs

The OSI Environment

OSI Layers (1)

 Physical

 Physical interface between devices

 Characteristics

 Mechanical - interface specs

 Electrical - voltage levels for bits, transmission rate, coding, etc.

 Data Link

 Basic services: error detection and control, flow control at the link level
(point to point)

 Higher layers may assume error free transmission

 Later a sublayer is added to Data Link Layer

 MAC (Medium Access Control) sublayer

 to deal with broadcast networks

OSI Layers (2)
 Network

 Transfer of information through communication network

 network related issues

 Network nodes (relays/routers) should perform switching and routing functions

 QoS (Quality of Service) and congestion control are also addressed in this

layer

 Several other internetworking issues

 e.g. differences in addressing, max. data length, etc.

 Higher layers do not need to know about underlying networking technology

 Not needed on direct links

Use of a Relay/Router

OSI Layers (3)
 Transport

 End to end exchange of data

 In sequence, no losses, no duplicates

 If needed, upper layer data are split into smaller units

 Session

 Control of dialogues

 whose turn to talk?

 Dialogue discipline (full-duplex, half-duplex)

 Checkpointing and recovery

OSI Layers (4)

 Presentation

 Data formats

 Data compression

 Encryption

 Application

 Support for various applications

TCP/IP Protocol

 Most widely used interoperable network protocol

architecture

 Specified and extensively used before OSI

 OSI was slow to take place in the market

 Funded by the US Defense Advanced Research

Project Agency (DARPA) for its packet switched

network (ARPANET)

 DoD automatically created an enormous market for

TCP/IP

 Used by the Internet and WWW

Common Protocols in TCP/IP

Protocol Stack

 ARP: Address Resolution Protocol

 IP: Internet Protocol (RFC 791)

 UDP: User Datagram Protocol (RFC 768)

 TCP: Transmission Control Protocol (RFC 793)

TCP/IP Protocol Suite
 TCP/IP does not have an official layer structure

 But protocols imply one

 Application layer

 Transport (host to host) layer

 Internet layer

 Network access layer

 Physical layer

 Actually TCP/IP reference model has been built on its
protocols

 That is why that reference model is only for TCP/IP protocol
suite

 and this is why it is not so important to assign roles to each layer
in TCP/IP; understanding TCP, IP and the application protocols
would be enough

TCP/IP
Protocol

Suite

38

TCP/IP protocol

OSI vs. TCP/IP

TCP, UDP

IP

HTTP,

SMTP, …

Network Access and

Physical Layers

 TCP/IP reference model does not discuss these layers

too much

 the node should connect to the network with a protocol

such that it can send IP packets

 this protocol is not defined by TCP/IP

 mostly in hardware

 a well known example is Ethernet

IP (Internet Protocol)

 The core of the TCP/IP protocol suite

 Two versions co-exist

 v4 – the widely used IP protocol

 v6 – has been standardized in 1996, but still not widely
deployed

 IP (v4) header minimum 20 octets (160 bits)

IPv6

 IPv6

 Enhancements over IPv4 for modern high speed networks

 Support for multimedia data streams

 But the driving force behind v6 was to increase
address space

 128-bit as compared to 32-bit of v4

 Not backward compatible

 all equipment and software must change

TCP

 Transmission Control Protocol

 end to end protocol

 Reliable connection = provides flow and error control

 In TCP terms, a connection is a

temporary association between entities in different systems

 TCP PDU

 Called “TCP segment”

 Includes source and destination port

 Identify respective users (applications)

 pair of ports (together with the IP addresses) uniquely identify a
connection; such an identification is necessary in order TCP to track
segments between entities.

TCP Header

UDP
 User Datagram Protocol

 Alternative to TCP

 end-to-end protocol

 Not guaranteed delivery

 No preservation of sequence

 No protection against duplication

 Minimum overhead

PDUs in TCP/IP

Dest. Port

Sequence number

Checksum

….

Dest. Address

Source address

….

Dest. Network Address

Priority info

Operation of TCP and IP

Some Protocols in TCP/IP

Suite

Internetworking

 Interconnected set of networks

 May be seemed as a large network

 Each constituent network is a subnetwork

 Entire configuration referred to as an internet

 not the Internet

 conceptually the same, but by “internet” we do not mean a
specific network

 the Internet is the most important example of an internet

Internetworking Devices

 Each subnetwork supports communication among the
devices attached to that subnetwork

 End systems (ESs)

 Subnetworks connected by intermediate systems (ISs)

 In practice, ISs are routers that are used to relay and
route packets between different subnetworks

 If subnetworks use different Network Access Protocols,
router should support all of the protocols

 In OSI terminology, a router works at layer 3 (network
layer)

Routers

 Interconnect dissimilar subnetworks without any
modifications on architecture of subnetworks

 Must accommodate differences among networks,
such as

 Addressing schemes

 network addresses may need to be translated

 Maximum packet sizes

 if two subnetworks have different limits for max. packet sizes,
then router may need fragment/reassemble the packets

 We have seen that subnetworks may have different
network access and physical layers, but they have
to speak the same (inter)network protocol
implemented in all end systems and routers

 The most important internetwork protocol is the IP
protocol

Configuration for TCP/IP

Example

WAN

Action of

Sender

Action of Router

Action of

Receiver

Standards

 Required to allow for interoperability among

equipments

 Advantages

 Ensures a large market for equipment and software

 Allows products from different vendors to communicate

 Disadvantage

 Freeze technology (???)

Standards Organizations in

Networking

 Internet Society

 ISO (International Organization for Standardization)

 more formal

 NGO, but most members are from governments

 ITU-T (formerly CCITT)

 International Telecommunications Union

 UN agency

 governmental

Internet Society (ISOC)

 Internet development and standardization

 3 suborganizations

 IAB (Internet Architecture Board)

 overall Internet architecture

 IETF (Internet Engineering Task Force)

 protocol engineering and development

 IESG (Internet Engineering Steering Group)

 monitors IETF standardization efforts

IETF Organization
 Grouped in areas

 e.g. applications, security, routing, etc.

 each area has an Area Director, who is also member of IESG

 Each area has several working groups

 working groups actually contribute to standards/protocols, etc.

 Voluntary participation in IETF working groups

 For detail see

 www.ietf.org or

 RFC 3160 - The Tao of IETF - A Novice's Guide to the Internet Engineering
Task Force

http://www.ietf.org/

Internet Drafts and RFCs

 Internet Draft

 Draft and temporary documents

 expires in 6 months, if IESG does not approve it as an RFC

 can be resubmitted

 published online

 comments are welcome

 RFC (Request for Comments)

 final version

 can obsolete previous RFCs about the same topic

 actually an RFC can be of any type of document

not necessarily a standard

Best Current Practice, Experimental, Informational RFCs

April 1st RFCs (http://en.wikipedia.org/wiki/April_1_RFC)

 My favorite is IP over Avian Carriers (RFC 1149)

http://en.wikipedia.org/wiki/April_1_RFC

Internet Standards Track
 Steps involve increasing amount of scrutiny and testing

 Step 1: Internet Draft

 Step 2: Proposed standard

 Internet Draft approved as an RFC by IESG

 must remain at least six months to advance

 Step 3: Draft standard

 at least two independent and interoperable implementations

 must remain at least 4 months

 Step 4: Internet standard

 Significant operational experience

 key difference between ISOC and other standardization
organizations

 Consensus needed

Internet Assigned Numbers

Authority (IANA)

 An ISOC entity responsible for all “unique numbers” on the Internet

 including IP addresses

 Almost all protocols work with numeric parameters

 e.g. port numbers, error codes, status codes, message types, options,

etc.

 the meanings of all numeric codes are mostly specified in RFCs, but

number assignment is formalized by IANA

Networking

 Layering

 ISO OSI 7-layer model

 Physical, data link, network, transport, session, presentation,
application

 TCP/IP model

 Link, network, transport, application

Encapsulation

Protocol Headers

 Ethernet header

 MAC (Ethernet) addresses

 IP header

 IP addresses, protocol

 TCP/UDP header

 Port numbers

ARP

X

A B

Ethernet

(CSMA/CD)

Where is X?

X is here.

IP address 

Ethernet address

Ethernet Header

Payload

The minimum payload is 42 octets when an 802.1Q tag is present

and 46 octets when absent. The maximum payload is 1500 octets.

Frame check sequence

The frame check sequence (FCS) is a four-octet cyclic redundancy

check (CRC) that allows detection of corrupted data within the

entire frame as received on the receiver side.

https://en.wikipedia.org/wiki/Frame_check_sequence
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

IP Header

UDP Header

TCP Header

Demultiplexing

IP Addresses

 IPv4 address

 Dotted decimal: 140.112.8.130

 Unicast, broadcast, and multicast

 Private address space

 10.0.0.0 - 10.255.255.255 (10/8 prefix)

 172.16.0.0 - 172.31.255.255 (172.16/12 prefix)

 192.168.0.0 - 192.168.255.255 (192.168/16
prefix)

Class A, B, C, D, E

IP Addresses (cont.)

Port Numbers

 Well-known ports: 1-1023

 HTTP: 80

 SMTP: 25

 Telnet: 23

 FTP: 21 (control), 20 (data)

 Others

 Gnutella: 6346, 6347

 Client vs. server ports

Useful Tools

 Packet sniffer or analyzer

 Tcpdump

 Ethereal

 NetXRay

 Packet generator

 Socket programming

 Packet capture libraries

 Libpcap & WinPcap

Example Scenario: Web

Browsing

Client Server

http://www.fils.edu/

80

61.2.3.4

(140.112.8.130, 80)

www.fils.edu

23

25

Example Scenario: Web

Browsing

Client Server

www.fils.edu?

80

61.2.3.4

(140.112.8.130, 80)

www.fils.edu

23

25

DNS

Server

140.112.8.130

Example Scenario: Web

Browsing

Client

connect(140.112.8.130, 80)

Server

http://www.fils.edu/

807890

61.2.3.4

(140.112.8.130, 80)

www.fils.edu

23

25

DNS Name Resolution

X

A DNS

Ethernet

(CSMA/CD)

Where is www.fils.edu?

X is 140.112.8.130.

hostname 

IP address

ARP (Revisited)

X

A B

Ethernet

(CSMA/CD)

Where is 140.112.8.130?

140.112.8.130 is

00:C0:EB:00:8B:68

IP address 

Ethernet address

140.112.8.130

00:C0:EB:00:8B:68

Sockets

 ARP: Ethernet (hardware, MAC) address

 IP: IP address

 TCP/UDP: port number

 Port vs. service

 Sockets: {IPsrc, portsrc, IPdest, portdest}

Socket Connection

Client

connect(140.112.8.130, 80)

Server

(61.2.3.4, 7890)

807890

61.2.3.4

(140.112.8.130, 80)

www.fils.edu

23

25

Socket Programming

 UNIX: BSD Socket API (in C)

 socket(), bind(), listen(), accept(), connect(), send(),

recv(), sendto(), recvfrom(), select(), …

 Java Socket API

 java.net.Socket

 Perl, Python, …

Remote Procedure Call

 RFC 1831 – RPC v2

 RFC 1832 -- XDR: External Data Representation

Standard

 A machine-independent representation of data

 Local vs. remote procedure calls

RPC

 UDP/TCP transport

 RPC/UDP: connectionless, fast

 RPC/TCP: connection-oriented, slower

 Portmap service (or portmapper)

 Port 111

 RFC 1833

RPC

RPC Portmapping

Client

connect(140.112.8.130, 111)

Server

1117890

61.2.3.4 140.112.8.130

P

25

Port P

connect(140.112.8.130, P)

RPC Programming

 rpcgen

 Applications: NFS (Network File System), …

Internet Layer

 Connectionless, point to point internetworking protocol (uses the
datagram approach)

 takes care of routing across multiple networks

 each packet travels in the network independently of each other

 they may not arrive (if there is a problem in the network)

 they may arrive out of order

 a design decision enforced by DoD to make the system more flexible and
responsive to loss of some subnet devices

 Implemented in end systems and routers as the Internet Protocol (IP)

Transport Layer

 End-to-end data transfer

 Transmission Control Protocol (TCP)

 connection oriented

 reliable delivery of data

 ordering of delivery

 User Datagram Protocol (UDP)

 connectionless service

 delivery is not guaranteed

 Can you give example applications that use TCP and

UDP?

Application Layer

 Support for user applications

 A separate module for each different application

 e.g. HTTP, SMTP, telnet

Python Tools: Sockets

 The socketmodule includes functions classes for

implementing network connections via sockets

 The client and sever each create their own sockets

and run methods to talk to each other

Getting the Host Name and

IP

>>> import socket

>>> socket.gethostname()

'smalltalk'

>>> socket.gethostbyname(socket.gethostname())

'134.432.111.34'

Python Tools: Codecs

 Strings are transmitted as bytes, so they must be

encoded before and decoded after transmission

 Strings are encoded and decoded using a codec, as

defined in the codecsmodule

Encoding and Decoding

Strings

>>> from codecs import decode

>>> data = bytes('Good luck on the final exam', 'ascii')

>>> print(decode(data, 'ascii')

Good luck on the exam!

bytes(string, codec) -> an array of bytes

codecs.decode(byteArray, codec) -> a string

Consult the codecs doc for info on the possible codecs

The Role of the Server

 The server creates a socket and
listens for requests from clients

When a client request comes in, the
server sends the appropriate
response via the socket

When the client disconnects, the
server continues to listen for more
requests

The Structure of a Server

Import resources

Set up and connect the server to the net

While True:

Accept a connection from a client

Process the request for service

A server runs forever, unless an exception is raised

Example: A Date/Time

Server

When a client connects, the server sends

the current date and time

When the client receives this information,

it is displayed in the terminal

server client
Date and time

request

Example: A Day/Time Server

from socket import *

from time import ctime

The socket module includes resources for sockets

The ctime function returns the date and time

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

A socket is associated with the host computer’s IP

address and a port number

These data are organized in a tuple

localhost supports a server and a client running on

the same computer

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

socket returns a socket object of the type specified

by its arguments

bind and listen establish the socket’s connection

to the net and listen for client requests

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

accept pauses until a client connects

accept returns the client’s socket and address information

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))

client.close()

send sends an encoded string to the client and close ends the

connection

Example: A Day/Time Server

from socket import *

from time import ctime

HOST = 'localhost'

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))

client.close()

server.close() # Never reached here, but useful if exception

handling is added

Example: A Day/Time Client

from socket import *

HOST = 'localhost'

PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

Setup code for a client socket is very similar to the code for a

server socket

BUFSIZE (1 kilobyte here) indicates the number of bytes allowed

for each input operation

Example: A Day/Time Client

from socket import *

HOST = 'localhost'

PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.connect(ADDRESS)

connect connects this socket to the server at the specified

address

Example: A Day/Time Client

from socket import *

from codecs import decode

HOST = 'localhost'

PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.connect(ADDRESS)

dayAndTime = decode(server.recv(BUFSIZE), 'ascii')

print(dayAndTime)

server.close()

recv inputs an encoded string from the server (the date and time)

A One-on-One Chat Server

 When a client connects, send a greeting and wait for
a reply

 When the reply is received, send another message

 An empty string/reply should disconnect the client

A One-on-One Chat Server

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes('Welcome to my chat room!', 'ascii'))

while True:

message = decode(client.recv(BUFSIZE), 'ascii')

if not message:

print('Client disconnected')

client.close()

break

else:

print(message)

client.send(bytes(input('> '), 'ascii'))

Service includes a nested loop for carrying on the conversation

A One-on-One Chat Client

server = socket(AF_INET, SOCK_STREAM)

server.connect(ADDRESS)

print(decode(server.recv(BUFSIZE), 'ascii')) # Displays server’s
greeting

while True:

message = input('> ')

if not message:

break

server.send(bytes(message, 'ascii'))

reply = decode(server.recv(BUFSIZE), 'ascii')

if not reply:

break

print(reply)

server.close()

Client now has a loop to carry on the conversation

Loop ends when the client sends or receives ''

Putting the Doctor Online

 Very similar to a one-on-one chat, but the server
responds by using a Doctor object’s reply instead of a
human being’s input

 Minor changes to the chat server, but no changes at
all to the chat client!

A One-on-One Chat Server

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes('Welcome to my chat room!', 'ascii'))

while True:

message = decode(client.recv(BUFSIZE), 'ascii')

if not message:

print('Client disconnected')

client.close()

break

else:

print(message)

client.send(bytes(input('> '), 'ascii'))

Service includes a nested loop for carrying on the conversation

A One-on-One Therapy

Server
while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

dr = Doctor()

client.send(bytes(dr.greeting()), 'ascii'))

while True:

message = decode(client.recv(BUFSIZE), 'ascii')

if not message:

print('Client disconnected')

client.close()

break

else:

client.send(bytes(dr.reply(message)), 'ascii'))

Create the appropriate “bot” for carrying out the server’s

side of the conversation

Going “Live”: the Server

from socket import *

from time import ctime

HOST = gethostbyname(gethostname())

PORT = 21566

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.bind(ADDRESS)

server.listen(5)

while True:

print('Waiting for connection . . . ')

client, address = server.accept()

print('... connected from:', address)

client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))

client.close()

Can deploy this server on any machine with an IP address

Going “Live”: the Client

from socket import *

from codecs import decode

HOST = input('Enter the server name: ')

PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket(AF_INET, SOCK_STREAM)

server.connect(ADDRESS)

dayAndTime = decode(server.recv(BUFSIZE), 'ascii')

print(dayAndTime)

server.close()

The HOST must be the name or IP of the server

