Networks and
Client/Server
Applications

®» One host computer can have several servers

» Several clients can connect to a server

/

Basics of Client/Server

Mail server Web server
Host computer
Network
Client 1 Client 2 Client 3 Client 4

Network Addresses

®» Every computer on a network has an address

» Fvery Infernet address has two components:
= an /P name (such as "lambert")
» an P address (such as "129.21.38.145")

» [P stands for Internet Protocol

Ports

®» A portis a software abstraction of a physical space
through which a client and a server can send
messages

» Operating systems have several dedicated system
ports and several free ports

Ports

®» Ports are known by numbers

» For example, port 13 usually returns the day and time
on the host computer

®» Several processes can use the same port at the same
time

Sockets

®» A socket is a software abstraction that provides a
communication link between a single server process
and a single client process

®» Several sockets can be created on the same port

Sockets

» Two things are required to create a socket:
» ¢ valid IP address

®» O port number

» Client and server then use input and output
operations to send messages through the socket

The Basic Setup

Host

Server

T T

Port

A

Client 1 Client 2

A server can be any application. A client can be any application.

Issues:

peer-to-peer
rotocols are
(ndependent of ,

each other
»for example,
secretaries may
change th

comm. mgdium
fo emaill

ch layer]
s a header

A Real World Example to Protocol
Architecture philosopher-translator-
secretary architecture

Location A Location B
ralltl;tﬁs <+— Message Philosopher — t‘)Ji:LnI]:s
lapins
____________________________ >
\ I(
] Information]
L: Dutchl +—— for the remote Translator —— L: Dutch
Ik vind translator Ik vind
konijnen konijnen
ewk | (___________ > leuk
. I
Information
Fax#-| ¥~ for the remote Fax #--
L: Dutch secretary Secretary —— L: Dutch
Ik vind ~| Ik vind
konijnen konijnen
leuk leuk
Y
—a,
i sy

J

General protocol architecture
principles that we have seen so far

®» |ayered structure

» Protocol stack

®» FEach layer provides services to upper layer; expect services from
lower one

» | ayer interfaces should be well-defined
ities communicate using their own protocol

®» peer-to-peer protocols

» independent of protocols at other layers

if one protocol changes, other protocols should not get affected

A General Three Layer
Model

» Generalize the previous example for a generic
application

®» we can have different applications (e-mail, file transfer, ...)

Computer X Computer Y

Application Protocol
Application [-----—----"-—"—-—-"—"—-—-"——"—-—-—-—-—- > Application

Transport [--—-—-—--—=-—=-—-=--———=——-=——-—--- > Transport

Communications
network

Metwork access [P Network access
Network access

protocol

Network access
protocol

Network Access Layer
Transport Layer
pplication Layer

Network Access Layer

» Exchange of data between the computer and the
network

®» Sending computer provides address of destination
» 5o that network can route

» Different switching and networking fechniques
» Circuit switching
» Pqacket switching
» | ANS
» cfc.

» This layer may need specific drivers and interface
equipment depending on type of network used.

» But upper layers do not see these details
®» independence property

Transport Layer

» Reliable data exchange

®» o make sure that all the data packets arrived in the same
order in which they are sent out

» Pqackets nor received or received in error are retfransmitted

» |ndependent of network being used

®» |ndependent of application

Application Layer

» Support for different user applications

®» c.g. e-mail, file transfer

Addressing Requirements

» Two levels of addressing required
®» Each computer needs unique network address

» Fach application on a (multi-tasking) computer needs
a unigue address within the computer

» The service access point or SAP

» The porf number in TCP/IP protocol stack

Protocol Architectures and
Networks

ervice access point Or ports

Applications

Transport

Network address
Network access

Applications
1 2

—{ —

Transport

Computer A

Communications
network

Network access

Applications
| |
—()

Transport

Computer C

Network access

Computer B

Protocol Data Units (PDU)

» User data is passed from layer to layer

» Control information is added/removed to/from user
data at each layer

» Header (and sometimes trailer)

» cqach layer has a different header/trailer

» Data + header + trailer = PDU (Protocol Data Unif)
» This is basically what we call packet

®» cach layer has a different PDU

Transport PDU

» Transport layer may fragment user data

» Fach fragment has a transport header added
» Destination port

®» Sequence number

» since the transport layer may split application data into
smaller packets

» Error detection code (generally at trailer)

Network PDU

» Adds network header
» network address for destination computer

» optional facilities from network (e.qg. priority level)

Operation of a Protocol
| Architecture

Source X Destination Y

Application Record Record Application
| | I I
| | I I
| | I I
| | I I
| | I I
| | I I
Transport | i Transport, i
Header | I Header | |

Transport . Transport
r‘ Transport PDU H| : :
| | I I
I I | I
| | I I
Network : : Network: :

Network Header | : Header | : Network
Access f ;’ Access
< >
/ Packet

(Network PDU)

\ \

Standard Protocol
Architectures

» Common set of conventions

» Nonstandard vs. standard protocols
» Nonstandard: K sources and L receivers lead to K*L different protocols

»/|f common profocol used, we design only once

roducts from different vendors interoperate

®» |[f a common standard is not implemented in a product, then that
product’s market is limited; customers like standard products

» Customers do not stick to a specific vendor

Standard Protocol
Architectures

» Two approaches (standard)
» OS| Reference model

» never used widely

» put well known
» TCP/IP protocol suite
» Most widely used
» Another approach (proprietary)
» [BM's Systems Network Architecture (SNA)

OSI| Reference Model

®» Open Systems Interconnection
» Reference model
» provides a general framework for standardization

» defines a set of layers and services provided by each
layer

®» one or more protocols can be developed for each layer

» Developed by the International Organization for
Standardization (ISO)

» also published by ITU-T (International Telecommunications
Union)

OSI| Reference Model

» A |[ayered model

®» Seven layers — seven has been presented as the optimal
number of layer

» Delivered too late (published in 1984)!

» by that fime TCP/IP started to become the de facto
standard

» Although no OSI-based protocol survived, the model is
still valid (in the textbooks)

OSI - The Layer Model

» Fach layer performs a subset of the required
communication functions

» Eqach layer relies on the next lower layer to perform
more primitive functions

» Eqach layer provides services to the next higher layer

» Changes in one layer should not require changes in
other layers

OSI| as Framework for
Standardization

. " Layer 7
layer functlonalltles are (Application)
described by I1SO; different
standards can be .
developed based on these .
. . . ervice to
functionalities Layer N+1
L]
B Protocol
Total Layer N Layer N - g Vith peer
Communication _." entity Layer ¥
Function Decompose T
. ~—
* Service from
Layer N-1
L]
Layer 1
L\ (Physical)

O51-wide standards
(e.g., network management, security)

Layer Specitic Standards

Service Delinition
{ Funetional description
for internal use)

& Addressing

1Herﬁ7‘lccem Point)
/ a7 T

i} -

L ayer N Protocol Specification

{Precise syntax and
semantics for
interoperability)

Elements of Standardization

» Protocol specification
» Operates between the same layer on two systems
= May involve different platforms
» Protocol specification must be precise

» Format of data units

» Semantics of all fields

» Service definition

» Functional description of what is provided to the next
upper layer

» Addressing
» Referenced by SAPs

The OS| Environment

PDU Construction PDU Reduction
A
\J P | P o
aH| User Data Application Application aH| User Data
A
| I I I
| \j I _ I I
PI-1 A-PDU Presentationfj 4 - - - - ------------- pH[A-PDU
A
I I I I
I \J I . . I I
e P-PDU Session e --------------onn Session T =Tl
A
I I | I
I \J I P | I I
TH] SPDU Transport Transport TH| SPOU
A
I I I I
I \J | I I
NH| LIV D P NH] T-PDU
A
| I I I
| y ! DataLink e ----------------- Data Link ' '
LH] N-PDU]| =" s tin H] N-PDU I
'y
| |
\ J I : ; I
Physical Communications Physical
oL-PhY | Path (e.g., point- l DL-POU
to-point link,

network)

OSl Layers (1)

= Physical
» Physical interface between devices
» Characteristics
» Mechanical - interface specs
» Flectrical - voltage levels for bits, fransmission rate, coding, efc.
= Data Link

®» Bqasic services: error detection and control, flow control at the link level
(point to point)

» Higher layers may assume error free transmission
» | ater a sublayeris added to Data Link Layer
» MAC (Medium Access Control) sublayer

» {0 deal with broadcast networks

OSl Layers (2)

Network

» Transfer of information through communication network

» network related issues
» Network nodes (relays/routers) should perform switching and routing functions

QoS (Quality of Service) and congestion control are also addressed in this

Sevefal other internetworking issues

e.g. differences in addressing, max. data length, etc.
igher layers do not need to know about underlying networking technology

Not heeded on direct links

Use of a Relay/Router

ENI} RELAY END
SYSTEM SYSTEM SYSTEM
7 - - - = = = = = = Application-layer protocol — — — — — — — — - 7
1 1
¥ T
! 1
ﬁ‘: g - — - - — = = Presentation-layer protocol— — — — — — — — > : 6

1
- i
1 1
5 : - - - — — — — — — Session-layer protocol- — — — — — — — — —- : 3
1 1
1 1
! 1
4: - - — — — — — = = Transpori-layer protocol — — — — — — — — = 1 4
[
| i
1
31 |[M— — -Network— — — —c-a-- . ol — — —Network— — —pl | 3
! 1 1 1
1 T
! | | !
2:] — — -Data Link— — —Jw : : ol — — -Data Link— — —J : 2
1 1 1 1
! I I]
! 1 1 1
1 | — — —Physical— — —Pm 1 1] — — —Physical — — —Pm ' 1
L L : — 1 ;
' } 1

Physical media for (351

Physical media for (351 :

OSl| Layers (3)

®» Transport
» Fnd to end exchange of data
® |n sequence, no losses, no duplicates

» |f needed, upper layer data are split into smaller units

» Session

whose turn fo talk?

» Dialogue discipline (full-duplex, half-duplex)

Checkpointing and recovery

OSl| Layers (4)

®» Presentation
» Data formafts
» Data compression
» Encryption

» Application

» Support for various applications

TCP/IP Protocol

» Most widely used interoperable network protocol
architecture

» Specified and extensively used before OSI
» OSl was slow to take place in the market

®» Funded by the US Defense Advanced Research
Project Agency (DARPA) for its packet switched
network (ARPANET)

» DoD automatically created an enormous market for
TCP/IP

» Used by the Internet and WWW

Common Protocols in TCP/IP
Protocol Stack

» ARP: Address Resolution Protocol

» |P: Infernet Protocol (RFC 791)

» UDP: User Datagram Protocol (RFC 768)

» TCP: Transmission Control Protocol (RFC 793)

TCP/IP Protocol Suite

TCP/IP does not have an official layer structure

» Byt profocols imply one

» Application layer

» Transport (host to host) layer
®» |[nfernet layer

®» Network access layer

» Physical layer

» Acfually TCP/IP reference model has been built on its
tocols

Tth]’r is why that reference model is only for TCP/IP protocol
suite

» and this is why it is not so mgor’ron’r to assign roles to each layer
in TCP/IP; understanding TCP, IP and the oppllco’non protocols
would be enough

.[TCP/IP protocol

Ap}i)lication
ayer

Transport
layer

Network
layer

Data link
layer

Physical
layer

ARP

Underlying LAN or WAN

38

technology -

TCP/IP
Protocol
Suite

OSl vs. TCP/IP

0S| TCP/IP
Application
Application
Presentation PP
Session
Transport
Transport |(host-to-host)
Internet
Network
Network
Data Link Access
Physical Physical

HTTP,
SMTP, ...

TCP, UDP

P

Table 15.1 Well-known Ports used by TCP

Port Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received

11 Users Active users

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

20 and 21 FTP File Transfer Protocol (Data and Control)

23 TELNET Terminal Network

25 SMTP Simple Mail Transfer Protocol

53 DNS Domain Name Server

67 BOOTP Bootstrap Protocol

79 Finger Finger

80 HTTP Hypertext Transfer Protocol

Network Access and
Physical Layers

» TCP/IP reference model does not discuss these layers
too much

®» the node should connect to the network with a protocol
such that it can send IP packets

» this protocol is not defined by TCP/IP

» mostly in hardware

» g well known example is Ethernet

IP (Infernet Protocol)

e core of the TCP/IP protocol suite

» WO Versions co-exist
» v4 — the widely used IP protocol

®» v6 — has been standardized in 1996, but still not widely
deployed

» [P (v4) header minimum 20 octets (160 bits)

4 2 14 16 19 3
Version IHL m Total Length

|dentifhication Flags Fragment Offset

1

Time to Live | Protocol Header Chacksum

=ource Address

Destinagtion Address

Options + Padding

IPVvé6

» |Pvé
» Enhancements over IPv4 for modern high speed networks

» Support for multimedia data streams

» Byt the driving force behind vé was to increase
address space

»]28-bit as compared to 32-bit of v4

» Nof backward compatible

®» qll equipment and software must change

TCP

® Transmission Conftrol Protocol

» cnd to end protocol

» Reliable connection = provides flow and error conftrol
» |n TCP terms, a connection is @

temporary association between entities in different systems

» Called “TCP segment”

» |ncludes source and destination port
» |dentify respective users (applications)

» pair of ports (together with the IP addresses) uniquely identify a
connection; such an identification is necessary in order TCP to frack
segments between entities.

TCP Header

Sequence MNumber

Acknowdedgement Mumber

20 oclels

Windowr

Urgent Fointer

UDP

User Datagram Protocol
» Alternative to TCP

» ecnd-to-end protocol

» Not guaranteed delivery
» No preservation of sequence

ection against duplication

um overhead

8 oclels
e

(k) UDP Header

PDUs in TCP/IP

User data

Dest. Port
S TCP
equence number
header
Checksum
est. Address P
rce address header
I
I
MNetwork
header

D Network Address
Priority info

Application
byte stream

TCP
segment

P
datagram

Network-level
packet

Operation of TCP and IP

Host A Host B

Global network

IP 41 address »> IP
Network Access Network Access
Protocol #1 Protocol #2
Physical Subnetwork attachment Physical

point address Router J
/ P

NAP 1| NAP 2}

PhysicallPhysical

Some Protocols in TCP/IP
Suite

MIME SDP | |Media
Application
Layer
TELNET| [FrP | |smTp| [HTTP| | BGP | [TLS | | S1P DNS | [snmp|
L Transport
Layer
TCP UDP
ICMP| | IGMP| | OSPF| | RSVP
Internet
Layer
IP
BGP = Border Galeway Protocol R5VP = Resource ReSerVation Protocol
DXS = Domain Name System ETFP = Real-Time Transport Protocol
FTP = File Transler Protocol SDP = Session Description Protocol
HTTF = Hypertext Transler Protocol SIP = Session Initiation Protocol
ICMP = Internet Control Message Protocol SMTP = Simple Mail Transfer Prolocol
IGMP = Internetl Group Management Prolocol SNMP = Simple Network Management Protocol
P = Internetl Protocol TCP = Transmission Control Protocol
MIME = Multi-Purpose Internet Mail Extension TLS = Transporl Layer Securily
OSPF = Open Shortest Path First UDP = User Datagram Protocol

Internetworking

» |nterconnected set of networks
®» May be seemed as a large network
» Fach constituent network is a subnefwork

» [Entire configuration referred to as an infernet

» Nnof the Internet

» conceptually the same, but by “internet” we do not mean a
specific network

» the Internet is the most important example of an internet

Internetworking Devices

» FEach subnetwork supports communication among the
devices attached to that subnetwork

» End systems (ESs)
» Subnetworks connected by intermediate systems (ISs)

» |n practice, ISs are routers that are used to relay and
route packets between different subnetworks

» |[f subnetworks use different Network Access Protocols,
router should support all of the protocols

» |n OS| terminology, a router works at layer 3 (network
layer)

Routers

®» |nterconnect dissimilar subnetworks without any
modifications on architecture of subnetworks

- Muﬂ accommodate differences among networks,
such as

» Addressing schemes
» network addresses may need to be translated
®» Maximum packet sizes

» if two subnetworks have different limits for max. packet sizes,
then router may need fragment/reassemble the packets

» We have seen that subnetworks may have different
network access and physical layers, but they have
to speak the same (inter)network protocol
Implemented in all end systems and routers

» The most important internetwork protocol is the IP
protocol

Application

TCP

IP

|EEE 802 LAN

Physical

A W

IP
LLC
ATM
MAC
Physical Physical

Configuration for TCP/IP

Workstation

Application

TCP

IP

LLC

MAC

Physical

1. Preparing the data. The

[) -
C -l- I O n O f application protocol prepares a block Peer-to-peer dialogue.
of data for transmission. For example, Before data are sent, the
an email message (SMTP), a file (FTP), sending and receiving
or a block of user input (Telnet), applications agree on format

d e r and encoding and agree to
2. Using a common syntax_ |f necessary, exchange data.
the data are corverted to a form expected Applicationf ===
by the destination. This may include
a different character code, the use of

encryption, and/or compression.

3. Segmenting the data. TCP may break | Data |

the data block into a number of segments,

keeping track of their sequence. Each TCP FPear-to-peer dialogue,
segment includes a header containing a The two TCP entities agree
sequence number and & frame check to open a connection

saguence to detect errors, TCP |===p

4. Duplicating segments. A copy Is made
of each TCP segment, in case the loss
of damage of a segment necessitates
retransmission. VWhen an acknowledgment Data
is receied from the other TCP entity, a

segment is erazed, Peer-to-peer dialogue,
5. Fragmenting the segments. IP may Each IP datagram Is forwarded
break a TCP segment info a number of through networks and routers
datagrams to meet size requirements of to the destination system.
the intervening networks, Each datagram P -===p
includes a header containing a destination
address, a frame check sequence, and other
contrel information. h 4
[1|T|] Data |
6. Framing. An ATM header is added to each Peer-to-peer dialogue.
|P datagram to form an ATM cell. The Each cell s forwarded through
header contains a connection Identifier and the ATM network
a header error control fielkd ATM ===
A | I | T | Data |
Physical P 7 Transmission. Each
cell is transmitted over

the medium as a sequence
of bits

Action of Router

10. Routing the packet IP examine

the IP header and makes a routing
decision. It determines which outgo
link is to be used and then passes
the datagram back to the link layer

for transmission on that link

9. Processing the czll. The
ATM layer removes the

cell header and processes

it. The header error control

is used for error detection. The
connection number

identifies the source.

ALLYT Data

8. Arriving at router. The
incoming signal is received
over the transmission medium
and interpreted as a cell of bits

\

FPeer-to-peer dialogue,
The router will pass this
datagram onto another

F rauter or to the destination

system,

11. Forming LLC PDU. An LLC
header is added to each IF datagram
to form an LLC FOU. The header
containg sequence numbear and
address information.

12. Framing. A MAC header and

traller is added to each LLC PDU,
forming a MAC frame, The header
contains address information and the
trailer contains a frame check saquence,

T Data
A
LLC
LT Data
L \
ATM MAC
Physical | Physical

Ml T Data M

——» 13, Transmission. Each

frame is transmitted over
the medium as a sequence
of bits

Action of
ver

20. Delivering the data. The application
performs any needed transformations, including Application
decompression and decryption, and directs the
data to the appropriate file or other destination A
19. Reassembling user data. If TCP
has broken the user data into muliple | Data |
segments, these are reassembled and the
hock is passed up to the application,
R
18. Processing the TCP segment. TCP TCP
removes the header. it checks the frame
check sequence and acknowladges if there is F 3
a match and discards for mismateh, Flow control
is also performed. Data
e
IP
17. Processing the IF datagram. [P F 3
removes the header. The frame check
sequence and other control
information are processed | ! | T | Dat |
A
16. Processing the LLC PDU. The LLC layer
removes the header and processes it The LLC
saguence number is used for flow and error
control, F Y

|L|I|T| Data

15. Processing the frame. The MAC layer
removes the header and frailer and processes

them. The frame check sequence
is used for ermor detection,

[(M[L]TT] Data w]

14. Arriving at destination. The incoming
signal is received over the transmission
medium and interpreted as a frame of bits.

MAC

Physical

Standards

» Required to allow for interoperability among
equipments

» Advantages
® Ensures a large market for equipment and software

» Allows products from different vendors to communicate

» Disadvantage

» Freeze technology (¢272)

Standards Organizations in
Networking

» |[nternet Society

» |SO (International Organization for Standardization)
= more formal
» NGO, but most members are from governments

» |[TU-T (formerly CCITT)

» |nternational Telecommunications Union

» UN agency

®» governmental

Internet Society (ISOC)

» |nternet development and standardization

» 3 suborganizations
= |AB (Internet Architecture Board)
» overall Internet architecture
» |ETF (Intfernet Engineering Task Force)
» protocol engineering and development
» |[ESG (Internet Engineering Steering Group)

» monitors IETF standardization efforts

IETF Organization

» Grouped in areas
» c.g. applications, security, routing, etc.
®» cach area has an Area Director, who is also member of IESG
» FEach area has several working groups
» working groups actually contribute to standards/protocols, etc.
» Voluntapy parficipation in IETF working groups
» For detail see

» letf.org or

RFC 3160 - The Tao of IETF - A Novice's Guide to the Internet Engineering
Task Force

http://www.ietf.org/

Internet Drafts and RFCs

» [nfernet Draff
» Draft and temporary documents
®» cxpires in 6 months, if IESG does not approve it as an RFC
®» can be resubmitted
» published online
» comments are welcome

» RFC (Request for Comments)
» final version
can obsolete previous RFCs about the same topic
actually an RFC can be of any type of document
» not necessarily a standard
» Best Current Practice, Experimental, Informational RFCs
» April 15t RFCs (http://en.wikipedia.org/wiki/April 1 RFC)
» My favorite is IP over Avian Carriers (RFC 1149)

http://en.wikipedia.org/wiki/April_1_RFC

Infernet Standards Track

» Steps involve increasing amount of scrutiny and testing

» Step 1: Infernet Draft

» Step 2: Proposed standard
» [nfernet Draft approved as an RFC by IESG
®» mustremain at least six months to advance
» Step B: Draft standard
®» 4t least two independent and intferoperable implementations

must remain at least 4 months

tep 4: Infernet standard

» Significant operational experience

» key difference between ISOC and other standardization
organizations

» Consensus needed

Internet Assigned Numbers
Authority (IANA)

» An ISOC entity responsible for all “uniqgue numbers” on the Internet

» including IP addresses

» Almost all protocols work with numeric parameters

» c.g.port numbers, error codes, status codes, message types, options,

e meanings of all numeric codes are mostly specified in RFCs, but
number assignment is formalized by IANA

Networking

= | ayering
» |SO OSl| 7-layer model

» Physical, data link, network, fransport, session, presentation,
application

» TCP/IP model

» |ink, network, transport, application

Encapsulation

user dada

hﬂppml T ratn
|
| 1
. y ¥
header application deta

Protocol Headers

» Fthernet header
» MAC (Ethernet) addresses

» |P header

» |P addresses, protocol

» TCP/UDP header

» Port numbers

ARP

X
. N
~ Xishere. Ethernet
i (CSMA/CD)
\VVI vi7Z \I VI—II
/ Where is X?
A
IP address =

AN

|

Ethernet address

|

Ethernet Header

80 00 20 ¥A 3F 3E 80 00 20 20 3A AE 0z 00 IP, ARP, etc. 00 20 20 3A

MAC Header
(14 bytes)

Data

{46 - 1500 bytes)

Destination MAC Address Source MALC Address EtherType Payload CREC Checksum
(4 bytes)

Emernethg e Il Frame
(564 to bytes)

um payload is 42 octets when an 802.1Q tag Is present
nd 46 octets when absent. The maximum payload is 1500 octets.
ramg check sequence

he frame check sequence (FCS) is a four-octet cyclic redundancy
egk (CRC) that allows detection of corrupted data within the

re frame as received on the receiver side.

https://en.wikipedia.org/wiki/Frame_check_sequence
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

IP Header

Figure 1! The IP Header

UDP Header

15t mvisnos port onnber

1&-bit destination port number

16-bit UDP length

16-bit LIDP checksumn

i

dats (if arvy)

TCP Header

&

0 e a
&
15-bit source port nurnber 18-t destinabion port ramber
32-tit sequerce number
32-hit arknewlsdgmerdt number 2 bytes
UIA|P(R|S|F
4-bit hendor rasaryved
RIC|(S[(51Y|1 16-bit window slre
length Buis folk|u|T (NN
15-bit TP cherkonm 1ttt urgent pointer
x
7 aptions (i any) £
7 data (If iy 4

Demultiplexing

applicaticn| ... |application epplication| ... |appiiration

IP Addresses

» |[Pv4 address
» Dottfed decimal: 140.112.8.130

» Unicast, broadcast, and multicast

» Private address space
= 10.0.0.0 - 10.255.255.255 (10/8 prefix)
®» 172.16.0.0 - 172.31.255.255 (172.16/12 prefix)

» 192.168.0.0 - 192.168.255.255 (192.168/16
prefix)

» Class A, B, C, D, E

IP Addresses (cont))

Clans A

Chas B

Class C

s D

(lam E

7hits 4 bits
|n[netid hostid
14 bitn 16 bita
[1]n| netld] hostid
21 bits Bbiis
|1f1|n| netid | hoatid
28 biia
F1]1|1fu| miticast groap D

[2]2]x]2]e]

Port Numbers

» Well-known ports: 1-1023
=» HTTP: 80
» SMTP: 25
» Telnet: 23
» [FTP: 21 (conftrol), 20 (datq)
» Others
» Gnutella: 6346, 6347
» Client vs. server ports

Useful Tools

» Packet sniffer or analyzer
» Tcpdump
» Fthereal
» NefXRay

» Packet generator

» Socket programming
» Packet capture libraries
» |bpcap & WinPcap

Example Scenario: Web
Browsing

http://www.fils.edu/ (140.112.8.130, 80)
25 @

80

23
)

www.fils.edu

Example Scenario: Web
Browsing

Www.fils.edu?/. (140.112.8.130, 80)

/ 25 @
140.112.8.130

80

23
)

www.fils.edu

Example Scenario: Web
Browsing

http://www.fils.edu/ (140.112.8.130, 80)
25 @
connect(140.112.8.130, 80)
7890 > 80
23
@

www.fils.edu

DNS Name Resolution

Ethernet

(CSMAJ/CD)

X'1s 140.112.8.130.

DNS

Where is www.fils.edu?

= hostname >
IP address

ARP (Revisited)

140.112.8.130
00:C0:EB:00:8B:68

X
0.112.8.130is /A= \
00:C0:EB:00:8B:68 Ethernet

) (CSMAI/CD)
\VVI vi7Z \I VI—II

/ Where is 140.112.8.130?

A
IP address =

=\ Ethernet address

Sockets

» ARP: Ethernet (hardware, MAC) address
» |P:|P address
» TCP/UDP: port number

» Porf vs. service

» Sockefts: {IP., port. ., IPyes POMyosi}

Socket Connection

(61.2.3.4, 7890) (140.112.8.130, 80)

25 @

connect(140.112.8.130, 80)
7890 > 80

A

23
)

www.fils.edu

Socket Programming

= UNIX: BSD Socket API (in C)

» sockeft(), bind(), listen(), accept(), connect(), send(),
recv(), sendto(), recvfrom(), select(), ...

» Java Socket API

» java.net.Socket

= Perl, Python, ...

Remote Procedure Call

» RFC 1831 —RPC v2

» RFC 1832 -- XDR: External Data Representation
Standard

» A machine-independent representation of data

®» | ocal vs. remote procedure calls

RPC

» UDP/TCP transport

» RPC/UDP: connectionless, fast

» RPC/TCP: connection-oriented, slower
» Portmap service (or porftmapper)

» Port 111

» RFC 1833

RPC

Client machine

i Server machine
I
client program \ service daemaon
I
| |
| I
: |
I
| |
RPC call » ¥
| ; - irvcke
| : service
! |
| |
l |
| . call dispatch
' o I rouline
| e | I
| =] | exacUts
' = | routine
' [|
I Z I return
I
| I
| i request
| |
| : completed
I‘ i return
L reply :
i |
! |
I '
I
I
I

program continues

RPC Portmapping

25 @

connect(140.112.8.130, 111) o

7890
Port P

<
<

connect(140.112.8.130, P) s}

A

140.112.8.130

RPC Programming

» rpcgen

» Applications: NFS (Network File System), ...

Infernet Layer

®» Connectionless, point to point internetworking protocol (uses the
datagram approach)

» takes care of routing across multiple networks

®» cqach packet travels in the network independently of each other
»/they may not arrive (if there is a problem in the network)

» they may arrive out of order

»/a design decision enforced by DoD to make the system more flexible and
responsive to loss of some subnet devices

plemented in end systems and routers as the Internet Protocol (IP)

Transport Layer

» End-to-end data transfer

» Transmission Control Protocol (TCP)
= connection oriented
» reliable delivery of data

» ordering of delivery

» ser Datagram Protocol (UDP)
®» connectionless service

®» delivery is not guaranteed

®» Can you give example applications that use TCP and
UDP?

Application Layer

» Support for user applications

» A separate module for each different application
» c.g. HTTP, SMTP, telnet

Python Tools: Sockets

» The socket module includes functions classes for
Implementing network connections via sockets

» The client and sever each create their own sockefts
and run methods to talk fo each other

Geftting the Host Name and
P

>>> import socket

>>> socket.gethostname ()
'smalltalk'’

>>> socket.gethostbyname (socket.gethostname ())
'134.432.111.34"

Python Tools: Codecs

» Strings are transmitted as bytes, so they must be
encoded before and decoded after transmission

» Strings are encoded and decoded using a codec, as
defined in the codecs module

Encoding and Decoding
Strings

bytes (string, codec) -> an array of bytes

codecs.decode (byteArray, codec) -> a string

Consult'the codecs doc for info on the possible codecs

>>> from codecs import decode
>>> data = bytes('Good luck on the final exam', 'ascii')

>>> print (decode (data, 'ascii')
Good luck on the exam!

The Role of the Server

= The server creates a socket and
listens for requests from clients

®» \When a client request comes in, the
server sends the appropriate
response via the socket

= When the client disconnects, the
server continues o listen for more
requests

The Structure of a Server

|

Import resources
Set up and connect the server to the net
While True:

Accept a connection from a client
Process the request for service

A server runs forever, unless an exception is raised

Example: A Date/Time
Server

» \When a client connects, the server sends
the current date and time

» \When the client receives this information,
it is displayed in the terminal

request

Date and time '

Example: A Day/Time Server

|

from socket import *
from time import ctime

The socket module includes resources for sockets

The ctime function returns the date and time

Example: A Day/Time Server

|

from socket import *
from time import ctime

HOST = 'localhost'

PORT = 21566
ADDRESS = (HOST, PORT)

A socket is associated with the host computer’ s IP
address and a port number

hese data are organized in a tuple

localhost supports a server and a client running on
e same computer

Example: A Day/Time Server
|

from socket import *
from time import ctime

HOST = 'localhost'
PORT = 21566
ADDRESS = (HOST, PORT)

server = socket (AF_INET, SOCK STREAM)
server .bind (ADDRESS)
server.listen (5)

\

ocket returns a socket object of the type specified
y Its arguments

ind and 1isten establish the socket’ s connection
the net and listen for client requests

Example: A Day/Time Server

|

from socket import *
from time import ctime

HOST = 'localhost'
PORT = 21566
ADDRESS = (HOST, PORT)

server = socket (AF_INET, SOCK STREAM)
server .bind (ADDRESS)

server.listen (5)

while True:

print ('Waiting for connection . . . ')
client, address = server.accept()
print('... connected from:', address)

accept pauses until a client connects

acaept returns the client’ s socket and address information

Example: A Day/Time Server

|

from socket import *
from time import ctime

HOST = 'localhost'
PORT = 21566
ADDRESS = (HOST, PORT)

server = socket (AF_INET, SOCK STREAM)
server .bind (ADDRESS)
server.listen (5)

while True:
print ('Waiting for connection . . . ')
client, address = server.accept()
print('... connected from:', address)
client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))
client.close()

send sends an encoded string to the client and close ends the
connection

Example: A Day/Time Server

|

from socket import *
from time import ctime

HOST = 'localhost'
PORT = 21566
ADDRESS = (HOST, PORT)

server = socket (AF_INET, SOCK_ STREAM)
server .bind (ADDRESS)
server.listen (5)

while True:
print ('Waiting for connection . . . ')
client, address = server.accept()
print('... connected from:', address)
client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))
client.close()

server.close () # Never reached here, but useful if exception
handling is added

\ \

Example: A Day/Time Client
|

from socket import *

HOST 'localhost'’
PORT 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket (AF_INET, SOCK STREAM)

etup/code for a client socket is very similar to the code for a
rver socket

BUFSIZE (1 kilobyte here) indicates the number of bytes allowed
folleach input operation

Example: A Day/Time Client
|

from socket import *

HOST = 'localhost'
PORT = 21566

1024

(HOST, PORT)

BUFSIZE
ADDRESS

server = socket (AF_INET, SOCK STREAM)
server.connect (ADDRESS)

onnect connects this socket to the server at the specified
dress

Example: A Day/Time Client
|

from socket import *
from codecs import decode

HOST = 'localhost'
PORT = 21566

1024

(HOST, PORT)

BUFSIZE
ADDRESS

server = socket (AF_INET, SOCK STREAM)
server .connect (ADDRESS)

dayAndTime = decode (server.recv (BUFSIZE), 'ascii')
print (dayAndTime)

server.close ()

recv Inputs an encoded string from the server (the date and time)

A One-on-One Chat Server

» When a client connects, send a greeting and wait for
areply

» When the reply is received, send another message

®» An empty string/reply should disconnect the client

A One-on-One Chat Server

while True:
print('Waiting for connection . . . ')
client, address = server.accept()
print('... connected from:', address)
client.send (bytes ('Welcome to my chat room!', 'ascii'))

while True:
message = decode(client.recv (BUFSIZE), 'ascii')
if not message:
print ('Client disconnected')
client.close()
break
else:
print (message)
client.send(bytes (input('> '), 'ascii'))

ervice includes a nested loop for carrying on the conversation

A One-on-One Chat Client

server = socket (AF_INET, SOCK_ STREAM)

server.connect (ADDRESS)

print (decode (server.recv (BUFSIZE), 'ascii')) # Displays server’ s
greeting

while True:
message = input('> ')
if not message:

break
server.send (bytes (message, 'ascii'))
reply = decode (server.recv (BUFSIZE), 'ascii')
if not reply:

break

print (reply)
server.close ()

Client now has a loop to carry on the conversation

Loop ends when the client sends or receives '

Putting the Doctor Online

» Very similar to a one-on-one chat, but the server
responds by using a Doctor object’s reply instead of a
human being’s input

= Minor changes to the chat server, but no changes at
all to the chat client!

A One-on-One Chat Server

while True:
print('Waiting for connection . . . ')
client, address = server.accept()
print('... connected from:',6 address)
client.send (bytes ('Welcome to my chat room!', 'ascii'))

while True:
message = decode(client.recv (BUFSIZE), 'ascii')
if not message:
print ('Client disconnected')
client.close()
break
else:
print (message)
client.send (bytes (input('> '), 'ascii'))

ervice includes a nested loop for carrying on the conversation

A One-on-One Therapy
Server

while True:

print('Waiting for connection . . . ')
client, address = server.accept()
print('... connected from:', address)

dr = Doctor()
client.send (bytes (dr.greeting()), 'ascii'))

while True:

message = decode(client.recv (BUFSIZE), 'ascii')

if not message:
print ('Client disconnected')
client.close()
break

else:
client.send (bytes (dr.reply (message)), 'ascii'))

reate the appropriate “bot” for carrying out the server’ s
e of the conversation

Going “Live”: the Server

|

from socket import *
from time import ctime

HOST = gethostbyname (gethostname ())
PORT = 21566
ADDRESS = (HOST, PORT)

server = socket (AF_INET, SOCK STREAM)
server .bind (ADDRESS)
server.listen (5)

while True:
print ('Waiting for connection . . . ')
client, address = server.accept()
print('... connected from:', address)
client.send(bytes(ctime() + '\nHave a nice day!', 'ascii'))
client.close()

Can deploy this server on any machine with an IP address

Going “Live”: the Client
|

from socket import *
from codecs import decode

HOST = input('Enter the server name: ')
PORT = 21566

BUFSIZE = 1024

ADDRESS = (HOST, PORT)

server = socket (AF_INET, SOCK STREAM)
server .connect (ADDRESS)

dayAndTime = decode (server.recv (BUFSIZE), 'ascii')

print (dayAndTime)
server.close ()

The HOST must be the name or IP of the server

