
andrei.doncescu@laas.fr

Introduction to Python

Why Python?

 Have your cake and eat it, too:

Productivity and readable code

 VHLLs will gain on system languages

(John Ousterhout)

 "Life's better without braces"

(Bruce Eckel)

Python is a general-purpose interpreted,

interactive, object-oriented, and high-level

programming language. It was created by

Guido van Rossum during 1985- 1990. Like

Perl, Python source code is also available

under the GNU General Public License

(GPL).

For More Information?

http://python.org/

- documentation, tutorials, beginners guide, core distribution, ...

Books include:

 Learning Python by Mark Lutz

 Python Essential Reference by David Beazley

 Python Cookbook, ed. by Martelli, Ravenscroft and Ascher

 (online at
http://code.activestate.com/recipes/langs/python/)

 http://wiki.python.org/moin/PythonBooks

4 Major Versions of Python

 “Python” or “CPython” is written in C/C++

- Version 2.7 came out in mid-2010

- Version 3.1.2 came out in early 2010

 “Jython” is written in Java for the JVM

 “IronPython” is written in C# for the .Net environment

Go To Website

http://python.org/doc/
http://python.org/doc/

 Installing Python

 Installing your text editor (NotePad++ or TextWrangler)

 Setting tab expansion

 Using the Command Line or Terminal Interface

 Editing and running Python Programs

Lest’s Start

Why Python?
C++ Python

Complex syntax

Difficult to read

Minimal Syntax

Easier to read and debug

Faster development time

Increases productivity

Development Environments
what IDE to use? http://stackoverflow.com/questions/81584

1. PyDev with Eclipse PyCharm
2. Komodo
3. Emacs
4. Vim
5. TextMate
6. Gedit
7. Idle
8. PIDA (Linux)(VIM Based)
9. NotePad++ (Windows)
10.BlueFish (Linux)

Pydev with Eclipse

Tutorial Outline

 interactive "shell"

 basic types: numbers, strings

 container types: lists, dictionaries, tuples

 variables

 control structures

 functions & procedures

 classes & instances

 modules & packages

 exceptions

 files & standard library

Python is Interpreted: Python is processed at

runtime by the interpreter. You do not need

to compile your program before executing

it. This is similar to PERL and PHP.

Python is Interactive: You can actually sit at

a Python prompt and interact with the

interpreter directly to write your programs.

Python is Object-Oriented: Python supports

Object-Oriented style or technique of

programming that encapsulates code

within objects.

Python is a Beginner's Language: Python is a

great language for the beginner-level

programmers and supports the

development of a wide range of

applications from simple text processing to

WWW browsers to games.

Interactive “Shell”

 Great for learning the language

 Great for experimenting with the library

 Great for testing your own modules

 Two variations: IDLE (GUI),

python (command line)

 Type statements or expressions at prompt:

>>> print "Hello, world"

Hello, world

>>> x = 12**2

>>> x/2

72

>>> # this is a comment

Interactive “Shell”

 Great for learning the language

 Great for experimenting with the library

 Great for testing your own modules

 Two variations: IDLE (GUI),
python (command line)

 Type statements or expressions at prompt:

>>> print "Hello, world"

Hello, world

>>> x = 12**2

>>> x/2

72

>>> # this is a comment

#!/usr/bin/python3

print ("Hello, Python!")

$sudo apt-get install python3-minimal

In the bash shell (Linux): type export
PYTHONPATH=/usr/local/bin/python3.4 and press
Enter.

Unix: IDLE is the very first Unix IDE for Python.

Variables

 No need to declare

 Need to assign (initialize)

use of uninitialized variable raises exception

 Not typed

if friendly: greeting = "hello world"

else: greeting = 12**2

print greeting

 Everything is a "variable":

Even functions, classes, modules

User Input in Python

name = input("Give me your name: ")

print("Your name is " + name)

>>> Give me your name: Michel

Your name is Michel

age = input("Enter your age: ")

age = int(age)

What you get from the input() function is a string.

What can you do with it?

Do math with strings. print("Were" + "wolf")

print("Door" + "man")

print("4" + "chan")

print(str(4) + "chan")

Numbers

 The usual suspects

 12, 3.14, 0xFF, 0377, (-1+2)*3/4**5, abs(x),
0<x<=5

 C-style shifting & masking

 1<<16, x&0xff, x|1, ~x, x^y

 Integer division truncates :-(

 1/2 -> 0 # 1./2. -> 0.5, float(1)/2 -> 0.5

 Will be fixed in the future

 Long (arbitrary precision), complex

 2L**100 ->
1267650600228229401496703205376L

 In Python 2.2 and beyond, 2**100 does the same thing

 1j**2 -> (-1+0j)

Python supports four different numerical types −

int (signed integers): They are often called just

integers or ints, are positive or negative whole

numbers with no decimal point.

long (long integers): Also called longs, they are

integers of unlimited size, written like integers and

followed by an uppercase or lowercase L.

float (floating point real values) : Also called floats,

they represent real numbers and are written with a

decimal point dividing the integer and fractional

parts. Floats may also be in scientific notation, with E

or e indicating the power of 10 (2.5e2 = 2.5 x 102 =

250).

complex (complex numbers) : are of the form a + bJ,

where a and b are floats and J (or j) represents the

square root of -1 (which is an imaginary number). The

real part of the number is a, and the imaginary part is

b. Complex numbers are not used much in Python

programming.

Grouping Indentation

In Python:

for i in range(20):

if i%3 == 0:

print i

if i%5 == 0:

print "Bingo!"

print "---"

In C:

for (i = 0; i < 20; i++)

{

if (i%3 == 0) {

printf("%d\n", i);

if (i%5 == 0) {

printf("Bingo!\n"); }

}

printf("---\n");

}

0

Bingo!

3

6

9

12

15

Bingo!

18

Control Structures

if condition:

statements

[elif condition:

statements] ...

else:

statements

while condition:

statements

for var in sequence:

statements

break

continue

Conditionals: if statement

if age > 17:

print("can see a rated R movie")

elif age < 17 and age > 12:

print("can see a rated PG-13 movie")

else:

print("can only see rated PG movies")

if a == 3:

print("the variable has the value 3")

elif a != 3:

print("the variable does not have the value 3")

if a == 3:

print("the variable has the value 3")

else:

print("the variable does not have the value 3")

If

 Ask the user for a number.
Depending on whether the number
is even or odd, print out an
appropriate message to the user.

 Hint: how does an even / odd
number react differently when
divided by 2?

 If the number is a multiple of 4, print
out a different message.

 Ask the user for two numbers: one
number to check (call it num) and
one number to divide by (check). If
check divides evenly into num, tell
that to the user. If not, print a
different appropriate message.

num = int(input("give me a number to check: "))

check = int(input("give me a number to divide by: "))

if num % 4 == 0:

print(num, "is a multiple of 4")

elif num % 2 == 0:

print(num, "is an even number")

else:

print(num, "is an odd number")

if num % check == 0:

print(num, "divides evenly by", check)

else:

print(num, "does not divide evenly by", check)

Conditional

grade = input("Enter your grade: ")

if grade >= 90:

print("A")

elif grade >= 80:

print("B")

elif grade >= 70:

print("C")

elif grade >= 65:

print("D")

else:

print("F")

50 ?

95?

Divisors

Create a program that asks the user for a number and then prints out a list of all the

divisors of that number. (If you don’t know what a divisor is, it is a number that divides

evenly into another number. For example, 13 is a divisor of 26 because 26 / 13 has no

remainder.)

__author__ = ‘Bouty'

num = int(input("Please choose a number to divide: "))

listRange = list(range(1,num+1))

divisorList = []

for number in listRange:

if num % number == 0:

divisorList.append(number)

print(divisorList)

While Loops

The idea is simple: while a certain condition is True, keep doing something. For example:

a = 5

while (a > 0):

print(a)

a -= 1

The output of this code segment is:

5

4

3

2

1

A particularly useful way to use while loops is checking user input for correctness. For example:

quit = input('Type "enter" to quit:')

while quit != "enter":

quit = input('Type "enter" to quit:')

Break Statement

A break statement stops the execution of a loop

before the original condition is met. While the use of

a break statement will often start an argument about

good coding practices, sometimes it is useful.

For example:

while True:

usr_command = input("Enter your command: ")

if usr_command == "quit":

break

else:

print("You typed " + usr_command)

In this case, the break statement is used to break off

the “infinite while loop” that we have constructed

with the while True statement.

Functions, Procedures

def name(arg1, arg2, ...):

"""documentation""" # optional doc string

statements

return # from procedure

return expression # from function

Example Function

def gcd(a, b):

"greatest common divisor"

while a != 0:

a, b = b%a, a # parallel assignment

return b

>>> gcd.__doc__

'greatest common divisor'

>>> gcd(12, 20)

4

Function: Make a two-player Rock-Paper-Scissors game
Remember the rules:

Rock beats scissors

Scissors beats paper

Paper beats rock

import sys

user1 = input("What's your name?")

user2 = input("And your name?")

user1_answer = input("%s, do yo want to choose rock, paper or scissors?" % user1)

user2_answer = input("%s, do you want to choose rock, paper or scissors?" % user2)

def compare(u1, u2):

if u1 == u2:

return("It's a tie!")

elif u1 == 'rock':

if u2 == 'scissors':

return("Rock wins!")

else:

return("Paper wins!")

elif u1 == 'scissors':

if u2 == 'paper':

return("Scissors win!")

else:

return("Rock wins!")

elif u1 == 'paper':

if u2 == 'rock':

return("Paper wins!")

else:

return("Scissors win!")

else:

return("Invalid input! You have not entered rock, paper or scissors, try again.")

sys.exit()

print(compare(user1_answer, user2_answer))

Lists

 Flexible arrays, not Lisp-like linked lists

 a = [99, "bottles of beer", ["on", "the", "wall"]]

 Same operators as for strings

 a+b, a*3, a[0], a[-1], a[1:], len(a)

 Item and slice assignment

 a[0] = 98

 a[1:2] = ["bottles", "of", "beer"]

-> [98, "bottles", "of", "beer", ["on", "the", "wall"]]

 del a[-1] # -> [98, "bottles", "of", "beer"]

LIST

Take two lists, say for example these two:

a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

and write a program that returns a list that contains only the elements that are common between the lists (without
duplicates). Make sure your program works on two lists of different sizes.

One of the interesting things you can do with lists in Python is figure out whether something is inside the list or not. For example:

>>> a = [5, 10, 15, 20]
>>> 10 in a
True
>>> 3 in a
False

You can of course use this in loops, conditionals, and any other programming constructs.

list_of_students = ["Michele", "Sara", "Cassie"]

name = input("Type name to check: ")
if name in list_of_students:
print("This student is enrolled.")

Li
st

 I
n

d
e

x
in

g

 In Python (and most programming in general), you start counting lists from the number 0. The first element in a list is “number 0”, the

second is “number 1”, etc.

 As a result, when you want to get single elements out of a list, you can ask a list for that number element:

>>> a = [5, 10, 15, 20, 25]

>>> a[3]

20

>>> a[0]

5

 There is also a convenient way to get sublists between two indices:

>>> a = [5, 10, 15, 20, 25, 30, 35, 40]

>>> a[1:4]

 [10, 15, 20]

>>> a[6:]

[35, 40]

>>> a[:-1]

[5, 10, 15, 20, 25, 30, 35]

 The first number is the “start index” and the last number is the “end index.”

 You can also include a third number in the indexing, to count how often you should read from the list:

>>> a = [5, 10, 15, 20, 25, 30, 35, 40]

>>> a[1:5:2]

[10, 20]

>>> a[3:0:-1] so [15, 10, 5]

To read the whole list, just use the variable name (in the above
examples, a), or you can also use [:] at the end of the variable
name (in the above examples, a[:]).

Strings are lists

Because strings are lists, you can do to strings everything that you do to lists.

You can iterate through them:

string = "example"

for c in string:

print "one letter: " + c

one letter: e

one letter: x

one letter: a

one letter: m

one letter: p

one letter: l

one letter: e

You can take sublists:

>>> string = "example"

>>> s = string[0:5]

>>> print s

exam

Strings

 "hello"+"world" "helloworld" #

concatenation

 "hello"*3 "hellohellohello" # repetition

"hello"[0] "h" # indexing

 "hello"[-1] "o" # (from end)

 "hello"[1:4] "ell" # slicing

 len("hello") 5 # size

 "hello" < "jello"1 # comparison

 "e" in "hello" 1 # search

 "escapes: \n etc, \033 etc, \if etc"

 'single quotes' """triple quotes""" r"raw strings"

Operator Description Example

+ Concatenation - Adds values on

either side of the operator

a + b will give HelloPython

* Repetition - Creates new strings,

concatenating multiple copies

of the same string

a*2 will give -HelloHello

[] Slice - Gives the character from

the given index

a[1] will give e

[:] Range Slice - Gives the

characters from the given range

a[1:4] will give ell

in Membership - Returns true if a

character exists in the given

string

H in a will give 1

not in Membership - Returns true if a

character does not exist in the

given string

M not in a will give 1

r/R Raw String - Suppresses actual

meaning of Escape characters.

The syntax for raw strings is

exactly the same as for normal

strings with the exception of the

raw string operator, the letter "r,"

which precedes the quotation

marks. The "r" can be lowercase

(r) or uppercase (R) and must be

placed immediately preceding

the first quote mark.

print r'\n' prints \n and print

R'\n'prints \n

% Format - Performs String

formatting

List

 A collection allows us to put many values in a single “variable”

 A collection is nice because we can carry all many values around in one convenient

package.

friends = ['Joseph', 'Glenn', 'Sally']

carryon = ['socks', 'shirt', 'perfume']

What is not a “Collection”

• Most of our variables have one value in them - when we put a new value in the

variable - the old value is over written

$ python
Python 2.5.2 (r252:60911, Feb 22 2008, 07:57:53)
[GCC 4.0.1 (Apple Computer, Inc. build 5363)] on darwin
>>> x = 2
>>> x = 4
>>> print x
4

List Constants

• List constants are surrounded by square

brakets and the elements in the list are

separated by commas.

• A list element can be any Python object -

even another list

• A list can be empty

>>> print [1, 24, 76]
[1, 24, 76]
>>> print ['red', 'yellow', 'blue']
['red', 'yellow', 'blue']
>>> print ['red', 24, 98.6]
['red', 24, 98.599999999999994]
>>> print [1, [5, 6], 7]
[1, [5, 6], 7]
>>> print []
[]

Display List Elements

for i in [5, 4, 3, 2, 1] :
print i

print 'Blastoff!'

5
4
3
2
1
Blastoff!

Lists and definite loops - best pals

friends = ['Joseph', 'Gully', 'Sally']
for friend in friends :

print 'Happy New Year:', friend
print 'Done!'

Happy New Year: Joseph
Happy New Year: Gully
Happy New Year: SallyDone!

Looking Inside Lists

• Just like strings, we can get at any single element in a list using an index specified in

square brackets

0

Joseph

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print friends[1]
Glenn
>>>

1

Glenn

2

Sally

Lists are Mutable

• Strings are "immutable" - we cannot

change the contents of a string - we

must make a new string to make any

change

• Lists are "mutable" - we can change

an element of a list using the index

operator

>>> fruit = 'Banana’
>>> fruit[0] = 'b’
Traceback
TypeError: 'str' object does not
support item assignment
>>> x = fruit.lower()
>>> print x
banana
>>> lotto = [2, 14, 26, 41, 63]
>>> print lotto[2, 14, 26, 41, 63]
>>> lotto[2] = 28
>>> print lotto
[2, 14, 28, 41, 63]

How Long is a List?

• The len() function takes a list as a

parameter and returns the number of

elements in the list

• Actually len() tells us the number of

elements of any set or sequence (i.e. such

as a string...)

>>> greet = 'Hello Bob’
>>> print len(greet)
9
>>> x = [1, 2, 'joe', 99]
>>> print len(x)
4
>>>

Using the range function

• The range function returns a list of

numbers that range from zero to one

less than the parameter

• We can construct an index loop using

for and an integer iterator

>>> print range(4)
[0, 1, 2, 3]
>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print len(friends)
3
>>> print range(len(friends))
[0, 1, 2]
>>>

A tale of two loops...

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :
print 'Happy New Year:', friend

for i in range(len(friends)) :
friend = friends[i]
print 'Happy New Year:', friend

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print len(friends)
3
>>> print range(len(friends))
[0, 1, 2]
>>>

Concatenating lists using +

• We can create a new list by adding two

exsiting lists together

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]
>>> print a
[1, 2, 3]

Lists can be sliced using :

>>> t = [9, 41, 12, 3, 74, 15]
>>> t[1:3]
[41,12]
>>> t[:4]
[9, 41, 12, 3]
>>> t[3:]
[3, 74, 15]
>>> t[:]
[9, 41, 12, 3, 74, 15]

Remember: Just like in
strings, the second
number is "up to but not
including"

List Methods

>>> x = list()
>>> type(x)<type 'list'>
>>> dir(x)['append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']
>>>

http://docs.python.org/tutorial/datastructures.html

Building a list from scratch

• We can create an empty list and

then add elements using the

append method

• The list stays in order and new

elements are added at the end

of the list

>>> stuff = list()
>>> stuff.append('book')
>>> stuff.append(99)
>>> print stuff
['book', 99]
>>> stuff.append('cookie')
>>> print stuff
['book', 99, 'cookie']

Is Something in a List?

• Python provides two operators

that let you check if an item is in

a list

• These are logical operators that

return True or False

• They do not modify the list

>>> some = [1, 9, 21, 10, 16]
>>> 9 in some
True
>>> 15 in some
False
>>> 20 not in some
True
>>>

A List is an Ordered Sequence

• A list can hold many items and keeps

those items in the order until we do

something to change the order

• A list can be sorted (i.e. change its

order)

• The sort method (unlike in strings)

means "sort yourself"

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> friends.sort()
>>> print friends
['Glenn', 'Joseph', 'Sally']
>>> print friends[1]
Joseph>>>

a

1 2 3

b

a

1 2 3

b

4

a = [1, 2, 3]

a.append(4)

b = a

a 1 2 3

Changing a Shared List

a

1

b

a

1b

a = 1

a = a+1

b = a

a 1

2

Changing an Integer

old reference deleted

by assignment (a=...)

new int object created

by add operator (1+1)

Built in Functions and Lists

• There are a number of functions

built into Python that take lists as

parameters

• Remember the loops we built?

These are much simpler

>>> nums = [3, 41, 12, 9, 74, 15]
>>> print len(nums)
6
>>> print max(nums)
74>>> print min(nums)
3
>>> print sum(nums)
154
>>> print sum(nums)/len(nums)
25

http://docs.python.org/lib/built-in-funcs.html

numlist = list()

while True :

inp = raw_input('Enter a number: ')

if inp == 'done' : break

value = float(inp)

numlist.append(value)

average = sum(numlist) / len(numlist)

print 'Average:', average

total = 0

count = 0

while True :

inp = raw_input('Enter a number: ')

if inp == 'done' : break

value = float(inp)

total = total + value

count = count + 1

average = total / count

print 'Average:', average

Enter a number: 3
Enter a number: 9
Enter a number: 5
Enter a number: done
Average: 5.66666666667

Best Friends: Strings and Lists

>>> abc = 'With three words’
>>> stuff = abc.split()
>>> print stuff
['With', 'three', 'words']
>>> print len(stuff)
3
>>> print stuff[0]
With

>>> print stuff
['With', 'three', 'words']
>>> for w in stuff :
... print w
...
With

Three
Words
>>>

Split breaks a string into parts produces a list of strings. We think of these as
words. We can access a particular word or loop through all the words.

>>> line = 'A lot of spaces’

>>> etc = line.split()

>>> print etc['A', 'lot', 'of', 'spaces']

>>>

>>> line = 'first;second;third’

>>> thing = line.split()

>>> print thing['first;second;third']

>>> print len(thing)

1

>>> thing = line.split(';')

>>> print thing['first', 'second', 'third']

>>> print len(thing)

3

>>>

When you do not specify a delimiter, multiple spaces are treated like “one” delimiter.

You can specify what delimiter character to use in the splitting.

More List Operations

>>> a = [0,1,2,3,4] ;

>>> a.append(5) # [0,1,2,3,4,5]

>>> a.pop() # [0,1,2,3,4]

5

>>> a.insert(0, 42) # [42,0,1,2,3,4]

>>> a.pop(0) # [0,1,2,3,4]

5.5

>>> a.reverse() # [4,3,2,1,0]

>>> a.sort() # [0,1,2,3,4]

 The method append() appends a passed obj into the existing list.

 Syntax

 Following is the syntax for append() method −

 list.append(obj)

 Parameters

 obj -- This is the object to be appended in the list.

 Return Value

 This method does not return any value but updates existing list.

 Example

 The following example shows the usage of append() method.

 #!/usr/bin/python

 aList = [123, 'xyz', 'zara', 'abc'];

 aList.append(2009);

 print "Updated List : ", aList

 When we run above program, it produces following result −

 Updated List : [123, 'xyz', 'zara', 'abc', 2009]

Dictionaries

 Hash tables, "associative arrays"

 d = {"duck": "eend", "water": "water"}

 Lookup:

 d["duck"] -> "eend"

 d["back"] # raises KeyError exception

 Delete, insert, overwrite:

 del d["water"] # {"duck": "eend", "back": "rug"}

 d["back"] = "rug" # {"duck": "eend", "back": "rug"}

 d["duck"] = "duik" # {"duck": "duik", "back": "rug"}

More Dictionary Ops

 Keys, values, items:

 d.keys() -> ["duck", "back"]

 d.values() -> ["duik", "rug"]

 d.items() -> [("duck","duik"), ("back","rug")]

 Presence check:

 d.has_key("duck") -> 1; d.has_key("spam") -> 0

 Values of any type; keys almost any

 {"name":"Guido", "age":43, ("hello","world"):1,
42:"yes", "flag": ["red","white","blue"]}

Dictionary Details

 Keys must be immutable:

 numbers, strings, tuples of immutables

 these cannot be changed after creation

 reason is hashing (fast lookup technique)

 not lists or other dictionaries

 these types of objects can be changed "in place"

 no restrictions on values

 Keys will be listed in arbitrary order

 again, because of hashing

Tuples

 key = (lastname, firstname)

 point = x, y, z # parentheses optional

 x, y, z = point # unpack

 lastname = key[0]

 singleton = (1,) # trailing comma!!!

 empty = () # parentheses!

 tuples vs. lists; tuples immutable

A tuple is a sequence of immutable Python

objects. Tuples are sequences, just like lists.

The differences between tuples and lists are,

the tuples cannot be changed unlike lists

and tuples use parentheses, whereas lists

use square brackets.

tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5);
tup3 = "a", "b", "c", "d";

Reference Semantics

 Assignment manipulates references

 x = y does not make a copy of y

 x = y makes x reference the object y references

 Very useful; but beware!

 Example:

>>> a = [1, 2, 3]

>>> b = a

>>> a.append(4)

>>> print b

[1, 2, 3, 4]

© 2000 Richard P.

Muller

What is an Object?

 A software item that contains variables and methods

 Object Oriented Design focuses on

 Encapsulation:

 dividing the code into a public interface, and a private implementation of that
interface

 Polymorphism:

 the ability to overload standard operators so that they have appropriate behavior
based on their context

 Inheritance:

 the ability to create subclasses that contain specializations of their parents

© 2000 Richard P.

Muller

Namespaces

 At the simplest level, classes are simply namespaces

 class myfunctions:

 def exp():

 return 0

 >>> math.exp(1)

 2.71828...

 >>> myfunctions.exp(1)

 0

 It can sometimes be useful to put groups of functions in their own
namespace to differentiate these functions from other similarly named
ones.

© 2000 Richard P.

Muller

Python Classes

 Python contains classes that define objects

 Objects are instances of classes

 class atom:

 def __init__(self,atno,x,y,z):

 self.atno = atno

 self.position = (x,y,z)

__init__ is the default constructor

self refers to the object itself,

like this in Java.

© 2000 Richard P.

Muller

Example: Atom class

 class atom:

 def __init__(self,atno,x,y,z):

 self.atno = atno

 self.position = (x,y,z)

 def symbol(self): # a class method

 return Atno_to_Symbol[atno]

 def __repr__(self): # overloads printing

 return '%d %10.4f %10.4f %10.4f' %

 (self.atno, self.position[0],

 self.position[1],self.position[2])

 >>> at = atom(6,0.0,1.0,2.0)

 >>> print at

 6 0.0000 1.0000 2.0000

 >>> at.symbol()

 'C'

© 2000 Richard P.

Muller

Atom class

 Overloaded the default constructor

 Defined class variables (atno,position) that are persistent and local to the

atom object

 Good way to manage shared memory:

 instead of passing long lists of arguments, encapsulate some of this data into an

object, and pass the object.

 much cleaner programs result

 Overloaded the print operator

 We now want to use the atom class to build molecules...

© 2000 Richard P.

Muller

Molecule Class
 class molecule:

 def __init__(self,name='Generic'):

 self.name = name

 self.atomlist = []

 def addatom(self,atom):

 self.atomlist.append(atom)

 def __repr__(self):

 str = 'This is a molecule named %s\n' % self.name

 str = str+'It has %d atoms\n' % len(self.atomlist)

 for atom in self.atomlist:

 str = str + `atom` + '\n'

 return str

© 2000 Richard P.

Muller

Using Molecule Class

 >>> mol = molecule('Water')

 >>> at = atom(8,0.,0.,0.)

 >>> mol.addatom(at)

 >>> mol.addatom(atom(1,0.,0.,1.))

 >>> mol.addatom(atom(1,0.,1.,0.))

 >>> print mol

 This is a molecule named Water

 It has 3 atoms

 8 0.000 0.000 0.000

 1 0.000 0.000 1.000

 1 0.000 1.000 0.000

 Note that the print function calls the atoms print function

 Code reuse: only have to type the code that prints an atom once; this means that if you
change the atom specification, you only have one place to update.

© 2000 Richard P.

Muller

Inheritance

 class qm_molecule(molecule):

 def addbasis(self):

 self.basis = []

 for atom in self.atomlist:

 self.basis = add_bf(atom,self.basis)

 __init__, __repr__, and __addatom__ are taken from the parent class (molecule)

 Added a new function addbasis() to add a basis set

 Another example of code reuse

 Basic functions don't have to be retyped, just inherited

 Less to rewrite when specifications change

© 2000 Richard P.

Muller

Overloading parent functions

 class qm_molecule(molecule):

 def __repr__(self):

 str = 'QM Rules!\n'

 for atom in self.atomlist:

 str = str + `atom` + '\n'

 return str

 Now we only inherit __init__ and addatom from the parent

 We define a new version of __repr__ specially for QM

© 2000 Richard P.

Muller

Adding to parent functions

 Sometimes you want to extend, rather than replace, the parent functions.

 class qm_molecule(molecule):

 def __init__(self,name="Generic",basis="6-31G**"):

 self.basis = basis

 molecule.__init__(self,name)

call the constructor

for the parent function

add additional functionality

to the constructor

© 2000 Richard P.

Muller

Public and Private Data

 Currently everything in atom/molecule is public, thus we could do

something really stupid like

 >>> at = atom(6,0.,0.,0.)

 >>> at.position = 'Grape Jelly'

that would break any function that used at.poisition

 We therefore need to protect the at.position and provide accessors to this

data

 Encapsulation or Data Hiding

 accessors are "gettors" and "settors"

 Encapsulation is particularly important when other people use your class

© 2000 Richard P.

Muller

Public and Private Data, Cont.

 In Python anything with two leading underscores is private

 __a, __my_variable

 Anything with one leading underscore is semi-private, and you should feel

guilty accessing this data directly.

 _b

 Sometimes useful as an intermediate step to making data private

© 2000 Richard P.

Muller

Encapsulated Atom

 class atom:

 def __init__(self,atno,x,y,z):

 self.atno = atno

 self.__position = (x,y,z) #position is private

 def getposition(self):

 return self.__position

 def setposition(self,x,y,z):

 self.__position = (x,y,z) #typecheck first!

 def translate(self,x,y,z):

 x0,y0,z0 = self.__position

 self.__position = (x0+x,y0+y,z0+z)

© 2000 Richard P.

Muller

Why Encapsulate?

 By defining a specific interface you can keep other modules from doing

anything incorrect to your data

 By limiting the functions you are going to support, you leave yourself free to

change the internal data without messing up your users

 Write to the Interface, not the the Implementation

 Makes code more modular, since you can change large parts of your classes

without affecting other parts of the program, so long as they only use your public

functions

© 2000 Richard P.

Muller

Classes that look like arrays

 Overload __getitem__(self,index) to make a class act like an array

 class molecule:

 def __getitem__(self,index):

 return self.atomlist[index]

 >>> mol = molecule('Water') #defined as before

 >>> for atom in mol: #use like a list!

 print atom

 >>> mol[0].translate(1.,1.,1.)

 Previous lectures defined molecules to be arrays of atoms.

 This allows us to use the same routines, but using the molecule class instead of the old
arrays.

 An example of focusing on the interface!

© 2000 Richard P.

Muller

Classes that look like functions

 Overload __call__(self,arg) to make a class behave like a function

 class gaussian:

 def __init__(self,exponent):

 self.exponent = exponent

 def __call__(self,arg):

 return math.exp(-self.exponent*arg*arg)

 >>> func = gaussian(1.)

 >>> func(3.)

 0.0001234

© 2000 Richard P.

Muller

Other things to overload

 __setitem__(self,index,value)

 Another function for making a class look like an array/dictionary

 a[index] = value

 __add__(self,other)

 Overload the "+" operator

 molecule = molecule + atom

 __mul__(self,number)

 Overload the "*" operator

 zeros = 3*[0]

 __getattr__(self,name)

 Overload attribute calls

 We could have done atom.symbol() this way

© 2000 Richard P.

Muller

Other things to overload, cont.

 __del__(self)

 Overload the default destructor

 del temp_atom

 __len__(self)

 Overload the len() command

 natoms = len(mol)

 __getslice__(self,low,high)

 Overload slicing

 glycine = protein[0:9]

 __cmp__(self,other):

 On comparisons (<, ==, etc.) returns -1, 0, or 1, like C's strcmp

© 2000 Richard P.

Muller

References

 Design Patterns: Elements of Reusable Object-Oriented Software, Erich

Gamma, Richard Helm, Ralph Johnson and John Vlissides (The Gang of

Four) (Addison Wesley, 1994)

 Refactoring: Improving the Design of Existing Code, Martin Fowler (Addison

Wesley, 1999)

 Programming Python, Mark Lutz (ORA, 1996).

Classes

class name:

"documentation"

statements

-or-

class name(base1, base2, ...):

...

Most, statements are method definitions:

def name(self, arg1, arg2, ...):

...

May also be class variable assignments

Example Class

class Stack:

"A well-known data structure…"

def __init__(self): # constructor

self.items = []

def push(self, x):

self.items.append(x) # the sky is the limit

def pop(self):

x = self.items[-1] # what happens if it’s empty?

del self.items[-1]

return x

def empty(self):

return len(self.items) == 0 # Boolean result

Using Classes

 To create an instance, simply call the class object:

x = Stack()# no 'new' operator!

 To use methods of the instance, call using dot notation:

x.empty() # -> 1

x.push(1) # [1]

x.empty() # -> 0

x.push("hello") # [1, "hello"]

x.pop() # -> "hello" # [1]

 To inspect instance variables, use dot notation:

x.items # -> [1]

Subclassing

class FancyStack(Stack):

"stack with added ability to inspect inferior stack items"

def peek(self, n):

"peek(0) returns top; peek(-1) returns item below that; etc."

size = len(self.items)

assert 0 <= n < size # test precondition

return self.items[size-1-n]

Subclassing (2)

class LimitedStack(FancyStack):

"fancy stack with limit on stack size"

def __init__(self, limit):

self.limit = limit

FancyStack.__init__(self) # base class constructor

def push(self, x):

assert len(self.items) < self.limit

FancyStack.push(self, x) # "super" method call

Class / Instance Variables

class Connection:

verbose = 0 # class variable

def __init__(self, host):

self.host = host # instance variable

def debug(self, v):

self.verbose = v # make instance variable!

def connect(self):

if self.verbose: # class or instance variable?

print "connecting to", self.host

Instance Variable Rules

 On use via instance (self.x), search order:

 (1) instance, (2) class, (3) base classes

 this also works for method lookup

 On assignment via instance (self.x = ...):

 always makes an instance variable

 Class variables "default" for instance variables

 But...!

 mutable class variable: one copy shared by all

 mutable instance variable: each instance its own

Modules

 Collection of stuff in foo.py file

 functions, classes, variables

 Importing modules:

 import re; print re.match("[a-z]+", s)

 from re import match; print match("[a-z]+", s)

 Import with rename:

 import re as regex

 from re import match as m

 Before Python 2.0:

 import re; regex = re; del re

Packages

 Collection of modules in directory

 Must have __init__.py file

 May contain subpackages

 Import syntax:

 from P.Q.M import foo; print foo()

 from P.Q import M; print M.foo()

 import P.Q.M; print P.Q.M.foo()

 import P.Q.M as M; print M.foo() # new

Catching Exceptions

def foo(x):

return 1/x

def bar(x):

try:

print foo(x)

except ZeroDivisionError, message:

print "Can’t divide by zero:", message

bar(0)

Try-finally: Cleanup

f = open(file)

try:

process_file(f)

finally:

f.close() # always executed

print "OK"# executed on success only

Raising Exceptions

 raise IndexError

 raise IndexError("k out of range")

 raise IndexError, "k out of range"

 try:

something

except: # catch everything

print "Oops"

raise # reraise

More on Exceptions

 User-defined exceptions

 subclass Exception or any other standard exception

 Old Python: exceptions can be strings

 WATCH OUT: compared by object identity, not ==

 Last caught exception info:

 sys.exc_info() == (exc_type, exc_value, exc_traceback)

 Last uncaught exception (traceback printed):

 sys.last_type, sys.last_value, sys.last_traceback

 Printing exceptions: traceback module

File Objects

 f = open(filename[, mode[, buffersize])

 mode can be "r", "w", "a" (like C stdio); default "r"

 append "b" for text translation mode

 append "+" for read/write open

 buffersize: 0=unbuffered; 1=line-buffered; buffered

 methods:

 read([nbytes]), readline(), readlines()

 write(string), writelines(list)

 seek(pos[, how]), tell()

 flush(), close()

 fileno()

Standard Library

 Core:

 os, sys, string, getopt, StringIO, struct, pickle, ...

 Regular expressions:

 re module; Perl-5 style patterns and matching rules

 Internet:

 socket, rfc822, httplib, htmllib, ftplib, smtplib, ...

 Miscellaneous:

 pdb (debugger), profile+pstats

 Tkinter (Tcl/Tk interface), audio, *dbm, ...

URLs

 http://www.python.org

 official site

 http://starship.python.net

 Community

 http://www.python.org/psa/bookstore/

 (alias for http://www.amk.ca/bookstore/)

 Python Bookstore

Further Reading

 Learning Python: Lutz, Ascher (O'Reilly '98)

 Python Essential Reference: Beazley (New Riders '99)

 Programming Python, 2nd Ed.: Lutz (O'Reilly '01)

 Core Python Programming: Chun (Prentice-Hall '00)

 The Quick Python Book: Harms, McDonald (Manning '99)

 The Standard Python Library: Lundh (O'Reilly '01)

 Python and Tkinter Programming: Grayson (Manning '00)

 Python Programming on Win32:
Hammond, Robinson (O'Reilly '00)

 Learn to Program Using Python: Gauld (Addison-W. '00)

 And many more titles...

96

Write performance benchmarking

software in both C/C++ and Python.

Execute software on Subaru’s Real

Time System (AO188RTS)

Construct a Wiki page on Subaru’s Wiki

to present an analysis on the results.

Compiled vs. Interpreted

C++ is a compiled

language.

Code is translated from a

human readable text form

into an executable form that

a machine can read.

Compiled code is hardware

specific.

Python is an interpreted

language.

Code is translated into a

machine readable form

during run time by an

interpreter application.

Interpreted code run on any

platform with the interpreter

installed.

Benchmarking Suite

Output GUI

99

Results - The GoodSearching Sorting

C++ Python C++ Python

(Shorter is better)

R
u
n
ti
m

e
 (

m
s
)

100

Results – The Bad

C++ Python Jitter

Vector Normalization

101

Results – The Ugly

C++ Python Jitter

Matrix Inversion

Conclusions

Python ran an average of 4x slower than C++ in

averaging all test results.

Runtime jitter is more important for real-time

applications than average execution times.

Mathematical, memory intensive, or complex

algorithms suffer the biggest performance impacts

in Python.

Utilizing Pythons built in methods or external modules

can produce near or better than C++ performance.

