
Client/Server
Networking Approach

andrei.doncescu@laas.fr

CLIENT/SERVER COMPUTING
(THE WAVE OF THE FUTURE)

OBJECTIVES

Goal:

How application programs use protocol software to
communicate across networks and internets

Introduction to Client-Server paradigm of interaction

Agenda

Why client server ?

Models

Architecture

Tools

Applications

Conclusions

A simple definition

A simple definition of CS is

“ server software accepts requests for data from client

software and returns the results to the client”

Network

Elements of C-S Computing

a client, a server, and network

Client

Server

Client machine

Server machine

Network

 transfers bits

 operates at application’s request

Application determines

what/when/where to send

Meaning of bits
=> Application programs are the entities that communicate
with each other, not the computers or users.

Important point: For 2 application programs to communicate
with each other, one application initiates communication and
the other accepts.

WHERE OPERATIONS ARE DONE

In CS Relationship “most of the application processing is

done on a computer (client side), which obtains

application services (such as database services) from

another computer (server side) in a master slave

configuration

CS-Focus is on

In client-server computing major focus is on

SOFTWARE

Application Tasks

User Interface

Presentation Logic

Application Logic

Data Requests & Results

Physical Data Management

Presentation Logic

Application Logic

DBMS

Client
Server

Network

Client (dumb) - Server Model

CHARACTERISTICS OF A CLIENT

Arbitrary application program

Becomes client temporarily

Can also perform other computations

Invoked directly by user

Runs locally on user’s computer

Actively initiates contact with a server

Contacts one server at a time

True Client-Server Model

Presentation Logic

Client
Server

Network

Application Logic

DBMS

Distributed Client-Server Model

Client
Server

Network

Application Logic

DBMS

Application Logic

Presentation Logic

CHARACTERISTICS OF A SERVER

Special-purpose, privileged program

Dedicated to providing one service

Can handle multiple remote clients simultaneously

Invoked automatically when system boots

Executes forever

Needs powerful computer and operating system

Waits passively for client contact

Accepts requests from arbitrary clients

TERMINOLOGY

Server

 An executing program that accepts contact over the network

server-class computer

 Hardware sufficient to execute a server

Informally

 Term “server” often applied to computer

DIRECTION OF DATA FLOW

Data can flow

from client to server only

from server to client only

 in both directions

Application protocol determines flow

Typical scenario

Client sends request(s)

Server sends responses(s)

SERVER CPU USE

Facts

Server operates like other applications

uses CPU to execute instructions

Performs I/O operations

Waiting for data to arrive over a network does not require CPU
time

Consequence

Server program uses only CPU when servicing a request

CLIENT-SERVER COMPUTING IS DISTRIBUTED ACCESS,
NOT A DISTRIBUTED COMPUTING.

calling

procedure
called

procedure

results=

bar(arguments)

results=

bar(arguments)

client stub

network transport
server stub

network transport

calling

procedure

(client)

called

procedure

(client)

results=

bar(arguments)

Network

Remote Procedure CallLocal Procedure Call

re
sults

a
rg

um
e
n
ts

re
sults

a
rg

um
e
n
ts

re
sults

a
rg

um
e
n
ts

re
q

u
e
st m

e
ssa

g
e

re
p

ly
 m

e
ssa

g
e

re
p
ly

 m
e
ssa

g
e

re
q

u
e
st m

e
ssa

g
e

RPC Look and Feel like Local Calls

Client

Program

Client

Waiting

RPC Call

with Request

return ()

reply
Request Completed

return() answer

Service Call

Invoke Service

Service Daemon Listening

Client Machine Server Machine

May be the same machine

Flow Control in a Sychronous RPC

Server

Threads

Message Passing

Facility

Server Process
Client Process

Client Process

User Mode

Kernel Mode

Multithreaded Server

CATEGORIES OF SERVERS

File Server

Data Server

Compute Server

Database Server

Communication Server

Video Server

FILE SERVER

File Servers manage a work group’s application and data files, so

that they may be shared by the group.

Very I/O oriented

Pull large amount of data off the storage subsystem and pass the

data over the network

Requires many slots for network connections and a large-capacity,

fast hard disk subsystem.

COMPUTE SERVER

Performs Application logic processing

Compute Servers requires

processors with high performance capabilities

large amounts of memory

relatively low disk subsystems

By separating data from the computation processing,
the compute server’s processing capabilities can be
optimized

CLUSTER AS COMPUTE SERVER

DATA SERVER

Data-oriented; used only for data storage and
management

Since a data server can serve more than one
compute server, compute-intensive applications
can be spread among multiple severs

Does not prefer any application logic
processing

Performs processes such as data
validation, required as part of the data
management function.

Requires fast processor, large amount of
memory and substantial Hard disk capacity.

Data

Server

Compute

Server

CLUSTER AS HIGH AVAILABLITY DATA SERVER
Data

Server

Compute

Server

DATABASE SERVER

Most typical use of technology in client-server

Accepts requests for data, retrieves the data from its database(or requests

data from another node)and passes the results back.

Compute server with data server provides the same functionality.

The server requirement depends on the size of database, speed with which

the database must be updated, number of users and type of network used.

COMMUNICATION SERVER
Provides gateway to other LANs, networks &

Computers

E-mail Server & internet server

Modest system requirements
multiple slots

fast processor to translate networking protocols

INTERNET SERVER

Internet Server
PC client

UNIX workstations

Local Area

Network

S Q L *

Forms

SQL *Net

TCP/IP

SQL *Net

TCP/IP

ORACL

E

UNIX Server

SQL *Net

TCP/IP

SQL *

Forms

ORACLE

Distributed processing application

connects to remote database

Distributed database application connects to

local database which connects to remote

database

Database Configurations

File

servers

Distributed

objects

Database

servers

19981994199019861982

First Wave Third WaveSecond Wave

Intergalactic era

client/server
Ethernet era

client/server

Client Middleware Server

GUI/OOUI

Objects

Groupware

TP

monitor

DBMS

DSM

Operating System

SQL/IDAPI TxRPC Mail ORB

NetBIOS TCP/IP IPX/SPX SNA

Messaging Peer-to-peer

Directory Security Distributed file

SNMP CMIP DME

RPC

Service Specific

DSM

NOS

Transport Stack

Operating System

DSM

THE CLIENT/SERVER INFRASTRUCTURE

The Berkeley Sockets API

Originally developed as part of BSD Unix (under gov’t
grant)

BSD = Berkeley Software Distribution

API=Application Program Interface

Now the most popular API for C/C++ programmers
writing applications over TCP/IP

Also emulated in other languages: Perl, Tcl/Tk, etc.

Also emulated on other operating systems: Windows,
etc.

THE SOCKET INTERFACE

The basic ideas:

a socket is like a file:

you can read/write to/from the network just like you
would a file

For connection-oriented communication (e.g. TCP)

servers (passive open) do listen and accept operations

clients (active open) do connect operations

both sides can then do read and/or write (or send and
recv)

 then each side must close

There are more details, but those are the most important
ideas

Connectionless (e.g. UDP): uses sendto and recvfrom

THE SOCKET INTERFACE

= file.dat
Internet

SOCKETS AND SOCKET LIBRARIES

In Unix, socket procedures (e.g. listen, connect, etc.) are system calls

 part of the operating system

 implemented in the “top half” of the kernel

 when you call the function, control moves to the operating system, and you
are using “system” CPU time

SOCKETS AND SOCKET LIBRARIES

On some other systems, socket procedures are not part of the OS

 instead, they are implemented as a library, linked into the
application object code (e.g. a DLL under Windows)

 Typically, this DLL makes calls to similar procedures that are part of
the native operating system.

 This is what the Comer text calls a socket library

A socket library simulates Berkeley sockets on OS’s where the
underlying OS networking calls are different from Berkeley sockets

SOME DEFINITIONS

Data types

int8_t signed 8-bit integer
int16_t signed 16-bit integer
int32_t signed 32-bit integer

uint8_t unsigned 8-bit integer
uint16_t unsigned 16-bit integer
uint32_t unsigned 32-bit integer

MORE DEFINITIONS

Internet Address Structure
struct in_addr
{

in_addr_t s_addr;
};

SOCKET ADDRESS STRUCTURE

SOCKET STRUCTURE

SOCKET TYPES

BYTE ORDERING

Big Endian byte-order

The byte order for the TCP/IP protocol suite is big endian.

BYTE-ORDER TRANSFORMATION

ADDRESS TRANSFORMATION

BYTE-MANIPULATION FUNCTIONS

In network programming, we often need to initialize a field, copy the contents of one field to
another, or compare the contents of two fields.

 Cannot use string functions (strcpy, strcmp, …) which assume null character termination.

INFORMATION ABOUT REMOTE HOST

PROCEDURES THAT IMPLEMENT THE SOCKET API

Creating and Deleting Sockets

fd=socket(protofamily, type, protocol)

Creates a new socket. Returns a file descriptor (fd). Must specify:
 the protocol family (e.g. TCP/IP)

 the type of service (e.g. STREAM or DGRAM)

 the protocol (e.g. TCP or UDP)

close(fd)

Deletes socket.

For connected STREAM sockets, sends EOF to close connection.

PROCEDURES THAT IMPLEMENT THE SOCKET API

Putting Servers “on the Air”
bind(fd)

Used by server to establish port to listen on.

When server has >1 IP addrs, can specify “ANY”, or a specific
one

listen (fd, queuesize)

Used by connection-oriented servers only, to put server “on the
air”

Queuesize parameter: how many pending connections can be
waiting

afd = accept (lfd, caddress, caddresslen)

Used by connection-oriented servers to accept one new connection
 There must already be a listening socket (lfd)

 Returns afd, a new socket for the new connection, and

 The address of the caller (e.g. for security, log keeping. etc.)

PROCEDURES THAT IMPLEMENT THE SOCKET API

How Clients Communicate with Servers

connect (fd, saddress, saddreslen)

Used by connection-oriented clients to connect to
server

 There must already be a socket bound to a connection-oriented service on the fd

 There must already be a listening socket on the server

 You pass in the address (IP address, and port number) of the server.

Used by connectionless clients to specify a
“default send to address”

 Subsequent “writes” or “sends” don’t have to specify a destination address

 BUT, there really ISN’T any connection established… this is a bad choice of names!

PROCEDURES THAT IMPLEMENT THE SOCKET API

How Clients Communicate with Servers

send (fd, data, length, flags)

sendto (fd, data, length, flags, destaddress, addresslen)

sendmsg (fd, msgstruct, flags)

write (fd, data, length)

Used to send data.
 send requires a connection (or for UDP, default send address) be already established

 sendto used when we need to specify the dest address (for UDP only)

 sendmsg is an alternative version of sendto that uses a struct to pass parameters

 write is the “normal” write function; can be used with both files and sockets

recv (...) recvfrom (...) recvmsg (...) read (...)

Used to receive data… parameters are similar, but in reverse
(destination => source, etc…)

CONNECTIONLESS SERVICE
(UDP)

Server

Client

1. Create transport
endpoint: socket()

2. Assign transport
endpoint an

address: bind()

3. Wait for a packet
to arrive: recvfrom()

4. Formulate reply (if any)
and send: sendto()

5. Release transport
endpoint: close()

1. Create transport
endpoint: socket()

2. Assign transport
endpoint an

address (optional):
bind()

3. Determine address
of server

4. Formulate message
and send: sendto()

6. Release transport
endpoint: close()

5. Wait for packet
to arrive: recvfrom()

Server
Client1. Create transport

endpoint for incoming
connection request: socket()

2. Assign transport
endpoint an
address: bind()

5. Wait for a packet
to arrive: recv ()

6. Formulate reply (if any)
and send: send()

7. Release transport
endpoint: close()

1. Create transport
endpoint: socket()

2. Assign transport
endpoint an
address (optional):
bind()

3. Determine address
of server

4. Formulate message
and send: send ()

6. Release transport
endpoint: close()

5. Wait for packet
to arrive: recv()

3. Announce willing
to accept connections:
listen()

4. Block and Wait
for incoming request:
accept()

4. Connect to server:
connect()

C
O

N
N

E
C

T
IO

N
-O

R
IE

N
T

E
D

 S
E

R
V

IC
E

AN EXAMPLE SERVICE

Connection-oriented service

Server: keeps a count of number of clients that have accessed its
service, then reports the count when a client contacts the server.

Client: displays the data it receives from the server

Example output:
This server has been contacted 10 times

/* To compile me in Solaris, type: gcc -o client client.c -lsocket -lnsl */

/* To compile me in Linux, type: gcc -o client client.c */

/* client.c - code for example client that uses TCP */

/* From Computer Networks and Internets by Douglas F. Comer */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <stdio.h>

#include <string.h>

#define closesocket close

#define PROTOPORT 5193 /* default protocol port number */

extern int errno;

char localhost[] = "localhost"; /* default host name */

/*---

* Program: client

*

* Purpose: allocate a socket, connect to a server, and print all output

*

* Syntax: client [host [port]]

*

* host - name of a computer on which server is executing

* port - protocol port number server is using

*

* Note: Both arguments are optional. If no host name is specified,

* the client uses "localhost"; if no protocol port is

* specified, the client uses the default given by PROTOPORT.

*

*--- */ Example Client

main(int argc, char *argv[])

{

struct hostent *ptrh; /* pointer to a host table entry */

struct protoent *ptrp; /* point to a protocol table entry */

struct sockaddr_in sad; /* structure to hold server's address */

int sd; /* socket descriptor */

int port; /* protocol port number */

char *host; /* pointer to host name */

int n; /* number of characters read */

char buf[1000]; /* buffer for data from the server */

memset((char *)&sad, 0, sizeof(sad)); /* clear sockaddr structure */

sad.sin_family = AF_INET; /* set family to Internet */

/* Check command-line argument for protocol port and extract */

/* port number if on is specified. Otherwise, use the default */

/* port value given by constant PROTOPORT */
Example Client

if (argc > 2) port = atoi(argv[2]);

else port = PROTOPORT;

if (port > 0) sad.sin_port = htons((u_short)port);

else

{ fprintf(stderr,"bad port number %s\n", argv[2]);

exit(1);

}

if (argc > 1) host = argv[1];

else host = localhost;

ptrh = gethostbyname(host);

if(((char *) ptrh) == NULL)

{ fprintf(stderr, "invalid host: %s\n", host);

exit(1);

} Example Client

memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

if (((int)(ptrp = getprotobyname("tcp"))) == 0)

{ fprintf(stderr, "cannot map \"tcp\" to protocol number\n");

exit(1);

}

sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);

if (sd < 0)

{ fprintf(stderr, "socket creation failed\n");

exit(1);

}

if (connect(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0)

{ fprintf(stderr, "connect failed\n");

exit(1);

} Example Client

n = recv(sd, buf, sizeof(buf), 0);

while(n > 0)

{

buf[n] = '\0';

printf("CLIENT: %s", buf); /* or also write(1, buf, n)

n = recv(sd, buf, sizeof(buf), 0);

}

closesocket(sd);

exit(0);

}

Example Client

/* to compile me on Solaris, type: gcc -o server server.c -lsocket -lnsl */

/* to compile me in Linux, type: gcc -o server server.c */

/* server.c - code for example server program that uses TCP */

/* From Computer Networks and Internets by Douglas F. Comer */

#define closesocket close

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#include <string.h>

#define PROTOPORT 5193 /* default protocol port number */

#define QLEN 6 /* size of request queue */

int visits = 0; /* counts client connections */

Example Server

/*--

* Program: server

*

* Purpose: allocate a socket and then repeatedly execute the folllowing:

* (1) wait for the next connection from a client

* (2) send a short message to the client

* (3) close the connection

* (4) go back to step (1)

*

* Syntax: server [port]

*

* port - protocol port number to use

*

* Note: The port argument is optional. If no port is specified,

* the server uses the default given by PROTOPORT.

*

--/
Example Server

main (argc, argv)

int argc;

char *argv[];

{

struct hostent *ptrh; /* pointer to a host table entry */

struct protoent *ptrp; /* pointer to a protocol table entry */

struct sockaddr_in sad; /* structure to hold server's address */

struct sockaddr_in cad; /* structure to hold client's address */

int sd, sd2; /* socket descriptors */

int port; /* protocol port number */

int alen; /* length of address */

char buf[1000]; /* buffer for string the server sends */

memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */

sad.sin_family = AF_INET; /* set family to Internet */

sad.sin_addr.s_addr = INADDR_ANY; /* set the local IP address */

Example Server

/* Check command-line argument for protocol port and extract */

/* port number if one is specfied. Otherwise, use the default */

/* port value given by constant PROTOPORT */

if (argc > 1) { /* if argument specified */

port = atoi (argv[1]); /* convert argument to binary*/

} else {

port = PROTOPORT; /* use default port number */

}

if (port > 0) /* test for illegal value */

sad.sin_port = htons((u_short)port);

else { /* print error message and exit */

fprintf (stderr, "bad port number %s/n",argv[1]);

exit (1);

}

Example Server

/* Map TCP transport protocol name to protocol number */

if (((int)(ptrp = getprotobyname("tcp"))) == 0) {

fprintf(stderr, "cannot map \"tcp\" to protocol number");

exit (1);

}

/* Create a socket */

sd = socket (PF_INET, SOCK_STREAM, ptrp->p_proto);

if (sd < 0) {

fprintf(stderr, "socket creation failed\n");

exit(1);

}

Example Server

/* Bind a local address to the socket */

if (bind(sd, (struct sockaddr *)&sad, sizeof (sad)) < 0) {

fprintf(stderr,"bind failed\n");

exit(1);

}

/* Specify a size of request queue */

if (listen(sd, QLEN) < 0) {

fprintf(stderr,"listen failed\n");

exit(1);

}

Example Server

/* Main server loop - accept and handle requests */

printf("Server up and running.\n");

while (1) {

alen = sizeof(cad);

fprintf(stderr, "SERVER: Waiting for contact ...\n");

if ((sd2=accept(sd, (struct sockaddr *)&cad, &alen)) < 0) {

fprintf(stderr, "accept failed\n");

exit (1);

}

visits++;

sprintf(buf,"This server has been contacted %d time%s\n",

visits, visits==1?".":"s.");

printf("SERVER: %s", buf);

send(sd2,buf,strlen(buf),0);

closesocket (sd2);

}

}
Example Server

ANOTHER EXAMPLE: ECHO SERVICE

/* TCP echo service on the server side */

int TCPechoServer (int fd)

{ char buf[BUFSIZE];

int cc;

while (cc = read(fd, buf, sizeof(buf))) {

if (cc < 0)

errexit(“echo read: %s\n”, strerror(errno));

if (write(fd, buf, cc) <0)

errexit(“echo write: %s\n”, sterror(errno));

}

/* TCP echo service on the client side */

int TCPechoClient (int fd)

{ char buf[BUFSIZE+1]; /* buffer for one line of text */

int n, outchars, inchars;

while (fgets(buf, sizeof(buf), stdin)) {

buf[BUFSIZE] = ‘\0’;

outchars = strlen(buf);

(void) write(fd, buf, outchars);

/* read it back*/

for (inchars = 0; inchars < outchars; inchars+=n) {

n = read(fd, &buf[inchars], outchars-inchars);

if (n <0)

errexit(“socket read failed: %s\n”, strerror(errno));

}

fputs(buf, stdout);

}

}

