LABORATORY|

SOCKET PROGRAMMING

What is a socket?

Using sockets
Types (Protocols)

Associated functions

Styles

WHAT IS A SOCKET?

An interface between application and network
The application creates a socket

The socket type dictates the style of communication
reliable vs. best effort

connection-oriented vs. connectionless

Once configured the application can
pass data to the socket for network transmission

receive data from the socket (transmitted through the network by
some other host)

TWO ESSENTIAL TYPES OF SOCKETS

SOCK_STREAM SOCK DGRAM

+ ak.a. TCP - a.k.a. UDP

“ reliable delivery “ unreliable delivery

" in-order guaranteed " no order guarantees

" connection-oriented * no notion of “connection” — app
* bidirectional indicates dest. for each packet

* can send or receive

s Lgin

Q: why have type SOCK_DGRAM?

SOCKET CREATION IN ¢: SOCKET

Int s = socket(domain, type, protocol);
" S: socket descriptor, an integer (like a file-handle)
= domain: integer, communication domain

= e.g., PF_INET (IPv4 protocol) — typically used

* lype: communication type
= SOCK_STREAM: reliable, 2-way, connection-based service
* SOCK DGRAM: unreliable, connectionless,

* other values: need root permission, rarely used, or obsolete

* protocol: specifies protocol (see file /etc/protocols for a list of options) - usually set to O

NOTE: socket call does not specify where data will be coming
from, nor where it will be going to — it just creates the interface!

A SOCKET-EYE VIEW OF THE INTERNET

medellin.cs.columbia.edu
(128.59.21.14)
newworld.cs.umass.edu

(128.119.245.93)

cluster.cs.columbia.edu

(128.59.21.14, 128.59.16.7,
128.59.16.5, 128.59.16.4)

Each host machine has an IP address

When a packet arrives at a host

PORTS

Each host has 65,536 ports

Some ports are reserved for specific Port O

apps
20,21: FTP =
23: Telnet :
80: HTTP

see RFC 1700 (about 2000 ports are
reserved)

Port 1

Port 65535

7 A socket provides an interface
to send data to/from the
network through a port

ADDRESSES, PORTS AND SOCKETS

Like apartments and mailboxes
You are the application
Your apartment building address is the address
Your mailbox is the port
The post-office is the network

The socket is the key that gives you access to the right mailbox (one difference: assume
outgoing mail is placed by you in your mailbox)

Q: How do you choose which port a socket connects to?

THE BIND FUNCTION

associates and (can exclusively) reserves a port for use by the socket

Int status = bind(sockid, &addrport, size);
= status: error status, = -1 if bind failed
* sockid: integer, socket descriptor

= addrport: struct sockaddr, the (IP) address and port of the machine (address usually set to
INADDR_ANY — chooses a local address)

" Size: the size (in bytes) of the addrport structure

bind can be skipped for both types of sockets. When and why?

SKIPPING THE BIND

SOCK_DGRAM:

if only sending, no need to bind. The OS finds a port each time the socket sends a pkt

if receiving, need to bind

SOCK STREAM:

destination determined during conn. setup

don’t need to know port sending from (during connection setup, receiving end is informed of port)

CONNECTION SETUP (sock STREAM)

Recall: no connection setup for SOCK DGRAM

A connection occurs between two kinds of participants
passive: waits for an active participant to request connection

active: initiates connection request to passive side

Once connection is established, passive and active participants are “similar”
both can send & receive data

either can terminate the connection

CONNECTION SETUP CONT'D

Passive participant Active participant
= step 1: listen (for incoming

requests) \;’r;p 2: request & establish
" step 3: accept (a request) nnection
e

* step 4: data transfer

* step 4: data transfer

The accepted connection is on
a new socket

The old socket continues to
listen for other active
participants

Why?

CONNECTION SETUP: LISTEN & ACCEPT

Called by passive participant

Int status = listen(sock, queuelen);
= status: O if listening, -1 if error

= SOCk: integer, socket descriptor

= queuelen: integer, # of active participants that can “wait” for a connection
= listen is non-blocking: returns immediately

Int s = accept(sock, &name, &namelen);
" S: integer, the new socket (used for data-transfer)
= SOck: integer, the orig. socket (being listened on)
= name: struct sockaddr, address of the active participant
= namelen: sizeof(name): value /result parameter
* must be set appropriately before call

* adjusted by OS upon return
* accept is blocking: waits for connection before returning

CONNECT C(ALL

Int status = connect(sock, &name, namelen);

= status: O if successful connect, -1 otherwise

= sock: integer, socket to be used in connection

= name: struct sockaddr: address of passive participant
- namelen: integer, sizeof(name)

connect is blocking

SENDING / RECEIVING DATA

With a connection (SOCK_STREAM):

= int count = send(sock, &buf, len, flags);
= count: # bytes transmitted (-1 if error)
= buf: char[], buffer to be transmitted
= len: integer, length of buffer (in bytes) to transmit
= flags: integer, special options, usually just O
= int count = recv(sock, &buf, len, flags);
= count: # bytes received (-1 if error)
* buf: void[], stores received bytes
= len: # bytes received

- flags: integer, special options, usually just O

* Calls are blocking [returns only after data is sent (to socket buf) / received]

SENDING / RECEIVING DATA (contn)

Without a connection (SOCK_DGRAM):

= int count = sendto(sock, &buf, len, flags, &addr, addrlen)
= count, sock, buf, len, flags: same as send
= addr: struct sockaddr, address of the destination
= addrlen: sizeof(addr)

* int count = recvfrom(sock, &buf, len, flags, &addr,
&addrlen);

= count, sock, buf, len, flags: same as recv
= name: struct sockaddr, address of the source
= namelen: sizeof(name): value /result parameter

Calls are blocking [returns only after data
received]

is sent (to socket buf) /

CLOSE

When finished using a socket, the socket should be closed:

status = close(s);
= status: O if successful, -1 if error

" S: the file descriptor (socket being closed)

Closing a socket
* closes a connection (for SOCK_STREAM)
* frees up the port used by the socket

THESTRUCT SOCKADDR

The Internet-specific:
struct sockaddr_in {

short sin_family;
u_short sin_port;

The generic:

struct SOCkaddr { struct in_addr sin_addr;
u_short sa_family; char sin_zero[8];
char sa_data[14]; },
}; - sin_family = AF_INET

| = Sin_port: port # (0-65535)
 sa_family = sin_addr: IP-address
= specifies which address family is being used -

* determines how the remaining 14 bytes are used 8 Sln_ZeI’O: unused

ADDRESS AND PORT BYTE-ORDERING

Address and port are stored as integers

* u_short sin_port; (16 bit) struct in_addr {

- in_addr sin_addr; (32 bit) u_long s_addr:
;

7 Problem:

o different machines / OS's use different word orderings
* little-endian: lower bytes first
* big-endian: higher bytes first
O these machines may communicate with one another over the
network

Big-Endian
machine Little-Endian

machine

1281119 40 | 12

SOLUTION: NETWORK BYTE-ORDERING

Defs:

Host Byte-Ordering: the byte ordering used by a host (big or little)
Network Byte-Ordering: the byte ordering used by the network — always big-endian

Any words sent through the network should be converted to

Network Byte-Order prior to transmission (and back to Host
Byte-Order once received)

Q: should the socket perform the conversion automatically?

7 Q: Given big-endian machines don't need
conversion routines and little-endian machines do,
how do we avoid writing two versions of code?

20

UNIX'S BYTE-ORDERING FUNCS

u_long htonl(u_long x);

u_short htons(u_short x);

u_long ntohl(u_long x);

u_short ntohs(u_short x);

7 On big-endian machines, these routines do nothing

T On little-endian machines, they reverse the byte

order

Big-Endian

128

119

40

12

rhine

; |128|119|40|12|

Little-Endian
machine

ol 128

119

40

12

1Yo

7 Same code would have worked regardless of endian-

ness of the two machines

DEALING WITH BLOCKING CALLS

Many of the functions we saw block until a certain event
accept: until a connection comes in

connect: until the connection is established
recv, recvirom: until a packet (of data) is received

send, sendto: until data is pushed into socket’s buffer
Q: why not until received?

For simple programs, blocking is convenient

What about more complex programse
multiple connections
simultaneous sends and receives
simultaneously doing non-networking processing

12

DEALING W/ BLOCKING (CONT'D)

Options:
create multi-process or multi-threaded code

turn off the blocking feature (e.g., using the fcntl file-descriptor control function)
use the select function call.

What does select do?
can be permanent blocking, time-limited blocking or non-blocking
input: a set of file-descriptors
output: info on the file-descriptors’ status

i.e., can identify sockets that are “ready for use”: calls involving that socket will return
immediately

23

SELECT FUNCTION CALL

Int status = select(nfds, &readfds, &writefds, &exceptfds, &timeout);
= status: # of ready obijects, -1 if error

= nfds: 1 + largest file descriptor to check

- readfds: list of descriptors to check if read-ready

= writefds: list of descriptors to check if write-ready

= exceptfds: list of descriptors to check if an exception is registered

= fimeout: time after which select returns, even if nothing ready - can be 0 or o0

(point timeout parameter to NULL for CXD)

24

TO BE USED WITH SELECT:

Recall select uses a structure, struct fd _set

" it is just a bit-vector

“ if bit i is set in [readfds, writefds, exceptfds], select will check if file descriptor (i.e. socket) i is ready for [reading,
writing, exception]

Before calling select:
- FD_ZERO(&fdvar): clears the structure
- FD_SET(I, &fdvar): to check file desc. i

After calling select:
= int FD_ISSET(i, &fdvar): boolean returns TRUE iff i is “ready”

25

OTHER USEFUL FUNCTIONS

bzero(char* c, int n): O’s n bytes starting at ¢
gethostname(char *name, int len): gets the name of the current host

gethostbyaddr(char *addr, int len, int type): converts IP hostname to structure
containing long integer

Inet_addr(const char *cp): converts dotted-decimal char-string to long integer

Inet_ntoa(const struct in_addr in): converts long to dotted-decimal notation

Warning: check function assumptions about byte-ordering (host or network). Often,
they assume parameters / return solutions in network byte-order

26

RELEASE OF PORTS

Sometimes, a “rough” exit from a program (e.g., Ctrl-C) does not properly free
up a port

Eventually (after a few minutes), the port will be freed

To reduce the likelihood of this problem, include the following code:
#include <signal.h>
void cleanExit(){exit(0);}

in socket code:
signal(SIGTERM, cleanExit);
signal(SIGINT, cleanExit);

27

FINAL THOUGHTS

Make sure to #include the header files that define used functions

Check man-pages and course web-site for additional info

28

EXERCISE|

WWW Client
The simple WWW client program should do the following activities:

1.From the command-line, read (1) the URL from which you can extract the name of the remote WWW server
and the file to retrieve and (2) the server port number. Create a socket that is connected to the server machine at
the specified port (e.g., HTTP port 80) [getservbyname, gethostbyname, socket, connect].

2.5end a request to the WWW server using the HTTP protocol format. This will look something like this: cer

/index.html HTTP/1.0\n\n Note that it's very important to include the two trailing newlines -- they are required by the HTTP protocol.

3.Read all the data from the HTTP connection and write it to a temporary file created in your WWW cache (e.g.,
/tmp/yourloginname) on the local host [creat,read/write].

4.Spawn an external viewer [fork/exec] to display the file. You can determine the type of viewer to spawn in two
ways:
1.Client-side file suffix -- The client can use the file suffix (e.g., *.ps should spawn ghostview, *.gif should
spawn xv, an html file should spawn lynx, and a regular text file should spawn /usr/ucb/more, etc.). If the file
IS compressed (e.g., *.gz, *.Z, or *.zip) then uncompress it before viewing it.
2.Server-side MIME content type information -- A more robust way to determine what type of the viewer to
spawn is to utilize the content-type: N€AMEr returned by the server. For instance, the .
The client should simply print out the appropriate error message [perror] and exit with a return status of 1 if any
of the system calls fail to work properly. If everything works correctly, the program should exit with a return
status of 0.

