
LABORATORY

2

SOCKET PROGRAMMING

What is a socket?

Using sockets

 Types (Protocols)

Associated functions

 Styles

3

WHAT IS A SOCKET?

An interface between application and network

The application creates a socket

The socket type dictates the style of communication

reliable vs. best effort

connection-oriented vs. connectionless

Once configured the application can

pass data to the socket for network transmission

receive data from the socket (transmitted through the network by
some other host)

4

TWO ESSENTIAL TYPES OF SOCKETS

SOCK_STREAM

 a.k.a. TCP

 reliable delivery

 in-order guaranteed

 connection-oriented

 bidirectional

SOCK_DGRAM

 a.k.a. UDP

 unreliable delivery

 no order guarantees

 no notion of “connection” – app
indicates dest. for each packet

 can send or receive

App

socket
3 2 1

Dest.

App

socket
3 2 1

D1

D3

D2

Q: why have type SOCK_DGRAM?

5

SOCKET CREATION IN C: SOCKET

int s = socket(domain, type, protocol);
 s: socket descriptor, an integer (like a file-handle)

 domain: integer, communication domain

 e.g., PF_INET (IPv4 protocol) – typically used

 type: communication type

 SOCK_STREAM: reliable, 2-way, connection-based service

 SOCK_DGRAM: unreliable, connectionless,

 other values: need root permission, rarely used, or obsolete

 protocol: specifies protocol (see file /etc/protocols for a list of options) - usually set to 0

NOTE: socket call does not specify where data will be coming
from, nor where it will be going to – it just creates the interface!

6

A SOCKET-EYE VIEW OF THE INTERNET

Each host machine has an IP address

When a packet arrives at a host

medellin.cs.columbia.edu

(128.59.21.14)

cluster.cs.columbia.edu

(128.59.21.14, 128.59.16.7,

128.59.16.5, 128.59.16.4)

newworld.cs.umass.edu

(128.119.245.93)

7

PORTS

Port 0

Port 1

Port 65535

Each host has 65,536 ports

Some ports are reserved for specific
apps

 20,21: FTP

 23: Telnet

 80: HTTP

 see RFC 1700 (about 2000 ports are
reserved)

 A socket provides an interface
to send data to/from the
network through a port

8

ADDRESSES, PORTS AND SOCKETS

Like apartments and mailboxes

 You are the application

 Your apartment building address is the address

 Your mailbox is the port

 The post-office is the network

 The socket is the key that gives you access to the right mailbox (one difference: assume
outgoing mail is placed by you in your mailbox)

Q: How do you choose which port a socket connects to?

9

THE BIND FUNCTION

associates and (can exclusively) reserves a port for use by the socket

int status = bind(sockid, &addrport, size);
 status: error status, = -1 if bind failed

 sockid: integer, socket descriptor

 addrport: struct sockaddr, the (IP) address and port of the machine (address usually set to
INADDR_ANY – chooses a local address)

 size: the size (in bytes) of the addrport structure

bind can be skipped for both types of sockets. When and why?

10

SKIPPING THE BIND

SOCK_DGRAM:

 if only sending, no need to bind. The OS finds a port each time the socket sends a pkt

 if receiving, need to bind

SOCK_STREAM:

 destination determined during conn. setup

 don’t need to know port sending from (during connection setup, receiving end is informed of port)

11

CONNECTION SETUP (SOCK_STREAM)

Recall: no connection setup for SOCK_DGRAM

A connection occurs between two kinds of participants

 passive: waits for an active participant to request connection

 active: initiates connection request to passive side

Once connection is established, passive and active participants are “similar”

 both can send & receive data

 either can terminate the connection

12

CONNECTION SETUP CONT’D
Passive participant

 step 1: listen (for incoming
requests)

 step 3: accept (a request)

 step 4: data transfer

The accepted connection is on
a new socket

The old socket continues to
listen for other active
participants

Why?

Active participant

 step 2: request & establish
connection

 step 4: data transfer

Passive Participant

l-socka-sock-1 a-sock-2

Active 1

socket

Active 2

socket

13

CONNECTION SETUP: LISTEN & ACCEPT

Called by passive participant

int status = listen(sock, queuelen);
 status: 0 if listening, -1 if error

 sock: integer, socket descriptor

 queuelen: integer, # of active participants that can “wait” for a connection

 listen is non-blocking: returns immediately

int s = accept(sock, &name, &namelen);
 s: integer, the new socket (used for data-transfer)

 sock: integer, the orig. socket (being listened on)

 name: struct sockaddr, address of the active participant

 namelen: sizeof(name): value/result parameter

 must be set appropriately before call

 adjusted by OS upon return

 accept is blocking: waits for connection before returning

14

CONNECT CALL

int status = connect(sock, &name, namelen);
 status: 0 if successful connect, -1 otherwise

 sock: integer, socket to be used in connection

 name: struct sockaddr: address of passive participant

 namelen: integer, sizeof(name)

connect is blocking

15

SENDING / RECEIVING DATA
With a connection (SOCK_STREAM):

 int count = send(sock, &buf, len, flags);

 count: # bytes transmitted (-1 if error)

 buf: char[], buffer to be transmitted

 len: integer, length of buffer (in bytes) to transmit

 flags: integer, special options, usually just 0

 int count = recv(sock, &buf, len, flags);

 count: # bytes received (-1 if error)

 buf: void[], stores received bytes

 len: # bytes received

 flags: integer, special options, usually just 0

 Calls are blocking [returns only after data is sent (to socket buf) / received]

16

SENDING / RECEIVING DATA (CONT’D)

Without a connection (SOCK_DGRAM):

 int count = sendto(sock, &buf, len, flags, &addr, addrlen);

 count, sock, buf, len, flags: same as send

 addr: struct sockaddr, address of the destination

 addrlen: sizeof(addr)

 int count = recvfrom(sock, &buf, len, flags, &addr,

&addrlen);

 count, sock, buf, len, flags: same as recv

 name: struct sockaddr, address of the source

 namelen: sizeof(name): value/result parameter

Calls are blocking [returns only after data is sent (to socket buf) /
received]

17

CLOSE

When finished using a socket, the socket should be closed:

status = close(s);
 status: 0 if successful, -1 if error

 s: the file descriptor (socket being closed)

Closing a socket

 closes a connection (for SOCK_STREAM)

 frees up the port used by the socket

18

THE STRUCT SOCKADDR

The generic:
struct sockaddr {

u_short sa_family;

char sa_data[14];

};

 sa_family

 specifies which address family is being used

 determines how the remaining 14 bytes are used

The Internet-specific:
struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

 sin_family = AF_INET

 sin_port: port # (0-65535)

 sin_addr: IP-address

 sin_zero: unused

19

ADDRESS AND PORT BYTE-ORDERING

Address and port are stored as integers

 u_short sin_port; (16 bit)

 in_addr sin_addr; (32 bit)
struct in_addr {

u_long s_addr;

};

 Problem:
 different machines / OS’s use different word orderings

• little-endian: lower bytes first

• big-endian: higher bytes first

 these machines may communicate with one another over the
network

128.119.40.12

128 119 40 12

12.40.119.128

128 119 40 12

Big-Endian

machine Little-Endian

machine

20

SOLUTION: NETWORK BYTE-ORDERING

Defs:

 Host Byte-Ordering: the byte ordering used by a host (big or little)

 Network Byte-Ordering: the byte ordering used by the network – always big-endian

Any words sent through the network should be converted to
Network Byte-Order prior to transmission (and back to Host
Byte-Order once received)

Q: should the socket perform the conversion automatically?

 Q: Given big-endian machines don’t need
conversion routines and little-endian machines do,
how do we avoid writing two versions of code?

21

UNIX’S BYTE-ORDERING FUNCS
u_long htonl(u_long x);

u_short htons(u_short x);

u_long ntohl(u_long x);

u_short ntohs(u_short x);

 On big-endian machines, these routines do nothing

 On little-endian machines, they reverse the byte
order

 Same code would have worked regardless of endian-
ness of the two machines

128.119.40.12

128 119 40 12

128.119.40.12

128 119 40 12

Big-Endian

machine Little-Endian

machine

n
to

h
l

128 119 40 12 1281194012

22

DEALING WITH BLOCKING CALLS

Many of the functions we saw block until a certain event
 accept: until a connection comes in

 connect: until the connection is established

 recv, recvfrom: until a packet (of data) is received

 send, sendto: until data is pushed into socket’s buffer

 Q: why not until received?

For simple programs, blocking is convenient

What about more complex programs?
 multiple connections

 simultaneous sends and receives

 simultaneously doing non-networking processing

23

DEALING W/ BLOCKING (CONT’D)

Options:

 create multi-process or multi-threaded code

 turn off the blocking feature (e.g., using the fcntl file-descriptor control function)

 use the select function call.

What does select do?

 can be permanent blocking, time-limited blocking or non-blocking

 input: a set of file-descriptors

 output: info on the file-descriptors’ status

 i.e., can identify sockets that are “ready for use”: calls involving that socket will return
immediately

24

SELECT FUNCTION CALL
int status = select(nfds, &readfds, &writefds, &exceptfds, &timeout);
 status: # of ready objects, -1 if error

 nfds: 1 + largest file descriptor to check

 readfds: list of descriptors to check if read-ready

 writefds: list of descriptors to check if write-ready

 exceptfds: list of descriptors to check if an exception is registered

 timeout: time after which select returns, even if nothing ready - can be 0 or
(point timeout parameter to NULL for)

25

TO BE USED WITH SELECT:

Recall select uses a structure, struct fd_set
 it is just a bit-vector

 if bit i is set in [readfds, writefds, exceptfds], select will check if file descriptor (i.e. socket) i is ready for [reading,
writing, exception]

Before calling select:
 FD_ZERO(&fdvar): clears the structure

 FD_SET(i, &fdvar): to check file desc. i

After calling select:
 int FD_ISSET(i, &fdvar): boolean returns TRUE iff i is “ready”

26

OTHER USEFUL FUNCTIONS

bzero(char* c, int n): 0’s n bytes starting at c

gethostname(char *name, int len): gets the name of the current host

gethostbyaddr(char *addr, int len, int type): converts IP hostname to structure
containing long integer

inet_addr(const char *cp): converts dotted-decimal char-string to long integer

inet_ntoa(const struct in_addr in): converts long to dotted-decimal notation

Warning: check function assumptions about byte-ordering (host or network). Often,
they assume parameters / return solutions in network byte-order

27

RELEASE OF PORTS

Sometimes, a “rough” exit from a program (e.g., ctrl-c) does not properly free
up a port

Eventually (after a few minutes), the port will be freed

To reduce the likelihood of this problem, include the following code:

#include <signal.h>

void cleanExit(){exit(0);}
 in socket code:

signal(SIGTERM, cleanExit);

signal(SIGINT, cleanExit);

28

FINAL THOUGHTS

Make sure to #include the header files that define used functions

Check man-pages and course web-site for additional info

EXERCISE

WWW Client
The simple WWW client program should do the following activities:

1.From the command-line, read (1) the URL from which you can extract the name of the remote WWW server

and the file to retrieve and (2) the server port number. Create a socket that is connected to the server machine at

the specified port (e.g., HTTP port 80) [getservbyname, gethostbyname, socket, connect].

2.Send a request to the WWW server using the HTTP protocol format. This will look something like this: GET

/index.html HTTP/1.0\n\n Note that it's very important to include the two trailing newlines -- they are required by the HTTP protocol.

3.Read all the data from the HTTP connection and write it to a temporary file created in your WWW cache (e.g.,

/tmp/yourloginname) on the local host [creat,read/write].

4.Spawn an external viewer [fork/exec] to display the file. You can determine the type of viewer to spawn in two

ways:

1.Client-side file suffix -- The client can use the file suffix (e.g., *.ps should spawn ghostview, *.gif should

spawn xv, an html file should spawn lynx, and a regular text file should spawn /usr/ucb/more, etc.). If the file

is compressed (e.g., *.gz, *.Z, or *.zip) then uncompress it before viewing it.

2.Server-side MIME content type information -- A more robust way to determine what type of the viewer to

spawn is to utilize the Content-type: header returned by the server. For instance, the .

The client should simply print out the appropriate error message [perror] and exit with a return status of 1 if any

of the system calls fail to work properly. If everything works correctly, the program should exit with a return

status of 0.

